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The trigonometric functions entered “analysis” when Isaac Newton derived the power 
series for the sine in his De Analysi of 1669. On the other hand, no textbook until 1748 dealt 
with the calculus of these functions. That is, in none of the dozen or so calculus texts written 
in England and the continent during the first half of the 18th century was there a treatment of 
the derivative and integral of the sine or cosine or any discussion of the periodicity or 
addition properties of these functions. This contrasts sharply with what occurred in the case 
of the exponential and logarithmic functions. We attempt here to explain why the trigono- 
metric functions did not enter calculus until about 1739. In that year, however, Leonhard 
Euler invented this calculus. He was led to this invention by the need for the trigonometric 
functions as solutions of linear differential equations. In addition, his discovery of a general 
method for solving linear differential equations with constant coefficients was influenced 
by his knowledge that these functions must provide part of that solution. o 19x7 Academic 

Press. Inc. 

Les fonctions trigonometriques sont entrees dans I’analyse lorsque Isaac Newton a ob- 
tenu une serie de puissances pour le sinus dans son De Anafysi de 1669. Par contre, aucun 
manuel jusqu’a 1748 n’a portt sur le calcul de ces fonctions. C’est-a-dire que, dans aucun 
des douzaines d’ecrits portant sur Ie calculs publies en Angleterre ou sur le continent 
pendant la premiere moitie du XVIII’ sitcle, il n’y avait pas d’etude de la dtrivte et de 
I’integrale du sinus ou du cosinus, ni d’examen des prop&t& de ptriodicitt ou d’addition de 
ces fonctions. Cela contraste fortement avec ce qui est arrive pour les fonctions exponen- 
tielle et logarithme. Nous essayons d’expliquer ici pourquoi les fonctions trigonometriques 
ne sont entrees dans I’analyse qu’aux environs de 1739. D’ailleurs, en cette an&e, Leonhard 
Euler a inventt ce calcul. II a ete conduit a cette decouverte par la necessitt d’utiliser les 
fonctions trigonomttriques comme solutions des equations differentielles lineaires. En 
outre, sa decouverte d’une methode g&&ale de resolution des equations differentielles 
lineaires a coefficients constants a Ctt influencee par sa connaissance que ces fonctions 
doivent foumir une partie de Cette sohrtion. 0 1987 Academic Press, h. 

Die trigonometrische Funktionen traten in die “Analysis” ein, als Isaac Newton die 
Potenzreihe der Sinusfunktion in seiner Arbeit De Analysi von 1669 herleitete. Andererseits 
betrachtete kein Lehrbuch vor 1748 den Kalktil dieser Funktionen. Das heisst, man findet 
weder eine Behandlung der Ableitung und des Integrals vom Sinus oder Cosinus noch eine 
Behandlung der Periodizitlits- oder Additionseigenschaften dieser Funktionen in irgen- 
deinem Lehrbuch tiber Differential- und Integralrechnung aus der ersten Htifte des 
achtzehnten Jahrhunderts. Hierin liegt ein deutlicher Gegensatz zum Falle der Exponen- 
tialfunktion und der logarithmischen Funktionen. lm vorliegenden Aufsatz versuchen wir zu 
erkhiren, weshalb die trigonometrischen Funktionen bis urn 1739 rechnerisch nicht behan- 
delt wurden. In diesem Jahr erfand Leonhard Euler den betreffenden Kalkiil. Er wurde zu 
dieser Ertindung durch den Bedarf an trigonometrischen Funktionen als Liisungen linearer 
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Differentialgleichungen gefiihrt. Zusltzlich beeinfluRte sein Wissen darum, daR diese 
Funktionen einen Teil der Liisung linearer Differentialgleichungen mit konstanten Koeffi- 
zienten liefern miissen, seine Entdeckung eines allgemeinen LGsungsverfahrens fiir solche 
Gleichungen. 0 1987 Academic Press, Inc. 

AMS 1980 subject classifications: OlASO, 34-03, 26-03. 
KEY WORDS: Trigonometric functions, Leonhard Euler, linear differential equations, Johann Ber- 

noulli, exponential function. 

The trigonometric functions entered “analysis” with Isaac Newton. It is well 
known that in De Analysi [ 16691, Newton derived the power series for the sine by 
inverting the power series for the arcsine; the latter he had derived from the 
binomial theorem and geometrical considerations. Within the next decade, these 
series showed up in various places, including the correspondence between New- 
ton and Leibniz in 1676. Leibniz noted in particular that the sine series could be 
derived from the cosine series by term-by-term integration since “the sum of the 
sines of the complement to the arc . . . is equal to the right sine multiplied by the 
radius, as is known to geometers” [Turnbull 1960, 651. Nevertheless, as we will 
see, the calculus of the trigonometric functions did not come into existence until 
1739. That is, until that date there was no sense of the sine and cosine being 
expressed, like the algebraic functions, as formulas involving letters and numbers, 
whose relationship to other such formulas could be studied using the developing 
techniques of the calculus. Since such was not the case for the other large class of 
what we call the transcendental functions, the exponential and logarithmic func- 
tions, this 70-year gap calls out for explanation. Not only will we attempt that 
explanation here, but we will also see why and how the trigonometric functions 
finally did enter calculus. 

First, however, we want to review what was known about the sine and cosine in 
the last quarter of the 17th century and then briefly discuss their rare appearance 
in the first calculus textbooks of the early 18th century. Given that the sine and 
cosine are the most familiar examples of periodic functions, one might expect that 
they would make an appearance whenever there was any discussion of a periodic 
physical phenomenon. In fact, they did, but in ways so geometrical that there was 
no development of the analytic ideas. For example, in 1678 Hooke’s law ap- 
peared in print in the published version of his Cutlerian lecture [Hooke 16781. In 
an effort to describe the motion of a weight on a stretched spring based on his law, 
Hooke drew a rather complex diagram and showed that the velocity of this weight 
is as certain ordinates in a circle; these ordinates may be thought of as the sines of 
the arcs cut off. He also drew a curve which represented the time for the weight to 
be in any given location; this curve is in fact an arccosine curve. Hooke, however, 
does not use these trigonometric terms; he is content with the geometry of the 
situation. 

A few years later, a more explicit result appears in Newton’s Principia as 
Proposition XXXVIII, Theorem XII: 
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Supposing that the centripetal force is proportional to the altitude or distance of places from 
the centre, I say, that the times and velocities of falling bodies, and the spaces which they 
describe, are respectively proportional to the arcs, and the right and versed sines of the arcs. 
[Newton 16871 

It may be, as Truesdell says in referring to this theorem, that “for Newton, 
simple harmonic motion was a familiar and completely mastered concept” [Trues- 
dell 19601. The theorem, however, occurs in the section entitled “Concerning the 
Rectilinear Ascent and Descent of Bodies” and Newton makes no reference there 
to motions repeating themselves. He simply describes the motion of bodies mov- 
ing on certain curves subject to various types of forces. Newton’s proof of the 
theorem involves taking the limit of a body moving on an arc of an ellipse which is 
an affine transform of a circle, as the ellipse is squeezed onto its diameter. But his 
diagram to the theorem shows only one quadrant of a circle; the right sine of the 
statement is, as is usual for that time, simply a line from the circle’s diameter to its 
circumference. To a modern reader, the calculus of the sine and cosine is only a 
hair’s breadth away from Newton’s discussion; but Newton himself says no more 
about it and there is little reference to this idea in any other work over the next 30 
years. 

One might also expect the sine and the cosine to appear as the solution to a 
simple differential equation, in particular as the solution to y” = -ky. Again, one 
does find, in effect, this equation. Leibniz in [1693] derives from his differential 
method the infinitesimal relation between the arc and its sine in a circle of radius 
a: a2dy2 = a2dx2 + x2dy2 (Fig. l), assuming dy is constant. Leibniz takes the 
differential of this equation to get 2a2dxd2x + 2xdxdy2 = 0 or a2d2x + xdy2 = 0. We 
would write this equation as d2xldy2 = -x/a=, the standard differential equation 
for x = sin (y/a). Leibniz does in. fact derive this solution, by his method of 
undetermined coefficients, and writes it as a power series. Again, we wonder why 
Leibniz did not go further and discuss the properties of this series. But neither he 
nor Johann Bernoulli, who discussed the same differential equation and power 
series in a paper of the following year, moved any closer to the calculus of these 
functions. 

(a’-x2)dy2= a2dx2 

a2dy2=a2dx%2dy2 

FIGURE 1 
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A physical problem leading to a differential equation which could also have 
produced the calculus of the sine function was the vibrating string problem first 
attacked by Brook Taylor [ 17131. Taylor in fact needed to find the fluent of c?/ 
w; he showed that this expression was the fluxion of the circular arc whose 
sine is y with radius c. And since Taylor was most interested in the periodic time 
of the motion of the string, he did not write this in terms of the sine itself. In fact, 
as we will see, it was quite common in later works to deal with what we call the 
arcsine function rather than the sine. 

In 1696 there appeared the first textbook on the new calculus of Newton and 
Leibniz, the Analyse des infiniment petits by the Marquis de I’Hospital [1696]. It 
was followed in France by the Analyse demontre’e of Charles Reyneau [ 17081 and 
in England by a number of texts including works by George Cheyne [1703], 
Charles Hayes [ 17041, Humphrey Ditton [ 17061, John Craig [ 17181, Edmund Stone 
[ 17301, James Hodgson [1736], John Muller [1736], and Thomas Simpson [ 1737). 
What do we find in these texts on the calculus of the trigonometric functions? 
Essentially, we find nothing. As we already noted, this is in contrast to the 
situation with exponential and logarithmic functions. For even though these func- 
tions are not treated as inverses of one another, their derivatives and integrals are 
dealt with. In most of these texts we find some sort of derivation of the basic result 
that the derivative (differential, fluxion) of the logarithm of a quantity is the 
derivative (differential, fluxion) of the quantity divided by the quantity itself. We 
also usually find an extensive treatment of the derivatives of expressions of the 
type ax where the exponent x is a variable and where a is either a constant or a 
variable. In fact, most of the authors deal with even more complicated exponential 
expressions. 

What does appear about trigonometric functions? If there is anything at all, it is 
only a discussion of the relationship between the sine or tangent and the arc; this 
treatment is then carried out in the manner of Newton’s original work via power 
series. The only one of the authors cited who has anything more is Thomas 
Simpson. In the course of solving a problem dealing with spherical triangles, he 
proves geometrically the result that “the Fluxion of any circular arch is to the 
Fluxion of its Sine, as Radius to the Cosine” [Simpson 1737, 1791. This proof 
uses, in effect, the differential triangle of Leibniz, and its similarity with the 
triangle whose hypotenuse is the radius of the circle and whose legs are the sine 
and cosine of the intercepted arc (Fig. 2). We can of course translate the theorem 
into the standard calculus result that the derivative of the sine is the cosine. 

The cited proof was not, however, original to Simpson. It appeared some 1S 
years earlier when the manuscripts of Roger Cotes were published 6 years after 
his untimely death at the age of 34. Cotes proved the result at the beginning of a 
tract On the Estimation of Errors in which he analyzed the errors which occurred 
in astronomical observations. The particular lemma was stated by Cotes as “the 
small variation of any arc of a circle is to the small variation of the sine of that arc, 
as the radius to the sine of the complement” [Gowing 19831. The “small varia- 
tions” can be considered as fluxions or as differentials; in any case Cotes uses 
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FIGURE 2 

essentially the same diagram as Simpson did later and gives the same proof. (The 
same result with the same proof is also found in a paper of Euler’s colleague at St. 
Petersburg, F. C. Maier [1727].) Cotes followed this lemma with two others in 
which he proved by similar methods results equivalent to the theorems that the 
derivative of the tangent is the square of the secant and the derivative of the 
secant is the product of the secant and the tangent. 

Cotes’ manuscripts contain other work related to the calculus of the trigonomet- 
ric functions. As part of his Logometria he calculates the integrals of the tangent 
and secant functions. Here I use the word function in the modern sense, because 
Cotes in fact sketches several periods of both of these functions and shows how 
these curves are derived from the geometric definitions. 

As a final example of Cotes’ use of the trigonometric functions in calculus, we 
may cite his extensive table of integrals. Cotes notes in effect that for many 
integrands involving sums or differences of powers, a change of sign in the inte- 
grand changes the integral (or fluent) from a logarithm to an inverse trigonometric 
function. In fact, Cotes uses the same notation for both, stating that one or the 
other is meant depending on the sign of a certain quantity. In other words, the 
inverse trigonometric functions, at least, had the same standing in Cotes’ mind as 
the logarithmic functions. He could deal with one as easily as with the other. This 
“equivalence” of the two types of functions led Cotes to a result close to Euler’s 
famous expression of ei8 = cos 8 + i sin 8. Cotes’ result was stated, though, in 
terms of logarithms. 

Unfortunately for the development of the calculus of the trigonometric func- 
tions, Cotes died before he could formulate his results in a systematic way. Some 
of the English textbook writers referred briefly to Cotes’ work, but no one devel- 
oped it much further. 

Why do the sine and cosine not appear in these texts? We will give two explana- 
tions, both of which will be justified by the work of the man who unquestionably 
was responsible for the ultimate introduction of these functions into calculus, 
Leonhard Euler. First of all, though sine tables existed in abundance, the sine was 
not considered as a “function,” even to the extent that logarithms or exponentials 
were. It was thought of geometrically as a certain line in a circle of a given radius; 
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one did not, in general, draw a graph of such a function so there was no question 
of finding tangent lines or areas. That is not to say that graphs of the sine function 
did not occur at all. There are several early examples of the appearance of one or 
more arches of the sine in the mid-17th-century works of Roberval and Wallis 
[Boyer 19471. But the idea of the sine as a “function” did not enter the mathemati- 
cal mainstream at this time. 

As another indication of this, we cite the unpublished manuscript of Euler’s 
Culculus Diffeerentialis, which Yushkevich 119831 believes to have been written 
about 1727 for use as a text in the university at St. Petersburg. In this text, Euler 
gave a definition of function similar to the one he was later to give in his Intro&c- 
tio in analysin injinitorum; he then proceeded to subdivide all functions into two 
classes, algebraic and transcendental. But this latter class, he noted, consists 
solely of the exponential and logarithmic functions. Euler gave a complete treat- 
ment of the differential calculus of these latter functions, but he did not mention 
the trigonometric functions at all. 

A second reason for their nonappearance may be related to a statement of 
Edmund Stone’s in a somewhat different context. Stone, commenting on the 
absence even of exponential functions from the work of L’Hospital and also from 
his own work, noted, 

As the illustrious author [L’Hospital] has omitted the exponential calculus, or manner of 
finding the fluxions of exponential quantities, such as xX = a, xx = yr, etc. where the index’s of 
the variable quantities are also variable, thinking, as I suppose, this branch of doctrine to be 
of very little or no use, so I have been silent in this matter also; which it is much better to be, 
than take up the reader’s time in learning what is only mere speculation. [Stone 1730, Intro- 
duction] 

That is, trigonometric functions may have been avoided because no one saw 
any reasonable use for them as yet. As a possible confirmation of this reason, we 
will again cite Euler. In the abstract to a paper he published in 1754 which dealt 
extensively with the calculus of the sine and cosine, Euler claimed this invention 
for himself. As he, or the journal’s editor, wrote, 

In addition to the logarithmic and exponential quantities there occurs in analysis a very 
important type of transcendental quantity, namely the sine, cosine and tangent of angles, 
whose use is certainly most frequent. Therefore this type rightly merits, or rather demands, 
that a special calculus be given, whose invention in so far as the special signs and rules are 
comprised, the celebrated author of this dissertation is able rightly to claim all for himself, 
and of which he gave examples in his Introduction to Analysis and Institutions of the Differ- 
ential Calculus. Numerous examples stand out in his work on the motion of the moon and on 
the perturbations of the motion of Saturn and Jupiter, in which this type of calculus is 
frequently used in the investigations, and without the help of which these were scarcely able 
to be performed. Therefore, for this new calculus, which is called the calculus of sines, not 
only does Euler present the first principles and reveal the highest uses in various parts of 
mathematics through the most impressive examples, but also he continues to enrich it by new 
inventions, which the present article splendidly demonstrates. [Euler 1754, 5431 

One could thus say that by 1754 there were definitely uses for these functions; in 
1727 Euler himself saw none. 
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We have already mentioned on several occasions Euler’s famous text Zntroduc- 
tie in anatysin in.nitorum 11748~1. In this text Euler provides a complete treat- 
ment of what we may call the precalculus of the trigonometric functions. That is, 
he defines them numerically, not as lines in a circle, discusses their various 
properties including addition formulas and periodicity, and develops their power 
series. He also draws the graphs of some of these functions. Since this text was 
not designed to be a calculus text, there is no mention of derivatives. This lack 
was only temporary, however. Euler was already writing his differential calculus 
text, which appeared 7 years later [Euler 17551. In this text, of course, there was a 
derivation, using power series, of the standard rules for the derivatives of the 
trigonometric functions. As we shall see, Euler was in full command of these rules 
much earlier. The question remains, then, since Euler claimed the invention of the 
calculus of trigonometric functions, what were the circumstances under which 
this invention took place, or, more specifically, how did these functions enter 
calculus? 

A consideration of Euler’s papers before 1740 provides an answer. The trigono- 
metric functions entered calculus via the study of differential equations. Not only 
did this study give the sine and cosine the status of “function” in our sense, and 
give them an equal status with the exponential and logarithmic functions, but it 
also provided the necessary uses for these functions. The study of differential 
equations was not just the cause of the sine and cosine functions entering calculus, 
however. It was Euler’s knowledge of these functions which led him, I believe, to 
the development of the standard method of solving linear differential equations 
with constant coefficients. The remainder of this paper will be devoted to convinc- 
ing the reader of the truth of these assertions. 

In some of Euler’s earliest papers, in the late 172Os, Euler needs to integrate 
equations of the form dt = dxlw As was the custom of the time, he gave as 
the solution that t was the arc whose sine was x with radius a. In fact, Euler 
probably learned this solution from his teacher Johann Bernoulli. Bernoulli him- 
self, in a paper dealing with vibrations [ 17281, studied an object which moves 
subject to a force proportional to its distance from a given point. He in effect set 
up the equation d2yldt2 = a - y, where a is a constant, and solved it using two 
integrations. We will present the essence of his solution, which is similar to one 
worked out a decade earlier by Jakob Hermann. We first set u = dyldt. 
From duldt = a - y, we then derive the result that duldy = 
(a - y)/u or udu = (a - y)dy. An integration of this equation leads to u* = 2uy - y? 
or u = m or finally dyldt = w. Bernoulli, however, does not put 
the equation in that form; he rewrites it as dt = dylw and proceeds to 
integrate once more to solve for t by use of the arcsine. That is, he, like 
Taylor earlier, is interested in the time of the motion, not the motion itself. 
Bernoulli does get a sine curve out of this problem, but it is simply the shape of a 
string; he does not deal with sinusoidal motion. Over the next several years, Euler 
dealt with similar integrals in the same way as Bernoulli, by solving for the 
arcsine. 

On the other hand, during this same time Euler was certainly familiar with the 
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periodicity properties of the sine function. In a well-known paper [ 1735b] he used 
the fact that the power series for sin S, s - s3/3! + ss/5! - . . . had nonzero roots 
at +7~, +2~, . . . to “factor” 1 - s2/3! + s4/5! - . . . as (1 - s2/7r2) (1 - sz/47r2) 
. . . and derive his result that 1 + l/2* + 1/32 + . . . = ~~/6. Similarly, in another 
paper [1736], in which he integrated a differential equation of the above type to get 
the arc of a circle whose cosine is y/a, he stated the various values of the arc at 
which y would be 0 or a. 

Nevertheless, Euler did not always recognize the sine function as the solution 
of a differential equation. Daniel Bernoulli wrote to Euler on May 4, 1735, to 
discuss a problem on the vibrations of an elastic band. As part of this problem he 
had to solve the differential equation k4 (d4yldx4) = y. He wrote, “This matter is 
very slippery. . . . The logarithm satisfies the equation . . . but no such loga- 
rithm is general enough for the present business” [Truesdell 1960, 1661. By “loga- 
rithm,” Bernoulli of course meant the exponential function. Euler dealt with the 
same problem and the same equation in a paper later that year and was also unable 
to find a complete finite solution. He was, however, able to solve it using power 
series. But since he incorporated the initial conditions into that solution, he did 
not recognize that there was a sine or cosine hidden in the series he finally 
obtained [Euler 1735al. 

The sine and cosine do appear in other papers of Euler in the late 1730s as well 
as in some of his correspondence. But if the papers deal with calculus at all, these 
functions appear only in the contexts discussed above. Outside of calculus, we 
can find references to various trigonometric formulas, especially to those dealing 
with multiple angles. It is only in 1739 that Euler is able to put all of his knowledge 
of these functions together. 

On March 30, 1739, Euler presented the paper De nouo genere oscillationurn 
[1739a] to the Academy of Sciences at St. Petersburg. The paper dealt with the 
motion of what we would call a sinusoidically driven harmonic oscillator; that is, 
Euler considered the motion of an object in which the force acting was composed 
of two separate parts, one proportional to the distance, the other one varying 
sinusoidally with the time. Euler noted in a letter to Johann Bernoulli on May 5 
that “there appear . . . motions so diverse and astonishing that one is unable 
altogether to foresee until the calculation is finished” [Enestrom 1905, 331. Note 
that Euler wrote about the motions; these now become central rather than merely 
the period. What calculations did Euler perform to derive these motions? He 
began by deriving three simultaneous differential equations which the four given 
variables S, t, y, u had to satisfy. Here t is time measured along the arc of a circle 
of radius a while y is the sine of that arc. In addition, s represents the position of 
the object while u/a represents the square of the velocity. The equations are 

du = 

Euler’s aim was to use these equations to eliminate y and u, thus getting a single 
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equation relating s and t which he can solve. In particular, he solves the second 
equation, a very familiar one, in a new way. Not only does he get the usual 
solution t = a arcsin (y/a) but also, for the first time, he writes this in the inverse 
form as y = a sin (t/a). As we already mentioned, Euler is now dealing with the 
motion; so t becomes the independent variable. Using this result as well as the 
solution u = uds2/dt2 of the third equation, he easily derives the desired differen- 
tial equation 

udt? t 2ud2s + F + - g sin ; = 0 

relating s and t. He now wanted to find a solution to this in finite terms. 
It is not necessary here to discuss his entire solution. But there are a few major 

points of interest. First of all, he solves the special case where “b = a,” that is, 
2gd2s + dt* sin(tlu) = 0. To do this, he obviously needs to know the differentials 
of the sine and cosine; so he writes them down: diff. sin(tlu) = (dtlu) cos(tlu) and 
diff. cos(tlu) = -(dtlu) sin(tlu). (There was no necessity to derive these; as we 
have noted, the results themselves had in one form or another been known for 
years.) After solving the equation in the form s = (u2/2g) sin(tla), he proceeds to 
analyze the periodicity properties of this solution. Second, in the process of 
solving the general case he first deletes the sin(tlu) term and considers the equa- 
tion 2ud2s + sdt2/b = 0. Note that this is similar to the equation of Bernoulli 
already mentioned. This time, however, Euler solves it by integrating twice to get 
first 2ubds2 + s2dt2 = C2dt2 or dt = -V%&dslm and then, by what he 
usually calls a quadrature of the circle, the result t = X6%$ arccos(slC), or finally, 
as before, s = C cos(tlV?&). Again, the trigonometric functions appear explic- 
itly. Finally, Euler solves the general case by postulating a solution of the form s 
= u cos(tlV%6) where u is a new variable. He proceeds to substitute that expres- 
sion into the equation and solve for u. This, of course, involves being thoroughly 
familiar with the calculus manipulations of the sine and cosine. After much of this 
type of manipulation, he demonstrates the “motions so diverse and astonishing” 
about which he wrote to Bernoulli. 

We note that in a paper which appeared only 45 pages later in the same volume 
of the Commenturii of the St. Petersburg Academy [1739b], Euler again uses the 
differentials of the sine and cosine. Already, he is becoming “fluent” in their use. 

We have now seen how the calculus of the sine and cosine appeared as part of 
the process of solving an interesting differential equation. But there is more. In the 
same letter of May 5 to Johann Bernoulli, Euler mentions that he also solved, in 
finite terms, the equation a3d3y = ydx3. He writes, “though it appears difficult to 
integrate, needing a triple integration and requiring the quadrature of the circle 
and hyperbola, it may be reduced to a finite equation; the equation of the integral 
is 

y = b&cl + ce-.T/2~~ sin <f + x>fl 
2u 
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. . . where 6, c, f are arbitrary constants arising from the triple integration” 
[Enestrom 1905, 311. Euler does not state explicitly how he found this solution. 
But one can hazard a guess based on his statement that it required the quadrature 
of the circle and the hyperbola and on some of his earlier methods of solving 
differential equations. Namely, Euler was certainly aware that y = &’ was a 
solution. As far back as 1728 he used the fact that for that relation, dy = ( I ln)ydx; 
differentiating twice more would give that function as a solution to Euler’s third 
order equation. Of course, using the exponential function as a solution meant 
using the “quadrature of the hyperbola”; Euler was aware of the relationships 
between the logarithm and both the hyperbola and the exponential function. Once 
Euler had one solution, he could use it to reduce the order of the equation. That is, 
he could use e-xla as an “integrating factor.” He had dealt with such factors in 
[Euler 1735~1; later he wrote a detailed study of their use in reducing the order of 
equations [1750]. In this particular case, if we multiply the original form u3d3y - 
ydx3 by e-xia and assume it is the differential of c”‘“(Ad’y + Bdydx + Cydx?), it is 
not difficult to show that a new solution of the original equation must also satisfy 
the second-order equation a’d’y + adydx + ydx’ = 0, or, in derivative notation, 
a2(d2yldx2) + a(dyldx) + y = 0. 

How would Euler solve this second-degree equation? Using the technique of 
multiplication mentioned in De nouo genere oscillationurn, he could easily guess 
as a solution y = uea. If we differentiate that twice and put it into the equation, we 
are able to eliminate the term in dudx by setting a! = - 112a. Now using y = ue-“2u, 
we reduce the equation to a2d2u + $u dx * = 0. The latter equation is similar to 
several that we have already seen Euler solve by two integrations and the quadra- 
ture of the circle. The result in this case is u = C sin((x + f)fi/2a) as desired. The 
complete solution to the third-order equation then follows immediately. (We note 
that Euler used this method explicitly in [Euler 17431.) 

In any case, since Euler has now used the sine and the exponential function 
together in a solution of a differential equation, it is clear that the former now has 
equal status with the latter insofar as the calculus is concerned; that is, the sine, 
and of course the other trigonometric functions as well, have now entered calcu- 
lus. But we will go further. It is the introduction of these functions into the 
calculus which gave Euler the impetus to find the general solution to linear differ- 
ential equations with constant coefficients, some special cases of which he had 
already solved in early 1739. 

On September 15, 1739, Euler wrote to Johann Bernoulli giving this solution. 
Several months later, he wrote again noting that “after treating this problem in 
many ways, I happened on my solution entirely unexpectedly; before that I had no 
suspicion that the solution of algebraic equations had so much importance in this 
matter” [Enestrom 1905, 461. What is this “unexpected” solution? It is the stan- 
dard method in use today. We replace the given differential equation 

& d’y d3y 
y+az+bz+cB+. . .=O 
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by the algebraic equation 

1 + up + bp2 + cp3 + . . . = 0. 

We factor the polynomial on the left into its real linear and quadratic factors. For 
each linear factor I - crp we take as a solution y = Ce x’a while for each irreducible 
quadratic factor 1 + crp + pp2 we take as solution 

Euler gave as his example of this process the solution to the equation 

k4d4y o 
Y-x=. 

Since the algebraic equation 1 - k4p4 factors as (I - kp) (1 + kp) (I + kzp2), Euler 
finds the complete solution 

y = Cemxik + Dexik + E sin i + F cos i. 

In this letter, Euler did not consider the case of multiple factors to the polynomial. 
How did Euler happen upon his general method of solution for this class of 

differential equations? Euler does not tell us. But it seems that the examples dealt 
with in the March paper and the May letter must have been influential. It was by 
dealing with these examples that Euler first learned that the trigonometric func- 
tions were necessary parts of that general solution. He surely had known for years 
that exponential functions had to be involved. In fact, Johann Bernoulli noted in 
his December 9 response to Euler’s letter that he had found such solutions at least 
20 years earlier by assuming that y = e x/p was a solution and solving the resulting 
equation 

I?+ i I+;+++;+. . . =o 1 

for p. But Bernoulli had only dealt with a single real solution. For example, for 
Euler’s case of 

k4d4y 
Y-F=0 

Bernoulli solved p 4 - k4 = 0 as only p = k. He then stated that “the logarithm, 
whose subtangent = k, satisfies the proposed equation” [Enestrom 1905,411, that 
is, what we call the exponential function eX lk. Bernoulli was not able to deal with 
complex solutions to the algebraic equation, or even with more than a single real 
solution. It is this major advance that Euler was able to take. 

Once Euler knew that the trigonometric functions were in fact part of the 
complete solution, it was only necessary to see how the parameters of these 
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functions could be found algebraically. And if, in fact, Euler found the solution to 
the third-order equation by a method similar to what I have proposed, he would 
have noted that the second-order equation to which the original reduced was in 
some sense a factor of the original. Euler’s genius in dealing with formal identities 
would then have led him to writing down the characteristic polynomial to the 
differential equation and exploring the factors. It would have been clear that it was 
the irreducible quadratic factors which led to the trigonometric solutions. 

Over the next couple of years, Johann Bernoulli debated with Euler about the 
validity of this method of solution in a series of letters. In essence, he did not 
understand how complex roots of the characteristic polynomial could lead to 
solutions involving the “real quadrature of the circle.” Euler finally showed him 
in 1740 that in fact 2 cos x and e& + e-“” were equal. Daniel Bernoulli, on the other 
hand, accepted Euler’s solution and in an article showed that the power series 
solution agreed with Euler’s for the equation d4y = ydx4/f4 [Bernoulli 17411. In 
any case, beginning in the early 1740s Euler was able to use the calculus of the 
trigonometric functions with ease; it appears in several of his papers, including a 
paper in which he published his method for solving linear differential equations 
with constant coefficients and further explained the relationship between trigono- 
metric and complex exponential solutions [1743]. In that paper, Euler also han- 
dled the case of multiple factors of the characteristic polynomial. 

It is well that Euler had invented this calculus when he did, for in the mid-1740s 
he became involved in several major areas of investigation in which the trigono- 
metric functions were to play a crucial role. First of all, he needed the explicit 
solution of the same fourth-order differential equation in the first appendix of his 
work on the calculus of variations [ 17441. Second, Euler introduced trigonometric 
series in a prize paper he wrote for the Paris Academy in 1748 on the question of 
the inequalities in the movements of Saturn and Jupiter [1748a]. It is worthy of 
mention that in this paper Euler did not yet expect his readers to be familiar with 
the calculus of the trigonometric functions. In the early pages of that work, Euler 
discussed this calculus and showed how important it was to the understanding of 
the topic at hand. Third, at the same time Euler also introduced trigonometric 
series and the necessary calculus into his initial debates with d’Alembert on the 
question of the vibrating string [1748b]. 

As we noted earlier, Euler finally published this calculus in textbook form in his 
Znstitutiones calculi differentialis [ 17551. His methods immediately drove out the 
earlier geometric methods of dealing with the sine and cosine. Practically without 
exception, the calculus texts published in the second half of the 18th century all 
adopted Euler’s calculus for their treatment of the trigonometric functions. And, 
of course, we have continued to use Euler’s invention to the present day. 
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