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Abstract

In this paper we investigate two problems concerning the theory of power series in 18th-century mathematics:
the development of a given function into a power series and the inverse problem, the return from a given power
series to the function of which this power series is the development. The way of conceiving and solving these
problems closely depended on the notion of function and in particular on the conception of a series as the
result of a formal transformation of a function. After describing the procedures considered acceptable by 18th-
century mathematicians, we examine in detail the different strategies—both direct and inverse, that is, synthetic
and analytical—they employed to solve these problems.
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Sommario

In guest'articolo vengono analizzati due problemi relativi alla teoria delle serie di potenze nel secolo
diciottesimo: lo sviluppo di una funzione in serie di potenze e il problema inverso, il regresso dalla serie alla
funzione di cui tale serie € lo sviluppo. Il modo in cui questi problemi erano concepiti e risolti dipendeva dalla
nozione di funzione e, in particolare, alla concezione di una serie come il risultato di una trasformazione formale
di una funzione. Dopo aver caratterizzato le procedure di sviluppo considerate accettabili, vengono esaminate le
differenti strategie—dirette e inverse, ovvero sintetiche e analitiche—usate per risolvere tali problemi.
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Résumé

Dans cet article nous étudions deux problémes concernant la théorie des séries entiéres®l $i®fle
le développement d'une fonction donnée en une série entiére et le probleme inverse, le retour d’une certaine
série entiere a la fonction dont cette derniére est le développement. La maniére dont ces problémes étaient
congus et résolus tenait & la notion de fonction, et en particulier a la conception d’une série comme le résultat
d’'une transformation formelle d’'une fonction. Apres avoir présenté et discuté les différentes procédures de
développement employées par ces mathématiciens, nous examinons avec plus de détail les différentes stratégies
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de solutions de ces problemes, en distinguant entre procédures directes et procédures inverses, c'est-a-dire
synthétiques et analytiques.
0 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The 18th-century theory of series is the subject matter of several studies, which approach the topic
in different ways. Some of them insist on the main results; they show how and when such results were
reached, but seem to dismiss the early procedures as naive or meaningless and to recast them directly
in terms of modern formalismsOthers highlight how certain results can be interpreted in terms of
modern special theories (nonstandard analysis or summability theory) and understand the results in this
later contexg Finally, there are some writings which investigate the foundation and internal motivations
of 18th-century theorie.Following this last approach, in the present paper we shall advance some
historiographical theses which should serve as a possible key to the reading of 18th-century mathematical
texts.

In the first part, we shall endeavor to establish the actual meaning of eqdaditid® form

fx)= Z a;x' 1)
=0

in the 18th century. There exists, indeed, a radical difference between modern and 18th-century
conceptions of series: even the fundamental terms, such as “function,” “series” and “equality,” have
significantly different meanings.

In the second part, we shall consider the problem of developing a function into a series and suggest
that the problem of summing a series was conceived merely as the inverse problem since it was viewed
as the problem of the return from the series to the function. The relation between the problems of the sum
and development was inverted with respect to today.

Finally, we shall investigate how these two problems were treated and try to classify different strategies
for solving them.

In our inquiry, we shall attempt to identify those elements that seem to constitute evidence of a shared
conception with respect to the foundation of analysis in the 18th century and therefore focus our attention
on common elements in the works of the major mathematicians who dealt with s&veshall not

1 See, for example, Dutka [1984—1985].

2 See, for example, McKinzie and Tuckey [1997].

3 See, for example, Fraser [1985] and [1989].

4 In this paper, unless indicated otherwise, we shall use the term “equality” as a generic term to denote any expression in
which there are two members connected by the symbgl independent of the specific meaning this symbol possesses in
different cases.

5 Fraser [1989] already tried “to identify as clearly as possible those elements that are common” in 18th-century analysis;
according to him “these elements constitute evidence of a shared conception significantly different from the modern one”
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discuss the differences between these mathematicians. Besides, we shall restrict ourselves to power
series. Power series were not the only series considered in 18th-century analysis; however, they were
largely dominan®.

2. Convergence and power series

It is well known that in the first half of the 18th century analysis gradually developed as a general
theory of functions and was finally expounded as an organic theory by L. Euler imthisluctio
in analysin infinitorumin 1748. The essential novelty of Euler’s treatise consisted in the introduction
of functions as autonomous objects and the construction of a comprehensive theory of these objects.
However, according to 18th-century mathematicians, a funttiems not an association between the
elements of two given sets: it was a symbolic notation (which was termed “analytical expression,”
“formula,” or “form”) expressing a quantity in terms of another quarftitiwas not merely an expression,
but the expression of a certain quantity, or else a function was a quantity as long as it was expressed, or
could be in principle expressed, by a certain symbolic notation. Although mathematicians endeavored to
enlarge the set of known functions, they always seemed to reason as if the set of functions was somehow
fixed a priori by means of a genetic definition according to which a function had to derive from a finite
number of elementary functions by applying a finite number of combination Yueslong as it was
conceived as an expression, a function was thought of as a finitary composition of two sorts of atomic
symbols: the atomic symboils for constant or variable quantitiesdi.e,. ..; x,y,...;0,1,...; etc.) and
the atomic symbols for the elementary operations on these quantities. As there were a finite number of
elementary operations (i.e., algebraic elementary operations, logarithm, exponential and trigonometric
direct and inverse operations), a function was thus conceived as a composition of a finite number of
elementary functions. It was conceived to be the expression of a quantity since these elementary functions

[1989, p. 318]. With reference to 18th-century analysis, Fraser mainly refers to Euler's and Lagrange’s conceptions but seems
to suppose that these conceptions were largely shared by the entire mathematical community during the period that began
roughly in the 1740s and lasted till the first years of the 19th century. We agree with this opinion and would like to add some
elements to Fraser’s reconstruction, especially insisting on the earlier roots of such a “shared conception.” Thus, we shall use
the term “18th century” in a quite large sense, to refer to a period in the history of mathematics approximately starting from
Newton’s and Leibniz’s research, and finishing with Lagrange’s proposal to found the calculus on Taylor's expansions.

6 Apart from power series, from the end of the 17th century to about the 1740s, mathematicians used only series of the
form Y_°° 4 apx*», wherea,, could be a negative integer or (in exceptional cases) a rational number. Only from the 1740s did
other function series and in particular trigonometric series begin to be examined. The concepts and techniques originating in
power series were applied to trigopnometric series too; very interesting examples are in some of Euler’s papers, such as [1773].
However, in certain cases, this application was rather problematic.

7 On the concept of a function, see Fraser [1989], Panza [1996], Ferraro [2000a]. Here we limit ourselves to a short summary.

8 By “quantity” 18th-century mathematicians meant what can be increased or decreased. The most convenient means of
representing a quantity in modern mathematical terms is by means of real values (and we shall also use this representation, for
the sake of simplicity). However, we should not imagine a quantity as an element of a given well-defined setusinees
this notion was lacking in 18th-century mathematics.

9 We shall use the term “function” even when we refer to authors, such as Newton or de Moivre, who never used this term.
It seems to us that this terminological anachronism simplifies the exposition provided a “function” is understood in the terms
outlined above.
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were thought of as expressions of quantities and the rules of composition were conceived as conservative
with respect to such a property of elementary functions.

This concept of a function implied that infinite series, as such, were “not themselves regarded as
functions” [Fraser, 1989, p. 322]: they were instruments for facilitating the study of functions and for
rendering them more intelligible (see Euler [1748, §8.59]). During the 18th century, “infinite series were
never introduced arbitrarily” (see Fraser [1989, p. 321]): they always arose in some definite way in a
particular mathematical problem, process or procedure.

Power series were conceived of as quasi-polynomial entities (that is, mere infinitary extensions of
polynomials). Even the symbolism was ambiguous and suggested this idea. Generally speaking, series
were denoted byd' + b + ¢ +d + &c.” or “a + bx + cxx + dx® + &c.,” but the symbol “&.” was
also used in some cases to denote a finite number of terms. The ambiguity of the notation depended on
the fact that 18th-century mathematicians considered a series as being known when one could explicitly
exhibit its first terms and knew the law for deriving the following ones. In many cases it did not matter
whether or not, starting from a certain point, the terms were all equal to zero. For instance, the product
of two series was not openly defined: it seemed obvious that

(a+bx +cxx +dx>+&c.) - (A+ Bx + Cxx + Dx3+ &c.)
was equal to

alA

+ (aB + Ab)x

+(aC +bB + cA)x?

+ (@D +bC +cB+dA)x®
+&ec.,

independent of the meaning of & in such expressions: the rule of ordinary multiplication between
two polynomials was extended to infinite series without making a distinction between finite and infinite
series.

This approach could lead us to think that series were considered as entirely formal objects, but the
matter is different. To make this clear, let us consider two examples.

In De vera proportiongLeibniz (see Leibniz [1682, p. 44]; on Leibniz’s theory of series see Ferraro
[2000c]) argued thaf is equal to - £ + 1 — 1... and justified it by observing that if we take the first
term of this series, thea is approximated with an error less thénif we take the first two terms of
this series, the error is less thénetc. If the series is continued, the error becomes less than any given
quantity and thus the whole series contains all approximations and expresses the exact value.

In his famousEpistola posteriorto Leibniz of October, 24, 1676 (see [Newton C, Il, pp. 110-161]),
Newton considered several applications of the binomial expansion, which he wrote in the form
(m—n) m

>3 P" Q%+ &e. (2)

In the case of the functiol/c5 4 c¢4x — x5 he first putP = > andQ = 04{—?‘5 and obtained

4 5 8.2 4.6 10
m_ cC’xX —Xx 2c°x¢ — 4c"x° + 2x ]
Pt —x2=c+ — + &ec.;
5c¢4 25¢9

m m m _m m
(P+PQT =PF +=PFQ+
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then he putP = —x5 and Q = — <4< and obtained

x5

\g/ﬁ_ + x4+ n 2¢8x2 + 4c%x + 2010 ‘e
P+t —x2=—x 4 T c.

Finally, he observed that the first procedure is preferable whiswery small, the second when it is very
large.

This shows that, from the very origin of the theory of series, mathematicians were aware that certain
series provide a close approximation of certain quantities, when a convenient number of their terms
is considered, whereas this is not the case for other series. In this primordial sense, they were thus
concerned with convergence. (We shall later argue that this was not inconsistent with considering series
as quasi-polynomial entities in the previous sense.) Mathematicians of the 18th century also knew that
the convergence of a power serigy-,a;x' depended on the value of its variable Of course, they
did not possess the modern notion of interval of convergence, mainly because of the absence of any
object such as the s@& of real numbers® Nevertheless, it seems to us that the term “interval of
convergence” can be conveniently used, provided one takes into account that when referring to the
interval over which the power seri€s ;-,a;x' converges, we are not referring to a subseRofbut
merely to the fact that the series is convergent if the variablaries from—§ to §, wheres is an
appropriate positive value. We shall also use the expression “non-null interval” to underline that the
domain of variation of does not reduce only to one value and, specifically, does not reduce to the single
valuex = 0.

There are difficulties with the term “convergence,” too. Even if 18th-century mathematicians had
generally no difficulty in distinguishing series that converge from others that did not converge, in the
previous primordial sensg, they often used the terms “convergent” and “series” in an ambiguous
way. Here we shall not classify and discuss the different meanings given to these terms in the 18th
century. Later we shall use the term “convergent series” to refer to a series that satisfies the following
condition:

(Co) A power seriesy > a;x' is said to be convergent t6(x) on a non-null interval of the values of
x if and only if, for any valuex of x belonging to/, the sequencg>_/_, a,-a”}?io approached («)
indefinitely when; increases and it is finally equal #«), whenj is a infinite number.

At this juncture, some remarks are appropriate.
First, it is clear from the texts that 18th-century mathematicians considered this condition as salient and
knew how to distinguish series depending on whether they satigfiga( not. However it is certainly not

10 ¢f. the previous note (8).

11 |n certain cases, 18th-century mathematicians considered series that we today refer to as “divergent” to be equal to a finite
quantity. The most famous example is that of seriesll+ 1 — 1+ 1 — &c. that Grandi and Leibniz (cf. Grandi [1703], Leibniz
[1713] had taken as being equal%o(for a discussion of such an example, cf. Panza [1992, Ch. IIl.1]; for other examples see
Ferraro [2000b, 2002]). However, pretending that a series was equal to a finite quantity was not the same as asserting that it had
a sum. We shall abundantly come back to this later.
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a precise condition, and it is not possible to formulate it in more precise terms without adding elements
which were essentially alien to 18th-century analysis.

Second, a power series was considered as being the expression of a quantity (for any walue of
belonging to7) if and only if it was considered to satisfiC). For instance, the seri€s - ,(—1)'x’
expressed the ordinate of a hyperbola for certain valuesaé long as it was convergentfé; for these
values ofx.

Third, 18th-century mathematicians thought that even if the s@rigs a;x' converged to a function
f(x) only on a non-null interval of values of, the relationf(x) = Y :°ja;x" could be manipulated
without regard to the interval of convergence. They did not limit the validity of this equality to the
interval over which the series converged to the functioRor instance, though it was well known that
the seriesy ;°(—1)'x’ converges only fotx| < 1, the relation~ = Y2 (—1)'x’ was freely used in
manipulations, without being restricted [t < 1. Thus, the equality’ (x) = Y /- a;x’ stated a general
result which concerned the formal nature of the functjoix) and not the convergence of the series

Y Zoaix'.

3. Thedevelopment of functionsinto series

At this juncture, a very natural question arises: What did the sighrfiean in the equality (1)?

To answer such a question, we first consider the simpler case of the equ@ljty- g(x) between two
finite analytical expressiong(x) andg(x).

In the 18th century the equality(x) = g(x) meant that one of these expressions, gay, resulted
from a transformation of the other one. In Chapters 2 and 3 ofrttieductio, Euler investigated the
transformation of functions. According to him, “Functions are transmuted into other forms either by
introducing another variable quantity instead of the one initially used, or retaining the same variable
quantity.* For instance, the expression-2; + z> becomeg1 — z)(2 — z) by factoring andy/a + bz
is transformed intdx by substitutingbx? — 4 for z.

12 |5 particular the concept of limit had not been defined in mathematical terms and, moreover, there was ambiguity concerning
when a limit had been reached. On the notions of “limit-achieving” and “limit-avoiding,” see Grattan-Guinness [1969-1970].
13 It is known that Euler dealt with power series such as

XM — px™F9 4 p(m + q)x" T2 — p(m + q)(m + 2q)x" T3 ...

or

1— 2 +3x2— ...,

which does not converge over any non-null interval (for instance, cf. Euler [1754—1755]). The investigation of these series
originated in the attempt to solve certain differential equations or to calculate certain integrals by continued fractions. While a
series convergent over a non-null interval was considered as the development of a certain function and was thus used to express
or study quantities, totally divergent series were only considered as tools for relating integrals or differential equations with
continued fractions, that is as formal links between different expressions of a quantity. On the relationship between continued
fractions and divergent series in Euler, see Ferraro [2000b].

14 see Euler [1748, 1, p. 32]: “Functiones in alias formas transmutantur vel loco quantitas variabilis aliam introducendo vel
eandem quantitatem variabilem retinendo.”



G. Ferraro, M. Panza / Historia Mathematica 30 (2003) 17—-46 23

This is also the case for the equality (1). The sigs’ interposed between a function and a series
meant that the series was derived from the function by means of certain rules of transformation. Thus,
the equalityf (x) = Y2y a;x" meant® that the power serie} ;- a;x* was associated with the function
f(x) and that such an association depended on the fact that this power series resulted from operating on
the expressiory (x) according to certain rules of transformatinwe shall express this fact by saying
that the seried "> a;x’ is the development of (x).

As a consequence, the equality (1) was not logically symmetrical since the two expressigprsd
Y oaix' played different roles in such an equality. The first directly expressed a quantity and had a
meaningper s¢ it was the proper objett of 18th-century analysis. The second was simply the result
of a transformation of the given functiofi(x). A series) - a;x' expressed a certain quantity only
indirectly, since it was associated with the functigiix) expressing this quantity. Therefore, the left-
hand side,f (x), of the equality (1) established the real object to be investigated, while the right-hand
side, > 72, a;x', merely exhibited the result of a transformation useful to investigate the function in the
left-hand side.

In speaking of certain rules of transformation, we mean a number of explicitly stated rules or a finite
combination of them. Thus, a power series was associated with a given function and indicated as being
equal to it if and only if it was derived from this function by means of the application of one of these
rules or of a finite combination of them.

Eighteenth-century mathematicians presented the accepted procedures for the development of a
function in different ways. IrDe analysis composed in 1671 but only published in 178INewton
presented two procedures for expanding a given function in a power series. These procedures are
generally known as Mercator’s rules, since particular cases of them had already been used by N. Mercator
in his Logarithmotechni&® They consisted of the application of the arithmetical rules for dividing a
number by another number, or for extracting a root of a given number to literal expressions (see below).

151t should be clear that we use the symbofg4)” and “>20 a;x'" in order to refer to any particular functions or power
series. The relation expressed by (1) should be understood as a relation between a particular function and a particular power
series, whatever these functions and series are.

16 et us note that, according to such a condition, the equdlity) = Z;’ioaixi has a precise sense independent of its
interpretation as an identity (one would have an identityfifX)” and “Zfﬁo a;jx'” were considered as two different notations
of the same object), or even as an equivalence (this case would oc¢igxjf‘and “Y_°, a;x'" were considered as two names
for distinct objects belonging to a common class of equivalence). The essential reason for this is that (1) does not concern
primarily the object denoted by the symbolg(x)” or “ Z?io a;jx'", but these symbols themselves. It states that the finitary
expression f(x)"—i.e., not the quantity that this expression expresses, but this expression itself—has a certain relation (i.e.,
the relation of being transformable in) with the expressipii® a;x'". Only once this relation between these two expressions
had been stated, could one interpret (1) as being concerned with the quantity expregged(fyhe condition of convergence
were satisfied).

17 As a proper object of a certain (mathematical) theory, we mean an object whose conditions of identity do not depend on the
conditions of identity of some other object, and thus constitutes the genuine matter of investigation of such a theory. Opposed
to proper objects are conditional ones. They are conceived as forms of expressions of the proper objects and they are thus
studied within this theory because of their power to express them. Paradigmatic examples of proper and conditional objects
are respectively curves and expressions in Descartes’s geometry, or, as we maintain here, functions and series in 18th-century
analysis. For these notions, cf. Panza [1997b].

18 see [Newton MP, II, pp. 206-247], for the original version and Newton [1711] for the published text. We refer here to
[Newton MP, I, pp. 210-219].

19 see Mercator [1668].
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In De methodis composed in 1671 but only published in an English translation in #736&wton
presented another procedure, known as Newton’s method of the parallelogram, to express by means
of a series the solution of a given algebraic equatiyw, y) = 0.1 The crucial idea of this procedure
was the following: by substituting the indeterminate sefeg ,b,x* for y in P(x, y) one obtains a
new polynomialQ (x), where all the coefficients of the power% must be separately equal to zero. The
method of the parallelogram was a method for determining the coeffidigits= 0, 1, ...) in the series
Y e obkx® under such a condition, supposing that the value &f close to a certain given value (for
example 0). In short, Newton reduced the given equation in such a way that the coefficieatdd be
determined step by step. He thus obtained a series convergent on the given interval. What is important
here is not the specific nature of this method (it is well known), but the general principle on which it
is founded. This principle, generally known as the principle of undetermined coefficients, states that a
seriesy -, bxx* is equal to O for every on a non-null interval (if and) only if all the coefficients
(k=0,1,...) are separately equal to zero.

Generally speaking, we can classify the accepted procedures of development into two classes. The
first class comprises

(P1) The Mercator expansions of fractions and square roots of polynomials.
(P2) The binomial expansion for any exponent.
(P3) Any expansion following the method of undetermined coefficients.

Consider first the Mercator expansions. We have already observed that they arose from applying the
usual rules of division and extraction of square root of numbers to literal expressions. Take, for instance,

. a2 .
the fraction ;% (see [Ne\;vton MP, I, pp. 212—2214, and lIl, pp. 36-38]). By dividia§y by b + x,
one obtains the quotiery- and the remainder--x. By dividing such a remainder by + x, one
obtains the quotien{—g—sx and the remainde);—ixz. By continuingad infinitumone obtains the series

“72 — Z—:x + Z—ixz — .- and the equality

a’ a’  a? a’

_ 2
bix 5 i Tt & 3)

An analogous procedure can be applied in order to determine the terms of the develdpmentof a
square root, say/p + ¢ (see [Newton MP, Il, pp. 214-216, and lll, pp. 40-42]). One takes {iistas
being the first ternaig and calculates the first remaindR§ = p + g — a3 = g. Then, one calculates the
following terms by using the recursive rules

Ri_1 Ri_1 i
a; = = : Ri=Ri_1—|2a0a; + ) ajai_j1|,
2a0 ~ 2\/p [ ; s

20 see [Newton MP, IlI, pp. 3—-372] for the original version and Newton [1736], for the published text. We refer here to
[Newton MP, Ill, pp. 51-57].
21 A similar procedure had been already presentedldranalysissee [Newton MP, II, pp. 218—233].
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which give
2 2
q q q
ar=5—, R—q—[q—i— ]— -
N ! 4pl = 4p
g2 R L [, C|_&
2T T 8pyp’ 2T Tap T lap Tep2] gp?
7’ R L [ 54" 7__ 54
16p2/p’ 5T 8p2 | 8p? ' 64pd 64p3’
5¢* 5¢* 5¢*  Tg° 79°
A4 = —755 2 —> R4 = - + + = )
128p%,/p 64p3 ' | 64p3 ' 128p4 | 128p4
7q5 7q5 7q5 Zlq6 Zlq6
256p4./p 128p4 | 128p* ' 512p5 512p5
&ec., &ec.
and so:
2 3 4 7 5
JPFa= i+ @, _4 g @

+
f 8py/p 16p2/p 1283 /p  256p*/p
The equalities (3) and (4) could also be easily obtained by applying the binomial expansion (2), or
better its simplified form,

1 —-D(r -2
(p+q)r=pr+rp q+%pr72q2+% r33+&C (5)

wherer is any rational exponent. When obtained by means of Mercator’s procedures, the equalities (3)
and (4) are, however, directly extracted from the given expressﬁé{nsr /P + q by operating on such
expressions, while, when obtained by means of binomial expansions, they result from a particularization
of the general equalities (5) which has, in its turn, to be proved. Hence, as long as they were obtained
by means of Mercator's procedures, the equalities (3) and (4) were viewed as particular confirmations
of such a general equality, rather than as a consequence of it. After Newton, nobody really doubted
the validity of (5) or was reluctant to apply it in order to get the development of particular functions.
Nevertheless, much effort was devoted to providing this equality with a proof more satisfying than
Newton’s argument in support of it (which finally relied onapriori assumption of the same extension
of algebraic rules that (5) seem to guarantee), or to prove its generalization to irrational exponents.
A simple way to do that would have been to derive (5) from “Taylor’s theorem”:
2

fr+8) = fu»%is+22£s+;2€
However, this was not considered as acceptable since (5) and its particular consequences were thought
to be independent of the differential calculus and the rules of differentiation of the elementary functions
depended on (5).

Another way for obtaining many developments of particular functions—including the equalities

(3) and (4)—by operating directly on these functions was to resort to the principle of undetermined
coefficients. Unlike Mercator's procedures, this principle allowed one to determine a development in

£34 &ec. (6)
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power series whose existence was previously supposed: one started from the hypothesis that the given
function f(x) could be developed in a power series and relied on such a principle in order to determine
(or construct) this series. An example of such a procedure is found in StirMetsodus differentialis
)[/t\:h(tere it is used in order to develop the functim (see Stirling [1730, p. 2]). Stirling supposed

a

1 o0
A+ Bx 4+ Cx? :XO:a,-x

i=

and assumed that the consequent equality

[Zaixi:|[A+Bx +Cx2] —-1=0

i=0
should hold for any in a non-null interval. By multiplying and rearranging he derived
(Aag — 1) + (Aay + Bag)x + (Aap + Bay + Cag)x? + (Aas + Bay + Cay)x® + &c. =0.
Finally, by applying the principle of undetermined coefficients, he obtained the equations
Aag—1=0,
Aaq + Bag =0,

Aay + Bay + Cag =0,
Aaz+ Ba, + Cay =0,

&ec.,
which allowed him to determine the coefficients:
1 B B? — AC 2ABC — B®
a=—1 @=-—5 G@=——7z— a=—3 &c

The principle of undetermined coefficients is here employed to find a development of the given
function as a power series. One supposes that this function has such a development and, by means of
the principle, explicitly constructs it. This procedure may easily be justified as being a simple extension
of algebraic rules, if one assumes that the undetermined sefiesa; x’ which is initially supposed to
be equal to the given function converges to this function in a non-null interval of valuessofce, if it
is so and the supposed equalifyx) = > - ,a;x' is transformed by algebraic manipulations in another
equality "2, b;x' = 0, then this latter equality should hold both for= 0 and for somex different
from 0. Itis thus enough to put first= 0 to obtainby = 0, then to divide this equality by and afterward
to put againy = 0 to obtainb; = 0, and so on. By operating in such a way, it is also possible, under the
same condition, to prove that the developmentféf) that is thus obtained is unique. A similar proof
is found in the first volume of Euleritroductio (see Euler [1748, |, pp. 230-231]; but see also Euler
[1740, p. 471]. From the suppositions

9]

o)=Y ax',

i=0

f) =Y "bx',
i=0
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it follows in fact that

i(éli — bi)xi =0
i=0

and then, successively:
ag=bo; ay=by; ar=by; az=bz &c.

The proceduresH,), (P»), and (Ps) are all concerned with an infinitary extension of algebraic rules
and, therefore, we call thengtiastalgebraic” procedures. A second class of procedures consisted of:

(P4) Any expansion deriving from simultaneous differentiation or integration both of a certain function
f(x) and a certain determinate power serfe$-,a;x’ already associated witlf(x), or of a
function f(x) and a certain undetermined power sef}és ,a;x' assumed to be associated with
f (x)—the operations on the power series being performed term by term.

Like (P3), these procedures also depend on the supposition that the series which is associated with the
given function converges to it on a non-null interval. Moreover, the procedigsa(so depend on an
infinitary extension of the properties of linearity of differentiation and integration (today we know that
they do not follow from simple convergence). In Chapter 2 of the second part bfdtieitiones calculi
differentialis (see Euler [1755, p. 235]), Euler justified this supposition for differentiation by asserting
that from f (x) = ;2 a;x" it follows that

df )= f(x+dx) = f() =) ai(x +dx)' =) aix’

i=0 i=0

o oo
=Zai[(x +dx) —x']1= Zaiix’_ldx.
i=0 i=0

In Chapter 3 of thénstitutiones calculi integraligsee Euler [1768-1770, Vol. 1, pp. 76-85]), he relies
on an analogous rule for integration in order to state that the integral of a function whose development is
Z?io al_).cm—i-in is equal toz?io #xm-i-in-‘rl. . o . .

The first of these rules was used by Newton in a preliminary version @éuadratura curvarumin
order to obtain the first version of Taylor's development of a function (cf. [Newton MP, VII, pp. 96-98]).

If one puts

f) =) Aix—a),

i=0
repeated term-by-term differentiation yields

df <, . o1
E:;Ail(x—a) ,

d*f

dx?

— ZA,»i(i —DH(x—a)?
i=0
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Bf -, . i-3
ﬁ—;mz(z—l)u—zxx—a) :
&ec.

and then, by setting = a:

A1=ﬂ ,
dx|,._,
_14%f
T 2a? |,
143
t=g)
&ec.

In the 18th century, various combinations of the procedufa3—(P,;) were also used; namely, if
the power seried "~ a;x’, Y i bix', &c. were respectively associated with the functights), g(x),

&c., and a single functiorF (x) was constructed by combininf(x), g(x), &c., then the power series
constructed by combining the seri®s’"a;x’, Y -~y bix’, &c. in the same manner was considered as
being the development df (x).

In general, the accepted procedures for the development of a given function were reducible to
the procedures?;)—(P4) or a combination of them. This does not mean that these procedures were
considered as the only elementary procedidreapable of providing power series developments of given
functions. Mathematicians were open to the possibility of finding other procedures and other specific
procedures were indeed applied in some particular cases.

Now, let us consider the question

(Q1) Under what conditions was a particular power sefés ,a;x’ associated with a certain function
f(x) in 18th-century analysis?

Of course, a particular power seri®s° a;x' was associated with a certain functigitx) if it was the

result of a transformation of this function. However, as long as a function was considered not merely
as an expression but rather as the expression of a quantity, not all transformations could be accepted.
Therefore, we cannot answe®{) simply by listing a finite list of procedures of transformation like
(P1)—(P4) (even though such an answer would be factually correct); indeed we have to complete this
answer by examining another question:

(Q2) Why was a certain proceduf@ transforming a functionf (x) into a seriesy ;-a;x’ considered
an acceptable rule of developm&hin 18th-century analysis?

22 s we have already observed, they are not completely independent of each other.

23 By an acceptable rule of development, we mean a rule that, when applied to a given function, generates a power series,
which can be considered as the development of the function.
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We have previously observed that the equalftx) = g(x) between two functions meant that the
expressiorg (x) was derived by a transformation of the expressjan). However, the given expression
f (x) was taken into account insofar as it expressed a certain quantity: thus mathematicians thought that
the result of the transformation had to express the same quantifi# Té® twofold nature of functions
was thus transmitted to the equalifyix) = g(x): on one side, this equality stated thl) is the result
of a certain transformation aof (x); on the other side, it stated tha{x) andg(x) expressed the same
quantity?®

Thus, the rules of transformation of a function into another one had to preserve the expressed quantity
in order to be acceptable. This means that a rule of transformAtimas considered as being acceptable
only if it was ascertained or supposed that one of the following conditions was satisfied:

(C1) for any functionF, F andR(F) express the same quantfy/;
(Cy) for any two functionsF andG, if F andG express the same quantity, thBiF) andR(G) also
express the same quantity.

If R was considered to satisfiC{), then the equalityR (F) = F was considered acceptable Rf was
considered to satisfyQ,) and the equalityF = G was given, then the equalitR(F) = R(G) was
considered acceptable.

It was precisely because the usual algebraic rules satisfied the con@ifjcth#t they were considered
as acceptable rules of transformation; and it was precisely because the contemporary differentiation or
integration of two finite functiong (x) andg(x) satisfied the conditiond,) that this rule was considered
as an acceptable rule of transformation.

In order to extend this approach to the rules of transformation of a function into a series, a preliminary
problem should be solved: under what condition could a power series be considered to be the expression
of a quantity?

An initial answer to such a question could rely on the notion of convergence. We saw that a power
series expressed a quantity if and only if it was convergent to this quantity and that if this quantity was
analytically expressed by the functigfi(x), then the series had to converge ffarx). We could then
answer Q) in the following way:

(A2) In 18th-century analysis, a certain procedd®efor transforming a functionf (x) into a series
Y < oaix" was acceptable if and only if the power serjes:,a;x* was convergent tg(x) on a
non-null intervall of the values of.

By composing A,) with (Cy), we would obtain the following condition:

24 See Euler [1748, |, p. 159]: “Si fuerit = %jr;; atque ponatug = %jr—i , hoc valore locaz substituto erity = H%

Sumpto ergo pra valore quocunque determinato ex eo reperientur valores determinatigbsosicque invenitur valor ipsius
y respondens illi valori ipsius, qui simul prodiit. Uti, si sitc = 3, fietz = § ety = £; reperitur autem quoque = ¢, si in

1-22 cuj expressioni aequatur, ponatur= %

1+zz
% See Euler [1748, I, p. 38]: “Omnis transformatio consistit in alio modo eandem functionem exprimendi, quemadmodum ex
Algebra constat eandem quantitatem per plures diversas formas exprimi posse.”

26 Of courseR(F) denotes the expression that is obtained by applying theRute F.
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(C3) In 18th-century analysis, a certain proced®ethat transformed a functiorf (x) into a series
Y ,aix" was an acceptable rule of development of such a function if and only if for any value
a of x belonging to a certain non-null intervd| the sequenc@Z{zoaiai};?‘;O approachedf («)
indefinitely whenj increases, and it was finally equal f@«), whenj was a infinite number.

Since Cy) is not a precise condition,Cg) is not a precise condition too or, at least, it does not
provide a sufficiently clear criterion for deciding whether a certain proce@uig an acceptable rule
of development. However, this did not mean thag)(was not taken into account, but only that, in order
to decide if a particular series was convergent, 18th-century mathematicians relied upon a criterion that
did not depend on the intrinsic nature of the series but on the procedure of development generating the
series.

Indeed a procedure of transformation was acceptable if and only if it was an infinitary extension of the
accepted rules of transformation of finite expressions into finite expressions. Thus, what guaranteed the
convergence of the development of a functipfx) to this function on a non-null interval of values of
was the formal nature of the procedure of the development—the fact that it was an infinitary extension
of finitary rules satisfying €;) or (C,)—and not an analysis of the nature of the resulting series, in
accordance with the definitiorCg ). It is precisely this reason that made the procedurg$(P,) and
their combinations acceptable in the 18th century.

Therefore a satisfactory answer @, is the following:

(A1) In 18th-century analysis, a certain power sef}€s ,a;x* was associated with a certain function
f(x) if it appeared as the result of the applicationfior) of one of the accepted proceduré® -
(P4), of any finite combination of them, or of any other particular infinitary extension of the rules
of transformation of finitary expressions satisfying one of the conditiGn¥ (C,), and operating
on a given, determinate or undetermined, power series term by term.

This should be a satisfactory formulation of a sufficient condition for the truth of (1), in 18th-century
analysis. Certainly, this condition is not necessary. However, it is not necessary only in the following
sense. A certain power seri®s;~a;x' could be understood as convergenyia) on a non-null interval
I of values ofx, according to Cy), even if it did not actually result from the application f@x) of one
of the accepted procedures, and one did not actually know how to obtain it in such a way. But, in this
case, an 18th-century mathematician would have assumed that this series could in principle be obtained
in such a way.

In the conclusion of Section 2, we observed that the equglity) = > >°a;x’ was conceived in the
18th century as concerned with the formal nature of the function and not with the convergence of the
series) ;- a;x' and that this equality was considered as valid independent of the vatud bfs would
seem to be contradicted by our last conclusion, namely that the validity of such an equality depends on
the convergence of the series on a certain non-null interval. However, there is no contradiction. Simply,
18th-century mathematicians considered the equglity) = Y -°ja;x’ to be valid if and only if the
seriesy - a;x' was considered as convergent to the functfam) on a non-null interval, but they did
not think that the validity of such an equality had to be restricted to the valuedelonging to such an
interval.
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4. Direct and inverse problemsin power seriestheory

At this juncture, it should be evident that the very heart of the 18th-century theory of series was
constituted by the following pair of problems:

(P.1.a) To develop a given function into a power series;
(P.1.b) To return from a given power series to the function of which this power series is the development.

These problems should not be confounded with the following ones, with which modern real analysis
is concerned:

(P.2.a) To look for a power series which converges to a given function of a real variable;
(P.2.b) To sum a given (convergent) power series of a real variable.

Clearly, both the pairR1) and the pair .2) consist of a direct and a inverse problem. By “inverse
problem,” we mean a problem that can only be formulated by referring to another problem, namely the
direct one.

In modern analysis, problen®.2.b) can be considered the direct one, since it is solved by summing
a given series, namely by seeking the limit of #th partial sums. ProblenPQ.a), by contrast, can be
considered the inverse one. This is indeed the problem of seeking a power series the sum of which is
the given function and is understood by referring to the operation of the sum and, therefé&.a,bp (

For instance, one says thﬁ; is the sum ofy_° [ (—1)'x for |x| < 1, because lim, o Y roo(—D)ix' =
lim,_ o %)X"H = 1 for [x| < 1, and that)_}°((—1)'x’ is the development of the functiop!-
for|x| < 1, becausg:- is the sum oy (—1)'x’.

Instead, in 18th-century analysiB.1.a), the problem of developing a function into a series was the
direct problem andR.1.b) was the inverse on&.The path providing a solution to the problefi(a)
was a progressive path, since it progressed from the function, which was a proper object of 18th-century

27 Of course P.1.a) and P.1.b) were not the only pair of direct and inverse problems in 18th-century analysis. Generally
speaking, given an operatiof transforming an objeat, belonging to a certain s@& of objects, into an objec = O(«)
belonging to a seT, we can look for a inverse operatia®’ such thatO’(8) = «. A problem arises whe®, SandT are
such that, for somg in T, there is no object in S, such thatO’(8) = «. Today this problem is solved by defining a new
setS* (which can be thought of as an enlargemenBpivhose objects are defined as the images of the objedisuofler the
operationQ’. In this way, the problems of existence are setéemntiori, by fixing the domain and range of the operatighand
O’ once and for all. In the 18th century, mathematicians viewed the matter differently. They did not define a set oSbbjects
a priori, so that it is always possible to find an image of every obfeof the sefT, under the operatio®’; instead, for every
specific objecs of T, they tried to construct a new object, somehow similar to the obje@ssaf that one could arrive at such
an object by applying the operati@ to .

The difference between the modern and 18th-century approaches is crucial. Simqwian definition is lacking, the
object is constructed as the result(8) of the application of the operatio@’ to the objects; for this reason, the nature of
the objectO’(8) could only be understood by means implicit reference to objects that were already given outside the theory
where the operation® and O’ were initially defined. For example, the operatiOrand its inverse)’ might have a geometric
interpretation providing an explanation of the nature of new objects. This is the case for differentiation and integration. In his
[1768-1770, I, p. 7], Euler defined the “integral’g(x) dx of a functiong(x) as a functions (x) such that/[ f (x)] = g(x) dx.
If for some g(x), no known functionf (x) were such thatl[ f (x)] = g(x) dx, the symbol ‘f g(x) dx" was used formally to
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mathematics, to the series, which was a particular expression associated with the function: in other words,
it was asyntheticpath. The path providing a solution to the problePi(b) regressed from the series to

the function: it led from a particular expression associated with an unknown object to this object (this
is exactly what the verb “to return” indicates). It was a regressive path, that éaytical path?® For
instance, given the functioql—x, the direct problem was to develop such a function and the solution

of this problem was given by the serids;”,(—1)'x’. Vice versathe inverse problem was to find the
function whose development is given by the sefiéS ,(—1)'x’. And thus the solution of this problem

was given by the functioq% just becaus&_:”,(—1)'x’ was considered as the development@‘.

Eighteenth-century mathematicians used different terms to refer to the return from a power series
to the original function (the function which this power series expresses). They, at times, used the term
“regressus” (see, for example, [Leibniz GMS, Ill, p. 351] and de Moivre [1730, p. 123]); more often they
preferred the term “sum”. The sense in which this term was employed was made explicit by Euler: “As
series in analysis arise from the expansion of fractions or irrational quantities or even of transcendentals,
it will in turn be permissible in calculation to substitute in place of such a series that quantity out of
whose development it is produced. For this reasor fve employ this definition of sum, that is to say,
the sum of a series is that quantity which generates the series” (see Euler [1754-1755, pp. 593-594];
translation in Barbeau and Leah [1976, p. 144]).

In order to use a clear and uniform language, we shall use the verb “to envelop” to refer to the
passage from a given power series to the function of which the series is the development. Of course,
by “envelopment” we shall denote the function that results from enveloping a series. Thus the problem
(P.1.b) can be rephrased as follows:

(P.1.b’) To envelop a given power series into a function.

Using this terminology, we observe that when a mathematician of the 18th century spoke of summing
a series, he meant enveloping it. Thus, for such mathematicians, the problem of summing a given power
series was essentially different from our problé?2() and does not properly concern numerical series:
there is no sense in speaking about the development or envelopment of a number. Numerical series
cannot be enveloped but only summed. Eighteenth-century mathematicians had a perfect knowledge of
the fact that certain series can be used to express numbers (in particular, irrational numbers); however,
they usually considered a series li%°,a; as a particular case of the power sef}€s ,a;x' for the
positionx = 1, and thought that the most natural way to spift ;a; was to determine the envelopment
f(x) of >72ga;x" and then take > a; = f(1). This should make it clear that 18th-century analysis,
unlike modern real analysis, was not a theory of real numbers. It was rather a theory of (continuous)
guantities, insofar as they were expressed by means of a convenient expression.

To end this section, we make explicit a general condition concerning the protfelg and .1.b),
which was only implicit in the previous remarks. The generic symbfak®,” which indicates a function
in the equality (1), is nothing but a written convention and cannot therefore support any formal procedure;
the generic symbol¥"° a;x’,” which indicates a power series in such an equality, is instead an explicit
exhibition of a particular type of series and can support some formal procedures. Therefore, in order to go

denote an unknown function (but subject to certain general conditions) sucti[fhatx)dx] = g(x)dx, and to which one
could give a geometric meaning (area, length),
28 On the notion of analytic and synthetic as they are used here, cf. Panza [1997a].
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from the first symbol to a complete determination of a particular object, one has to follow different steps
which are part of a process of progressive determination that necessarily includes the determination of the
particular form of the function. Only once these different steps are performed can a formal procedure be
applied tof (x). In order to proceed from the second symbol to a complete determination of a particular
object, only one step has to be made, i.e., the determination of the coefficients occurring in it. And, even
if this step is not performed, a formal procedure can be applied to the series. In other words: no formal
procedure can be applied to a (completely) generic function, while certain formal procedures can be
applied to (completely) generic power series.

5. Direct and inver se strategies to develop a function and envelop a series

We are now ready to consider different strategies to solve the probeisWe shall distinguish four
pairs of them, each pair being composed of a strategy to solve the prddlea) &nd a strategy to solve
the problem P.1.b). Since each of these problems is the inverse of the other, we could take each one of
these strategies as the inverse of the other strategy belonging to the same pair. However, we shall also
distinguish between the first pair, composed of two strategies aiming to solve the préhlesh 4nd
the problem P.1.b) respectively, in a direct way, and the other three pairs, each of which is composed
of two strategies aiming to solve the probleRl(a) and the problemK1.b) respectively, in an inverse
way (that is, by looking for a solution of the inverse problem). Thus, we prefer to consider in general
the two strategies belonging to the first pair as being direct strategies to solve the prddkea)saafd
(P.1.b) respectively, and the six strategies belonging to the other three pairs as being inverse strategies
to solve these same problems. This is because we shall denote, for short, the two strategies belonging
to the first pair respectively d3S.a andDS.b, and the six strategies belonging to the three other pairs
respectively a$l S.a andilS.b, tIS.a andtlS.b, andal S.a andal S.b. The meaning of the small letters
“i”, “t" and “a” in these acronyms are the following: the lett&rdenotes immediate strategies; the letter
“t” denotes transformative strategies; and the leté&rdenotes analogic strategies. We shall see what
this means exactly in the different cases. For the time being, let us simply present the scheme, illustrating
our classification in a compact way (see Table 1).

Let us first imagine that a particular functigfi(x) is given. An initial obvious way for solving the
problem P.1.a) with respect to this function is:

(DS.a) To apply directly tof (x) one of the procedures’{)—(P,), an appropriate combination of them,
or any other particular accepted procedure of development.

Table 1
Strategies TosolvB.la TosolveP.1l.b
Direct DS.a DS.b
Inverse
Immediate iIS.a i1S.b
Transformative tIS.a tIS.b

Analogic alSa alSb
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Let us now imagine, instead, that a particular power sérigs, A;x’ is given. An obvious strategy to
solve the problemR.1.b) with respect to this series is:

(DS.b) To operate directly on the given serids;-, A;x’ and transform it, by suitable manipulations
and/or substitutions, into a finitary expressigiix), which is assumed to be the sum of the
series.

A subsequent application of stratedy.a) to f(x) can then confirm that this function is precisely
the solution to the problenP(l.b) with respect toy ;- A;x'.

Two examples of[@S.a) are Euler's and Lagrange’s developments of the exponential fungtion®,
respectively, in Euler [1748, 1, pp. 123, 124] and in Lagrange [1797, pp. 18-20] and [1813, pp. 31-33;
CEuvr., 9, pp. 45-48]. Let us consider the second of these examples. Lagrange started from the identity

a’ = [(1+ (a — l))n]% (7
and, by applying the binomial expansion, he obtained
@ = |:l+n(a —1)+ "("2'_ Ya—12+ W(a - l)3+&c.:|”.

By rearranging this equality, it is possible to put it in the form
a’ = [l-i— Hin +H2n2+H3n3+&c.]%, (8)
where the first coefficientl; is the series
1 , 2 s
(a—1) — Z(a—l) —i—g(d—l) + &c.
By applying the binomial expansion to (8) Lagrange obtained, then:

ax:l—i-x(Hl + Hon + Han? + &c.)

+ W(ﬂl + Hon + Hyn? + &c.)’
x(x—n)(x —2n
+ ( ;f )(H1+H2n+H3n2+&c.)3+&c.

This equality clearly holds for any, whatever the values of the variableand of the constant. This is
becausea: is, as Lagrange remarks, “entirely arbitrary.” Thus the second member of such an equality has
to be independent of, which is possible only if all its terms whereoccurs cancel each other. Thus,
x A2 2 A3 3
a =1+ Ax+ gx +§x + &ec.,
where

1 2
A:(a—l)—5(a-1)2+§(a—1)3+&c.
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As a first example ofS.b) let us consider the sum of the geometric sepie¥ , x*+#. In his [1732—
1733, pp. 44, 45], Euler set

S = Zxa+iﬁ
i=0
and obtained
S—x%= Zx““ﬁ. (9)
i=1

By addingx®+(+D# to both the sides of (9) and dividing them ¥, he obtained

_a a+(m+1)B m
S X% +x _ Zxa+iﬁ -5
B
* i=0

and then
m o _ yat+(m+1)B
S = a+if _ L 10
;x 1 (10)
Takingm = oo in (10) and assuming that| < 1, Euler concluded that
o xa
D x = . (11)
i=0 1-x?

As another example, consider the sefiés | (2i — 1)’;—;. In his [1732-1733, pp. 70, 71], Euler first set

> @i -1 =S m)
L.
i=1
and, by integrating term by term (and assuming that the constant of integration is null), derived from it
the equality

1 “ X
Ex%[/xg[S(x,m)] dx] = )lc_' (12)
i=1
He differentiated (12) and obtained
3 m s
-3 d L m
[x 2[S(x1,m)] x+S(x,m):l+ )f__x_'
Ax 2 2x P il m!
By comparison with (12) he derived
2 Ayt 3
(1—2X)/X%[S(x,m)]dx =4x% _ S(xl,m) & 2.
X2 m'
Assuming thain = oo, this equality reduces to
4 — 2
/x_g[S(x)] dx = xiS(xl) (13)
(1—2x)x2
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whereS(x) = S(x, co). By differentiating (13) and considerin§(x) as an independent varial$e Euler
had

Sdx B 2xdx +4x%dx + Sdx —6Sxdx —2xdS + 4x%dS
xJx (1—2x)%x/x '

Hence

dx +2xdx — Sdx —2xSdx —dS +2xdS=0

and

ds

n SA+2x)dx (14 2x)dx

1-2x 1-2
Euler then multiplied this equality bf:—; and noted that the left-hand side becomes equal to the
differential of the function% of two variablesx andS. Thus he obtained

e *S e (14 2x) et

= dx = —

1—2x (1—2x)? 1—2x

(the constant-1 being determined under the conditiSt0) = 0) and finally

1

S:Z(Zi—l));—;:l—e"(l—Zx). (14)
i=1

A third example is taken from thinstitutiones calculi differentiali§Euler, 1755, 2, pp. 217, 218].
Supposing that a power seri®s”, A;x’ is given, Euler transformed it by the substitution

y
xX=_——.
1+y

Since, for any integer, we have

i Y ZOO =1\ itk
X = _— = ,
(1+y> k:O( k )y

he obtained
00 o) o) ; 7 o) i—1 k ;
i_ - i+k | _ - . i
3 Ao _ZA,|:Z<k>y —Z{ (% >A,_k}y
i=1 i=1 k=0 _ i=1 L k=0
00 i—1 k—i 7] X i
=Z k Al—k l 9
i=1 | k=0 i -X
and, since
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he derived

;Aixi = ; AflAl(l f x) . (15)

If the differencesA’ A; are equal to zero for large enoughthen >, A”*lAl(lXTx)" reduces to a finite
expression which Euler assumed to be the envelopment of the given 3¢efigs\;x'. For instance, by
applying (15) to the seri€} -, i%x’, one has

éﬂf:i Ai‘l[(iz)l.zl](lix)i

i=1

x x \? x \°
= 3 2
1—x+ (1—x) + (1—x>

foranyr > 2.

Shortly afterwards, Euler [1755, 2, pp. 240—-242] considered a seifesA,x’, such thatd; = u;v;,
where the envelopment ¢f -, v;x’ is a known functionf (x), and{u;}?°, is a suitable sequence. To
envelop such a series, he put it in the form

00 00 . .
. l dl
i=0 i=0

i, .
il dxt

where the coefficient€; had to be determined. To determine these coefficients, Euler remarked that from
the assumed equality

f)y=) uix,
i=0

the other equality

Xdfx) < j ;
RTI _ZC" i)t
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follows. Thus

and then, by the method of undetermined coefficients,
J .
->a(]):
1 l )
i=0

that is
Ci = Aluy,
and therefore

o0 o0

. , xtd f(x
ZA,-x’ = Zuivixl = At )
P = il dxi

i=

Once again, if the differences’uo are equal to zero for large enougttheny "2, £ 4L LS Aiyo reduces
to a finite expression, which Euler assumed to be the envelopment of the glvenZéorbes,
As an example, Euler considered the sepie¥ (’“) D+1y7. Since one knows th3t;2, 2x’ = e*, one

can sefy "%, %x Zi:O uiv;ix', where(i + 1)2 + 1=u; and3 = v;. One would thus obtain

(i +1D%+1 i\ X dl(ex)
Y= S AP D), )
i=0 i=0

= Y TA((+ D7+ 1), ]

i=0
=e"(2+3x +x?),
since
A6+ D7 +1), )
A(E+ D%+ 1), ]
A[(G+ D2 +1), )

i

2
3,
2

i

and
NG +27+1),_g] =0

for anyr > 2.
These examples show that the stratdg$.p) could have different forms. The previous examples rely
on the following versions of it:

(DS.b.1) To construct the sequen¢§ A;jx } ° , of the partial sums of the given serigs:>,
and to search for a (recurswe or dlrect) rule of formation of the terms of this sequence giving
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the expression of its generic tern’" ; A, x’; if this expression reduces to another finitary
expressionf (x) for the positionm = oo this latter expression can be supposed to be the
envelopment of the given series.

(DS.b.2) Imagine that, using some known developments, it is possible to transform a given power series
Y o Aix' into another seried " B;x', the terms of which are equal to O whefs greater
than an appropriate:; then the serie$ -, B;x' is reduced to a finitary expression which is
supposed to be the envelopment of the given series.

Both (DS.a) and OS.b) are direct strategies for solving the problerR4.@) and P.1.b), respectively:
indeed they lead us to the desired result by manipulating the given object. In the c&38.af by
manipulating a known function, one derives a series which is its development; in the c&s&mf by
manipulating a given series, one derives a function which is its envelopment. To use a classic expression,
we can say that these strategies are synthetic. This is because, by performing them, one operates on a
known object to find the object considered to be unknown in the formulation of the problem.

Direct strategies are very natural, but they are not the only possible ones, and, as a matter of fact, they
are not the only ones that were followed in 18th-century analysis. In fact, although the proBlésm)s (
and P.1.b) were conceived as essentially distinct from each other, it is clear that the solution to one of
them also provides the solution of the other, supposing that in this latter problem what is considered as
given is that which is sought in the former and vice versa. As an example, consider the equality (14). It
has been obtained following a direct strategy and states that*11 — 2x) is the envelopment of the

given series
x2 x3 x4

It is clear that, once this equality has been stated, and the functiari @L — 2x) is assumed to be given,
one can easily conclude that the series (16) is its development. This is a simple example of the following
inverse strategy to solve the probleml(a):

(ilS.a) If aparticular functionf (x) is given and it is possible to recognize it as a known envelopment of a
k?own szegrieifio A;x', then it can be immediately concluded tRaf°, A;x" is the development
of f(x).

A similar strategy can be followed in order to solve the probl&.). Let us imagine, for example,
that the series
24 x — 6x% — 3% + 18¢* + 9x° — 54® — 27x7 + &e.
is given and one recognizes it as the development of the fun(ﬁgﬁ. One can thus immediately

conclude thatﬁ%fz is the envelopment of this series.
This is the strategy Newton used in a sketch of a treatise on quadratures and binomial developments
composed in the summer of 1665, in order to express the area of the hyperbola of eguatfiﬁér? by

29 An interesting example of this procedure can be found in Euler [1730-1731a, 1730-1731b, 1732-1733]. We prefer not to
present it here because it involves some difficulties concerning the nature of integrals which are beyond of the scope of our
paper.
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means of a finitary expression (cf. [Newton MP, |, p. 129]. By using the developmenintd a power
series, he first found that this area could be expressed by the power series

Then he compared this series with the developme@ft;gf that is,

2 2 2
a a a 2
?—ﬁx-l—ﬁx —&C.,
and concluded that the area he was looking is was equal to
a2 a2
b b+x

Generally speaking, such a strategy is the following:

(i1Sb) If aparticular seried":°, A;x' is given and it is possible to recognize it as a known development
of a known function, then, it can be immediately concluded that) is the envelopment of

Z?zo A,'Xi.

To illustrate how this strategy works, let us consider the series

00 J .
1+x+2x2+3x3+5x4+8x5+&c.=2[Z(J ;")}A.

j=0 L k=0
According to the binomial expansion for positive integers exponents, it follows that

9]

14+ x4+ 202+ 3x% + 5¢% + 8x° + &e. :Z(x—i—xz)i.
i=0

But, by settingr + x? = y and applying the previous procedure to sum a geometric series, we have

n n

i ;1"
Sl at) =30y =22
i=0 i=0 1-y
and thus

2 3 4 5 _ 2\t _ —
1+ 4 2¢°+ 3" + 5x¢" + 8¢ +&C-—i§:0:(x+x) T 1l-y 1-x—x?

and ;—— is thus the envelopment of the given series £ + 2x2 + 3x® 4 5x* + 8x° + &c., this result

being obtained by observing that this latter series is the sum of an infinite number of finite developments.
The strategiesS.a) and (I S.b) are two inverse strategies for solvirgi.a) and P.1.b), but they are

also immediate, since they immediately refer to an already given solution to the opposite problem. Both

cases allow one to obtain the desired result by using an already known result which has been derived

by operating on the object that is considered as unknown in the given problem. Using a more classic

language, we can say that they are analytic procedures.
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It is interesting to note that these procedures are analytic though they do not solve the problem which
is proposed by manipulating a generic function or a generic series, but by handling a function or a
series guessed at in some way, i.e., by following a synthetic path. This shows that an analytic procedure,
consisting in working on an unknown objekt which is to be found as if it were given, can sometimes
be performed by following a synthetic path: one works on a determinate abjectd verifies that the
given object can be derived frok. This is not the same as operating on a undetermined okjadtich
is precisely what has to be found. In this latter case the path also is arfalytic.

Let us now imagine that a particular functigiix) is given and that it is possible to recognize it as the
result of the application of a certain operation (also applicable to power series, term by term) to a known
envelopmentg(x) of a known seriey_;°, A;x'. This provides another strategy to solve the problem
(P.lLa):

(tIS.a) The operation, which leads from a functig(x) to another functiony (x), can be applied to the
developmend_°, A;x’ of g(x); this produces a new serids;”, B;x’, which is the development
of the functionf (x).

The successive application of one of the strateg@S.g) or (DS.b) to f(x) or to > ) Bix',
respectively, can successively confirm such a result.

A similar strategy for solving R.1.b) is then obvious. Let us imagine then that a particular series
Y 2o Aix is given and that it is possible to recognize it as the result of the application of a certain
operation (also applicable to finitary analytic forms) to a known developéfit B;x' of a known
function f (x); then:

(tIS.b) The operation, which leads frofn;~, B;x' to > ;- A;x’, can be applied tg (x); this produces
a new functiong (x), which is the envelopment of the serig§>, A; x".

The successive application of one of the strategl@S.d) or (DS.b) to g(x) or to > oy Aix’,
respectively, can successively confirm such a result.

(tIS.a) and ¢1S.b) are two inverse strategies for solvirgl.a) and f.2.b). Indeed, in this case as well,
one arrives at the result by operating on an object that is not given in the proposed problem. However, this
object is not the unknown object of the problem but an object that is connected to the unknown object by
means of a certain transformation. We can say that these strategies are not only inverse (i.e., analytic) but
also transformative.

As an example of the strategyl $.a), let us consider Euler's development of the functipr=
log(1+4 x 4+ x? + x3) in his [1768-1770, 1, p. 83]. Euler started from the equality

1—x*
1—x

y =log(1+x +x%+x*) =log =log(1 —x*) — log(1 — x)

30 This remark should justify Euler’s use of the term “synthetic” to characterize the procedure of development he adopted in
his [1732-1733]. Here Euler termed as “synthetic” a procedure he described as consisting in wondering “what the series could
be whose sums are expressed” by certain formulas (cf. Euler [1732-1733, p. 42]. By asserting that this is a synthetic procedure,
Euler seems to insist on the logical nature of the path rather that on the logical nature of the argument. He underlines in effect
that, even if his procedure is regressive, it does not consist in operating on an unknown object since it concerns knowledge that
is already available. A scheme based upon this point of view is presented in Ferraro [1998].
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and observed that
43 + 1
1—x4 1—x

d d 4
E(y) = E(Iog(l —x*) —log(1—x)) =—
and, according to (11),

3 00 00

o Zx3+4i. 1 _ in

1— x4 ’ 1—x '
i=0 i=0

He concluded from here that integrating term by term the series

e’} e’}
E xi— § :4x3+4l
i=0 i=0

(and supposing that the constant of integration is null), one should have the development af log
x? + x3) which was sought,
i+l
log(1+x +x% +x°) = Z
i=0
where the symbdlg] denotes the integral part of the numiger
As an example oft(S.b) consider the series 4 2x + 3x? — 4x3 + &c. It is easy to recognize that
this series can be obtained by differentiating the power s&rgs (—1)'*1x’ term by term and dividing
the result by the differentiadx. Since} ;°,(—1)"*!x’ is the known development of =, it is then
sufficient to calculate the differential ratio of the last function in order to derive the sum of the given
series:

00 .
x4+4l

xi—i—l
i+l_i:0i—|—l= '

z , _3y -
i:O( ) L+ l

1—2x+ 3% — 43+ &c. =

(14 x)2
This is the procedure by which Euler found in his [1761, pp. 71, 72] the sum of the series

1-2"x +3x2 43+ ...

forn=2,3,...,6,which are thus

1—x
1+x)%
1— 4x + x?
1+x)* 7
1— 11 +11x2 — 53
(1+x)5 ’
1— 26x + 6612 — 26x3 + x*
(1+x)8 '
1—57x +302¢% — 3023 4+ 57x* 4+ x°
1+x)7 ’

respectively.
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Let us finally suppose that a particular functigix) is given and that it is in a certain respect similar
to a known envelopmeng(x) of a known serie$ ", A;x". One could try to transform this latter series
into a new seried >, B;x' as similar to it asf (x) is similar tog(x). If this is possible, one could guess
that) >, B;x' is the development of the given functigf(x), and then try to verify this conjecture in
same way, for instance by applying the strateD$.p) to Y .-, B;x'. This is a further strategy to solve
the problem P.1.a):

(alS.a) If a particular functionf (x) is given and itis in a certain respect similar to a known envelopment
g(x) of a known serie_°, A;x’, and it is possible to transform ;- A;x’ into a new series
> oo Bix', which is as similar to) 2, A;x" as f(x) is similar tog(x), one could guess that
Y 2o Bix' is the development of (x), and try to verify this conjecture in some way.

The inverse strategy to solve.L.b) is obvious, in this case as well;

(alSb) If a particular seriesy i, A;x" is given and it is in a certain respect similar to a known
developmenty >, B;x' of a known functionf(x), and it is possible to transfornfi(x) into
a new functiong(x) as similar tof (x) asd >, A;x' is similar to)_:° B;x', one could guess
thatg(x) is the envelopment of -, A;x’, and try to verify this conjecture in some way.

To perform this latter verification, one can apply, for instance, the strai2§y) to g(x).

(alS.a) and @l S.b) are also inverse and indirect strategies for solvind.§) and P.2.b), respectively.

Indeed, in these cases we reach the result by operating on an object that is neither given in the proposed
problem nor is the unknown object of this problem. But, in this case, the object we operate on is connected
to the unknown object not by means of a certain transformation, but by a sort of analogy. We can therefore
say that not only are these strategies inverse (i.e., analytic) and indirect, but also analogic, rather than
deductive.

An example of an analogic procedure is the transition from the discrete to the continuous, known
as “Wallis’s interpolation.” Following Newton, Jakob Bernoulli ([1689-1704, 2, pp. 957-958] and
[1713, p. 294]) considered the developmentgf—n)’ for any natural integer and derived from it the
development otﬁ)“ for any real numbew. In general, such a procedure is performed by examining
the known developments of a sequence of functiBfs) according to the scheme

Fo(x) = Ago+ A1ox + Az ox? + Agox® + Agox* + Asox® + - -,
Fi(x) = Ag1+ Ap1x + Ap1x% + Ag 1x® + Ag 1x* + A 1x® + - -,
Fo(x) = A+ A12x + Agox? 4 Agox® + Agox® + Asox® + - -+,
&ec.
If the law of coefficients4,, ,, is known, one has
Fo(x) = Agg + Argx + Apox? + Agqx® + Agox® + As o x° + &ec.,

wherecx is any real number. If the function is given, this procedure is an exampl $&j; instead, if
the series is given, it is an example af §.b).

We have thus presented the four pairs of strategies to solve the probRehey and @.1.b) we
announced at the beginning of this section. Of course, we do not claim that this exhausts all the
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possible analytic or synthetic procedures used by 18th-century mathematicians to solve these problems.
For instance, we can hypothesize that, if a relation of the form (1) between a certain function and a
determinate power series is already given, it is then possible to move on from this relation to determining
the development of other functions or the envelopments of other series. For instance, in his [1730], de
Moivre considered the development

1
— =14 x+ 224335 8+ &e
1—x—=x2
and observed that
1 . 1—x2 n X
1—x—x2 1—-3x2+4x*% 1-—3x24x%
1_%;;_,‘;4 and 1_3;‘2+X4 being, respectively, an even function and odd function. From here he concluded
that
1—x2
— =1+ 2%+ 5+ &e.
1—3x2+4 x4 + Tt &e
X _ 3 5
m—X‘i‘a}C +8X +&C

Given the distinctions we have introduced, it would seem moreover that further even subtler
distinctions can be identified. For example, the stratdg$.4d) can be performed in different ways
according to the procedure chosen among the procedgs(P,;) and their possible combinations.
Another possible distinction has already been mentioned briefly: the distinction between the procedures
that follow a synthetic path, likdl@S.a) and {1 S.b), and the procedures that follow an analytic path. An
analogous distinction could be made between the procedures of development of a fufriediavhich
merely operate upon this given function, and the procedures which operate on this function and upon
the generic form of a power series, for example by following the method of undetermined coefficients.
According to such a method, the coefficients of the development participate in the procedure before being
determined and we could say, also in this case, that such an analytical procedure follows a synthetic path.

Of course, other different classifications can be made, based upon different pairs than the pairs
analytic/synthetic or direct/indirect. However, it is not our aim to investigate this possibility here.
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