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A widespread view often encountered in historical studies is that ideas, or
customs, practices, and beliefs, are the spontaneous reactions of the human mind
to environing conditions. The notion is, of course, an assumption, often tacitly
held. It is itself probably not spontaneous, but a part of the Greek rationalist
ideology, of our Greek rationalist heritage.

In mathematics this view takes the following form: Mathematics arises from
the activities of daily life; it is practical and has its origin in obvious practical
applications. The Greeks invented proof, so it is generally held: before that
mathematics was “empirical”’, whatever that means.

Opposed to this is the view that ideas are the products of certain special
circumstances. A corollary is that any idea has a single (cultural) origin. This
view is not a dogma, but a theory to be built up inductively. One technique is to
examine a complex of ideas for parts having no inherent connection. If such
features can be found, a cultural, and not merely logical, connection is indicated.
At the same time, the accidental features may give a clue to the special circum-
stances of origin.

To illustrate: In 1877 M. CANTOR began a comparative study of Greek and
Indian mathematics, and in particular studied G. THIBAUT’s paper on the
Sulvasiiras, an Indian sacred work on altar constructions.! CANTOR notes (fol-
lowing TuIBAUT) that for the Indians, the Theorem of PYTHAGORAS is not so
much a theorem on triangles as a theorem on rectangles: “The cord stretched in
the diagonal of an oblong”, writes BAUDEAYANA, ““produces both (areas) which
the cords forming the longer and shorter side of an oblong produce separately’’.
CANTOR compares this with the fact that HERON employs the Theorem of PyTHA-
GORAS to compute the diagonal of a rectangle before taking up the triangle.
Moreover, the Sulvasitras give the theorem separately for a square and for an
oblong; and HERON, in the place mentioned, gives two successive problems: one

1 “ Griko-indische Studien,” Zeit. f. Math. w. Phys. (Hist.-lit. Abt.), vol. 22
(1877); “On the Sulvasutras,” J. Asiatic Soc. Bengal, vol. 44, 1 (1875).

13 Arch. Hist. Exact Sci., Vol. 9
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for the equal-sided rectangle, and one for the unequal-sided rectangle. CANTOR
considers that these coincidences cannot possibly be accidental.

Even EucLiD defines oblong, though he never uses the term. As T. L. HEATH
has observed, it is but a survival from earlier texts.?

The main point here is, of course, that the classification of rectangles into
oblongs and squares is in no way inherent in the Theorem of PYTHAGORAS, and
that this arbitrary element therefore indicates a historical connection.

In a previous work® we added the observation that the classification of
rectangles into oblongs and squares is part of a widespread religious or theologic
complex: thus the first principles of PYTHAGORAS are ten in number and consist
of pairs of opposites, e.g. odd-even, male-female, eic., and one of these pairs is
square-oblong; the Indians also had this same duality—oblong bricks are human,
square bricks divine; and we even found the duality as far away as Fiji, as ‘“the
Fijians who dwelt round the Koro Sea built oblong houses, but their temples
were usually square’”. All this suggests that the Theorem of PYTHAGORAS was, in
origin, part of a religious or theologic or, as we prefer to say, a ritual complex.
The thesis that geometry has a ritual origin was exposed in our paper on The
Ritual Origin of Geometry.

There are two theses, then: (1) that geometry had a single origin, and (2) that
this origin was in ritual. The first of these, at least, is not new. Though not ex-
panded upon, the first was definitely formulated by CanTOR: in his studies it
occurred to CANTOR that perhaps in very ancient times (“‘roughly speaking,
three or four thousand years ago”) there already existed a not altogether in-
significant mathematical knowledge common to the whole cultured areas of
those times, which was further developed, here in one direction, there in an-
other.? This is precisely our thesis. The problem then becomes to say in what
this original knowledge consisted and what were the later developments; or, in
other words, to put the contents of ancient mathematics into a chronological
perspective.

There are two distinct traditions easily discernable in ancient geometry: one
is computational or algebraic, the other is constructive or geometric. In the first,
for example, the Theorem of PyTHAGORAS says that the diagonal of a rectangle
is the square root of the sum of the squares of the sides; it is expressed with a
computation in view. In the second, the theorem says that the square built on
the diagonal is the sum of the squares on the sides; it is expressed with a con-
struction in view. Or even simpler: the first says that the area of a triangle is
one-half base times altitude—this is the sort of theorem that will not be found
in EucLip. EUCLID says, rather, that ““if a parallelogram have the same base with
a triangle and be in the same parallels, then the parallelogram is double the
triangle (Euclid, I, 41)”. The first tradition might be called the Oriental tradition,
the other, the Greek tradition; or perhaps better, in order to avoid suggesting a
place of origin, the algebraic and the geometric, respectively.

2 The Thivieen Books of Euclid’'s Elements, vol. 1, p. 428,

8 “Ritual Origin of Geometry,” Awchive for History of Exact Sciences, vol. 1
(1962), p. 503.

1 “Uber die dlteste indische Mathematik,” Archiv d. Math. u. Phys., vol. 8 (1904),
p- 71
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It has usually been held, at least in recent times, that the algebraic tradition
preceded the geometric. This view has been well exposed in B. L. VAN DER WAER-
DEN’s work Science Awakening. His exposition takes into account what is known
of the relative chronology of Babylonian and Greek mathematics, and also of
the desire of the Greeks to overcome difficulties due to the existence of incom-
mensurable quantities. But it totally fails to take into account the Sulvasutras—the
work of THIBAUT and of CANTOR in this regard is not even mentioned. If the
Sulvasutras are taken into acount, however, the opposite conclusion, we believe,
will be reached. This view is argued in the paper of ours cited, and although the
Sulvasutras have never been assigned a very early date, we do not hesitate to
say that the geometry of the Swulvasutras was already old in Old-Babylonian
times.

Our fivst main thesis is, then, that the elements of geometry as found in the ancient
civilizations, in Greece, Babylonia, Egypt, India, and China, ave a devivative of a
system of ritual practices as disclosed in the Sulvasutras.

1. The Circle and Square in India

This is not the place to review the contents of the Sulvasuiras, but we must
recall that the main problem was to construct an altar (a plane figure} of given
shape and area. The basic altar had an area of 7% square units (Purushas). It
was composed of a number of squares and rectangles, assembled into a form said
to resemble (and which to some extent does resemble) a falcon. For its con-
struction a knowledge of how to lay out a right angle is needed. In the Sulvasutras
a right angle is constructed sometimes with but also sometimes without an
application of the Theorem of PyTHAGORAS; and this theorem is not needed for
the construction of the basic falcon-shaped altar. But the sacrificer was on a
sacrificial ladder, his rank determined by, or determining, the area of the altar.
The next highest rank was 8%; and here the Theorem of PYTHAGORAS is actually
and explicitly involved.

One of the shapes for an altar was a circle, and the problem of converting a
square into a circle thus arises. We call this problem the circulature of the square:
it is to be clearly distinguished from the problem of squaring the circle, which is
to construct a square equal in area to a given circle. This latter problem is also
treated in the Sulvasutras, but its solution (as we shall explain) is out of character
with the rest of the work, and the squaring of the circle did not have, as far as we
could tell, a sacred application.

In the Swulvasutras the circulature of the square is done as follows (see Fig. 1).
In square ABCD, let M be the intersection of the diagonals. Draw the circle
with M as center and MA as radius; and let ME be the radius of the circle per-
pendicular to the side AD and cutting AD in G. Let GN= 4 GE. Then MN is the
radius of a circle having an area equal to the square 4 BCD.

For the reverse problem, that of squaring the circle, one is given the rule:

“If you wish to turn a circle into a square, divide the diameter into 8 parts,
and again one of these 8 parts into 29 parts; of these 29 parts remove 28, and
moreover the sixth part (of the one part left) less the eighth part (of the
sixth part}).”

13%
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The meaning is: side of required square = % + 5
of the diameter of given circle.

. o = 1 1 1
One also finds the approximation: }2==1+ T3 T 34 (more
. . 1 1 1 .
precisely: the diagonal of a square =1 - 33T T 3434 of a 51de) .

In looking at the Sulvasuiras as a whole, one notes that the squaring of the
circle differs in character, in several respects, from the rest of the work. The
work has definitely a geometric and not an arithmetic character. There is, to be
sure, some arithmetic (not counting the squaring of the circle and the approxi-
mation to J/2). For example, it is realized that the square of # units in length has
area n?; from this it is deduced that } the side of a square produces % the area of
the square, and %, the ninth. It is also explicitly stated that 1% linear purushas
produces 2% square purushas; and even the general rule (¢ 5)%2=4a24-2ab b2
is set up. Fractions thus enter, but there is little arithmetic involved with them.
There are some elaborate bird altars involving several types of bricks, but most
of them have an integral number of sixteenths of a square purusha as area; and
even the commentators, who are already in the algebraic tradition, make all their
computations in terms of chaturthi-bricks (= & square purusha). Thus most of
the arithmetic is with integers, and there is nothing in the remainder to suggest
that the ritualists (the earlier ones, that is) could work with the fractions mentioned
in connection with the squaring of the circle.

As THiBAUT has pointed out, the squaring of the circle is “nothing but the
reverse of the rule for turning a square into a circle”; that is, if 4= diameter,
s==side of an equal square, then the circulature of the square gives

d 2+Y2

s 3

1

After replacing /2 by the rational approximation 1-- % + 3—11 — 3434

it is easy, by simple arithmetic, to find the reciprocal s/d. This gives

s 7 1 1 1 41
2=3% T 8-29  8:29-6 + 8-20-6-8  8-:20-6-8-1393 ’

which, neglecting the last term as explained by THIBAUT, is the expression in the
Sulvasutras.
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The circulature of the square involves no arithmetic. One may imagine an
ancient ritualist starting from the square, observing that the inscribed circle is
too small, the circumscribed circle too large, and guessing that one should take
GN =% GE. (See Fig.1.) The line of thought, though approximative, is geo-
metric. We may suppose that this solution of the circulature of the square, having
become fixed in tradition, became the starting point for squaring the circle. This
reverse problem, though an easy exercise for us, may well have baffled the Vedic
ritualists: How, given the circle of radius MN, is one to get hold of NG and
thereby reverse the steps in the circulature of the square ? Not being able to solve
this problem geometrically, the ancients went over to an arithmetic solution.
Here they needed a rational expression for }/2; of course, they might have
rationalized the denominator of

3
2412
i.e., brought
3
2-+12

to the form § (2 —/2), but presumably they did not know enough algebra, either.
This leads to our second main thesis:

The first crisis in mathematics occurved because the yitualists could wnot reverse
their (canonical) civculature of the square in a geometric way. The resulting efforts
to find an avithmetic solution for the squaving of the circle gave rise to the algebyaic
tradition. Geometry was dislocated from its vitual base.

Though not of concern to us for the moment, we may mention a third thesis:

The problem of finding a rational expression for |2 arose from the attempt to
square the civcle. The discovery that theve was no such expression gave vise to the
second crisis in mathematics. This was vesolved by a vevival of the geometric tradition.

2. The Area of a Circle in Egypt

In our geometry paper we cited vaN DER WAERDEN's opinion that “... Egyp-
tian geometry is ... merely applied arithmetic”’, and showed that if we accept
his presentation of the evidence, especially that of Problem 10 of the Moscow
mathematical papyrus (MMP), which goes “when you are told a basket (of 41)
in diameter by 4% in depth, then tell me the area”, then one must come to the
opposite conclusion (0p. cit., p. 511). We introduced the notation % 7, for the
ratio of the area of a circle to the square on its diameter, and s, for the ratio of
the circumference of a circle to its diameter. Of course, we know that =, =u7r,,
but the question is whether the ancients knew it. Now we showed that if one
accepts VAN DER WAERDEN’s interpretation (following T. E. PEET) of the cited
problem, then one must (or should) conclude that the Egyptian knew that
7, =, (and the same goes also for O. NEUGEBAUER's interpretation, which vaN
DER WAERDEN presents but rejects). Of course, when we say ““the Egyptian
knew that =, =m,”, this is only a shorthand for saying he understood certain
essential relations between the area of a circle, its diameter, and its circum-
ference, and not literally that he considered s; and &,, much less their equality.
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Now if the Egyptian (or a predecessor) realized that &, =,, then this realization
must have come about by a geometrical analysis which, no matter how crude it
was, was quite sophisticated. Thus Egyptian mathematics could not be “merely
applied arithmetic”.

As a reductio ad absurdum, we can find no fault with this line of argument;
but we have been led to reject VAN DER WAERDEN's interpretations of the basket
problem, as well as NEUGEBAUER's, and this prompts us to take up the point
once more.

We shall return to the basket problem, but first must recall how the Egyptian
computed the area of a circle of given diameter. Problem 50 of the Rhind Mathe-
matical Papyrus (RMP) reads: Example of a round field of diameter O khet.
What is its area? (Solution): Take away 3 of the diameter; the remainder is 8.
Multiply 8 times 8; it makes 64. Therefore it contains 64 sefat of land. Do it
thus: efc.

In modern shorthand we can write the procedure thus: 4 = (d — %)2 Com-
7ty A2
4

E.T. BeELL long ago wondered “what suggested the curious (4£)¢”.% We
believe that the main clue for an answer was given by K.VoGEL® when he called
attention to the figure in RMP 48. Here is the figure (Fig. 2):

paring this with our 4 = , we may say the Egyptians took &, =4- (%)2 .

h_
/

RMP 48
Fig. 2

VoOGEL interprets this, correctly we believe, to represent a polygonal approxi-
mation to the inscribed circle; and he supposes this, also correctly we believe,
to have been obtained by dividing each of the sides into 3 equal pieces and by
joining the points of division.

The horizontal and vertical lines joining the points of division (see Fig. 3)

Fig. 3

§ Development of Mathematics, p. 38.
§ Vorgriechische Mathematik (1958), vol. 1, p. 66.
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divide the big square into § equal little squares. The outer little triangles make 2
of the big square, so the area of the octagon is % 42.

With a minor qualification, RMP 48 is unique among the 87 problems of the
papyrus in that there is no statement of the problem: the solution consists of a
computation of 8 X8 and 9x9. According to T. E. PEET, the problem “‘is clearly
the comparison of the area of a square of side 9 khet with that of a circle of
diameter 9 khet”’.” The solution says that a circle is to its circumscribed square
as 64 is to 81.

The side of the square in RMP 48 is 9, so the octagon has area 63. The side of
an equal square would be }/63. VoGEL has suggested that this is approximated
by /64=38, and that perhaps in this way one came to the formula (& 4)2. We
think this contains some truth, but is too roughly said and does not correspond
to the Egyptian’s thinking. More recently R. J. Girrings & W. J. A. R1Gc have
taken up this point anew, and have come still closer to the truth.® We shall
comment on their work also, but for the moment take for granted as substantially
correct the reconstruction just outlined.

Let us return to vAN DER WAERDEN's thesis that Egyptian geometry is
“merely applied arithmetic”. He also writes (loc. cit., p. 89): “* At the start, in the
first excitement of discovery, one is occupied with questions such as these: how
do I calculate the area of a quadrangle, of a circle, ...?” If this were the case,
how can one understand the Scribe’s going over from the simple and direct
program of computing £ 4? to that of computing (8 4)?, which involves an error
he could presumably see? But if, as we suggest, there already existed the problem
of squaring the circle, then one can. An older tradition compelled the Scribe (or a
predecessor) to give the answer in the form of a square. Therefore he was quite
willing (or, rather, obliged) to make yet another approximation (which, in-
cidentally, gave him a better answer, but that was sheer luck).

To return to GILLINGS’s & RiGG’s explanation: they suggest that first a 9x 9
square was drawn, and divided up into 81 little squares by lines parallel to its
sides; the side (they say) was taken as 9 because 9 is exactly divisible by 3; each
of the corners (to be excluded) has area 4%; if the two top corners replace the top
row of little squares, and the bottom corners the left column of little squares,
(and if these are excluded from the 9 X 9 square) then the figure remaining would
be an 8% 8 square; it is true that in this way the upper left little square is re-
moved only once instead of twice, but still the scribe could properly conclude
that the area of the inscribed circle is very closely equal to a square of side 8.

* T. E. Peer, The Rhind Mathematical Papyrus, p. 88. PEET writes: ‘It is inter-
esting in No. 48 to find the dimensions inserted throughout. It is still more so to
notice that in the first line of all, ‘1 8 setat,” the unit is stated as setat. To our modern
feeling this is wrong. The 8 in question is, strictly speaking, in units of long measure,
viz. 8 khet, and it is not until we multiply it by another unit of long measure, viz.
8 khet, that it can logically be expressed in square units.” PEET is quite wrong: if the
details supplied by the Egyptian (for counting up the 64 setat) seem wrong to our
“modern feeling” it is because this feeling has lost sight of the analysis upon which
it is based. What s interesting is that traces of this analysis are to be seen in RMP 48.

8 “The Area of a Circle in Ancient Egypt,” Australian J. Science, vol. 32 (1969),
p. 197.
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First we shall indicate some difficulties in this explanation:

{a) The explanation is really a suggestion for a method of approximating the
square root of 63. Of course, the scribe could have seen this, but no documentation
is offered to suggest that he did see it. Nowhere in the rest of the Egyptian mathe-
matical remains do we find that the square root was approximated in this way
(or in any other way).

(b) There is the problem of where the the 9 comes from. It is true that 9 is
exactly divisible by 3, but 3 is also exactly divisible by 3 and leads equally simply
to § d2. Taking the d =9 for granted is a form of begging the question. (Actually,
we suppose that d=9 of RMP 50 comes because the scribe wants a 4 whose
ninth will yield no arithmetical irrelevancies; but this does not get us very far,
because then, of course, the question is: where did the } come from? So the
question of where the 9 comes from remains.)

(4 priori, it may be the 8 (of the £) that needs explaining. This might be the
case if we knew or suspected that the Scribe, or a predecessor, had the problem
of the circulature of the square in mind. But we do not see how to get the 8 out
of anything we know about the circulature of the square, and so suppose it really
is the 9 that should be explained.)

(c) GiLrinGs & RiGG note that the Scribe’s answer is in the form of a square
and that this form is obtained at the cost of an error of &, but they say nothing
as to why the Scribe was willing to incur this error. (This difficulty has, however,
already been met.)

In meeting these difficulties, let us assume for a moment that (b) has already
been met, so in (a) it is a question of showing that the method for finding }/63 is
in accord with Egyptian thinking. Now in the Sulvasutras we find explicitly the
problem of turning a rectangle (say by &) into a square (see Fig. 4): with the

~

e

b
Fig. 4

shorter side (say b) one cuts off a square (yielding a square bx b and a rectangle
bx(a—b5)); the remaining rectangle is divided into two rectangles (each
bX (a —b)/2); one of these is brought around to a side of the smaller square, and
one is left with a square (of side (& + b)/2) minus a square of side (a —5)/2 at one
of the corners; “one has been taught how to subtract the square”, say the Sul-
Vasutras.
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If we apply this to a 9 7 rectangle, then we have rather closely the suggested
method for finding the side of a square of area 63, except that the Sulvasutras
do not neglect the “little” square: they had no need to, but arithmetically it
usually 7s needed, in particular, in the case 9 7. (The Egyptian would, of course,
have the relation 63 =9X 7 in mind, especially as the 9 is already there.)

1 1
34 3-4-34
for J/2 in a similar way. He imagines the priests first to have looked for a square
integer whose double was also a square. Trying the first few squares, they soon
would have come to 122=144 and 2x122=288, which is only one short of

THIBAUT (0p. cit.) has explained the approximation 1 - % -+

280=17% Thus % is an approximation to |/2. (In Egyphan style, — =
1 1
1-+ 3 + 3—4) Now one considers a 17 by 17 (or rather by 1;) square,

composed of 289 equal little squares. One of these little squares has to be sub-

tracted. One half of this little square is equal to a rectangle 17 by 3% (respectively

17 1 R

12 %Y 1234 347 3-4-34°
1 1

where now a httle - by 3 4 (or 1234 by 457 3 4) square has been neglec-

) Thus one comes to the approximation 1 4+ — —f—

ted. Thus the reconstructlon for }/63 is in accord with TrIBAUT’S for }/2; and
we may be confident that it is in accord with the thinking disclosed in the
Sulvasutras.

In 1877 CanTOR took the view, which he renounced in 1904, that the geometry
of the Swulvasutras was a derivative of Alexandrian knowledge. In particular, he
claimed that the approximation for J/2 and the rational number for the squaring
of the circle were Egyptian. In our geometry paper, we expressed ourselves ready
to concede this, but took the view that the squaring of the circle (not the circu-
lature of the square) was “interpolated”, i.e., added to the Sulvasuiras after the
composition of its characteristic portion. But we would not concede that it was
interpolated at a late date. Now it is clear to us that the squaring of the circle in
the Sulvasutras and its squaring in the RhAind Mathematical Papyrus belong to
the same historical stratum.

At the time, although we observed that the Egyptian had the notion of
square root, we also noted that all the square roots (known to us) came out
even. We suspected that the problems were fixed so that this would happen and
then conjectured that the Egyptian could approximate square roots (op. cit.,
p- 514). If the above reconstruction is correct, this conjecture is now validated.

Let us now go to (b): where does the 9 come from ? Starting from the inscribed
octagon as described, we can imagine the Egyptian asking: How shall I compute
the side of a square of equal area? He realizes that he must take away a fraction
of the side of the big square, and even perhaps senses that this will be a small
fraction, but what? We would call it », but the Egyptian would call it 1—he
knew the method of ““false assumption”’—and the side of the big square x, or
better, 3x, since it is already, divided into 3. Then he gets the equation 3 x = »2
(i.e., 1-3x = %), whence x =3 and 3 x=09. So here we get the 9!

When one augments a square to a larger square, one vertex remaining fixed,
the difference of the two squares is a figure called a grnomon. The gnomon makes
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itself rather obvious in considering a diagram showing that (a4 8)2=a%+
2ab- 82 (as in Euclid 11, 4), or in the rule given for turning a rectangle into a
square; and it also occurs in our reconstruction for computing square root. At
any rate, the Greeks and Indians definitely knew the gnomon; but in our geo-
metry paper {op. cif., p. 511), we commented that we knew of no gnomon from
Egypt. Now the Egyptians had a sign for square root. It is: [ ].? Could this be
the missing gnomon ?1°

Let us sum up in a fourth thesis:

The Egyptian procedure for finding the avea of a civcle is not meyvely a com-
putation for avea but is a true quadratuve. It belongs fo the same stratum as the
squaring of the civcle in the Sulvasutras and, like it, vequives a techwique for com-
puting square roots approximately. The approximation (8)2 to 7 |4 can be resolved
wnto two approximations, one of which is the approximation § to the square voot of % .

3. The Area of a Semi-Circle in Babylonia and China

In our geometry paper we insisted on the importance of comparative studies
for the history of ancient mathematics, and we did compare the mathematics of
Greece, India, Egypt, and Babylonia. We also emphasized the importance in
this regard of the ancient Chinese mathematics, but except for a brief reference
to the Chou-Per, we refrained from discussing the Chinese mathematics. The reason
for this restraint was that, from a general description of its contents, we deemed
the Chiu Chang Suan Shu ( Nine Books on Arithmetic Technique) the most relevant
for our purpose; but of this ancient work, the fullest account accessible to us was
that of Y. Mixam1,"* and he himself calls what he has a “summary”’. There was,
indeed, a Russian translation by E. I. BEREZKINA (1957), unknown to us at the
time. More recently (1968) K. VOGEL has brought out a German translation.!?

Let us take as preliminary glance at the Nine Books. We confine ourselves
mainly to the geometric parts.

Book I starts with the arvea of a vectangular field. Problem 1 reads: “Now one
has a field; it is 15 steps wide and 16 steps long. The questions is: How large is
the field?”’ The answer (=1 Mou) is given; and a second problem of a similar
kind is posed and the answer given. Then the general rule is stated. With a couple
of minor exceptions,’® this is the format used throughout the work: one or two
problems of some type are posed, the answers given, and the general rule stated.

% See, e.g., W. W. STRUVE, “Mathematischer Papyrus des Staatlichen Museums
der Schénen Kunste in Moskau,” Quellen und Studien zuy Geschichie dev Mathematik
(Abt. A), vol. 1 (1930), Problem 6, Col. VIII, line 5, Table II, no. 6; ¢f. p. 125.

10 Now we see that CanTor had already suggested this (op. cit. (1904), p. 69).
However, if the reconstruction for finding approximate square roots is correct, then
the connection between gnomon and square roof is not, as CANTOR feared it might be,
accidental.

11 “The Development of Mathematics in China and Japan,” A4bk. z. Ges. d. Math.
Wiss., vol. 30 (1912).

12 K. VogeL (Tr.), Caru CEANG SuaN SHU, Neun Biicher Avithmetischeyr Technik
(1968). VOGEL (0p. cit., p. 151) refers to Istor.-matem. isaledovanija 10,1957, pp. 423-584
for BEREZKINA’S work.

13 See VOGEL, 0p. cit., p. 124, for the exceptions.
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This is different, in the main, from the Babylonian procedure, where the problems
are stated and worked out, but the general rule is not given (though there are a
few instances of general statements).!* Book I continues with arithmetical problems
(addition, subtraction, efc. of fractions),! returning to geometry with Problem 25
which asks for the area of a triangle. Then comes the trapezoid. With Problem 31
we come to the circle: ““Now one has a round field; the circumference is 30 steps,
the diameter 10 steps. The question is: How large is the field. The answer says:
75 Pu.” Clearly the ratio of the circumference to diameter is taken to be 3,
though curiously no problem requires this knowledge, and throughout super-
fluous information is supplied. The value 3 is typically Babylonian, but the
Babylonian scribe needs to know this in working his problems. The rule (in the
Nine Books) for the area of a circle is to multiply one-half the circumference by
one-half the diameter; three further rules are given, the third of which says to
square the circumference and divide by 12—this is the Babylonian procedure.
Then the sector is considered. Then come a couple of problems on the segment:
given the chord (=s) and the “arrow” (=distance from midpoint of chord to
midpoint of arc=27), to find the area (the second example is a semi-circle). The
rule is: area ==(sp +$?)/2, and so appears to approximate the segment with a
trapezoid of bases s and p and width p (the approximation is “correct” for a
semicircle, 7.e., the formula is consistent with the other computations for the
area of a semi-circle). The Babylonians have problems on the segment, but they
are so far not understood,*® and so, of course, cannot be said to be the same as
the Chinese problems. Still, it appears that in the Old-Babylonian period, in
Susa, the segment was assimilated to a bow; and in the Mishnat ha-Middot
(1, 5), a Hebrew geometry compiled, according to S. GANDz, about 150 A. D., the
technical term ‘“arrow’’ definitely occurs? Moreover, HERON, who is often
considered to be continuing the Babylonian tradition, has this same problem.

14 For some examples, see VAN DER WAERDEN, dwakening Science, p. 74. We take
this occasion to suggest the following translation of of the first example (changes are
in italics):

Length and width as much as area; let them be equal.

You in your procedure,

The length you take again.
From this you subtract 1.

You form the reciprocal.

‘With the length you have taken
You multiply and

The width it gives you.

15 Problems 5 and 6, Book I, ask one to reduce
EucLIDEAN algorithm is used.

16 See O. NEUGEBAUER & A. Sacus, Mathematical Cuneiform Texts (1945), pp. 57,
134, 135, 136.

7 E. M. Bruins & M. RuTtEN, Textes Mathématiques de Susa, in Mémoives de la
Mission Awchéologique en Ivan, vol. 34 (1961). S. Ganpz, The Mishnat ha-Middot,
Quellen und Studien zuy Geschichte dev Mathematik, Astvonomie, und Physik, Abt. A,
vol. 2 (1932). The text from Susa appears to have “arrow’ (*‘fléche”) as a technical
term; at least, so BruiNs & RUTTEN translate the term pi-ir-ku for the distance in
question (op. cit., pp. 25, 28). The Greeks have neither the term nor the conception;
the Babylonians at least have the conception (GaNDz, op. cif., p. 19, n. 33). AL-
Kawarizm1 and BHASCARA have the term (Ganpz, loc. cit.)

12 49

15, o to lowest terms. The
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His solution is % (b /4) k-4 (58)%, where the correction term comes from the
ARCHIMEDEAN value 2 for m, (= circumference/diameter); he mentions that
the “ancients” took (64 A4)% and even conjectured that they did so because
they took m=3.18 Book I ends with a problem on the area of a ring (= circle

minus concentric circle); the Babylonians also have ring problems.*
Books II and III are strictly arithmetical.
Book IV poses the problem: Given the area of a rectangular field and its

width, what isits length ? In the first 11 problems the widthis 4 + 5+ 5 4+ + o

with # taking on successively the values n==2, 3, ..., 12. To us this looks like a
Sulvasutra construction problem translated into arithmetic; the more usual view
would, presumably, be that the Swulvasutra problem (or Ewuclid I, 44) is this
arithmetic problem translated into a construction. Problem 12 asks for the side
of a square of 55225 Pu (A#us. 235 steps). Thus square root comes in. The work is
in the decimal system, not, as in Babylonia, in the 60-system. In problem 17, one
is given the area of a circle, to find its circumference—again a problem in square
root. Then comes cube root, and first to find the side of a cube of given volume.
Book IV ends with the problem of finding the diameter 4 of a sphere of given
volume v. The rule is: Take the cube root of 16 v/9; this amounts to saying that
v=9 d3/16. This appears to be just another problem in cube root, but to us it is
quite surprising. The answer is wrong, of course, but what we find surprising is
that the problem was set up at all.2® We have no corresponding problem from
Old-Babylonia (or from Egypt of about the same time, i.e., of the Middle King-
dom).

Book V returns to geometry (although, as throughout, in computational
form). Here volume is taken up. Problem 9, for example, computes the volume of
a cyclinder (v=1c?h[12). Problem 10 gives the rule for a fruncated pyramid of
square base; problem 11 considers a fruncated cone; problem 12, a square based
pyramid; problem 13, a circulay cone (v =c2h/30); problem 14, a prism; problem 15,
an oblong based pyramid; problem 16, a tetrahedron; problem 17, a wedge having
two trapezoidal faces at right angles; problem 18, a special case of the next
problem; problem 19, a truncated pyramid-like body having rectangular, but
dissimilar, bottom and top.

Thus the Nine Books know the basic facts about pyramids. The Egyptians
had a correct formula for the truncated pyramid, and we think the Old Babyloni-
ans did, too, though the evidence is not as clear as one might wish. HERON con-

18 See T. L. HEATH, A History of Greek Mathematics, vol. 2, p. 330 in reference to
Heron's Metvica, I, 30, 31.

1 O. NEUGEBAUER, Mathematische Keilschvifi-texte (Evster Teil), Quellen und
Studien sur Geschichte dev Math., Astro., und Physik, Abt. A, vol. 3 (1935), pp. 153-177.

20 On a great circle of the sphere build a circular cylinder tangent to the sphere.
The sections of the sphere by planes through the axis of the cylinder are in one-to-one
correspondence with the (square) sections of the circumscribing cylindrical can, each
of the former being £ (i.e., 7,/4) of the latter; from which it might have been concluded
that the sphere is £ of the cylindrical can. This then gives V =2{(2 4?)4]. This makes
the formula intelligible, and suggests that the Chinese (or their forefunners) made
infinitesimal analyses.
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siders a pyramid-like body as described in Book V, Problem 19, but the formula
is different (HEaTH, 0p. cit., vol. 2, p. 332).2
Books VI and VII are essentially arithmetical. Several problems in Book VI

deal with arithmetical progressions. The Egyptians and Old Babylonians have
similar problems.22

Book VIII deals with simultaneous linear equations. The Old-Babylonians
could also handle simultaneous linear equations.

Book IX is geometric, treating the right triangle, especially problems in-
volving the Theorem of PyTHAGORAS; the Theorem of THALES, that an angle
inscribed in a semi-circle is right, also comes in. In the course of this, a familiarity
with PYTHAGOREAN number triples, i.e., integers a, 8, ¢ such that ¢? =42+ 52, is
disclosed. All this is familiar ground for the Old-Babylonians. Problem 15 asks
for the side of the square inscribed in a 5 by 12 right triangle (A#s. 34, i.e.,
5.12/(5+12)). This was presumably worked either by similar triangles or by the
Theorem of the Gnomon (Euclid, I 43). The Old-Babylonians worked with
similar triangles.?® Problem 16 asks for the diameter of the circle inscribed in an
8 by 15 right triangle (4ns. 6). We do not have this problem documented for the
Old-Babylonians, but it would have been an easy exercise for them.

Thus we see that the Nine Books are on a high level, indeed.

As to the date of the Nine Books: the first notice of the work dates from
179 A. D., but the oldest manuscript is an edition from the middle of the third
century, with commentary by L1v Hiu, who says that the work was put together

2 According to the interpretation by Nrucesausr (MKT I, pp. 176, 187) of the

Old-Babylonian text BM 85194, the volume of a truncated pyramid is given by
b\2 —p\2

V= (al— ) —|-%(a 5 b) k. There is, indeed, a difficulty in this reconstruction:

1 fa—Db\2

there is not enough space on the tablet for the computation of the —

. VAN

. a-t+b\2 a—b\2
DER WAERDEN (0p. ¢it., p. 75) suggests that the formula was V' = < > ) +< 3 ) h,

which is indeed wrong but agrees with the formula V' = > (a2 402 & of two other
closely related texts. It is, however, difficult to imagine why anyone would want
to go over from % (a® 4 5% to (a—;—bf + (a;b)z; though one might want to go
a—b

2

1 b2 1 2
from ?(az—l—ab + 2% to (il%——) —I—*g( ) in order to use tables of squares.

1
The presence of the formula V = 3 (a? +-ab + %k in Egypt and in China tends, we

consider, to confirm its presence in Babylonia.

One may note that the formulae from Egypt and Babylonia are for the truncated
pyramid and that, curiously, in the Nine Books (V, 10) the truncated pyramid is
taken up before the pyramid. This suggests that, anciently, the truncated pyramid
(and not, as in “scientific” times, the pyramid) was the starting point of the con-
siderations. If, as is usually presumed, the pyramid was the starting point, one is led
to wonder how the Egyptians got their formula from that for the full pyramid; but if
the truncated pyramid was the starting point, then the necessity for such a recon-
struction is removed.

22 See PEET, 0p. cit., problem 64, p. 107; and NEUGEBAUER & SAcHS, op. cif,,
pp. 100, 52.

28 See, e.g., MKT I, p. 177 and p. 259.
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from older materials by Crang T’sanG (fl. 165-142) in early years of the HanN
dynasty (202 B.C. t0o 9 A. D.).

It is clear that from such notices we do not get the date of the contents of the
Nine Books. It is not that we in the least doubt Liuv Hiv’s word for it that
CHANG T’saNG composed the work, but even Liu Hiu says it was put together
from “‘older materials”, and it is the date (or dates) of the contents we would
like to know.

For example, one might ask whether anything in the Nine Books is due to
ArcaIMEDES (fl. 250 B. C.) or was influenced by his mathematics. Of course, had
ARrcHIMEDES lived after the Han dynasty, we would have the answer, but the
opposite is true: he flourished about 250 B. C. The trade route from Persia to
China already existed in the second century B. C.;* so we have to concede that
ARcCHIMEDES' works could have gotten over to China in the early part of the
Hax dynasty (and even without this route, we need not doubt the possibility).
Thus from direct historical notices we cannot deny that ArcHIMEDES had an
influence on the Chinese mathematics during the HAN dynasty.

On the other hand, if we look at the text itself, we see that there is nothing in
it that is characteristically ARCHIMEDEAN : there is nothing in it, in the geometric
part at any rate, which we cannot claim with good reason already to have been
known by the Old-Babylonians. If one were to find on some newly recovered
cuneiform tablet any geometric problem occurring in the Nime Books {except
possibly the one on the sphere), no-one would be in the least surprised.

One can, perhaps, test this kind of textual criticism by a similar examination
of the Mishnat ha-Middot, a Hebrew geometry composed about 150 A. D. by
Rabbi NEHEMIAH (see footnote 17 above). This work is not, by far, on the level
of the Nine Books, but contains some points of interest. In it we find ytl———g.,?
and 7, =22 (briefly: we find 7z ="22). Moreover the author goes out of the way to
harmonize the ¥ with the 3 of I, Kings, 7, 23 and I, Chronicles, 4, 2. The value
% is, with as good grounds as we can hope for, ascribed to ARCHIMEDES: an
ARrCHIMEDEAN influence on the Mishnat ha-Middot is thus clear. Nor is this in
the least surprising since 150 A. D. is after 250 B. C. and in 150 A. D. the largest
Jewish community in the world was in Alexandria, the center of Greek mathe-
matical study.

On the other hand, the Nine Books do not know the 2~.;.2, and always use the
older 3. If ARcHIMEDES had influenced the work, surely this influence would have
made itself evident in the problems on the circle.

We can say, then, with considerable assurance that the Nine Books, in pariiculay
that part of the work which velates to circles, is pre-Archimedean.

Let us come now to the main issue, namely, whether the Old Babylonians
knew the basic relations between the area, diameter, and circumference of a circle.
In our geometry paper {(op. cit., p. 512), following VAN DER WAERDEN, we
supposed the Egyptians knew that 7, =4 ()2 and that m, =4(%)? and concluded
that they (or their forerunners) must have realized that &, =m,, that this reali-
zation could only have come about by a geometric analysis, and hence that

2 Lord RaGcrLaN, How Come Civilization ?, pp. 63, 186.
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Egyptian geometrical knowledge was not merely arithmetical. The main point
was this last conclusion, which now we consider to have been established above;
but now we are holding in doubt whether they knew that 7, =4 (§)2

We continued: “The Babylonians used the formulas A :% and C=3d

from which it would appear that they knew s, =m,, though here it is a bit more
difficult to judge”. We want to explicate this.

How did the Babylonian see that A =45 C2? Or is it possible that he wasn’t
supposed to see it? We mean: Perhaps the factor {5 was found in much the
same way that we find, say, the specific gravity of iron, namely, by an experi-
ment. We have to allow this as a logical possibility, but there is not a shred of
evidence that the Babylonians regarded geometry as an experimental science;

pending the presentation of some such evidence, we may put this possibility
2
aside. There remains, so far as we can see, only the possibility that 4 = 16—2 is the

transform of a relation standing closer to the intuition. Our guess is the formula
Cr

=

One often reads that the Babylonians took # as equal to 3. The 3 is considered
to be a crude approximation to s, which, of course, it is (but whether that was
the intention of the Babylonian is a different matter). Let us introduce 77, m; as
notation for approximations to m, m,. Then from z; =, we cannot conclude
7y =m,. If 7y, ms are complicated expressions, even fractions, the conclusion
7, =m, is plausible, but if m,, m; are integers, the conclusion begins to lack
plausibility : one has to face the possibility that z;, m; are both but crude integral
approximations independently arrived at. That is why we said that in the case
of the Babylonians it was “more difficult to judge”.

For example, one can imagine the circle to have been compared with the
circumscribed square and estimated to be three-fourths of it (perhaps by aver-
aging the inscribed and circumscribed square). In this way, the formula 4 = £ 42
could have resulted. A. P. JUSCHKEWITSCH has, indeed, envisioned such a com-
parison of the circle with the square on its diameter.?® Actually, the formula
A =32 d2 is nowhere documented in the Babylonian material at our disposal.?5*

Such was the situation, as we understood it, at the time we wrote our geometry
paper (op. cit.). Now, however, a further, crucial, piece of information has come
to our attention. In BM 85210 (Rs. I, 18) the area of a semi-circle is computed
according to the prescription arc times diameter/4.26 This confirms our guess

25 Geschichie dev Mathematik in Mittelalter, p. 57.

253 See, however, A. D. KiLmeR, ‘‘The Use of Akkadian DKS in Old Babylonian
Geometry Texts,” in studies presented to A. LEo OPPENHEIM, pp. 142-143 (= Bohl
Collection, no. 1821), where the scribe clearly has in mind that the area between two
concentric circles of radil R, » is given by 3(R —r) (R +7).

% MKT I, pp. 226, 232. In the mathematical text from Susa mentioned above in
footnote 17, dating from the end of the first dynasty of Babylonia (loc. cit., p. 5),
there occurs a list of coefficients (‘‘constantes fixes”); and one is told (p. 28) that
“15 (s.e., 1) [is] the constant of the semi-circle.” Following F. THUREAU-DANGIN'S
comment on BM 85290 (in Textes Mathématiques Babylonians, p. 51), Bruins & Ruz-
TEN (Joc. ¢it., p. 31) take this to mean that the area is computed as § arc times dia-
meter. This indicates that the formula was standard.



186 A. SEIDENBERG:

that

A= % is the transform of 4 = % <and not of A = _’Z_L dz)_ 27

Thus we need not doubt that the Babylonians knew that 7z, =a,, or other-
wise put, that area==} circumference times radius, which is definitely testified
for in the case of a semi-circle: if they had known it, how could they have ex-
pressed themselves better? Of course, they could have conveyed the information
via a formula for a full circle also. But if they had, and then the result were
combined with C =3 4, the issue would be obscured. It seems a plausible inter-

pretation to say that the issue got lost in the formula 4 = %, but remained
clear in the formula for the semi-circle.

Let us review the argument in terms of the relevant formulae. We have
definite documentation in the cuneiform texts for:

(1) C=34d
and

C2
(2) A=1—2,

and we have seen reason to suppose that (2) is the transform of a formula standing
closer to the intuition. Replacing one of the factors C in (2) by 34, we get

Cd
(3) :T;
or

C d
(31) AZEX?Q

and replacing both factors C by 34, we get
) A==

Conversely, from (1) and (3) (or (3)), we can get (2); and likewise from (1) and (4)
we can get (2). Both (3) (or (3")) and (4) stand closer to the intuition than (2),
though to see (3) would require considerable sophistication. Thus (2) is presumably
the transform of (3) (or (3")) or of (4). Although we need not doubt that the
Babylonian could see {(4), if we stick strictly to the evidence, we should prefer the
implication (3)=(2) to (4)=(2). Anyway, this is our choice.

Our considerations on Babylonia have depended, so far, on Babylonian
material only. Now we may compare with China. As has been made evident, the
Nine Books have a Babylonian look—in saying this we do not intend to say that
Chinese mathematics is a derivative of the Babylonian, or vice versa, but merely
that they have a common source. Now in the Nine Books we find explicitly what

has to be reconstructed for Babylonia, namely, the formula 4 = % times -Z"

2" Although BM 85210 was known to us when we wrote our geometry paper
(op. cit.), the significance of the computation area =% arc times diameter occurred
to us upon reading A. J. E. M. SMEUR’s work ““On the value equivalent to # in ancient
mathematical texts. A new interpretation,” Awchive for History of Exact Sciences,
vol. 6 (1970), especially p. 264.
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Could it be that they said it but didn’t mean it? Could it be, for example, that
the formula is but a mnemonic device? Since the Chinese even have a correct
formula for a sector, we think this way out is vain.

As to the deduction (3)=(2), this is no longer an issue, since (3} is explicitly
present, but even the implication is perhaps attested in the Nine Books. Although
the Nine Books proceed from the simpler to the more difficult, we cannot be sure
that the development was intended to be logical. Still, we note that in the section

dealing with the area of a circle, the formula 4 = % times % comes first; and
one might be tempted, then, to see the others as derivative of this and C =3 4.

2
This does not imply that 4 = ~1CE was not the favorite formula; and there is some

reason to think it was, since in the rules for a circular cylinder and circular cone

2
the rule 4 = % is followed. Thus if the Chinese had worked out their examples,

and their rules had been lost, we probably would see exactly what we see in
Babylonia. And what we see in Babylonia we explain in precisely this way: the
rules are lost, but the favorite formula remains clear.

The comparison of the Babylonian and Chinese mathematics not only confirms
our conclusion that the Babylonians knew that s; =m,, but it also confirms our
conclusion that the circle geometry of the Nine Books is pre-ARCHIMEDEAN —
indeed, by some 1500 years at least.

There remains the question of where the relation € =3 d came from. One
speaks of measurements, crude to be sure, of a circumference, but we are skeptical
that such measurements took place: it implies that geometry was considered to
be an experimental science, and we have not a shred of evidence for such a view.?
As far as we know, the evaluation of & has always been a conceptual matter, and
may have been so from its first approximation as 3. The first thought that comes
to our mind is that the Babylonians considered a regular hexagon inscribed in a
circle: that the Babylonians had observed that such a hexagon is made up of 6
equilateral triangles of side equal to the radius may be documented from Baby-
lonian material.2® The circumference of this hexagon is three times the diameter;
and if the Babylonian had considered the hexagon to approximate the circle,
he may have taken C =3 d equally well for the circle. Or the formula might have
resulted in some other similar way. If it had come as we have imagined, surely

the Babylonian realized that % was not =13 but somewhat larger. How much

larger ? Our view is that the Old-Babylonian didn’t care! In the course of attempt-
ing to square the circle, someone saw the great, new, and correct theorem that

A= %; but to compute A (or to construct a square equal to it in area), one had

to know %, and this was just as baffling as the original problem. One gave

up—gave up exact geometrical thought! Geometry became a background, an
excuse, for arithmetical and algebraical problems. There are many absurdities in

28 Moreover, no experiment, however refined, could tell us that circumference/dia-
meter is constant for all circles, but could at most give us an approximation to this
constant once it has been decided that there is such a thing.

2 See NEUGEBAUER, MKT I, p. 141 in reference to BM 15285; or Bruins & Rut-
TEN, 0p. ¢it., p. 23 and PL IL.

14  Arch. Hist. Exact Sci., Vol. 9
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Babylonian geometry; for example, the volume of the frustrum of a pyramid is
computed as one half the sum of the bases times the altitude; or the areas of the
regular pentagon, hexagon, heptagon inscribed in a circle of given radius are
computed, each time assuming that the perimeter of the polygon is 3 4, ¢.e., the
perimeter of the circle; or the area of a quadrilateral is taken to be the average
of one pair of opposite sides times the average of the other.?® We view this not
as “practical” but as degenerate. The ratio was some number about 3: the
Babylonian (or a forerunner) took it to be 3 and proceeded unconcernedly with
his main interest, his calculations.

Once the 3 had been fixed in tradition, it would be difficult to change. (Rabbi
NEHEMIAH’S courageous attempt to change 3 to % was soon frustrated.®) Still,
the 3 is such a poor approximation to =, and Babylonian mathematics was at
such a high level, that one cannot help but think they must have had a better
approximation: NEUGEBAUER felt this way.’? BruiNs has maintained that the
Babylonians did have 3% as such an approximation (for =;); and NEUGEBAUER
has accepted this opinion (though previously he had rejected this interpretation
for similar findings).®® In any event, the new value, if such it is, appears to have
had no impact on mathematics itself.

To sum up:

The Chinese and the Old-Babylonians (ov a forerunner) had a corvect notion of
the velations holding between the avea, diameter, and civcumference of a circle. Though
the arithmetical work was approximative (and necessarily so), the work was based
on a vealization of two basic velations: (1) that the ratio of the civcumference of a
circle to its diameter 1s the same for all circles; and (2) that the avea of a circle is
one half its civcumference times its radius.?*

4. The Area of a Semi-Circle in Egypt

The most contested problem of ancient Egypt is Problem 10 of the Moscow
mathematical papyrus (MMP 10). In 1930, at its first publication in modern
times, STRUVE astounded the world by declaring that the Egyptians of the
Middle Kingdom knew the correct formula for the area of a hemisphere.3® This
was not an off-hand opinion: the mathematical reconstruction is quite un-

30 See footnote 21 above; BRUINS & RUTTEN, op. cit., p. 32; and NEUGEBAUER &
Sacss, MCT, p. 47.

3l vAN DER WAERDEN, op. cit., p. 33 and GaNnDz, op. cit., pp. 8-9.

32 The Exact Sciences in Antiquity, 2nd ed. (1969), p. 46.

%8 NEUGEBAUER, op. cif., pp. 47, 52 and MCT, p. 59, n. 152 k. See also BRUINS &
RUTTEN, op. cit., p. 33. VITRUVIUS has m, =3%. See The Ten Books of Architecture
(tr. by M. H. MorGaN), p. 301.

3 The reader may wish to compare our conclusion with SMEUR’S (0p. cit., p. 264):
“Thus we can be sure the Babylonians were not familiar with a formula like 4 = z k2.
We have to admit that separate prescriptions existed for the calculation of the circum-
ference of a circle, the area of a whole circle and the area of the semicircle, and that
the Babylonians, surely at least in the beginning, were not aware of any relation
between the numbers 3, 5 and 15 [i.e, 3, & =45 and 3 =1], and certainly not
that those numbers were connected by one and the same factor or proportionality,
our number =.”

35 Op. cit., in footnote 9 above.
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convincing, but the paleographic study appears to be most meticulous, and even
all the subsequent objections appear to some extent to have been anticipated.

The reason for the astonishment is that it indicated an altogether higher
level to ancient mathematics, especially ancient Egyptian mathematics, than one
might have expected from what was already known. To be sure, MMP 14, which
was free of paleographic difficulties and gave the correct formula for the volume
of a truncated pyramid, showed a high level, indeed;* but even granting the
truncated pyramid—the Great Egyptian Pyramid, as E. T. BELL called it—the
hemisphere indicates a higher level still. This judgement is a matter of mathe-
matical sensibility: the problem of finding the area of a sphere is hard.

This is not to minimize lesser achievements. On the contrary, our object here
is merely to show that the Egyptians (or their forerunners) knew that m; =m,,

C . .. .
or, better, that they knew 4 = — 7 or, still move explicitly, that they conceived

of the circle as divided up into a large number of small (and, say, equal) sectors
which were assimilated to triangles. It may be said that this is “obvious”; but
our attitude is that nothing is obvious (unless one looks, and then the question
is, why does one look?). The Indian ritualists were vitally interested in the
circle, but it never once occurred to them to think of the length of the peri-
meter—which was eventually looked at, not because it is obvious, but because
one was trying to square the circle, or find its area. Moreover, there is no clear
evidence, in any of the papyri, that the Egyptians thought of it either; and there
is no unclear evidence, except possibly in MMP 10. This, then, is our object: to
show that in MMP 10 a circumference, or rather, a semi-circumference, was
calculated.

In 1931, PEET took up MMP 10 again, and gave a different, or, rather, two
different, interpretations: (1) that the object spoken about was a semi-circle,
and (2) that it was a semi-cylinder.?” NEUGEBAUER gave still another inter-
pretation, that the object was a paraboloid-shaped basket and that the formula
was an approximation.® Through this diversity of opinion the mathematician
interested in history but knowing scarcely a hieroglyph may get a better perspec-
tive on the paleographic difficulties.

Curiously, the semi-circle, which will mainly concern us, has dropped out of
NEUGEBAUER’s book (and paper), and also out of vAN DER WAERDEN’s.®* As
already said, PEET’s semi-cylinder and NEUGEBAUER’s paraboloidal segment
already give us the desired conclusion 7, =s,. As for STRUVE’s interpretation,
presumably any analysis leading to the correct formula for the area of a hemi-

% MMP 14 had already been published in 1917 by B. T. TURAJEFF in Ancient
Egypt, pp. 100-102.

8 T. E. PEET, “ A Problem in Egyptian Geometry,” Journal of Egyptian Archeo-
logy, vol. 17 (1939), pp. 100-106.

8 Vorlesung iiber Geschichte dev Amtiken Mathematischen Wissenschaften. Evstey
Band. Vorgviechische Mathematik, 1934; “ Die Geometrie der egyptischen mathemati-
schen Texte,” Quellen und Studien zur Geschichte der Mathematik, Abt. B., vol. 1
(1931), pp. 413-451.

3% NEUGEBAUER does mention the semi-circle in connection with STRUVE's
rendering (where it is properly excluded); see Vorgriechisch Math., p. 131; and op. cit.
(1931), p. 424 (see footnote 38 above).

14%
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sphere, even if very crude, would involve the knowledge that sz, =m,. That is
why we are mainly concerned with the semi-circle. Of course, there is the possi-
bility that the formula is a guess signifying nothing.

Let us start with STRUVE’s translation. Square brackets [ ] enclose restorations
of damaged or lost passages in the papyrus; round brackets () enclose com-
mentary. (Pointed brackets ¢ > will, following PEET, enclose words or passages
which never stood in the papyrus, but whose omission there is due, or presumably
due, to an error on the part of the scribe.)

STRUVE’s translation runs:

Kol. XVIII

. Form der Berechnung eines Korbes (n6-¢),

. wenn man dir nennt einen Korb mit einer Mundung (¢p-7)
. zu 4% in Erhaltung. O

. lasz du mich wissen seine (Ober)fliche. Berechne

. du § von 9, weil ja der Korb (nb-1)

. die Hilfte eines E[ies]4® ist. Es entsteht 1.

Kol. XIX

O\ Ut B N e

. Berechne du den Rest als 8.

. Berechne du } von 8.

. Es entsteht 2 1 . Berechne

. du den Rest von dieser 8 nach
. diesen 2 1 L. Es entsteh[t] 7.

R A A

Kol. XX
1. Rechne du mit 73 44mal.
2. Es entsteht 32. Siehe: es ist seine (Ober)fldche.
3. Du hast richtig gefunden.

PEET’s translation into English of STRUVE’s translation is: “Form of working
out a basket. If they mention to you a basket with a mouth of 43 in preservation.
Let me know its surface. Take a ninth of 9, since the basket is half an egg; result 1.
Take the remainder, namely, 8. Take a ninth of §; result %—Q—%—]—%S. Take the
remainder of these 8§ after (the subtraction) of this 2 -+2 4 &; result 71. Reckon
with 7% 4% times. Result 32. Behold, that is its surface. You have found rightly.”

The first difficulty already occurs in Col. 18, line 1 with |X. (See Fig. 5.)
It is agreed that this is a word and that the word is basket. But there is the
possibility, already considered by STRUVE, that it is a technical term and, if so,
could possibly mean semi-circle. That “basket” is, indeed, a technical term is
definitely indicated in Col. 18, lines 5, 6, where we are told that a “basket’ is
“half of [ ]”, half of something, but what the “something”’ is is for the most part
destroyed. Now a basket itself is not, or would not be thought of as being, half
of anything; rather it is the figure that “basket’’ denotes that is half of some
other familiar figure. Thus that ‘“basket” is a technical term is indicated; but
let us for the moment accept STRUVE’s opinion, in this regard not implausible,
that “basket’ means hemisphere (and the missing term sphere).

40 The brackets here are supplied by us, those in Kol. XIX, line 5, by STRUVE.
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Fig. 5. Moscow Mathematical Papyrus, Problem 10

A second difficulty is, in PEET’s words, ‘‘the 9 which unexpectedly turns
up without explanation in line 5, where its sudden appearance is so disconcerting
to Struve”. Though the scribe almost never explains, the individual steps, no
matter how simple, are usually given. Thus one expects a line: Take 4 two times.
Result 9. This omission is what troubled STRUVE. He is hard-pressed to give
another example, but points to MMP 23, where a like omission is claimed to
occur: there numbers 10 and 5 make their appearance and it appears that the
fact that 10 is twice 5, or that 10 divided by 5 is 2, is tacitly used. PEET has a
different explanation of this problem, but the omission remains.®* STRUVE also
notes that in MMP 13 a whole complex of four operations is abbreviated; but in
this case the problem is like an earlier one, MMP 9, where a detailed computation

41 Op MMP 23 see PEET’s review of STRUVE’s work in J. Egyptian Avcheology,
vol. 17 (1931), p. 158. Cf. STRUVE, op. cit., p. 163.
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is given. Moreover, STRUVE claims that the phrase “because a ‘basket’ is half
of an X shows that the Egyptians were also in possession of a formula for X—and
in this we think STRUVE is surely right; MMP 10 is then like a missing problem
for X (a sphere for STRUVE) and the idea is this: In computing the area of a
sphere one would take 4 times the 4%, i.e., the diameter, but here one takes a
half of 4 times the diameter since a hemisphere is half of a sphere. The com-
pression, then, is somewhat more than the abbreviation of an operation. Still,
the situation is most unusual: it is the one place in the papyri where a scribe
cites a theorem; and the arithmetic is easy. So perhaps we can allow STRUVE
the 9.

The main difficulty, however, are the words (lines 2, 3) which describe the
basket:

nbtmip-rvdym’d,

as PEET writes them, and which STRUVE translates as “einen Korb (#bf) mit
einer Mundung (¢p-7) zu (#) 4% in Erhaltung ('d)”. PEET (¢f. footnote 37, above)
has several criticisms of this translation that can be properly judged only by an
Egyptologist —NEUGEBAUER agrees with them**—but there is one criticism that
one can routinely check from a hieroglyphic transcription of the original (of
MMP and the other mathematical papyri); and PEET himself calls this “the real
rock on which Struve’s rendering breaks up’’. Namely, that “7 is never used in
the mathematical papyri to introduce a dimension when only one dimension
is given”, though “‘it is used to introduce the second of two dimensions when
two are given, and it then answers exactly to our ‘by’ in ‘6 feet by 3’ 7".%® PEET
considers this to be the clue to a correct interpretation of the passage, which he
first restores as:
nbt (nt x> miprrigm’'d,

“a basket (?) of x in mouth and 4% in ’d, where ’d, whatever it may mean, is the
name of the second dimension given, just as /p-r is of the first.” We are inclined
to agree with PEET.

But even if we agree with STRUVE’s translation, the question remains, as
STrRUVE realized, whether the Egyptians could have given a correct derivation
of the formula: by “correct” we do not mean meeting our standards of rigor,
but only meeting the Egyptians’ standard. We reject STRUVE’s suggestion for a
derivation; and, moreover, cannot even imagine a derivation without the knowl-
edge that 7, =m,. (STRUVE’s derivation involves this.) If there were no deri-
vation, the only remaining possibility is that the formula was a guess. Now we
guess, so there is no reason to think the Egyptian could not have done likewise:

42 0p. cit. (1931), p. 426, 1. 54c.

4 R. J. GiLLinGs (“The Area of the Curved Surface of a Hemisphere,”” Australian
J. of Science, vol. 30 (1967), p. 113) has rather freely translated PEET as saying that
‘“‘the hieroglyph O, read as ‘»’ before the 42 of line 3, is always used in the mathe-
matical papyri as the equivalent of ‘by’, as in our modern ‘6 feet by 3 feet’ ...”".
Taking exception, he adds that ‘it is also used in other senses, as (up to) RMP 40, 41,
42, 43, and 46; as (goes into) RMP 41, 44, and 45. It is also rendered (to), (for), (of),
and (mouth).” All of these examples are irrelevant. The “»”’ of MMP 14, already
discussed by STRUVE, where a truncated pyramid is said to be “6 in height, by 4 on
the bottom side, by 2 on the top side,” is also hardly a counter-example.
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the question is whether the guess is based on an essentially correct understanding;
if it encompasses only a little part of the truth, the guess signifies nothing.

Recently GILLINGS (0p. cif.) has considered MMP 10 once more, and takes
the view that the formula is a guess: he imagines the Egyptian to be locking at a
hemisphere, a basket, and saying to himself that its area is greater than its
opening—surely we can go along with that: If F is the area of a hemisphere and 4
the area of a great circle, then /' >A4. Then by an ““inspired guess’—we would
say: divinely inspired guess—the Egyptian judged that IF =24.

Earlier, GILLINGS, in rejecting PEET’s semi-circle says that “it removes in
one fell swoop all the real difficulties of the problem and reduces the scientific
and historical interest in it to almost nil.” On the same basis, GILLINGS should
have rejected his own considerations. But our disappointment over something
having no value is hardly grounds for ascribing value to it, so we shall proceed in
another way to show that the formula could hardly have been a guess for the
area of a hemisphere.

Let us recall how the Egyptian computes the area A4 of a circle of diameter 4.
First he finds & 4; but this he does not do in a single step: rather he first computes
one ninth of 4 and subtracts the result from d—in a formula: d —% d. Then he
squares the result: we may write 4 =(£ 4)?, but this is an abbreviation for
A = (d — { 4)%. The straightforward program for computing 24 is then

F=2(d—%d)p2.
Instead, the Scribe proceeds according to the program:
F=[2d—%2d)—$2d—%t24d)]4d.

Note, first, that in the straightforward program, the doubling comes last,
but in the actual program it comes first. What could have moved the Scribe to
do this? Could it be that he took advantage of the fact that d =47 and that
twice this is exactly divisible by 9? This could hardly be so. The Scribe was not
working out problems on his precious papyrus: rather he was writing a text. It
would, however, be in the spirit of textwriting for the Scribe to choose d =43 in
order to simplify the first step. In other words, d =43 might be taken because
doubling is the first step but doubling would not be the first step because d = 4%.
Moreover, in the same spirit, he could have taken d4=09: the straightforward
program 2 (£ 4)? would then proceed arithmetically as smoothly as possible and
the idea that =24 would have been conveyed in as clear a way as possible.
The thesis that the formula was a guess, or even that the Scribe is conveying
that F =24, thus leaves completely unexplained the transposition of the doubling
operation. But let us write the straightforward program as FF'=2(8 d) (& d) and
let us assume, for no assignable reason, that this was rewritten as (£ 24) (§ ),
though the Scribe actually went over to [£(§ 2d)]d. What could have moved
the Scribe to transpose the operation of multiplying by & from the factor 4 to
the factor £ 24? That he can do so depends on the identity

[(2d —} 2d)~ (24 —§ 24)] d= (24—} 2d) (A} ),

which can hardly be claimed to be obvious; but let us suppose the Scribe saw it.
There still remains the question of why he applied it. Could it be that one program
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is computationally simpler than the other? This could hardly be so in general,
but is it so even in the case at hand ? The Scribe takes 4 of 8. Result: 2L 4.
He then subtracts this from 8. Result: 7+ 3. The Scribe does not give the details,
and the reader may wish to supply them in the spirit of Egyptian arithmetic.
Though surely easy enough for an adept, they could well stump a novice.** On
the other hand the calculation of § of 4% in the program (8 24d)-(34d) is simple
enough. It would rua:

9
4

DOfp =
D=

Answer:

o[

i.e., it takes one easy step Egyptian style to get the answer; after which one has
to compute 4% — %, obviously 4, and then multiply by 8 (the 8 of the & 2d), to
get 32. Therefore the alternate program chosen by the Scribe is much more
complicated then the modified straightforward program. The shift of the 8
operation also remains unexplained.

Thus the hypothesis that the formula of MMP 10 is a guess for the area of a
hemisphere, or, indeed, that it is a formula conveying that any area is twice the
area of a circle, is excluded on arithmetical grounds alone.

Let us proceed to the other interpretations of MMP 10, which we shall con-
sider in historical order; so PEET’s semi-circle is next. The first difficulty that
PEET has to meet is that a basket is a 3-dimensional object, and a first presump-
tion may well be that “basket” must refer to a 3-dimensional figure.

PEET himself is not disturbed by the suggestion that | ¥, “basket”, could
be a term for a semi-circle. Having paleographically disposed of STRUVE’s “e[gg]”,
at least to his own satisfaction, he writes (op. cit., p. 103):

“Let us now cut ourselves free from the assumption that the figure is a
hemisphere and see where the data leads us .... The figure is written with the
word nbt, a word means ‘‘basket”’, but which in this case, where we are dealing
with geometry, must not necessarily be assumed to bear its literal meaning,
though we should certainly expect it to represent some object of which the
sign < itself is not an unreasonable picture.

There appear to be two possibilities, according as we take the figure to be in
two dimensions or in three. In the first case we have the semi-circle and in the
second the semi-cylinder ..."”.

Although PEET was not disturbed over the 2-dimensional suggestion, appar-
ently NEUGEBAUER was, for he dismissed the whole idea without a word.® It
may be in order, then, to pursue this question a bit farther. First, in general
terms, we need not expect a technical term to cover all the meaning of an older
word from which it derives. An older word is put to a new use by, for example,
narrowing down its meaning. To get away from generalities and at the same
time provide some evidence, we can give an exactly parallel case from the Nine
Books: there the word “basket” is used to denote an isosceles trapezoid, and, as

4 For how the arithmetical details might have gone, see GILLINGS, op. cif., p. 115.
4 As already remarked, he does mention it in connection with STRUVE’s rendering;
see footnote 39.
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VOGEL notes (0p. cit. 1968, p. 30, n. 1,) the isosceles trapezoid is the section—or
as one might say in draughtman’s terminology: the “characteristic” view—of a
basket having the form of a truncated cone. (We may remark that the Baby-
lonians used “‘basket’’ to stand for the truncated cone itself.?6) Thus in China
we find precisely the phenomenon that some people find it so hard to contem-
plate.

PrET had restored lines 2, 3 as: “‘a basket(?) of x in mouth and 4} in '@”.
That x is the diameter of a circle is clear enough, but no linguistic analysis can
supply the value of x. This must come from the proposed interpretation itself.
There are four cases: (a) for the sphere, x=43; (b) for the semi-circle, x =9;
(c) for the semi-cylinder, x =4%; (d) for the paraboloidal segment, x =43 .

Continuing his considerations for the semi-circle, PEET writes: ‘“This con-
struction has the very great advantage of bringing in as the first datum the
figure 9 which seemed to occur so entirely without explanation in line 5.” We
agree. But no sooner had PEET written this down than he began to worry: “On
the other hand it has one grave disadvantage, since it requires us to suppose
that the Egyptian here gave two measurements, diameter and radius, of a semi-
circle, when one would have sufficed”. Here we think PEET is uselessly worrying
over nothing. The supplying of superfluous data is in itself not illogical. More-
over, we have seen that in the Nine Books there are several over-determined
problems on the circle: the circumference and the diameter are both given.
Besides, in the case of MMP 10, it is not clear that there is any superfluous data.
If “basket” meant circular segment, then it is not known to be a semi-circle until
we know that its “mouth” is twice its 'd. In the Nine Books we have precisely
this situation: problems 35 and 36 of Book I speak of a “bow-shaped field”; in
problem 35 the chord is 30, the arrow 15 (and so the field is a semi-circle), in
problem 36 the chord is 781, the arrow 13%. There is no separate term for a semi-
circle. The same appears to hold for Babylonia.#” And it could have been just
the same in Egypt. This does not conflict with the information that “the basket
is half of a []”, which we learn only after the dimensions have been given.*

The cited passage from PEET continues: “ For my own part I am not prepared
to dismiss this possibility [7.e., of superfluous data] out of hand. Egyptian
mathematics was a very concrete and practical science, and a semi-circle was a
plane figure which might for every-day purposes be regarded as having, like
other plane figures, two measurements, length ({p-#) and breadth (d). Is it
unthinkable that on the basis of this popular view of the figure there should exist
a practical rule for finding the area of a semi-circle which proceeded not by
halving the area of the complete circle, but by taking & of & of the diameter
(length) and multiplying it by the radius (breadth)?”

Yes, we find this “unthinkable”. A semi-circle is a circular segment, so what
is still “thinkable” is that the semi-circle is worked out as a special case of a
circular segment. But the Scribe says that the computation depends on the

16 O, NEUGEBAUER & W. STrRUVE, “‘Uber die Geometrie des Kreises in Baby-
lonien,” Quellen und Studien zuv Geschichte der Math., Abt. B, vol. 1 (1929), pp. 86-88.

47 See the remark on b, in MKT I, p. 230. The Mishnat ha-Middot uses the same
term for semi-circle and for segment; ¢f. GANDz, op. cit., p. 13, n. 6.

48 STRUVE uses the definite article (“der Korb”) in line 5, PEET the indefinite.
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formula for a circle. So one has to explain why he did not directly apply the
formula F = (& 4)2, known from RMP 50; or one has to face the possibility that
he was applying a different formula for the area of a circle.

Could it be that PEET was missing the simple observation that & of § of the
diameter is (assuming 77, = 71,) one half the semi-circumference? This seems to
be the case.

PEET continues: “ Supposing for a moment that the figure really is a semi-
circle—what is the force of the words of 1l. 5-6: ‘Take a ninth of 9, since a semi-
circle is half a [circle]’? The phrase which begins with ‘since’ must explain
either the figure 9, or the step as a whole. Now the 9 needs no explanation, being
one of the data, and the words must therefore be taken as explaining why the
procedure of taking a ninth (as a preliminary to taking &) associated with ob-
taining the area of a circle is here adopted.”

But do they explain it? If we understand PEET correctly, he is suggesting
that the passage is alluding to the formula (8 4)2 for the area of a circle, so that
the passage has only an allusive and not an explanatory force. The transformation
of the straightforward program 4 (& 4)2 to the program [§(24)]7 remains un-
explained.

To come to our explanation: our view, or hypothesis, is that the Scribe is,
indeed, referring to the area of a circle, but not to the formula F = (§ d)?, rather
to the formula F =% circumference times radius, which as a program reads:
[2 (8 2d)] 7. In computing the area of a circle according to this formula, the first
step is to multiply 4 by 2; and the Scribe is explaining that this preliminary
multiplication is not necessary, “‘since a semicircle is half a circle”.

Our hypothesis also explains the program actually adopted. It is true that
this program is computationally more involved than taking (2 4)%, but the
Scribe is not, any more than we in our calculus courses, merely trying to show
the student how to get the right answer, but is trying to convey the idea that
the area, of a circle or a semicircle, can be obtained as § arc times radius. It is
even conceivable that the Scribe expects the student to know the answer, namely
64, to the familiar problem: ““Find the area of a circle of diameter 9, so that
the obvious answer 32 can then serve as a check on the new idea: surely this is
the way we would proceed.

To repeat: we bring in our hypothesis to explain why the program [$(% d)]»
rather than the program (& 4)? was followed. There may be some other ex-
planation, one not using our hypothesis, but what it could be, we cannot imagine.

Our explanation implies that the Egyptian knew the formula C=2(3 24)
for the semi-circumference of a circle. How would he have gotten this? He knows
that /= (8 4)? and that F=C times % d. So he has to divide (§ 4)(3 d) by % 4,
whence he gets C=£(§ 24). This requires some algebra, to be sure; but he has
the motive and he knew some algebra (for example, in MMP 6 he solves the
problem: Given the area F of a rectangle and the ratio 5:7 of the breadth to the
length, to find the breadth and the length).

The formula F =semi-circumference times radius does not flow from the
formula F = (£ d)?: it requires new concepts and a new analysis of the area of a
circle; the second is a direct squaring of the circle, the first is not. The two
formulae, then, are different in style, and one is tempted to ascribe them to
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different traditions, or at least different periods. But traditions can cross, and
in this case could have done so without conflict.

Although we think PEET lost the way at a couple of vital points, still he
deserves great credit for suggesting that the “basket” of MMP 10 is a semi-
circle. This was no off-hand polemical response to STRUVE’s work of 1930. Already
in 1923 PEET was in possession of photographs of the Moscow papyrus, sent to
him on the reasonable understanding that he should not publish their contents.
He thus had ample time to come to an independent conclusion and, according to
his own statement, did so (0p. cit., p. 100).

We can now be brief with the remaining possibilities. For the semi-cylinder,
as already noted, the diameter x equals 4%. Here the difficulty is, again, that
““the working ought to have begun with the multiplication of 4} by 2 to get 9.
There is no way to meet this difficulty, except by shrugging it aside as not very
significant.*®

NEUGEBAUER, too, notes (op. cit., 1931, p.427) that the semi-cylindrical
basket would have no (semi-circular) sides. This is surely worth noting, but can
hardly be decisive. But we need not insist on these difficulties, since if we accept
the semi-cylinder, we surely have the desired conclusion that the Egyptians had
Ty =TTy

As to the paraboloidal segment, NEUGEBAUER (loc. cit.) considers that
“basket”” means basket, 1.¢., it is not a geometrical term, but literally denotes a
basket, and that the formula is a “crude’ approximation to its area. Here the
diameter x is 4% and there is another measurement @ =4%. To give force to
lines 5-6, however, he is obliged to consider the “basket’ purely as a mathe-
matical figure. Besides, the 9 remains underived. Again we need not insist on the
difficulties, as we would anyway get @, =z, Moreover, the infinitesimal analysis
NEUGEBAUER offers is like the one we have in mind for the circle: indeed, he
says that he got the idea after perusing COLEBROOKE's Algebra with Avithmetic
and Mensuration from the Sanscrit of Brahmagupta and Bhascara, p. 88, where
exactly the analysis we have in mind for a circle is given.

To set out our conclusions:

The area being computed in Problem 10 of the Moscow mathematical papyrus is
that of a semi-civcle. The work is based on the formula F = semi-civcumference times
radius, and only indivectly on the formula F = (8 d)%, for the avea of a civcle. Thus
the Egyptians knew the basic velations between the avea, diameter, and civcumjerence
of a circle.

5. The Area of a Semi-Circle in Greece

The father of Greek geometry is THALEs, but the accomplishments which
have been attributed to him have been evaluated in quite contrasting ways.
According to HEroDOTUS, THALES predicted a solar eclipse, nowadays presumed
to be the eclipse of 585 B. C. XEXOPHANES is said to have voiced his admiration
of Tuargs for this prediction. vaN DER WAERDEN (0p. cif., p. 86) accepts the

% PeeT adds rather lamely that STRUVE’s interpretation suffers from the same
difficulty.
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attribution, and argues that therefore THALES, who according to all our sources
was the first Greek astronomer, must have had some knowledge of Babylonian
astronomy. NEUGEBAUER, on the other hand, thinks that the story about THALES
prediction is no more reliable then the story that ANAXAGORAS predicted the
fall of meteors (Exact Sciences, p. 142).

As to geometry, we have the same contrast in opinion. Our actual source is
Procrus (4™ century A.D.), but Procrus derived his information from the
history of EupEmMUS (4 century B. C.), a work now unfortunately lost. VAN DER
WAERDEN argues that EUDEMUS (and ProcLUS) are quite reliable. NEUGEBAUER,
however, cannot see ““a single reliable element in any of these stories which have
become so dear to the histories of science”.

VAN DER WAERDEN pictures THALES as getting wind of the Egyptian and
Babylonian mathematics. “ At the time of Thales”’, he writes, “the Egyptian and
Babylonian mathematics had long been dead wisdom. The rules for computing
could be deciphered and shown to THALES, but the train of thought which under-
lay them was no longer known. From the Babylonians he might hear that the
area of a circle is 3 #%, while the Egyptians asserted that it is (§ 2#)2 ... .”

In this part, at any rate, NEUGEBAUER agrees, at least in a general way:
although “there is nothing to do but to admit that we have no idea of the role
which the traditional heroes of Greek science played”, still “it is rather obvious
that early Greek mathematics cannot have been very different from the Heronic
Diophantine type”, he writes {op. cit., p. 148).

The images thus brought to mind are very plausible and easy to believe; yet
it would be very difficult to offer anything quite definite as documentary evi-
dence. Any formula of the “Heronic” type involves a unit, but the unit is
notoriously absent in Greek classical geometry. PLATO in his dialogue on THEAETE-
TUS mentions a square “one foot” on a side; and EucrLip X, Del. 3 speaks of an
“assigned straight line’’ (s.e., a line chosen as unit); but this is about as close as
one can get to documentary evidence for a unit in classical Greek geometry.

However, there are grounds for believing that the unit was expunged from
Greek mathematics! This would explain ourlack of evidence for an early ““ Heronic”’
type of geometry in Greece. Still this is not evidence for its existence, but merely
an argument for it. The history of Greek mathematics is not merely a descriptive
matter, but is really a theory.

According to Procrus, following Eupemus, THALES was the first: (1) to
prove that a circle is divided into two equal parts by its diameter, (2) to observe
that the base angles of an isosceles triangle are equal (or, as had been more
anciently said, “similar”’), (3) to discover that when two lines meet, the opposite
vertical angles are equal, and (4) to realize the truth of the congruence proposition
Euclid T 26.

Point (1) is surely astounding! As HEATH noted, this is not proved even in
EucLip. Rather, in I, Def. 17, EucLID merely asserts it.

One cannot help wondering what was the context for the proof of (1). If
VAN DER WAERDEN is right, we may imagine that THALES was shown formulae
for the circle and for the semi-circle. He would have been puzzled by the differ-
ences, and put things straight by proving (1). But we gladly concede that here
we are on the ground of pure speculation.
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On the other hand, as NEUGEBAUER suggests, propositions of a later age were
attributed to heroes. Now with HippocrRATES oF CHIOS (430 B. C.) we definitely
see the semi-circle enter classical geometry: he observed that the semi-circle on
the hypotenuse of an isosceles right-angled triangle is the sum of the semi-circles
on the sides. Since in his theory of lunules he was careful in one case to prove
that an arc was greater than a semi-circle, and in another that it was less, point (1)
conceivably arose in connection with this theory. Probably NEUGEBAUER would
prefer this explanation (¢f. op. cit., p. 148).

6. The Area and Circumference of a Circle in Greece

The problem in this section will be to see how far back we can place a know-
ledge of m; =7, in Greece.

By “knowledge” we mean knowledge with reference to the local standard
of rigor, and not with reference to our own. No one will dispute that the Baby-
lonians “knew” that circumference/diameter is constant over all circles (though
one will probably not get an easy agreement on how they knew it).

A corollary of this definition of knowledge is that something may be known
at an earlier time and not known at a later, even if we confine ourselves to one
culture and a generally advancing one at that; for the standard of rigor may go
up without the technique being able to keep pace.

The main difficulty is that most of the pre-EUCLIDEAN mathematical works
are lost. This is not due merely to the ravages of time, but is due in part to the
nature of advancing knowledge: the excellence of EucrLip’s Elements made
previous compilations obsolete. We have only two pre-EUCLIDEAN mathematical
works (of AuToLycus) intact; for the rest we have a few fragments and passing
references.

Still, a host of scholars have with great perspicuity reconstructed the pre-
EvucLipeEan history, back to HippocrRaTES oF CHIOS (430 B. C.), the PyTHA-
GOREANS (of about 500 B. C.), and to some extent to THALES (585 B. C.). As an
example, consider the history of the theory of proportionality. Greek mathe-
matics knew three different definitions of proportionality, the second and third
arising from inadequacies in their predecessors and giving rise to wide reper-
cussions in the whole of mathematics. VAN DER WAERDEN (0. c¢if.) has given an
excellent account of this development. It will be convenient for us to sketch
this development briefly, as it will help to give a perspective on pre-EUCLIDEAN
mathematics.

In the beginning, the concept of proportionality in geometry was the same
as that which underlay the PYTHAGOREAN theory of numbers: four magnitudes
are proportional if the first is the same part, or parts, or multiple of the second
that the third is of the fourth. This is a perfectly good definition as far as the
theory of (whole) numbers is concerned and retained its position in Book VII,
Definition 20 of EucLip’s Elements, but it is not suitable for the comparison of
line segments. If it were true that any two line segments had a common measure,
then the definition would have been adequate, but the PYTHAGOREANS discovered,
to some distress to themselves (so it is said), that even the diagonal of a square
and its side do not have a common measure. This caused a crisis in geometry as
the whole subject had to be built up anew.
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To take a simple example, consider a rectangle A BCD and a line parallel to
one side, say AB, cutting the rectangle into areas U and V7 and a perpendicular
side correspondingly into lengths # and v; and consider the theorem that U is
to V as u is to v. The proof in the early part of the fifth century B. C. would
have run: let w be a common measure of » and v, going » times into # and » times
into v. Then the rectangle built on w and having the perpendicular side equal
to AB would be a common measure for U and V, going m times into U and #
times into V, from which the desired conclusion follows. But the definition had
to be abandoned, and with it the proof. If the theorem was to be saved, a new
definition was needed.

The third definition, the one due to Eupoxus (370 B. C.), we know very
well and see in action in The Elements, but of the second we manage to catch
only a glimpse. This we get from a remarkable passage in the Topica of ARI-
STOTLE (158Db):

“It appears also in mathematics that the difficulty in using a figure is some-
times due to a defect in definition, e.g., in proving that the line which cuts the
area parallel to one side (of a parallelogram) divides similarly both the line which
it cuts and the area; whereas if the definition be given, the fact asserted becomes
immediately clear; for the areas have the same antanairesis as have the sides:

RS

and this is the definition of ‘the same ratio’.

But what is the antanairesis ? As vaAN DER WAERDEN explains (op. cit., p. 170):

“The lexicon derives davtavaipeots, deduction, from the verb dvt-ow-opew,
subtract, literally, ‘balancing against each other’, which is used especially for
sums of money, for instance in drawing up the balance sheet. The commentator
Alexander of Aphrodisias adds here that by antanairesis, Aristotle means the
same as by anthyphairesis. This brings us some help, because in Euclid VII 2 and
X 2, 3 the verb dvfvgouvery means ‘to take away in turn’ the smaller of two
numbers or line segments from the larger one, for the determination of the
greatest common divisor.”

The idea is this: if two line segments 4B, CD have a common measure d,
and if, say, 4B > CD, then AB, CD, and their difference EF will also have 4 as
common measure. Now we can repeat the argument for CD and EF; and in this
way, continuing, we can find the greatest common measure. If A B, CD are whole
numbers, the same idea leads to their greatest common divisor, say d. This is
the famous EUCLIDEAN algorithm for finding the greatest common divisor (also
known to the Chinese in the Nine Books). If AB=wmd and CD=nd, then,
thinking of d as a big unit, one sees that the algorithm for m to » is parallel to
that for 4B to CD. Thus one sees that, for integers, AB, CD, UV, WX will be
proportional if and only if AB, CD have the same antanairesis as UV, WX. Now
keeping this part of the notion of proportionality and generalizing, we get the
second definition, the one referred to by ARISTOTLE.

The trouble with this definition is that proving the theorem of the interchange
of means gives difficulty: the theorem says that if 4, b, ¢, d are four quantities
of the same type and if 4 is to b as ¢ is to d, then a4 is to ¢ as b is to d. Now if «,
b, ¢, d are line segments one can prove that a is to b as ¢ is to 4 if and only if the
rectangle on the means (b and ¢) is equal to the rectangle on the extremes (2 and d),
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from which the theorem on the interchange of means follows.5® If q, b, ¢, d are
not line segments, one would (presumably) first have to find line segments a’, ¥’,
¢’, d’ proportional to them, apply the theorem to a’, ¥/, ¢/, d’, and then return to a,
b, ¢, d. This is a reconstruction, of course, but that it is close to the truth we can
see from another passage of ARISTOTLE (Anal. Post. 15):

>

“Formerly,” says ARISTOTLE, ‘‘this proposition was proved separately for
numbers, for line segments, for solids, and for periods of time. But after the
introduction of the general concept which includes numbers as well as lines,
solids, and periods of time” (namely, the general concept of magnitude), “the
proposition could be proved in general.”

Here ARISTOTLE is referring to Eunoxus’ theory of magnitude. We need not
recall Eunoxus’ definition of “equal ratio,” given in V, Def. 5. of The Elements.
What is important to have in mind is that two quantities have a ratio if they are
“capable, when multiplied, of exceeding one another;” and that the ratio for
new types of figures is investigated by approximating them by figures whose
properties are already known. Thus, in proving that circles are to each other as
the squares on their diameters (Elements, X11I, 2), one approximates the circles
by regular polygons; in proving that pyramids of the same height and having
triangular bases are to each other as the bases (XII, 5), one approximates the
pyramids by sums of prisms.

In Eupoxus’ method, one works with inequalities; from the famous fragment
on lunules, one knows that HipPoCRATES already worked with inequalities.

In this same fragment one learns that HippocrRaTEs ‘‘considered as the
foundation and as the first of the propositions which serve his purpose, that
similar segments of circles are in the same ratio as the squares of their bases. He
demonstrated this by showing first that the squares of the diameters have the
same ratio as the circles.”

According to VAN DER WAERDEN (0p. cif., p. 132) it is still an open question
whether Hippocrates actually proved this rigorously”. He does not say why
one should be skeptical, though he adds that the proof in Evcrip XII, 2 comes
from Eupoxus. Perhaps the difficulty is to imagine what the proof of Hippro-
CRATES could have been. Let 4;, 4, be two circles and d;, d, the squares on
their diameters. Then by an antanairesis, one could show that A4,:d; = A,:dz;
and then by an interchange of means that 4,:4,=d;:d5. Though the antanairesis
of two areas is conceptually harder to visualize than an antanairesis of two line
segments, it would not have been beyond HiproCrATES’ range. Still, we do not
make the suggestion with great confidence, as the idea is not in the Greek style.

(The cited text continues: “For the ratio of the circles is that of similar
segments, since similar segments are segments which form the same part of the
circle.” In symbols: if X, 2, are similar segments of circles 4;, 4, on chords
¢y, Cy, then A 1A, =255, since 2}: 4, =2,:4,. We may note in passing that

50 For more details, see VAN DER WAERDEN, op. cif., pp. 177-178. There is a diffi-
culty in proving: P. If in a proportion the consequents ave equal, them the antecedents
arve equal as well. O. BECKER, ‘‘Eudoxus-Studies 1,” Quellen und Studien, Abt. B.,
vol. 2 (1933), p. 320, has shown how to meet this difficulty in a pre-EupoxIan way.
(On p. 320, line 16, instead of vi=vry—z,D =Zv,—D vead vy =b —z (ry+ D) =, —
7D <r,—D)
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The Elements contains no proposition like 2 : A, =2,:4,, whether for circular
segments or any other kind of areas. Thus one will not find a proposition stating
that a triangle is to a square on a side as any similar triangle to the square on the
corresponding side, though in VI, 19 one finds that two similar triangles are to
each other as the squares on corresponding sides. The difference is trifling in
view of the Theorem on the Interchange of Means, but must have some historical
significance.)

Having seen how meagre are the materials for penetrating the history of
pre-EUCLIDEAN mathematics, let us see what can be said for the area and circum-
ference of a circle.

The first explicit statement on the circumference occurs in ARCHIMEDES’
Measurement of a Circle.® Proposition 1 says that the area of a circle is that of a
right triangle one of whose sides is the radius and the other the circumference;

or, as we would say: 4 = % This, together with EucLip XII, 2, gives us the

basic fact (7r; =7,) about circles.

ARCHIMEDES’ proof is a typical double reductio ad absurdum argument.’? In
the course of it he uses that the perimeter of a (regular) inscribed polygon is less,
and the perimeter of a (regular) circumscribed polygon is greater, than the peri-
meter of the circle. The reason is not given, but the assertion on the circum-
scribed polygon is Proposition 1 of On the Sphere and Cylinder 1, a presumably
earlier but at any rate allied work.

The next documentary evidence concerns the curve called guadratrix. This
curve can be described, following Paprpus (320 A. D.), as follows (see Fig. 6):
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Fig. 6

Describe a circular arc BEA about I" in a square ABI'A. Let the straight line
I'B rotate uniformly about I" so that B describes the arc BEA, and let the line
B4 move uniformly towards I'A, remaining parallel to I'A. Let both uniform
motions take place in the same time, so that both I'B and BA will coincide with

81 See T. L. HEatH (Tr.), The Works of Avchimedes.
52 For brevity we refer to this technique as EunoxiaN, but we do not intend to
say it was original with Euboxus.
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I'A at the same moment. These two moving lines intersect in a point which
moves along with them and which describes a curve BZ@ [the so-called guadratrix].
If I'ZE is one definite position of the rotating line and Z the point of intersection
with the line which moves parallel to itself, then, according to the definition, BI"
will be to the perpendicular ZA as the entire arc B4 is to the arc EA.

From the point of view of a draughtsman, there is no difficulty in con-
structing, 7.¢., drawing, a quadratrix.

According to Procrus, Hippias oF Erris (420 B. C.) had investigated, and
presumably invented, the quadratrix. There is no difficulty in believing this, as
the mathematics for the construction of the curve is quite simple.?® ProcLus
says that Hippias “derived the symptom™ of the quadratrix. By the sympfom
of a curve, the ancients meant the condition which a point has to satisfy to lie
on the curve, roughly then, the equation of the curve.

If we take I'A, I'B of Pappus’ description as x, ¥ axes of a coordinate system,

and place I'B==gq, then the quadratrix has the equation: y=x tan %—y; here

7 =m,. Hippias would not have written the symptom in this way, but we need
not doubt that he could have done it in some equivalent way.

According to Pappus, DINoSTRATUS (350 B. C.), the brother of MENAECHMUS,
used the quadratrix to square the circle; and he gives the mathematical details
for doing this. If one were to ask where (@) the quadratrix meets the x-axis, then

one would be lead to study y/tan%y as y goes to zero. Since f/tan 6 goes to 1

as 0 goes to zero, one sees that y/tan —;;y goes to % a as y goes to zero. Thus
Iro= % a. In effect, PaPrus establishes this.

Fig. 7

Pappus’s argument is a double reductio ad absurdum argument: if the asserted
proportion arc AEB:BI'= B[ ":I'© does not hold, then the fourth proportional
TI'K is either greater or less than I'®. If I'K >1'0@, then it is established that
ZA = arc ZK, which is declared to be absurd. In Fig. 7, this amounts to a situation
in which X P =arc 4 P. Similarly, for the assumption I'K << 10, PAPPUS obtains
the conclusion arc AP =AT, which is also declared to be absurd.

58 The quadratrix obviously brings angular measure directly into relation with
linear measure. Hence it has been presumed that Hippras invented the quadratrix
in order to trisect the angle. This is not a universal opinion, however.

15 Arch. Hist, Exact Sci., Vol. 9



204 A, SEIDENBERG:

HEATH observes:

“The ... proof is presumably due to Dinostratus (if not to Hippias himself),
and, as Dinostratus was a brother of Menaechmus, a pupil of Eudoxus, and
therefore flourished about 350 B. C., that is to say, some time before Euclid, it is
worthwhile to note certain propositions which are assumed known. These are, in
addition to the theorem of Euclid VI, 33, the following: (1) the circumferences
of circles are as their respective radii; (2) any arc of a circle is greater than the
chord subtending it; (3) any arc of a circle less than a quadrant is less than a
portion of the tangent at one extremity of the arc cut off by the radius passing
through the other extremity. (2) and (3) are of course equivalent to the facts
that, if . is the circular measure of an angle less than aright angle, sin & <o <tana«.”

There are two opposite views that one can take of this: (1) that Paprpus is
entirely reliable, from which one plausibly concludes that DiNoSTRATUS knew
the basic facts concerning a circle, or (2) that no one before ARCHIMEDES knew
that 7, =m,, and hence that PApPpus is unreliable. Of course, it is possible that
DiNosTRATUS squared the circle, as PAPPUS says, but with a different proof.

A. J.E. M. SMEUR has adopted the second view (op. cit., p. 258). He em-
phasizes that we have only three direct references to the quadratrix from ancient
times: that of Pappus, which mentions DINOSTRATUS but not Hiprias; that of
Procrus (450 A.D.), which mentions Hippias and NicomeEDES (240 B. C.) but
not DINOSTRATUS; and that of TamBLICHUS (4% century, A. D.), which mentions
NicomeDEs but neither Hippias nor DinosTrATUS. We may, perhaps, also in-
clude Srorus (3% century, A.D.), whose objections to the quadrature were
mentioned by PaPpus, and who was obviously Parpus’s source. It is well to be
thus reminded of the scantiness (and lateness) of the testimony.

Let us examine other parts of SMEUR’s argument. After noting, following
Hearts, that the quadrature presupposes that the ratio of circumference to radius
is constant, he adds (op. cit., p. 257):

“This supposition is a fundamental one .... As we have mentioned before,
it is just this important relation that is missing in Euclid’s Elements”.

Now it is true that this theorem (c¢/d = constant) is not in EucLip, but if we
argue as SMEUR does, we should conclude that the constancy of ¢/d was not
known before ARCHIMEDES (or, at least, not known in Greece). Now even the
Old-Babylonians knew that ¢/d is constant (SMEUR admits this), so the only
way out from an absurdity is to hold that Old-Babylonian circle geometry made
no impression on pre-Archimedian Greek geometry.

Moreover, EucLID is not our only source. According to HEATH (Greek Math.,
vol. 1, p. 344), “the Mechanica included in Aristotle’s writings is not indeed
Aristotle’s own work, but it is very close to it in date, as we may conclude from
its terminology ... .” In the Mechanica we read:

“Since the greater radius is moved more quickly than the less by an equal
weight, and there are three elements in the lever, the fulcrum ... and two weights,
that which moves and that which is moved, therefore the ratio of the weight
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moved to the moving weight is the inverse ratio of their distances from the
fulcrum.” 54

Here we are clearly told that the weights are inversely proportional to the
distances from the fulcrum; and, though less clearly, that this is because the
distances traversed by the weights as the beam rotates about the fulcrum are
inversely proportional to the weights. Eliminating the weights, we get that
circumferences of circles are to each other as their radii.

That the reasoning supplied is strictly ARISTOTLE’s is testified to by the
following passages from ARISTOTLE’s De caelo and the Physics (cf. HEATH, Greek
Math., vol. 1, p. 345)

“A smaller and lighter weight will be given more movement if the force
acting on it is the same .... The speed of the lesser body will be to that of the
greater as the greater body is to the lesser.”

“If A be the mover, B the thing moved, C the length through which it is
moved, D the time taken, then

A will move B over the distance 2C in the time D,
and
A will move 1 B over the distance C in the time $D;

thus proportion is maintained.”

Still more directly, in the De caelo, ARISTOTLE, in speaking of the speeds of
the circles of the stars, says (cf. Greek Math., loc. cit.):

“it is not at all strange, nay it is inevitable, that the speeds of the circles
should be in the proportion of their sizes.”

The “size” of a circle could be measured either by the circumference or by the
radius; but, if by the circumference, then the assertion is a tautology, so by
““size” ARISTOTLE presumably means radius.

Thus we may be certain that ARISTOTLE’s school had the ““missing proposi-
tion”, and nearly certain that AriSTOTLE himself had it.

So much for HEATH's first point (1); as for his point (3), we note that in the
De Caelo ARISTOTLE mentions the following proposition (cf., Greek Math., vol. 1,

p- 340):

“Of all closed lines starting from a point, returning to it again, and including
a given area, the circumference of a circle is the shortest.”

At the very least, this shows that the circumference of a circle was studied in
pre-Euclidean times. Comparison between the circumference of a given circle and
the arclengths of other figures must have been made; otherwise the proposition
makes no sense. Moreover, merely allowing that the circle with a smaller radius
has a smaller circumference, the basic relation < tan 6, or arc AP<<AT in
Fig. 7, is an immediate corollary.®®

54 See Ivor THOMAS, Greek Mathematical Works, vol. 1, p. 431. The Greeks had
no word for radius (HEatH, Thivieen Books, vol. 1, p. 199).

5 ZENODORUS, shortly after ARcHIMEDES, worked on theorems like ARISTOTLE’s,
ZENODORUS cites Prop. 1 of ARCHIMEDES’ Measurement.

15%
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How is it that these elementary things known to ARisTOTLE did not make
their way into EucrLip’s Elements? Our answer is that EucLID was not satisfied
as to their rigor.

Before entering into a mathematical critique of the relation mn; =m,, let us
still look at the reference to pre-EUCLIDEAN circle squaring.

It is said that ANaxaGorAs (450 B. C.) occupied himself with the problem
while in prison. The comic poet ARISTOPHANES (410 B. C.) makes a poetic joke
about it in ““The Birds”. :

Of a more mathematical nature, we have (besides the fragment on lunules)
references by ARISTOTLE to ANTIPHON (a contemporary of SOCRATES) and BRYSoN
(who came a generation later than ANTIPHON). According to ANTIPHON, one may
inscribe a regular polygon (say a triangle) in a circle, then bisect the arcs to obtain
a polygon with double the number of sides, efc. ultimately obtaining a polygon
coinciding with the circle; since the polygons can be squared, ANTIPHON argued,
so can the circle. BRysoN has a variant of this in that he considers not only the
inscribed polygons but also the circumscribed ones. ARISTOTLE sneeringly
dismisses the arguments of both men (cf. Greek Math., vol. 1, pp. 221, 223). This
does not seem quite just, as ANTIPHON and BrysoN appear to be groping with
the notion of limit.

Coming now to a mathematical critique of the quadrature via the quadratrix,
we have already noted that the basic point consists in the inequalities sin 6 <
0 <tan 0, i.e., in Fig. 7 with 04 =1, AOP=0, XP <arc AP < AT. Now this
essential point comes up in our calculus courses when we wish to find the deriva-
tive of sin 0. It is necessary to know that %5 goes to 1 as 0 goes to zero; this
follows from sin 6 <6 < tan O (or even from sin 6 cos 6 < § < tan ), by dividing
sig 7 <osd (respectively, cos 0 < —SISF < ?515—5)’ and
observing that cos 0, and therefore also Sin g 8oes to 1 as 6 goes to zero. But

by sin § to obtain 1<

how does one obtain the basic relation sin # << 6 <<tan § (or, at least, sin 6 cos § <
0 < tan 0) ? This is often explained as follows. In Fig. 7, area triangle 0X P < area
sector 04 P < area triangle OAT, whence, taking 04 =1, §=—angle AOP, one
gets 1 sin 6 cos 0 << § 6 < % tan §. (Observing that PP’ =2 sin 6 and arc PP’ =20,
and appealing to the notion that a straight line is the shortest distance between
two points, one might deduce sin 6 < 0.) % In this explanation it is assumed that 6
is arclength and the formula area of sector =} arc times radius is used.

How does one see that area of sector =% arc times radius? If pressed for a
reference, one could probably not do much better (not counting modern sophisti-
cated improvements) than to refer to ARCHIMEDES, Measurement of the Circle,
Prop. 1. Now Prop. 1 is based on Prop. 1 of On the Sphere and Cylinder 1, which
in turn is based on the relation sin 6 < § <Ctan #; so the above proof begs the
question!

A way out of the above difficulty is simply to define the arc length by the
formula arc =2 area of sector/radius! One then has immediately that 6 < tan §

% Text books properly avoid this argument; however, one finds the argument
that, in Figure 7, § sin 6 =area triangle 40P < sector AOP =1 6.
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(from area sector O4 P < area triangle OAT). Similarly one gets sin 0 cos 6 < 8;
since sin =2 sin % 0 cos 3 0 <2+ 0, one gets sin § < 0.

Simple as this is, the Greek mathematician could not have proceeded in
this way, as he never defines length, area, volume (though he might have found
some other logically equivalent way out).>

Now getting back to history, we have seen that the Nine Books knows that
the area of a sector equals £ arc times radius; and that the Babylonians and the
Egyptians at least had it in the case of a semi-circle. It is, then, at least possible
that the pre-EucLIiDEAN Greeks knew it, that it got into the stream of Greek
mathematics as other things of the Ancient East did. It would appear to be
plausible, then, that DinosTRATUS argued just as our calculus texts do in
establishing that 6 < tan 6. However, when EucrLib—{figuratively speaking—
came to write this up, he saw that the question was being begged. Or, otherwise
put, he could not see how to make the notion of arclength, even for a circle,
tractable.

There would have been good reasons for such a difficulty: the problem of
comparing areas (in the plane) is essentially simpler than that of comparing
lengths. Besides the notion of invariance under congruence, EucLID knows no
principles of comparison except such as are comprised in ““common notions”:
the whole is greater than the part; if equals be added to equals, the wholes are
equal; if equals be subtracted from equals, the remainders are equal, ef alia;
there is also the “Axiom of ARCHIMEDES”, already known to Eupoxus. The
case of arclength, even for circles, requires some further principle, since there is
no way to make a line segment coincide with a circular arc. There is no way,
for example, to see from EvcLID that the circumference of a circle having radius
1 mile is greater than a segment 1 inch long. Nor is there a way of seeing that a
segment a mile long is greater than the circumference of a circle 1 inch in di-
ameter. As to the first of these, it would follow if we assume that a straight line
is the shortest distance between two points. One might think that EucLip could
have put this down as an axiom; but, despite what has been oft repeated, Euclid,
Book I, does not have the notion of axiomatic geometry.® So, obvious as this
obvious truth is, EucLIp probably would not have allowed it. He himself proves
that the sum of two sides of a triangle is greater than the third (Book I, 20). But
even if he had allowed it, he still would have been stuck with the second difficulty
mentioned, for which it is not obvious how to frame an axiom.

57 In fact, it is clear that all quadratrices are similar, so that not only does B, in
Figure 6, determine @, but, conversely, @ determines B. Now let ¢ be the circle of
center I' and radius I'® and let T be a point (in the first quadrant) on the tangent
tocat ©; and let ¢ cut I'B in @. Let the ray I'T meet ¢ in P. Let Q be on the ray I'T
and such that area triangle @I'Q =area sector @I'P. Then @ varies on a quadratrix g,
since the ordinate of Q varies directly with the area of sector ®I'P. Moreover area
triangle @I'P < area sector @I'P =area triangle ©I'Q < area triangle @I'T, whence
Q is between P and T. As T goes to @ also P goes to @, and hence so does §. Hence
the quadratrix ¢ goes through @, and hence also through B. As P approaches @,
Q approaches B. Hence area sector OI'® =area triangle 6I'B, Q.E.D. (Cf. T. Dant-
271G, The Bequest of the Greeks, p. 138.)

8 See A. SEIDENBERG, ‘‘Peg and Cord in Ancient Greek Geometry,” Scripia
Mathematica, vol. 24 (1959); and “Pasch,” in the Dictionary of Scientific Biography
(to appear).
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Axioms, or “assumptions”, for overcoming these difficulties were put down
by ARCHIMEDES in a preface to his work On the Spheve and Cylinder 1. The first
of these says that: “Of all lines which have the same extremities the straight
line is the least.” The second requires a prior definition of “concave in the same
direction”, which involves a notion like ours of convexity. The second assump-
tion reads: ““ Of other lines in a plane and having the same extremities, [any two]
such are unequal whenever both are concave in the same direction and one of
them is either wholly included between the other and the straight line which has
the same extremities with it, or is partly included by, and is partly common .
with, the other; and that [line] which is included is the lesser [of the twol.”

The only place the first assumption is used is to prove that the perimeter of
a polygon inscribed in a circle is less than that of the circle; this is done in the
preface. The only place the second assumption is used is to prove that the peri-
meter of a polygon circumscribing a circle is greater than that of the circle. This
is done in Prop. I and essentially comes to proving 6 < tan §. With reference to
Figure 7, the sum 74 4 TB of the tangents is greater than the arc 4B, by
Assumption 2, whence 6 <tan 0.

Just as a matter of mathematics, this is on the face of it surely unsatisfactory.
One wishes to prove 74 4 TB>arc AB and introduces a much more general
assumption, from which the inequality follows as a special case. Obviously,
there is some background to the assumptions that we cannot see.

ARCHIMEDES realized that to produce Eunoxian arguments on arclength one
needed bounds from below and above. That there was no way out except by
assumptions is a great insight by ARCHIMEDES (or a predecessor). Still, what
allows him to make the assumptions? Just as a matter of straightforward mathe-
matics, he had first to check his assumptions for (convex) polygonal paths. The
first is immediate; and the second is also easy. In fact, the essential idea for a
proof is contained in Ewuclid, I 21, which says that if triangle ADC is contained
in triangle ABC, then AB -+ BC> AD -+ DC (and also that angle ADC > angle
ABC). The proposition (I 21) is not, we believe, anywhere used. To us, this
suggests that the notions of convex paths and their lengths goes back to Eucrip,
though with no satisfactory resolution at that time of the problems they give
rise to.

A modern mathematician, having checked that the assumptions hold for the
largest class of convex arcs for which he has information (namely, the class of
convex polygonal paths), and realizing that he has no information (on the larger
class of all convex arcs) contradicting his assumptions, might seek a consistency
proof for the assumptions. This, however, is too far from the point of view of the
ancients to be worth pursuing here. Rather, they would want to be assured that
the assumptions are #rue. '

Perhaps it is worth speculating on how ARCHIMEDES (or a predecessor) con-
vinced himself of the truth of the second assumption. We would suggest the
following. Let APB, AP’ B be two arcs of the kind mentioned in Assumption 2,
with AP’ B inside APBA. Now let AC'D'E’... B be a polygonal path inscribed
in the arc 4P’ B. Let the rays AC’, AD’, ... extended meet APBin C, D, ....
Then the length of the polygonal path ACD ... B is greater than (or at least
equal to) the length of the polygonal path AC'D’... B. Hence the length of
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arc APB is greater than any polygonal path inscribed in arc 4 P’ B. Now offi-
cially ARCHIMEDES cannot express the idea that arc A P’ B can be approximated
in length arbitrarily closely by polygonal paths. But unofficially he can feel
convinced about it. It then {ollows that arc A PB > arc AP’ B.

Whether this speculation hits the truth is not important. It serves, however,
to emphasize that ARCHIMEDES’ assumptions must have had some background
which made them acceptable to his contemporaries. That there was some such
familiar background is also suggested by ARCHIMEDES’ prefatory letter to
Dositreus. In it ARCHIMEDES lays claim in no uncertain terms to some of his
results, but he makes no special claim on the Assumptions; yet in the Quadrature
of the Parabola he goes out of his way to credit ““earlier geometers” with the so-
called Axiom of ARCHIMEDES.

To complete this account, we may still sketch a modern treatment for the
length of a convex arc. First, one may define an arc as the image under a continu-
ous mapping of a segment A’ B’; if A, B are the images of 4’, B’, then the arc is
said to be from 4 to B. We now confine the discussion to convex arcs. Let
C’, D', ... be a finite sequence of points on the 4’ B’, in the stated order from A4’
to B’, and consider the images C, D, ... and the polygonal path ACD ... B,
which is convex. Since the mapping defining arc 4B is given by continuous
functions, the arc will be bounded, that is, one can enclose it in a square S. The
length of the polygonal path is less than the length of S. Now considering all
such polygonal paths ACD ... B, let I be the least number equal to or greater
than their lengths; that there is such a number is a basic property of the field
of real numbers. We then define the length of the arc to be J. With this definition,
it is an easy matter to prove the two assumptions of ARCHIMEDES.

So, the basic idea is to define the length of the arc as the least number equal
to or greater than the lengths of the inscribed polygonal paths. Quite aside from
the logical difficulties involved in defining the field of real numbers, this proce-
dure is beyond the ken of the ancients.®

As SMEUR notes, following HEATH, the quadratrix argument first rectifies
the circle; to square it, one still needs to know Prop. 1 of ARCHIMEDES’ Measure-
ment of the Circle (i.e., that the area of the circle is that of a triangle with circum-
ference as base and radius as altitude).®® But this difficulty is, in the presence of
EupoxiaN techniques, on the same level as the difficulties already met: had
EvucLip been able to establish to his own satisfaction that sin <8 < tan 6,
something ARISTOTLE surely knew, then there would have been nothing in the
way of his including Prop. 1 of the Measurement in his Elements.

To sum up:

The formula for the area of a sector (area =% arc times radius) was inherited
by the Greeks and was known to Dinostratus. However, Euclid could not establish
it to his own satisfaction. Basing himself on this formula, Dinostratus squared the
circle using the quadratrix of Hippias.

% For a construction of the plane starting from the real field and including a
discussion of arclength, see G. HocuscHILD, A Second Introduction to Analytic Geom-
etry. The area of a circle, however, is not taken up!

8 In fact, Paprus himself notes this and cites the mentioned proposition of
ArcHIMEDES. See I. THoMAS, op. cit., vol. 1, p. 347.
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