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The discovery of hyperbolic logarithms has been variously attributed to Gregory of St-Vincent
and to Alphonse Antonio de Sarasa. In this paper we describe the relationship between St-Vincent
and de Sarasa, the challenge from Mersenne which provoked de Sarasa’s publication, de Sarasa’s
understanding of logarithms, and the propositions of de Sarasa where the connection between hyperbolic
areas and logarithms was first claimed. Since de Sarasa’s hyperbolae were not defined analytically, he
did not insist on a particular base for his logarithms, nor did he choose a value for log 1 which would
have implied logAB= log A+ log B, so we conclude that he did not focus on what Euler later called
natural logarithms. An explanation of the different accounts of the origin of natural logarithms offered
by twentieth century writers is tentatively proposed.C© 2001 Academic Press

Die Entdeckung hyperbolischer Logarithmen ist verschiedentlich Gregorius a S.Vincentio und
Alphonse Antonio de Sarasa zugeschrieben worden. In diesem Artikel beschreiben wir die Beziehung
zwischen St.Vincentius und de Sarasa, die Herausforderung von Mersenne, die de Sarasas Veröffentli-
chung provozierte, de Sarasas Verständnis von Logarithmen und die Sätze de Sarasas in denen der
Zusammenhang zwischen Hyperbelflächen und Logarithmen zum ersten Mal behauptet worden ist. Da
de Sarasas Hyperbeln nicht analytisch definiert waren, forderte er keine Basis fuer seine Logarithmen.
Er wählte auch keinen Wert fuer log 1, der logAB= log A+ log B impliziert hätte. So können wir
schliessen, dass er sich nicht auf das konzentrierte, was Euler später natürliche Logarithmen nannte.
Eine Erklärung der unterschiedlichen Darstellungen über den Ursprung der natürlichen Logarithmen,
die Autoren des 20. Jahrhunderts geben, wird ansatzweise versucht.C© 2001 Academic Press

MSC 1991 subject classification: 01 A 45.
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INTRODUCTION

Historians’ assessments of de Sarasa’s contribution [de Sarasa 1649] to the development
of logarithms have varied from that of Cantor [Cantor 1907, 896] who only gave de Sarasa
credit for pointing to the work of St-Vincent, to that of Katz [Katz 1998, 492], who asserts
that de Sarasa identified and claimedA(ab) = A(a)+ A(b) for hyperbolic areas. Kästner
[Kästner 1799 III, 251–254] gave a brief but accurate account of de Sarasa but did not suggest
that he was the discoverer of modern hyperbolic logarithms. In this paper the relevant work
of de Sarasa is examined and its context described. This results in a reassessment of what
de Sarasa meant by “logarithm” and a recognition that some caution should be exercised in
describing de Sarasa’s claims about hyperbolic areas.

Alphonse Antonio de Sarasa was born in Nieveport, in Flanders, in 1618, of Spanish
parents, and died in 1667 in Brussels. He was a pupil and later colleague of his fel-
low Belgian Gregory of St-Vincent (1584–1667) and, like him, a member of the Jesuit
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order. In addition to the publication we will examine [de Sarasa 1649], de Sarasa pub-
lished a book entitledThe Art of Always Rejoicing(1663); sadly this was not about
mathematics!

Gregory of St-Vincent had been admitted to the Jesuit order, as a novice, in Rome in
1605 where he was the mathematical protégé of Clavius (also a Jesuit) and an enthusiastic
admirer of Galileo. St-Vincent stayed in Rome until the death of Clavius in 1612. St-
Vincent then returned to Belgium and to a succession of appointments culminating in
three years at Antwerp (1617–1620) and four years at Louvain (1621–1625). It seems to
have been in this period [Looy 1984] that St-Vincent wrote much of his magnum opus
Opus Geometricum Quadraturae Circuli et Sectionum Coni[St-Vincent 1647], which was
not, however, published until 1647. (In [Hofmann 1942, 7] and [Dictionary of Scientific
Biography 1975 XII, 74–75] there are remarkable accounts of St-Vincent’s limited access to
his own manuscripts.) In 1625, St-Vincent went to Rome seeking permission to publish his
quadrature of the circle and returned in 1627. He was then called to Prague (1628–1631),
to the household of the emperor (to whom Kepler was mathematician), before returning
to Belgium and to a position in Ghent in 1632, where he stayed for the rest of his life
[Bosmans 1901 XXI]. De Sarasa was admitted as a novice of the Jesuit order in Ghent
in 1632, and later became a colleague of St-Vincent in the college there for seven years.
After St-Vincent’s death, he assisted in the publication of a further book of St-Vincent’s
mathematics [Looy 1984, 59]. He also held academic positions in Antwerp and Brussels
[Sommervogel 1896 VII, 621–627].

In Book 6 (de Hyperbola), Propositions 125, 129, and 130, of hisOpus Geometricum
Quadraturae Circuli et Sectionum Coni[St-Vincent 1647], St-Vincent proved that if points
were taken in geometric progression along one asymptote of a hyperbola, and lines drawn
through these points parallel to the other asymptote, then the areas between the parallel
lines, bounded at one end by the asymptote and at the other by the hyperbola, were equal.
St-Vincent’s proof focused on two adjacent strips and established their equality. He gave
two proofs [Dhombres 1993], one echoing Archimedes’ quadrature of the parabola, and
another, which needs a little patching up, working directly with the strips. A full account
of de Hyperbolais given by Bopp [Bopp 1907].

(Because the result is the basis of all de Sarasa’s claims, we outline one of St-Vincent’s
proofs that a geometric progression along thex-axis gives rise to equal hyperbolic areas be-
low y = 1/x. With modern notation, St-Vincent proved that the area bounded by thex-axis,
the linesx = a, x = √ab, andy = 1/x was equal to the area bounded by thex-axis, the lines
x = √ab, x = b andy = 1/x. This result was then invoked for each adjacent pair of hyper-
bolic areas standing on thex-axis sectioned by the geometric progression. To prove this result
St-Vincent noted that the trapezium with vertices (a, 0), (

√
ab, 0), (

√
ab, 1/

√
ab), (a,1/a)

had the same area as the trapezium with vertices (
√

ab, 0), (b, 0), (b, 1/b), (
√

ab, 1/
√

ab).
So the corresponding hyperbolic areas were equal if and only if the convex hyperbolic
segments on (a, 1/a)(

√
ab, 1/

√
ab) and (

√
ab, 1/

√
ab)(b, 1/b) were equal. St-Vincent

proved the equality of these convex hyperbolic segments by exhaustion, inscribing trian-
gles of maximum area in the segments in a manner reminiscent of Archimedes’ quadrature
of the parabola. The key geometrical properties for this proof were that the diameter of
the hyperbola through (

√
ab, 1/

√
ab) bisected the line segment (a, 1/a)(b, 1/b) and that

the tangent at (
√

ab, 1/
√

ab) was parallel to the line (a, 1/a)(b, 1/b). The exhaustion was
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effected by repeatedly inserting geometric means on the hyperbola for the areas still uncov-
ered by the triangles. This outline summarizesOpus Geometricum, Book 6, propositions
102–109.)

Shortly after the publication ofOpus GeometricumDescartes wrote a letter to Mersenne
pointing out an error in St-Vincent’s quadrature of the circle [Montucla 1796 II, 81]. Auzout
and Roberval also criticized this quadrature to Mersenne [Bosmans 1901 XXI, 157]. In the
following year, 1648, the year of Mersenne’s death, Mersenne published a pamphlet (Re-
flexiones Physico-mathematicae), containing a brief review ofOpus Geometricumquoted
in [de Sarasa 1649], which was mildly derogatory of St-Vincent’s efforts but did not identify
any mistake. Mersenne challenged the supposed circle-squarer with what he regarded as an
equally difficult problem. The temptation to suppose that Mersenne already knew that the
answer lay in hyperbolic areas should be resisted. Mersenne had reason to suspect that the
quadrature of the circle was unsolved. To then suggest as a comparably difficult problem one
to which he already knew the answer would be either arrogant or deceitful. The testimony
to his character as “A man of simple, innocent, pure heart, without guile ... A man whom
all the arts and sciences to whose advance he tirelessly devoted himself, by investigating or
by stimulating others ... ” [Dictionary of Scientific Biography 1975 IX, 320] would suggest
that the preamble to Mersenne’s problem should be taken at face value. Mersenne posed
the problem because he believed it was as difficult as the quadrature of the circle. From
a nineteenth century perspective, both circle-squaring and finding a third logarithm, given
two, require the construction of transcendental numbers, but there the affinity between the
two problems ends. De Sarasa discussed the two problems in separate and independent
sections of his publication.

MERSENNE’S CHALLENGE PROBLEM

Datis tribus quibuscumque magnitudinibus, ratio-
nalibus vel irrationalibus, datisque duarum ex il-
lis Logarithmis, tertiae Logarithmum Geometrice
invenire.

Given three arbitrary magnitudes, rational or ir-
rational, and given the logarithms of two, to find
the logarithm of the third geometrically.

(a) The Term “Logarithm”

Before looking at de Sarasa’s response to this problem, we must acknowledge the dif-
ference between the term “logarithm” in this context and our modern, narrower, use. At
least from the time of Euler, once the base had been chosen, the logarithms of all positive
numbers were uniquely defined. Seemingly, only the logarithm of one number need be given
to determine the rest uniquely. But to say this is to hideour assumptions that log 1= 0 and
that logarithms are defined on the continuum. Knowing that log 1= 0 and knowing the base
(the number whose logarithm is 1) has been enough for nearly 300 years to determine all
other logarithms. To find all other logarithms, given the base, is the modern counterpart of
Mersenne’s challenge.

Before 1650, there was no consensus about what number had zero logarithm. For Napier’s
logarithms log 107 = 0 [Napier 1614]; for Speidell’s variant of Napier log 108 = 0 [Speidell
1619]; [Cajori 1919, 152]; for quite different reasons Bürgi took log 108 = 0 [Bürgi 1620].
Kepler took log 105 = 0 [Kepler 1624]. Cavalieri took log 10−10 = 0 [Cavalieri 1632].
Caramuel (1670) believed he had perfected the logarithms of Napier and Briggs and took
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log 10= 0. Of these early logarithm constructors, only Briggs [Briggs 1617 and 1624]
acting on the advice of Napier (after [Napier 1614]) took log 1= 0 [Coolidge 1990, 78].
(See [Naux 1971 II] for various early versions of logarithms.)

But without log 1= 0, the standard logarithmic property logAB= log A+ log B fails.
So what then did Mersenne mean by “logarithm”? Briggs’Arithmetica logarithmica[Briggs
1624] began with the statement that logarithms were numbers with constant differences
matched with numbers in continued proportion (Logarithmi sunt numeri qui proportional-
ibus adjuncti aequales servant differentias). In other words, when the terms of a geometric
progression were matched with the terms of an arithmetic progression, in sequence, the
terms of the arithmetic progression were called the logarithms of the corresponding terms
of the geometric progression. This description was the basis of all logarithm constructions,
before 1649. It is repeatedly made clear in de Sarasa’s pamphlet that this was exactly what
he meant by logarithms. In his first chapter, Briggs [Briggs 1624, 1] illustrated his definition
of logarithm with a table giving four versions of logarithms.

Proportional
numbers Alternative systems of logarithms

1 1 5 5 35
2 2 6 8 32
4 3 7 11 29
8 4 8 14 26

16 5 9 17 23
32 6 10 20 20
64 7 11 23 17

128 8 12 26 14

These four versions of logarithms can be summarized algebraically by the four matchings:
2n ↔ 1+ n in the first column, 2n ↔ 5+ n in the second, 2n ↔ 5+ 3n in the third, and
2n ↔ 35− 3n in the fourth. It was only in Chapter 2 that Briggs discussed and illustrated
the case where log 1= 0. De Sarasa would surely have been familiar with Briggs’ work
through the completed edition published by Vlacq [Briggs 1628] in Gouda, Holland.

Here is a summary of some of the logarithmic systems of the 17th century:

Geometric progression Arithmetic progression
numbers logarithms

Napier, 1614 107(1− 10−7)n n
Briggs, 1617 10n n
Speidell, 1619 107(1− 10−7)n (108− n)/102

Bürgi, 1620 108(1+ 10−4)n 10n
Kepler, 1624 105(1− 10−5)n n
Cavalieri, 1632 10n 10+ n
Caramuel, 1670 10n 10− n

It should be said that the notation in this table, with exponents, was not used in the early
17th century. The values ofn were, in the first instance, zero and positive integers, and
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then, with interpolations, decimal fractions. We can summarize all such matchings of a
geometric progression with an arithmetic progression with an algebraic form that respects
the sequences; thus

Numbers in geometric
progression

Logarithms in arithmetic a a+ d a+ 2d · · · a+ nd
progression A AR AR2 · · · ARn

Then products ofnumbersare matched by sums oflogarithmsin the sense that

AB= C D⇔ log A+ log B = logC + log D

and alsoA/B = C/D ⇔ log A− log B = logC − log D.

Here,A, B,C, andD are terms in the geometric progression. A modern justification of the
first rule taking the numbers asARm, ARn, ARr andARs, runs

(ARm) · (ARn) = (ARr ) · (ARs)⇔ A2Rm+n = A2Rr+s

⇔ m+ n = r + s

⇔ 2a+ (m+ n)d = 2a+ (r + s)d

⇔ (a+md)+ (a+ nd) = (a+ rd)+ (a+ sd),

assuming the numbers are positive, and providing, of course, thatA, R, d 6= 0, andR 6= 1.
Napier claimed a special case of the first of these rules (whenA,C, D, and B are

consecutive terms in the particular geometric progression) [Struik 1969, 18, Proposition 38
from Napier 1889] and claimed the second in full generality [Struik 1969, 17, Proposition
36]. It is in the use of these rules that all early writers on logarithms saw their computational
benefits. We should note that each of these rules is equivalent to logAB= log A+ log B−
log 1. In his second chapter, Briggs [Briggs 1624] claimed the great convenience of choosing
log 1= 0, because of three consequences. Firstly, when the terms of a geometric progression
starting with 1 were indexed (0, 1,2,3, . . .), the logarithms were proportional to the indices.
Second, the multiplication of numbers in a geometric progression starting from 1 was
matched by the addition of logarithms. Third, the division of numbers in a geometric
progression starting with 1 was matched by the subtraction of logarithms. We should be
wary of saying that Briggs simply claimed logAB= log A+ log B, since his illustrations
are always in the context of particular geometric progressions, and his interpolations are
by repeated root extractions, that is, by the generation of increasingly dense geometric
progressions.

When logarithms are characterized by a matching of the typeARn ↔ a+ nd = log ARn,
there are exactly two degrees of freedom in setting up a system of logarithms. If the loga-
rithms of A andARare known (and they may be chosen arbitrarily provided only that they
are different), the logarithms of the whole geometric progression may be determined. In
this context, Mersenne’s problem makes good sense.
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(b) The Term “Geometrically”

Having clarified the context in which Mersenne used the term “logarithm,” we may now
focus on the other word in his problem which is not unambiguous, namely “geometrically.”

In introducing his problem, Mersenne twice used the term “geometers” where today we
would say “mathematicians.” De Sarasa accepted the term “geometrical” in two senses:
geometricalconstructionsand geometricalrigour. He used both expressions several times.
In his final solution (Proposition 10) his logarithms were “geometrically assigned” with
hyperbolic areas, and this was what de Sarasa derived from St-Vincent. But to seek “ge-
ometrical” (or Euclidean)rigour in relation to the determination of logarithms, is at best
unexpected, and at worst, from the point of view of a constructor of tables, perverse. There
was much approximation involved in the making of logarithmic tables. Napier’s model of
logarithms was a continuous one to which he approximated by multiplications by numbers
of the form 1− r/10n and linear interpolations. Briggs started with the large common ratio,
10, and then repeatedly extracted square roots until he reached254√

10, a number between
1 and 1+ 10−15. Briggs also used a binomial approximation for square roots [Whiteside
1961, 234]. Kepler, however, who had befriended Bürgi in Prague from 1603 [Klemm 1969,
142], had first seen Napier’s tables in 1617 [Naux 1966 I, 130], and sought to construct
a Euclidean edifice for them with postulates, axioms, common notions, and propositions.
He published this account under the titleChiliades logarithmorum[Kepler 1624]. Excerpts
from this publication were translated into English by Hutton [Hutton 1785] and parts of
Hutton’s translation have been reprinted in [Fauvel and Gray 1987, 9.E4]. Although the ta-
bles printed at the end of Kepler’s book were like a scaled down version of 1000 of Napier’s
logarithms, Kepler’s numerical illustrations indicated a multiplicity of ways of matching
a geometric progression with an arithmetic progression. Kepler’s rigour was repeatedly
echoed in de Sarasa’s text. Kepler, who had not seen Briggs’ work, showed how repeated
root extraction (which could be performed geometrically, and thus with Euclidean rigour)
could refine a geometric progression to any required degree of denseness (Postulate 2).
In Proposition 9, Kepler interpolated two mean proportionals between two cubes, three
mean proportionals between two fourth powers, etc. (compare with de Sarasa, Proposition 5,
below). Kepler’s Proposition 8 bears such a close relation to de Sarasa’s Proposition 6 that
it must be quoted (in translation from [Hutton 1822, 51]) in full.

Of any quantities placed in the order of their magnitudes, if the intermediates lying between any two
terms be not among the mean proportionals which can be interposed between the said two terms then
such intermediates do not divide the proportion of those two terms into commensurable proportions.

After Proposition 11, Kepler gave an example of a triple (8, 13, 18) which could not belong
to any geometric progression whatever. In his Proposition 6, de Sarasa gives a geometrical
example of such a triple. De Sarasa did not cite Kepler explicitly but the similarity of
viewpoint is unmistakable.

The repeated taking of square roots and insertion of geometric means leads from a given
geometric progression to an arbitrarily dense geometric progression, and St-Vincent’s study
of the hyperbola used just this as a limiting process to compare two hyperbolic areas.
Logarithms had not (before 1649) been defined by a limiting process, but by geometric
progressions. De Sarasa understood the satisfactory solution of Mersenne’s problem to
depend on the existence of a geometric progression containing three arbitrary numbers.
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(See the quotation from the Scholion after Proposition 9, below.) Because the insertion of
mean proportionals allows any given geometric progression to be embedded in a denser one,
it was not obvious, at first sight, whether a geometric progression could always be found
which contained three given positive numbers, among the host of progressions containing
any two of them.

DE SARASA’S RESPONSE

On 8 November 1651 Christiaan Huygens (who exposed the fallacy in St-Vincent’s circle-
squaring in [Huygens 1651]) wrote a letter to Saint-Vincent, complimenting him on the fine
defence [ofOpus Geometricum] which had been put up byhis colleaguede Sarasa [Bosmans
1901 XXI, 157]. And in one of St-Vincent’s extant manuscripts [St-Vincent, Ms.5782] St-
Vincent himself affirmed that he had been the moving spirit behind the various defences that
had been offered forOpus Geometricum, including that of de Sarasa [Bosmans 1901 XXI,
170] and [Looy 1984, 70]. In his preface [de Sarasa 1649], de Sarasa says that Mersenne’s
review of Opus Geometricumwas brought to his attention by “a friend,” presumably St-
Vincent. It seems that St-Vincent was deeply involved in de Sarasa’s publication, but we will
nonetheless refer to its contents as de Sarasa’s except where de Sarasa quotes St-Vincent
explicitly.

De Sarasa’s reply to Mersenne’s review was in two parts. The first part was a discussion of
logarithms. The second part was a defence of St-Vincent’s quadrature of the circle. We will
leave aside part two and concentrate on the discussion of logarithms. To get the main thrust
of his argument we give the penultimate paragraph of the preamble to his 10 propositions.

From all this it will be clear that if quantitiesA andC are given, and their logarithms, and in the same
way a third quantityL is given, which cannot be in any series [of continued proportion] containing the
quantitiesA andC, however much that series is extended or divided or multiplied (which may be shown
to be possible); in this case, it is not possible to find the logarithm of the quantityL, and therefore the
problem has been badly formulated. But apart from this limitation we may find what is required in the
problem, and to reduce the problem to a geometrical construction we apply what may be seen to be
legitimate possibilities. [de Sarasa 1649, 6]

De Sarasa [de Sarasa 1649] gathered results fromOpus Geometricum[St-Vincent 1647]
(de Sarasa’s Propositions 1–3, and a Corollary to Prop.1) and then, before giving his main
argument, offered a Scholion in which he discussed the nature of logarithms and illus-
trated their relationship with hyperbolic areas. Then he investigated the embedding of
geometric progressions in denser ones (Proposition 4–5). In Propositions 6–9 he studied
the consequences of having two incommensurable/commensurable hyperbolic areas. And
in Proposition 10 he solved Mersenne’s problem for three numbers in a geometric progres-
sion, and after the demonstration stated explicitly that hyperbolic areas were like logarithms.
Logarithms were not mentioned in Propositions 1–9, nor in their demonstrations, but af-
ter reading the Scholion following Proposition 3, one cannot but look at hyperbolic areas
through logarithmic spectacles!

We now examine de Sarasa’s propositions. In modern terms, de Sarasa’s first proposition
claims that points (a, br5), (ar, br4), (ar2, br3), (ar3, br2), (ar4, br ), (ar5, b), ... lie on a
rectangular hyperbola with the coordinate axes as asymptotes. If the abscissae of points
of a rectangular hyperbola are in geometric progression then the ordinates are also in a
geometric progression with the same common ratio, the one increasing the other decreasing.
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De Sarasa’s arguments were habitually in terms of ordinates; modern arguments normally
work with abscissae. This proposition makes the transposition unproblematic. De Sarasa
reproduced the same diagram three times; for Proposition 1, for Proposition 2, and for the
Scholion following Proposition 3 (see below).

PROPOSITION1. Given any series of line segments AB, AC, AD,AE,AF,AG, etc.,which continue in
the same ratio as AB to AC;line segments are erected at right angles to the line AG at the points G,F,
E,D, C,B that we call GN, FM, EL,DK, CI, BH,which are in the same ratio as the line segments AB,

AC, AD,AE,AF,AG. I say that the points H,I, K, L,M,N,& c. are on a hyperbola with perpendicular
asymptotes AV and AG.

This proposition was followed by a Corollary affirming that the feet of the perpendiculars
from the pointsH, I , K , L ,M, N, etc. onto the asymptoteAV also gave a geometric
progression along that asymptote. Proposition 1 was quoted “ex.298”de Hyperbola, which
I cannot trace. It also figures inde Hyperbolaat Proposition 46. This property of the
hyperbola is not original to St-Vincent and goes back at least to Apollonius [Heath 1981,
149], who was a major inspiration for St-Vincent [Looy 1984, 63].

In modern terms De Sarasa’s second proposition seems to say that

n · (hyperbolic area betweenx = a andx = ar )

= (the hyperbolic area betweenx = ar andx = arn+1).

But if you follow his proof, you realize he is claiming more than that; in fact, forr > 1, that

n · (hyperbolic area betweenx = a andx = ar )

< (the hyperbolic area betweenx = ar andx = as)⇔ r n+1 < s.

See Fig. 1.

PROPOSITION2. With the same figure as before, let AV and AG again be the asymptotes of the hyperbola
HIKN: and let us consider segments BH, CI,GN parallel to the asymptote AV, bounding the hyperbolic

FIG. 1. Figure for Propositions 1, 2, and 3 and Scholion.
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segments HBCI and ICGN. I say that the number of times the ratio HB: IC multiplied[by itself is within]
the ratio IC: NG, is the number of times the area HBCI(which for convenience we will denote by HC)
is contained in the area IG;and conversely.

For the proof, de Sarasa cited Propositions 125 and 129 fromOpus Geometricum, Book 7
[sic]. For the proof of Proposition 125, where the two areas are commensurable, St-Vincent’s
demonstration is of the type

(area betweenx = a andx = arn) = n · (area betweenx = b andx = br ),

for n = 4; for the proof of Proposition 129, where the two areas are incommensurable,
St-Vincent’s demonstration is of the type

n · (area betweenx = b andx = br ) < (area betweenx = a andx = as)⇔ r n < s,

though the stated proportions are of ordinates, not abscissae.
In modern terms, de Sarasa’s third proposition states that the hyperbolic area between

x = a andx = ar equals that betweenx = ar andx = ar2, and that betweenx = ar2 and
x = ar3, etc., and conversely that if the hyperbolic area betweenx = a andx = b equals
that betweenx = b andx = c and that betweenx = c andx = d, etc., thena, b, c, d, etc.,
are in geometric progression, though it should be noted that in de Sarasa’s presentation the
stated proportions are of ordinates, not abscissae.

PROPOSITION3. Make the same assumptions.
If the lines HB,IC, KD, LE,MF, NG,etc. or,which reduces to the same thing, if the lines AB,AC,AD,

AE,AF,AG, etc.,are in continued proportion: I say that all the hyperbolic areas HC,CK,KE,EM,MG,
etc.,are equal. And if the hyperbolic areas between the lines HB, IC,KD, etc.,parallel to the asymptote
AV are determined and are equal, I say that all the lines HB, IC,KD,LE, etc.,and likewise all the lines
AB,AC,AD,AE,etc.,are in continued proportion.

For the proof of Proposition 3, de Sarasa cited Proposition 130 fromOpus Geometricum,
Book 7. In fact Proposition 3 incorporated both Proposition 109 (first sentence) and its
converse, Proposition 130 (second sentence).

(Although de Sarasa cited Book 7,de Hyperbolais in fact Book 6 ofOpus Geometricum.
Hughes has suggested that de Sarasa was working from a manuscript, not the printed text
[Hughes 1995, 171].)

Propositions 1, 2, and 3 were taken fromOpus Geometricum. Neither in St-Vincent’s
original nor as cited by de Sarasa did they mention logarithms. They do, however, form the
basis of Cantor’s affirmation [Cantor 1892 II, 654; and 1907 II, 896; Bopp 1907, 264] that
the relationship between logarithms and the hyperbola was found by St-Vincent in all but
name. De Sarasa would have agreed with Cantor on this point for in the last paragraph of
the preamble to his 10 propositions he wrote:

In order that we may deal finally with this question with geometrical rigour, we will repeat here the
most important teaching from Part 4 [De Segmentis hyperbolicis convexis et concavis] of Book [6]
de Hyperbola, fromOpus Geometricumof Gregory of St-Vincent; the foundations of the teaching
embracing logarithms are contained there.

After Proposition 3, de Sarasa added a Scholion, a discussion, in which he expounded
the “nature of logarithms” and their relationship to hyperbolic areas and set the scene
for what was to follow. The full text of this Scholion is given below. De Sarasa used
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the same diagram as for Propositions 1, 2, and 3. For a particular decreasing geometric
progressionO, P, Q, R, S, T , illustrated by line segments, and with these terms having
declared logarithms of 6, 7, 8, 9, 10, and 11, de Sarasa constructed a hyperbola with
six ordinate lengths equal toO, P, Q, R, S, T respectively. (The segment of lengthT
and the “11” have overflowed from the bottom of the figure into the middle!) The given
logarithms related to hyperbolic areas in the light of Proposition 3 in an obvious way. He
then used the hyperbola to construct two further logarithmic systems for the given geometric
series:

Original series Ordinates 1st logarithm 2nd logarithm 3rd logarithm

XZ (5) (0)
O HB 6 XG= 6MG MG
P IC 7 HG= 5MG LG= 2MG
Q KD 8 IG = 4MG KG= 3MG
R LE 9 KG= 3MG IG= 4MG
S MF 10 LG= 2MG HG= 5MG
T NG 11 MG XG= 6MG

In each case a geometric progression was matched with an arithmetic progression. This
is what the “nature of logarithms” required. The magnitude with logarithm 0 was different
in each case. For the first logarithm it was a magnitude greater thanXZ(in fact O7/P6). For
the second logarithm logT2/S= 0, and for the third logarithm, the ordinateX Z, equal in
length toO2/P, has zero logarithm. De Sarasa exhibited just the kind of flexibility which
is required to address Mersenne’s problem. The Scholion finished with a poorly described
line-ratio version of the third logarithm. For two of these logarithms (first and third), the
logarithm increases as the number decreases, as with Napier’s logarithms. One hundred
years later Euler was to study logarithms to different bases (or common ratios) with the
common assumption that log 1= 0. De Sarasa, quite distinctively, by working with a given
hyperbola showed what it meant to have logarithms with the same base (or common ratio)
but with differentA such that logA = 0.

Scholion following proposition 3. But, you say, I do not want these digressions. Yet I will lead you
to logarithms, however distant this may seem from our purpose. Briefly then I explain how to understand
the teaching on logarithms.

Assume again the same figure. Let there be some sequence of magnitudesO, P, Q, [R, ] S, T in
continuous ratio whose logarithms are 6, 7, 8, 9, 10, etc. These numbers always exceed one another by
the same amount as demanded by the nature of logarithms. Assuming again a certain hyperbolaHIN
with asymptotesAV andAG, erect the linesHB, IC, KD, L[E], MF, NG, etc., parallel to the asymptote
AVand equal to the linesO, P, Q, R, S, T respectively, all of which is easily done by the first corollary
in this book.

Now by Proposition 3 in this book, all the areasHC, CK, KE, EM, MG are mutually equal. Hence if
the ratioIC to HB is continued and becomes proportional to the sameXZand by the first corollary in this
book it belongs to the same hyperbola, then the areaXBwill be equal to the areasHC, CK, etc. Whence
the total hyperbolic areaXGexceeds the hyperbolic areaHG by the same amount as the hyperbolic area
HG exceeds the areaIG. Again: the hyperbolic areaIG exceeds the areaKG, by the same amount, and so
on with the others. Wherefore, in place of the numbers 6, 7, 8, 9, 10, 11, etc., which are the logarithms of
the magnitudesO, P, Q, R, S, T , we can adopt the hyperbolic quantitiesXG,HG, IG, KG, LG, MG, or
betterMG,LG,KG, IG, HG,XG; or if you prefer not to mention the hyperbola, the quantities (and hence
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the ratios) exceed one another by a no less equal amount as the logarithmic numbers which had been
assumed. For this reason you see that the nature of logarithms with its continuation and excess of terms is
adapted exactly to the hyperbola, so that in place of the numbers, you may take the parts of the hyperbola
or the given ratio of the lines. (English translation taken with slight emendation from [Hughes 1995])

In Proposition 4, de Sarasa began his main investigation as to the circumstances under
which a geometric progressionnot containing a certain number might be embedded in a
new geometric progression which did contain this number.

PROPOSITION 4. Let there be given a series of line segments A, B,C, D, E, etc., continued[and
decreasing]according to the ratio of A to B. Moreover, let an arbitrary F be given. It is necessary
to show whether F can be exhibited in a series with ratios A: B : C, if it is produced on either side,
according to the ratio B: A [if F is] greater [than B] or according to the ratio B: C [if F is] less.
[Textual modifications,in square brackets,in the light of de Sarasa’s preamble]

In Proposition 5, de Sarasa pointed out that a geometric progression with first terma
and common ratior might be embedded in a geometric progression with first terma and
common ratio

√
r , or common ratio3

√
r , 5
√

r , or 100
√

r (“etc.,” in de Sarasa’s text, means
in our terms n

√
r ). This form of interpolation was more precise than that used by Napier,

who had a continuous (and so noncomputational) model to give plausibility to his linear
interpolations. It incorporated Briggs’ method of taking repeated square roots to interpolate
in a geometric progression and Kepler’sn− 1 interpolations betweenan andbn. It did not
involve changing the hyperbola under discussion.

PROPOSITION5. Again,let there be given a series in continued proportion A, B,C, D, etc. I say that
an infinity of series may be constructed of which the lines A, B,C, D, etc. are parts,namely those for
which the ratio A: B is the double, the triple,the quintuple,or the hundredfold,etc.,of the ratio which
the first term has to the second term of the other constructed series.

Appealing to Proposition 2, de Sarasa established in Proposition 6 that if two adjacent
hyperbolic areas were incommensurable then the lengths of their three bounding ordi-
nates were not terms in any single geometric progression. Propositions 7 and 8 dealt with
the contrary situation. De Sarasa reproduced the same diagram for Propositions 6 and 7
(Fig. 2).

PROPOSITION6. Let AB and AC be the asymptotes of the hyperbola DFH, and let three line segments
DE, FG, and HC be parallel to the asymptote AB, and let them bound the hyperbolic areas DG and
GH. Let the ratio of these areas be as the side of a square to its diameter, so that the areas are

FIG. 2. Figure for Propositions 6 and 7.
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incommensurable. I say that the line segment HC does not belong to any series whatever in which the
line segments DE and FG are found.

PROPOSITION7. As before let AB and AC be the asymptotes of the hyperbola DFH; and let the lines
DE,FG, and HC,parallel to the asymptote AB,cut off two commensurable areas DG and GH. I say
that the line segments DE and FG are in a series of some ratio, in which the line segment HC can be
found.

PROPOSITION8. The hyperbola DFH with asymptotes AB and BC is given. The line segments DE,

FG,HC are taken parallel to one of the asymptotes and contain the commensurable areas DG and GH.
It is necessary to exhibit the greatest common measure of these areas.

Proposition 8 was followed by two corollaries. The first said that the finding of a greatest
common measure for two areas enabled this to be done for other areas. The second said that
if there was no common measure then the areas were incommensurable. In Propositions 6, 7,
and 8, de Sarasa determined precisely when there existed a geometric progression containing
three given ordinate lengths; that is, when and only when the hyperbolic areas bounded by
ordinates of these magnitudes were commensurable.

In Proposition 9 de Sarasa applied his Propositions 7 and 8 to the problem which he
had raised in Proposition 4. Since the hyperbolic areas bounded by ordinates in geometric
progression were equal in area, it sufficed to select any two of the ordinates in the progression
(say A andB) and to declare whether the areas bounded by the three ordinatesA, B, and
F were commensurable or not.

PROPOSITION9. Given the progression series A, B,C, D, and an arbitrary magnitude F,which does
not lie in the ratio series A, B, C, D, it is required to determine whether F is to be found in any series
of which A, B,C, and D are part.

In the Scholion following Proposition 9 he added:

Atque hinc patet ulterius non recte Problema a
Mersenno fuisse propositum,Datis tribus mag-
nitudinibus,datisque duarum Logarithmis,ter-
tiae Logarithmum Geometrice invenire; planeque
contra naturam Logarithmorum id peti, quod ab-
solute semper exhiberi non potest.

And hence, it is furthermore evident that the Prob-
lem of Mersenne is not properly formulated,given
three magnitudes,and given the logarithms of
two, to find the logarithm of the third geometri-
cally; that which is sought is plainly contrary to
the nature of logarithms, and cannot always be
absolutely exhibited.

For de Sarasa the “nature of logarithms” was discrete, and an answer to the challenge posed
depended on the existence of a geometric progression containing all three numbers. From
Proposition 6, this may not exist.

Having determined when a solution to Mersenne’s problem was not possible, de Sarasa
provided a solution in the case where, in his terms, a solution existed. This was the first
point in his argument at which the hyperbola was not essential. An algebraic solution was
readily to hand. IfI , J, andK , are positive integers and logARI = i = a+ I d, log ARJ =
j = a+ Jd, and logARK = k = a+ Kd, then k− j

j − i = K − J
J− I , which givesk in terms of

i, j, I , J, and K . This solution might have been exhibited with similar triangles, but he
had used the rectangular hyperbola at every stage so far, so he retained this convenient
illustration with which to calculate the answer.

PROPOSITION10. Given three magnitudes A, B, and C, which can be shown in one and the same
geometric progression,and given the logarithms of two of the three magnitudes, say those of A and B,
to determine the logarithm of the third,C, geometrically.
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FIG. 3. Figure for Propositions 10.

De Sarasa’s construction reflected the algebra described above. In Fig. 3,GH= A, IK =
B, andLF = C. SinceA, B,C were terms in some geometric progression, the areasGK
andKL were commensurable, andNL was taken as their common measure. NowKL was
four times the area ofNL, andGK was twice the area ofNL. The proportions of these areas
were as the differences of the respective logarithms.

It was in the illustration of this result that the distinctive claim of de Sarasa was
made:

Unde hae superficies supplere possunt locum Whence these areas can fill the place of the given
logarithmorum datorum. logarithms

or, more loosely,hyperbolic areas are like logarithms.
De Sarasa then gave two numerical illustrations, the first slightly garbled, the second

spelt out in great detail. The detailed one takes logA = 6, logB = 10 and then deduces
that logC = 18. The garbled one seems to take logM N = 6 and logT V = 10 and to
propose the computation of logDE (in fact 18, again).

DE SARASA AND NATURAL LOGARITHMS

Mersenne’s question was an entirely general question about logarithms and assumed that
the base of the logarithms (the common ratio of the geometric progression) was open and
that the number whose logarithm is 0 was also open. De Sarasa’s answer and his hyperbolic
illustration of logarithms retained the full generality of Mersenne’s question. Even Napier’s
logarithms, for example, are equal to hyperbolic areas if the appropriate hyperbola is chosen.
The flexibility of hyperbolic curves to illustrate different systems of logarithms was pointed
out in [Hutton 1822, 85].

Montucla [Montucla 1968 II, 82] chided de Sarasa for not adopting a continuous notion
of logarithms and thereby providing a general solution to Mersenne’s problem. Napier had
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considered a continuous model in his discussion of the invention of logarithms, and de
Sarasa’s argument depended on the continuity of his hyperbolas. Had de Sarasa had a con-
tinuous view of logarithms, then from logA = a, log B = b, and logC = c, he could have
deducedc− b

b−a = H (B,C)
H (A,B) , whereH (B,C) denotes the hyperbolic area bounded by ordinates

with abscissaeB andC. But the lack of a quadrature for the hyperbola would be a reason for
not accepting the ratio of arbitrary hyperbolic areas as having geometrical rigour according
to the statement of the original problem.

To get from de Sarasa’s notion of logarithm to natural or hyperbolic logarithms, so
named by Euler [Euler 1988 I, 97] (which logarithms a number of 20th century writers
have attributed to St-Vincent or to de Sarasa, for example Toeplitz [Toeplitz 1963, 55–57],
Edwards [Edwards 1979, 156], Dhombreset al. [Dhombreset al. 1987, 188], and Katz
[Katz 1998, 492]), six steps must be taken.

1. The hyperbolic areas must be seen as related to the abscissae of their vertices rather
than their bounding ordinates. This is the only one of the six steps which would have been
a trivial adjustment for de Sarasa.

2. The hyperbolicillustration must become the basis of a construction or adefinition.
3. It is necessary to adopt log 1= 0. This pinpoints the place from which areas are

measured and guarantees that logAB= log A+ log B.
4. A convention for measuring areas, left to right or right to left, must be adopted under

which areas are signed and logarithms are increasing. (Of the five examples of logarithms
which de Sarasa gives, three are decreasing, two are increasing, and all can be illustrated
with the same hyperbola.)

5. The hyperbola must be taken asy = 1/x, which determines the base of the loga-
rithms. There is no way of telling from de Sarasa’s text whether his hyperbola wasy = 1/x,
y = 2/x, or eveny = 1/(ln R)x, the last of which, with modern conventions, gives loga-
rithms to the baseR. (De Sarasa’s logarithms retain the generality of Briggs’ definition:
ARx ↔ a+ xd = ∫ ARx

AR−a/d
d

ln R
dt
t .)

6. The logarithm must be presumed to be defined on the continuum.

There seems to be no doubt that all these steps were soon taken by de Sarasa’s contem-
poraries, though even in 1691, Leibniz, a careful reader of St-Vincent, defined logarithms
discretely, just as Briggs or de Sarasa would have done, giving log 1= 0 as one possibility
amongst others [Leibniz 1993, 94–95].

Perhaps Mengoli (1650) was the first to identify the natural logarithms of positive integers.
His identification was by an arithmetical limit. For a positive integera he defined two
functions:

L(a, n) = 1/n+ 1/(n+ 1)+ · · · + 1/(na− 1),which he called the hyperlogarithm ofa,

and

l (a, n) = 1/(n+ 1)+ 1/(n+ 2)+ · · · + 1/na,which he called the hypologarithm ofa.

L decreases asn increases.l increases asn increases.L(a, n) > l (a, n) andL(a, n)− l (a, n)
tends to 0 asn increases, so a limitL(a), the logarithm ofa, is defined as the limit of one or
other of the functions.L(ab, n) = L(a,n)+ L(b,an) and the modern logarithmic property
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follows [Naux 1971, 45]. An extension of this definition to rational numbersa > 1 is
described in [Whiteside 1961, 224] as found inGeometria speciosa[Mengoli 1659].

It was in his notebooks of 1667 that Nicolaus Mercator, while investigating 1/(1+ x)
(for x = 0.1 and 0.21) for his second treatment of logarithms, incorporated de Sarasa’s
awareness of the relation between logarithms and hyperbolic areas. This treatment was
published inLogarithmotechnica[Mercator 1668; Cajori 1919, 188].

Felix Klein [Klein 1945, 85 and 268] proposed that history be used to help shape the
teaching of mathematics and also proposed that

∫ b
a

dx
x =

∫ cb
ca

dx
x be used as the basis of

defining the logarithm in school [Klein 1911, 350; 1945, 156]. The two suggestions were not
linked in his lectures. Although de Sarasa did not mention this property of logarithms (which
is in fact valid in the form logb− loga = logcb− logca for all logarithmic systems,
ancient and modern), results equivalent to it were developed in Propositions 105, 112, 113,
114, 115, 116, and 117 of Part 4 of Book 6 ofOpus Geometricum[St-Vincent 1647],
mostly under the guise of establishing equal segments of a hyperbola at the two ends of a
pair of parallel chords, and without reference to geometric progressions. Possibly pursuing
Cantor’s attribution of natural logarithms to St-Vincent in all but name [Cantor 1907 II,
896], Toeplitz (in his programme to motivate calculus by posing the historical problems
which generated the subject) claimed these propositions as the historical origin of natural
logarithms [Toeplitz 1949, 53–55; 1963, 55–57], appending his own proof. (The editor of
[Toeplitz 1963], enhanced Toeplitz’s proof with a simple footnote.)

Propositions 111 and 112 ofde Hyperbola, taken together, give Toeplitz’s claim from
St-Vincent, which Toeplitz then applied to obtain natural logarithms. Toeplitz’s claim and
its application have been followed by others, who have transferred some of the credit to
de Sarasa, [Edwards 1979, 155] and [Katz 1998, 491–492], for example. This rational
reconstruction of history has been fed more by the student’s need to focus on the relation
log AB= log A+ log B than by de Sarasa’s concern with geometric progressions.
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premìeres tables. Paris: Blanchard.
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