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Developing into series and returning from series:
A note on the foundations of eighteenth-century analysis
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Abstract

In this paper we investigate two problems concerning the theory of power series in 18th-century mathe
the development of a given function into a power series and the inverse problem, the return from a give
series to the function of which this power series is the development. The way of conceiving and solvin
problems closely depended on the notion of function and in particular on the conception of a series
result of a formal transformation of a function. After describing the procedures considered acceptable b
century mathematicians, we examine in detail the different strategies—both direct and inverse, that is, s
and analytical—they employed to solve these problems.
 2003 Elsevier Science (USA). All rights reserved.

Sommario

In quest’articolo vengono analizzati due problemi relativi alla teoria delle serie di potenze nel
diciottesimo: lo sviluppo di una funzione in serie di potenze e il problema inverso, il regresso dalla se
funzione di cui tale serie è lo sviluppo. Il modo in cui questi problemi erano concepiti e risolti dipendeva
nozione di funzione e, in particolare, alla concezione di una serie come il risultato di una trasformazione
di una funzione. Dopo aver caratterizzato le procedure di sviluppo considerate accettabili, vengono esam
differenti strategie—dirette e inverse, ovvero sintetiche e analitiche—usate per risolvere tali problemi.
 2003 Elsevier Science (USA). All rights reserved.

Résumé

Dans cet article nous étudions deux problèmes concernant la théorie des séries entières au XVIIIème siècle :
le développement d’une fonction donnée en une série entière et le problème inverse, le retour d’une
série entière à la fonction dont cette dernière est le développement. La manière dont ces problème
conçus et résolus tenait à la notion de fonction, et en particulier à la conception d’une série comme le
d’une transformation formelle d’une fonction. Après avoir présenté et discuté les différentes procéd
développement employées par ces mathématiciens, nous examinons avec plus de détail les différentes
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0315-0860/03/$ – see front matter 2003 Elsevier Science (USA). All rights reserved.
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de solutions de ces problèmes, en distinguant entre procédures directes et procédures inverses, c
synthétiques et analytiques.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The 18th-century theory of series is the subject matter of several studies, which approach th
in different ways. Some of them insist on the main results; they show how and when such resul
reached, but seem to dismiss the early procedures as naive or meaningless and to recast them
in terms of modern formalisms.1 Others highlight how certain results can be interpreted in term
modern special theories (nonstandard analysis or summability theory) and understand the resul
later context.2 Finally, there are some writings which investigate the foundation and internal motiva
of 18th-century theories.3 Following this last approach, in the present paper we shall advance
historiographical theses which should serve as a possible key to the reading of 18th-century math
texts.

In the first part, we shall endeavor to establish the actual meaning of equalities4 of the form

(1)f (x)=
∞∑
i=0

aix
i

in the 18th century. There exists, indeed, a radical difference between modern and 18th-
conceptions of series: even the fundamental terms, such as “function,” “series” and “equality,
significantly different meanings.

In the second part, we shall consider the problem of developing a function into a series and
that the problem of summing a series was conceived merely as the inverse problem since it was
as the problem of the return from the series to the function. The relation between the problems of
and development was inverted with respect to today.

Finally, we shall investigate how these two problems were treated and try to classify different str
for solving them.

In our inquiry, we shall attempt to identify those elements that seem to constitute evidence of a
conception with respect to the foundation of analysis in the 18th century and therefore focus our a
on common elements in the works of the major mathematicians who dealt with series.5 We shall not

1 See, for example, Dutka [1984–1985].
2 See, for example, McKinzie and Tuckey [1997].
3 See, for example, Fraser [1985] and [1989].
4 In this paper, unless indicated otherwise, we shall use the term “equality” as a generic term to denote any expr

which there are two members connected by the symbol “=,” independent of the specific meaning this symbol possess
different cases.

5 Fraser [1989] already tried “to identify as clearly as possible those elements that are common” in 18th-century
according to him “these elements constitute evidence of a shared conception significantly different from the mod
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discuss the differences between these mathematicians. Besides, we shall restrict ourselves
series. Power series were not the only series considered in 18th-century analysis; however, th
largely dominant.6

2. Convergence and power series

It is well known that in the first half of the 18th century analysis gradually developed as a g
theory of functions and was finally expounded as an organic theory by L. Euler in hisIntroductio
in analysin infinitorumin 1748. The essential novelty of Euler’s treatise consisted in the introdu
of functions as autonomous objects and the construction of a comprehensive theory of these
However, according to 18th-century mathematicians, a function7 was not an association between t
elements of two given sets: it was a symbolic notation (which was termed “analytical expres
“formula,” or “form”) expressing a quantity in terms of another quantity.8 It was not merely an expressio
but the expression of a certain quantity, or else a function was a quantity as long as it was expre
could be in principle expressed, by a certain symbolic notation. Although mathematicians endeav
enlarge the set of known functions, they always seemed to reason as if the set of functions was s
fixed a priori by means of a genetic definition according to which a function had to derive from a
number of elementary functions by applying a finite number of combination rules.9 As long as it was
conceived as an expression, a function was thought of as a finitary composition of two sorts of
symbols: the atomic symbols for constant or variable quantities (i.e.,a, b, . . .; x, y, . . .; 0,1, . . .; etc.) and
the atomic symbols for the elementary operations on these quantities. As there were a finite nu
elementary operations (i.e., algebraic elementary operations, logarithm, exponential and trigon
direct and inverse operations), a function was thus conceived as a composition of a finite num
elementary functions. It was conceived to be the expression of a quantity since these elementary f

[1989, p. 318]. With reference to 18th-century analysis, Fraser mainly refers to Euler’s and Lagrange’s conceptions b
to suppose that these conceptions were largely shared by the entire mathematical community during the period t
roughly in the 1740s and lasted till the first years of the 19th century. We agree with this opinion and would like to ad
elements to Fraser’s reconstruction, especially insisting on the earlier roots of such a “shared conception.” Thus, we
the term “18th century” in a quite large sense, to refer to a period in the history of mathematics approximately starti
Newton’s and Leibniz’s research, and finishing with Lagrange’s proposal to found the calculus on Taylor’s expansions

6 Apart from power series, from the end of the 17th century to about the 1740s, mathematicians used only seri
form

∑∞
n=1 anx

αn , whereαn could be a negative integer or (in exceptional cases) a rational number. Only from the 174
other function series and in particular trigonometric series begin to be examined. The concepts and techniques orig
power series were applied to trigonometric series too; very interesting examples are in some of Euler’s papers, such
However, in certain cases, this application was rather problematic.

7 On the concept of a function, see Fraser [1989], Panza [1996], Ferraro [2000a]. Here we limit ourselves to a short s
8 By “quantity” 18th-century mathematicians meant what can be increased or decreased. The most convenient

representing a quantity in modern mathematical terms is by means of real values (and we shall also use this represen
the sake of simplicity). However, we should not imagine a quantity as an element of a given well-defined set such asR, since
this notion was lacking in 18th-century mathematics.

9 We shall use the term “function” even when we refer to authors, such as Newton or de Moivre, who never used th
It seems to us that this terminological anachronism simplifies the exposition provided a “function” is understood in th
outlined above.
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were thought of as expressions of quantities and the rules of composition were conceived as con
with respect to such a property of elementary functions.

This concept of a function implied that infinite series, as such, were “not themselves regar
functions” [Fraser, 1989, p. 322]: they were instruments for facilitating the study of functions an
rendering them more intelligible (see Euler [1748, §.59]). During the 18th century, “infinite series
never introduced arbitrarily” (see Fraser [1989, p. 321]): they always arose in some definite w
particular mathematical problem, process or procedure.

Power series were conceived of as quasi-polynomial entities (that is, mere infinitary extens
polynomials). Even the symbolism was ambiguous and suggested this idea. Generally speakin
were denoted by “a + b + c + d + &c.” or “ a + bx + cxx + dx3 + &c.,” but the symbol “&c.” was
also used in some cases to denote a finite number of terms. The ambiguity of the notation depe
the fact that 18th-century mathematicians considered a series as being known when one could e
exhibit its first terms and knew the law for deriving the following ones. In many cases it did not m
whether or not, starting from a certain point, the terms were all equal to zero. For instance, the
of two series was not openly defined: it seemed obvious that

(a + bx + cxx + dx3 + &c.) · (A+Bx +Cxx +Dx3 + &c.)

was equal to

aA

+ (aB +Ab)x

+ (aC + bB + cA)x2

+ (aD + bC + cB + dA)x3

+&c.,

independent of the meaning of “&c.” in such expressions: the rule of ordinary multiplication betwe
two polynomials was extended to infinite series without making a distinction between finite and i
series.

This approach could lead us to think that series were considered as entirely formal objects,
matter is different. To make this clear, let us consider two examples.

In De vera proportione, Leibniz (see Leibniz [1682, p. 44]; on Leibniz’s theory of series see Fe
[2000c]) argued thatπ4 is equal to 1− 1

3 + 1
5 − 1

7 · · · and justified it by observing that if we take the fi
term of this series, thenπ4 is approximated with an error less than1

3, if we take the first two terms o
this series, the error is less than1

5, etc. If the series is continued, the error becomes less than any
quantity and thus the whole series contains all approximations and expresses the exact value.

In his famousEpistola posteriorto Leibniz of October, 24, 1676 (see [Newton C, II, pp. 110–16
Newton considered several applications of the binomial expansion, which he wrote in the form

(2)(P + PQ)
m
n = P

m
n + m

n
P

m
n Q+ m(m− n)

2n2
P

m
n Q2 + &c.

In the case of the function5
√
c5 + c4x − x5 he first putP = c5 andQ= c4x−x5

c5 and obtained

5
√
c5 + c4x − x5 = c+ c4x − x5

− 2c8x2 − 4c4x6 + 2x10

+ &c.;

5c4 25c9



G. Ferraro, M. Panza / Historia Mathematica 30 (2003) 17–46 21

ry

certain
r terms
ere thus
g series
ew that

e of any
l of

to the

at the
single

s had
in the
ous
e 18th
llowing

ent and
t

to a finite
iz
s see
that it had
then he putP = −x5 andQ= − c4x+c5

x5 and obtained

5
√
c5 + c4x − x5 = −x + c4x + c5

5x4
+ 2c8x2 + 4c9x + 2c10

25x9
+ &c.

Finally, he observed that the first procedure is preferable whenx is very small, the second when it is ve
large.

This shows that, from the very origin of the theory of series, mathematicians were aware that
series provide a close approximation of certain quantities, when a convenient number of thei
is considered, whereas this is not the case for other series. In this primordial sense, they w
concerned with convergence. (We shall later argue that this was not inconsistent with considerin
as quasi-polynomial entities in the previous sense.) Mathematicians of the 18th century also kn
the convergence of a power series

∑∞
i=0 aix

i depended on the value of its variablex. Of course, they
did not possess the modern notion of interval of convergence, mainly because of the absenc
object such as the setR of real numbers.10 Nevertheless, it seems to us that the term “interva
convergence” can be conveniently used, provided one takes into account that when referring
interval over which the power series

∑∞
i=0aix

i converges, we are not referring to a subset ofR, but
merely to the fact that the series is convergent if the variablex varies from−δ to δ, whereδ is an
appropriate positive value. We shall also use the expression “non-null interval” to underline th
domain of variation ofx does not reduce only to one value and, specifically, does not reduce to the
valuex = 0.

There are difficulties with the term “convergence,” too. Even if 18th-century mathematician
generally no difficulty in distinguishing series that converge from others that did not converge,
previous primordial sense,11 they often used the terms “convergent” and “series” in an ambigu
way. Here we shall not classify and discuss the different meanings given to these terms in th
century. Later we shall use the term “convergent series” to refer to a series that satisfies the fo
condition:

(C0) A power series
∑∞

i=0 aix
i is said to be convergent tof (x) on a non-null intervalI of the values of

x if and only if, for any valueα of x belonging toI , the sequence{∑j

i=0 aiα
i}∞
j=0 approachesf (α)

indefinitely whenj increases and it is finally equal tof (α), whenj is a infinite number.

At this juncture, some remarks are appropriate.
First, it is clear from the texts that 18th-century mathematicians considered this condition as sali

knew how to distinguish series depending on whether they satisfied (C0) or not. However it is certainly no

10 Cf. the previous note (8).
11 In certain cases, 18th-century mathematicians considered series that we today refer to as “divergent” to be equal

quantity. The most famous example is that of series 1−1+1−1+1−&c. that Grandi and Leibniz (cf. Grandi [1703], Leibn
[1713] had taken as being equal to1

2 (for a discussion of such an example, cf. Panza [1992, Ch. III.1]; for other example
Ferraro [2000b, 2002]). However, pretending that a series was equal to a finite quantity was not the same as asserting
a sum. We shall abundantly come back to this later.
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a precise condition, and it is not possible to formulate it in more precise terms without adding ele
which were essentially alien to 18th-century analysis.12

Second, a power series was considered as being the expression of a quantity (for any vax
belonging toI ) if and only if it was considered to satisfy (C0). For instance, the series

∑∞
i=0(−1)ixi

expressed the ordinate of a hyperbola for certain values ofx, as long as it was convergent to11+x for these
values ofx.

Third, 18th-century mathematicians thought that even if the series
∑∞

i=0 aix
iconverged to a function

f (x) only on a non-null interval of values ofx, the relationf (x) = ∑∞
i=0aix

i could be manipulated
without regard to the interval of convergence. They did not limit the validity of this equality to
interval over which the series converged to the function.13 For instance, though it was well known th
the series

∑∞
i=0(−1)ixi converges only for|x| < 1, the relation 1

1+x =∑∞
i=0(−1)ixi was freely used in

manipulations, without being restricted to|x|< 1. Thus, the equalityf (x)=∑∞
i=0 aix

i stated a genera
result which concerned the formal nature of the functionf (x) and not the convergence of the ser∑∞

i=0 aix
i .

3. The development of functions into series

At this juncture, a very natural question arises: What did the sign “=” mean in the equality (1)?
To answer such a question, we first consider the simpler case of the equalityf (x)= g(x) between two

finite analytical expressionsf (x) andg(x).
In the 18th century the equalityf (x) = g(x) meant that one of these expressions, sayg(x), resulted

from a transformation of the other one. In Chapters 2 and 3 of theIntroductio, Euler investigated th
transformation of functions. According to him, “Functions are transmuted into other forms eith
introducing another variable quantity instead of the one initially used, or retaining the same v
quantity.”14 For instance, the expression 2− 3z+ z2 becomes(1 − z)(2− z) by factoring and

√
a + bz

is transformed intobx by substitutingbx2 − a
b

for z.

12 In particular the concept of limit had not been defined in mathematical terms and, moreover, there was ambiguity co
when a limit had been reached. On the notions of “limit-achieving” and “limit-avoiding,” see Grattan-Guinness [1969–1

13 It is known that Euler dealt with power series such as

xm − pxm+q +p(m+ q)xm+2q − p(m+ q)(m+ 2q)xm+3q + · · ·
or

1− 2!x + 3!x2 − · · · ,
which does not converge over any non-null interval (for instance, cf. Euler [1754–1755]). The investigation of thes
originated in the attempt to solve certain differential equations or to calculate certain integrals by continued fractions.
series convergent over a non-null interval was considered as the development of a certain function and was thus used
or study quantities, totally divergent series were only considered as tools for relating integrals or differential equatio
continued fractions, that is as formal links between different expressions of a quantity. On the relationship between c
fractions and divergent series in Euler, see Ferraro [2000b].

14 See Euler [1748, I, p. 32]: “Functiones in alias formas transmutantur vel loco quantitas variabilis aliam introduce
eandem quantitatem variabilem retinendo.”
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This is also the case for the equality (1). The sign “=” interposed between a function and a ser
meant that the series was derived from the function by means of certain rules of transformation
the equalityf (x)=∑∞

i=0 aix
i meant15 that the power series

∑∞
i=0 aix

i was associated with the functio
f (x) and that such an association depended on the fact that this power series resulted from ope
the expressionf (x) according to certain rules of transformation.16 We shall express this fact by sayin
that the series

∑∞
i=0 aix

i is the development off (x).
As a consequence, the equality (1) was not logically symmetrical since the two expressionsf (x) and∑∞
i=0 aix

i played different roles in such an equality. The first directly expressed a quantity and
meaningper se; it was the proper object17 of 18th-century analysis. The second was simply the re
of a transformation of the given functionf (x). A series

∑∞
i=0aix

i expressed a certain quantity on
indirectly, since it was associated with the functionf (x) expressing this quantity. Therefore, the le
hand side,f (x), of the equality (1) established the real object to be investigated, while the right
side,

∑∞
i=0aix

i , merely exhibited the result of a transformation useful to investigate the function
left-hand side.

In speaking of certain rules of transformation, we mean a number of explicitly stated rules or a
combination of them. Thus, a power series was associated with a given function and indicated a
equal to it if and only if it was derived from this function by means of the application of one of
rules or of a finite combination of them.

Eighteenth-century mathematicians presented the accepted procedures for the developm
function in different ways. InDe analysis, composed in 1671 but only published in 1711,18 Newton
presented two procedures for expanding a given function in a power series. These proced
generally known as Mercator’s rules, since particular cases of them had already been used by N. M
in his Logarithmotechnia.19 They consisted of the application of the arithmetical rules for dividin
number by another number, or for extracting a root of a given number to literal expressions (see

15 It should be clear that we use the symbols “f (x)” and “
∑∞
i=0 aix

i ” in order to refer to any particular functions or pow
series. The relation expressed by (1) should be understood as a relation between a particular function and a particu
series, whatever these functions and series are.

16 Let us note that, according to such a condition, the equalityf (x) = ∑∞
i=0aix

i has a precise sense independent of
interpretation as an identity (one would have an identity if “f (x)” and “

∑∞
i=0 aix

i ” were considered as two different notatio
of the same object), or even as an equivalence (this case would occur if “f (x)” and “

∑∞
i=0 aix

i ” were considered as two name
for distinct objects belonging to a common class of equivalence). The essential reason for this is that (1) does no
primarily the object denoted by the symbols “f (x)” or “

∑∞
i=0 aix

i ”, but these symbols themselves. It states that the fini
expression “f (x)”—i.e., not the quantity that this expression expresses, but this expression itself—has a certain relat
the relation of being transformable in) with the expression “

∑∞
i=0aix

i ”. Only once this relation between these two expressi
had been stated, could one interpret (1) as being concerned with the quantity expressed byf (x) (if the condition of convergenc
were satisfied).

17 As a proper object of a certain (mathematical) theory, we mean an object whose conditions of identity do not depe
conditions of identity of some other object, and thus constitutes the genuine matter of investigation of such a theory.
to proper objects are conditional ones. They are conceived as forms of expressions of the proper objects and the
studied within this theory because of their power to express them. Paradigmatic examples of proper and conditiona
are respectively curves and expressions in Descartes’s geometry, or, as we maintain here, functions and series in 18
analysis. For these notions, cf. Panza [1997b].

18 See [Newton MP, II, pp. 206–247], for the original version and Newton [1711] for the published text. We refer h
[Newton MP, II, pp. 210–219].

19 See Mercator [1668].
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In De methodis, composed in 1671 but only published in an English translation in 1736,20 Newton
presented another procedure, known as Newton’s method of the parallelogram, to express b
of a series the solution of a given algebraic equationP(x, y) = 0.21 The crucial idea of this procedur
was the following: by substituting the indeterminate series

∑∞
k=0bkx

αk for y in P(x, y) one obtains a
new polynomialQ(x), where all the coefficients of the powersxαk must be separately equal to zero. T
method of the parallelogram was a method for determining the coefficientsbk (k = 0,1, . . .) in the series∑∞

k=0 bkx
αk under such a condition, supposing that the value ofx is close to a certain given value (fo

example 0). In short, Newton reduced the given equation in such a way that the coefficientsbk could be
determined step by step. He thus obtained a series convergent on the given interval. What is im
here is not the specific nature of this method (it is well known), but the general principle on wh
is founded. This principle, generally known as the principle of undetermined coefficients, states
series

∑∞
k=0 bkx

αk is equal to 0 for everyx on a non-null interval (if and) only if all the coefficientsbk
(k = 0,1, . . .) are separately equal to zero.

Generally speaking, we can classify the accepted procedures of development into two class
first class comprises

(P1) The Mercator expansions of fractions and square roots of polynomials.
(P2) The binomial expansion for any exponent.
(P3) Any expansion following the method of undetermined coefficients.

Consider first the Mercator expansions. We have already observed that they arose from appl
usual rules of division and extraction of square root of numbers to literal expressions. Take, for in
the fraction a2

b+x (see [Newton MP, II, pp. 212–214, and III, pp. 36–38]). By dividinga2 by b + x,

one obtains the quotienta
2

b
and the remainder− a2

b
x. By dividing such a remainder byb + x, one

obtains the quotient− a2

b2x and the remaindera
2

b2x
2. By continuingad infinitumone obtains the serie

a2

b
− a2

b2x + a2

b3x
2 − · · · and the equality

(3)
a2

b+ x
= a2

b
− a2

b2
x + a2

b3
x2 − &c.

An analogous procedure can be applied in order to determine the terms of the development
∑∞

i=0 ai of a
square root, say

√
p+ q (see [Newton MP, II, pp. 214–216, and III, pp. 40–42]). One takes first

√
p as

being the first terma0 and calculates the first remainderR0 = p + q − a2
0 = q. Then, one calculates th

following terms by using the recursive rules

ai = Ri−1

2a0
= Ri−1

2
√
p
, Ri =Ri−1 −

[
2a0ai +

i∑
j=1

ajai−j+1

]
,

20 See [Newton MP, III, pp. 3–372] for the original version and Newton [1736], for the published text. We refer h
[Newton MP, III, pp. 51–57].

21 A similar procedure had been already presented inDe analysis: see [Newton MP, II, pp. 218–233].
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a1 = q

2
√
p
, R1 = q −

[
q + q2

4p

]
= − q2

4p
,

a2 = − q2

8p
√
p
, R2 = − q2

4p
+
[
q2

4p
+ q3

8p2

]
= q3

8p2
,

a3 = q3

16p2√p , R3 = q3

8p2
−
[
q3

8p2
+ 5q4

64p3

]
= − 5q4

64p3
,

a4 = − 5q4

128p3√p , R4 = − 5q4

64p3
+
[

5q4

64p3
+ 7q5

128p4

]
= 7q5

128p4
,

a5 = 7q5

256p4√p , R5 = 7q5

128p4
−
[

7q5

128p4
+ 21q6

512p5

]
= − 21q6

512p5
,

&c., &c.

and so:

(4)
√
p+ q = √

p+ q

2
√
p

− q2

8p
√
p

+ q3

16p2√p − 5q4

128p3√p + 7q5

256p4√p − &c.

The equalities (3) and (4) could also be easily obtained by applying the binomial expansion
better its simplified form,

(5)(p+ q)r = pr + rpr−1q + r(r − 1)

2! pr−2q2 + r(r − 1)(r − 2)

3! pr−3q3 + &c.,

wherer is any rational exponent. When obtained by means of Mercator’s procedures, the equali
and (4) are, however, directly extracted from the given expressionsa2

b+x or
√
p+ q by operating on such

expressions, while, when obtained by means of binomial expansions, they result from a particula
of the general equalities (5) which has, in its turn, to be proved. Hence, as long as they were o
by means of Mercator’s procedures, the equalities (3) and (4) were viewed as particular confirm
of such a general equality, rather than as a consequence of it. After Newton, nobody really d
the validity of (5) or was reluctant to apply it in order to get the development of particular func
Nevertheless, much effort was devoted to providing this equality with a proof more satisfying
Newton’s argument in support of it (which finally relied on ana priori assumption of the same extensi
of algebraic rules that (5) seem to guarantee), or to prove its generalization to irrational exp
A simple way to do that would have been to derive (5) from “Taylor’s theorem”:

(6)f (x + ξ)= f (x)+ df

dx
ξ + 1

2!
d2f

dx2
ξ2 + 1

3!
d3f

dx3
ξ3 + &c.

However, this was not considered as acceptable since (5) and its particular consequences wer
to be independent of the differential calculus and the rules of differentiation of the elementary fun
depended on (5).

Another way for obtaining many developments of particular functions—including the equa
(3) and (4)—by operating directly on these functions was to resort to the principle of undeter
coefficients. Unlike Mercator’s procedures, this principle allowed one to determine a developm
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power series whose existence was previously supposed: one started from the hypothesis that
functionf (x) could be developed in a power series and relied on such a principle in order to det
(or construct) this series. An example of such a procedure is found in Stirling’sMethodus differentialis,
where it is used in order to develop the function 1

A+Bx+Cx2 (see Stirling [1730, p. 2]). Stirling suppose
that

1

A+Bx +Cx2
=

∞∑
i=0

aix
i

and assumed that the consequent equality[ ∞∑
i=0

aix
i

][
A+Bx +Cx2

]− 1 = 0

should hold for anyx in a non-null interval. By multiplying and rearranging he derived

(Aa0 − 1)+ (Aa1 +Ba0)x + (Aa2 +Ba1 +Ca0)x
2 + (Aa3 +Ba2 +Ca1)x

3 + &c.= 0.

Finally, by applying the principle of undetermined coefficients, he obtained the equations

Aa0 − 1= 0,
Aa1 +Ba0 = 0,

Aa2 +Ba1 +Ca0 = 0,
Aa3 +Ba2 +Ca1 = 0,

&c.,

which allowed him to determine the coefficients:

a0 = 1

A
; a1 = − B

A2
; a2 = B2 −AC

A3
; a3 = 2ABC −B3

A4
; &c.

The principle of undetermined coefficients is here employed to find a development of the
function as a power series. One supposes that this function has such a development and, by
the principle, explicitly constructs it. This procedure may easily be justified as being a simple ext
of algebraic rules, if one assumes that the undetermined series

∑∞
i=0aix

i which is initially supposed to
be equal to the given function converges to this function in a non-null interval of values ofx, since, if it
is so and the supposed equalityf (x)=∑∞

i=0 aix
i is transformed by algebraic manipulations in anot

equality
∑∞

i=0bix
i = 0, then this latter equality should hold both forx = 0 and for somex different

from 0. It is thus enough to put firstx = 0 to obtainb0 = 0, then to divide this equality byx and afterward
to put againx = 0 to obtainb1 = 0, and so on. By operating in such a way, it is also possible, unde
same condition, to prove that the development off (x) that is thus obtained is unique. A similar pro
is found in the first volume of Euler’sIntroductio (see Euler [1748, I, pp. 230–231]; but see also E
[1740, p. 471]. From the suppositions

f (x)=
∞∑
i=0

aix
i ,

f (x)=
∞∑
bix

i ,
i=0
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it follows in fact that
∞∑
i=0

(ai − bi)x
i = 0

and then, successively:

a0 = b0; a1 = b1; a2 = b2; a3 = b3; &c.

The procedures (P1), (P2), and (P3) are all concerned with an infinitary extension of algebraic ru
and, therefore, we call them “quasi-algebraic” procedures. A second class of procedures consisted

(P4) Any expansion deriving from simultaneous differentiation or integration both of a certain fun
f (x) and a certain determinate power series

∑∞
i=0 aix

i already associated withf (x), or of a
function f (x) and a certain undetermined power series

∑∞
i=0 aix

i assumed to be associated w
f (x)—the operations on the power series being performed term by term.

Like (P3), these procedures also depend on the supposition that the series which is associated
given function converges to it on a non-null interval. Moreover, the procedures (P4) also depend on a
infinitary extension of the properties of linearity of differentiation and integration (today we know
they do not follow from simple convergence). In Chapter 2 of the second part of theInstitutiones calculi
differentialis (see Euler [1755, p. 235]), Euler justified this supposition for differentiation by asse
that fromf (x)=∑∞

i=0 aix
i it follows that

df (x)=f (x + dx)− f (x)=
∞∑
i=0

ai(x + dx)i −
∞∑
i=0

aix
i

=
∞∑
i=0

ai[(x + dx)i − xi] =
∞∑
i=0

aiix
i−1 dx.

In Chapter 3 of theInstitutiones calculi integralis(see Euler [1768–1770, Vol. 1, pp. 76–85]), he re
on an analogous rule for integration in order to state that the integral of a function whose develop∑∞

i=0 aix
m+in is equal to

∑∞
i=0

ai
m+in+1x

m+in+1.
The first of these rules was used by Newton in a preliminary version of theDe quadratura curvarum, in

order to obtain the first version of Taylor’s development of a function (cf. [Newton MP, VII, pp. 96–
If one puts

f (x)=
∞∑
i=0

Ai(x − a)i,

repeated term-by-term differentiation yields

df

dx
=

∞∑
i=0

Aii(x − a)i−1,

d2f

dx2
=

∞∑
Aii(i − 1)(x − a)i−2,
i=0
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d3f

dx3
=

∞∑
i=0

Aii(i − 1)(i − 2)(x − a)i−3,

&c.

and then, by settingx = a:

A1 = df

dx

∣∣∣∣
x=a
,

A2 = 1

2!
d2f

dx2

∣∣∣∣
x=a
,

A3 = 1

3!
d3f

dx3

∣∣∣∣
x=a
,

&c.

In the 18th century, various combinations of the procedures (P1)–(P4) were also used; namely,
the power series

∑∞
i=0aix

i ,
∑∞

i=0bix
i , &c. were respectively associated with the functionsf (x), g(x),

&c., and a single functionF(x) was constructed by combiningf (x), g(x), &c., then the power serie
constructed by combining the series

∑∞
i=0 aix

i ,
∑∞

i=0 bix
i , &c. in the same manner was considered

being the development ofF(x).
In general, the accepted procedures for the development of a given function were reduc

the procedures (P1)–(P4) or a combination of them. This does not mean that these procedures
considered as the only elementary procedures22 capable of providing power series developments of gi
functions. Mathematicians were open to the possibility of finding other procedures and other s
procedures were indeed applied in some particular cases.

Now, let us consider the question

(Q1) Under what conditions was a particular power series
∑∞

i=0 aix
i associated with a certain functio

f (x) in 18th-century analysis?

Of course, a particular power series
∑∞

i=0 aix
i was associated with a certain functionf (x) if it was the

result of a transformation of this function. However, as long as a function was considered not
as an expression but rather as the expression of a quantity, not all transformations could be a
Therefore, we cannot answer (Q1) simply by listing a finite list of procedures of transformation li
(P1)–(P4) (even though such an answer would be factually correct); indeed we have to comple
answer by examining another question:

(Q2) Why was a certain procedureP transforming a functionf (x) into a series
∑∞

i=0 aix
i considered

an acceptable rule of development23 in 18th-century analysis?

22 As we have already observed, they are not completely independent of each other.
23 By an acceptable rule of development, we mean a rule that, when applied to a given function, generates a pow

which can be considered as the development of the function.



G. Ferraro, M. Panza / Historia Mathematica 30 (2003) 17–46 29

he
n
ght that

s

e

quantity
ble

d
iation or
d

minary
pression

power
ty was

dum ex
We have previously observed that the equalityf (x) = g(x) between two functions meant that t
expressiong(x) was derived by a transformation of the expressionf (x). However, the given expressio
f (x) was taken into account insofar as it expressed a certain quantity: thus mathematicians thou
the result of the transformation had to express the same quantity, too.24 The twofold nature of function
was thus transmitted to the equalityf (x)= g(x): on one side, this equality stated thatg(x) is the result
of a certain transformation off (x); on the other side, it stated thatf (x) andg(x) expressed the sam
quantity.25

Thus, the rules of transformation of a function into another one had to preserve the expressed
in order to be acceptable. This means that a rule of transformationR was considered as being accepta
only if it was ascertained or supposed that one of the following conditions was satisfied:

(C1) for any functionF , F andR(F ) express the same quantity;26

(C2) for any two functionsF andG, if F andG express the same quantity, thenR(F ) andR(G) also
express the same quantity.

If R was considered to satisfy (C1), then the equalityR(F ) = F was considered acceptable. IfR was
considered to satisfy (C2) and the equalityF = G was given, then the equalityR(F ) = R(G) was
considered acceptable.

It was precisely because the usual algebraic rules satisfied the condition (C1) that they were considere
as acceptable rules of transformation; and it was precisely because the contemporary different
integration of two finite functionsf (x) andg(x) satisfied the condition (C2) that this rule was considere
as an acceptable rule of transformation.

In order to extend this approach to the rules of transformation of a function into a series, a preli
problem should be solved: under what condition could a power series be considered to be the ex
of a quantity?

An initial answer to such a question could rely on the notion of convergence. We saw that a
series expressed a quantity if and only if it was convergent to this quantity and that if this quanti
analytically expressed by the functionf (x), then the series had to converge tof (x). We could then
answer (Q2) in the following way:

(A2) In 18th-century analysis, a certain procedureP for transforming a functionf (x) into a series∑∞
i=0 aix

i was acceptable if and only if the power series
∑∞

i=0 aix
i was convergent tof (x) on a

non-null intervalI of the values ofx.

By composing (A2) with (C0), we would obtain the following condition:

24 See Euler [1748, I, p. 159]: “Si fuerity = 1−zz
1+zz atque ponaturz = 1−x

1+x , hoc valore locoz substituto erity = 2x
1+xx .

Sumpto ergo prox valore quocunque determinato ex eo reperientur valores determinati proz et y sicque invenitur valor ipsius
y respondens illi valori ipsiusz, qui simul prodiit. Uti, si sitx = 1

2, fiet z = 1
3 et y = 4

5; reperitur autem quoquey = 4
5, si in

1−zz
1+zz , cui expressioniy aequatur, ponaturz= 1

3.”
25 See Euler [1748, I, p. 38]: “Omnis transformatio consistit in alio modo eandem functionem exprimendi, quemadmo

Algebra constat eandem quantitatem per plures diversas formas exprimi posse.”
26 Of courseR(F) denotes the expression that is obtained by applying the ruleR to F .
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(C3) In 18th-century analysis, a certain procedureP that transformed a functionf (x) into a series∑∞
i=0 aix

i was an acceptable rule of development of such a function if and only if for any
α of x belonging to a certain non-null intervalI , the sequence{∑j

i=0 aiα
i}∞
j=0 approachedf (α)

indefinitely whenj increases, and it was finally equal tof (α), whenj was a infinite number.

Since (C0) is not a precise condition, (C3) is not a precise condition too or, at least, it does
provide a sufficiently clear criterion for deciding whether a certain procedureP is an acceptable rul
of development. However, this did not mean that (A2) was not taken into account, but only that, in ord
to decide if a particular series was convergent, 18th-century mathematicians relied upon a criter
did not depend on the intrinsic nature of the series but on the procedure of development genera
series.

Indeed a procedure of transformation was acceptable if and only if it was an infinitary extension
accepted rules of transformation of finite expressions into finite expressions. Thus, what guaran
convergence of the development of a functionf (x) to this function on a non-null interval of values ofx
was the formal nature of the procedure of the development—the fact that it was an infinitary ex
of finitary rules satisfying (C1) or (C2)—and not an analysis of the nature of the resulting serie
accordance with the definition (C0 ). It is precisely this reason that made the procedures (P1)–(P4) and
their combinations acceptable in the 18th century.

Therefore a satisfactory answer to (Q1) is the following:

(A1) In 18th-century analysis, a certain power series
∑∞

i=0 aix
i was associated with a certain functi

f (x) if it appeared as the result of the application tof (x) of one of the accepted procedures (P1)–
(P4), of any finite combination of them, or of any other particular infinitary extension of the
of transformation of finitary expressions satisfying one of the conditions (C1), (C2), and operating
on a given, determinate or undetermined, power series term by term.

This should be a satisfactory formulation of a sufficient condition for the truth of (1), in 18th-ce
analysis. Certainly, this condition is not necessary. However, it is not necessary only in the fol
sense. A certain power series

∑∞
i=0 aix

i could be understood as convergent tof (x) on a non-null interva
I of values ofx, according to (C0), even if it did not actually result from the application tof (x) of one
of the accepted procedures, and one did not actually know how to obtain it in such a way. But,
case, an 18th-century mathematician would have assumed that this series could in principle be
in such a way.

In the conclusion of Section 2, we observed that the equalityf (x)=∑∞
i=0aix

i was conceived in the
18th century as concerned with the formal nature of the functionf (x) and not with the convergence of th
series

∑∞
i=0aix

i and that this equality was considered as valid independent of the value ofx. This would
seem to be contradicted by our last conclusion, namely that the validity of such an equality depe
the convergence of the series on a certain non-null interval. However, there is no contradiction.
18th-century mathematicians considered the equalityf (x) = ∑∞

i=0 aix
i to be valid if and only if the

series
∑∞

i=0 aix
i was considered as convergent to the functionf (x) on a non-null interval, but they di

not think that the validity of such an equality had to be restricted to the values ofx belonging to such an
interval.
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4. Direct and inverse problems in power series theory

At this juncture, it should be evident that the very heart of the 18th-century theory of serie
constituted by the following pair of problems:

(P.1.a) To develop a given function into a power series;
(P.1.b) To return from a given power series to the function of which this power series is the develop

These problems should not be confounded with the following ones, with which modern real a
is concerned:

(P.2.a) To look for a power series which converges to a given function of a real variable;
(P.2.b) To sum a given (convergent) power series of a real variable.

Clearly, both the pair (P.1) and the pair (P.2) consist of a direct and a inverse problem. By “inve
problem,” we mean a problem that can only be formulated by referring to another problem, nam
direct one.

In modern analysis, problem (P.2.b) can be considered the direct one, since it is solved by sum
a given series, namely by seeking the limit of thenth partial sums. Problem (P.2.a), by contrast, can b
considered the inverse one. This is indeed the problem of seeking a power series the sum of
the given function and is understood by referring to the operation of the sum and, therefore, toP.2.b).
For instance, one says that11+x is the sum of

∑∞
i=0(−1)ixi for |x|< 1, because limn→∞

∑∞
i=0(−1)ixi =

limn→∞ 1+(−1)nxn+1

1+x = 1
1+x for |x| < 1, and that

∑∞
i=0(−1)ixi is the development of the function1

1+x
for|x|< 1, because 1

1+x is the sum of
∑∞

i=0(−1)ixi .
Instead, in 18th-century analysis (P.1.a), the problem of developing a function into a series was

direct problem and (P.1.b) was the inverse one.27 The path providing a solution to the problem (P.1.a)
was a progressive path, since it progressed from the function, which was a proper object of 18th-

27 Of course (P.1.a) and (P.1.b) were not the only pair of direct and inverse problems in 18th-century analysis. Gen
speaking, given an operationO transforming an objectα, belonging to a certain setS of objects, into an objectβ = O(α)

belonging to a setT, we can look for a inverse operationO′ such thatO′(β) = α. A problem arises whenO, S and T are
such that, for someβ in T, there is no objectα in S, such thatO′(β) = α. Today this problem is solved by defining a ne
setS∗ (which can be thought of as an enlargement ofS) whose objects are defined as the images of the objects ofT under the
operationO′. In this way, the problems of existence are settleda priori, by fixing the domain and range of the operationsO and
O′ once and for all. In the 18th century, mathematicians viewed the matter differently. They did not define a set of obS∗
a priori, so that it is always possible to find an image of every objectβ of the setT, under the operationO′; instead, for every
specific objectβ of T, they tried to construct a new object, somehow similar to the objects ofS, so that one could arrive at suc
an object by applying the operationO′ to β.

The difference between the modern and 18th-century approaches is crucial. Since ana priori definition is lacking, the
object is constructed as the resultO′(β) of the application of the operationO′ to the objectβ; for this reason, the nature o
the objectO′(β) could only be understood by means implicit reference to objects that were already given outside the
where the operationsO andO′ were initially defined. For example, the operationO and its inverseO′ might have a geometri
interpretation providing an explanation of the nature of new objects. This is the case for differentiation and integratio
[1768–1770, I, p. 7], Euler defined the “integral”

∫
g(x)dx of a functiong(x) as a functionf (x) such thatd[f (x)] = g(x)dx.

If for someg(x), no known functionf (x) were such thatd[f (x)] = g(x)dx, the symbol “
∫
g(x)dx” was used formally to
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mathematics, to the series, which was a particular expression associated with the function: in othe
it was asyntheticpath. The path providing a solution to the problem (P.1.b) regressed from the series
the function: it led from a particular expression associated with an unknown object to this objec
is exactly what the verb “to return” indicates). It was a regressive path, that is, ananalytical path.28 For
instance, given the function1

1+x , the direct problem was to develop such a function and the solu
of this problem was given by the series

∑∞
i=0(−1)ixi . Vice versa, the inverse problem was to find th

function whose development is given by the series
∑∞

i=0(−1)ixi . And thus the solution of this problem
was given by the function1

1+x just because
∑∞

i=0(−1)ixi was considered as the development of1
1+x .

Eighteenth-century mathematicians used different terms to refer to the return from a powe
to the original function (the function which this power series expresses). They, at times, used th
“regressus” (see, for example, [Leibniz GMS, III, p. 351] and de Moivre [1730, p. 123]); more often
preferred the term “sum”. The sense in which this term was employed was made explicit by Eul
series in analysis arise from the expansion of fractions or irrational quantities or even of transcen
it will in turn be permissible in calculation to substitute in place of such a series that quantity
whose development it is produced. For this reason [. . .] we employ this definition of sum, that is to sa
the sum of a series is that quantity which generates the series” (see Euler [1754–1755, pp. 59
translation in Barbeau and Leah [1976, p. 144]).

In order to use a clear and uniform language, we shall use the verb “to envelop” to refer
passage from a given power series to the function of which the series is the development. Of
by “envelopment” we shall denote the function that results from enveloping a series. Thus the p
(P.1.b) can be rephrased as follows:

(P.1.b’) To envelop a given power series into a function.

Using this terminology, we observe that when a mathematician of the 18th century spoke of su
a series, he meant enveloping it. Thus, for such mathematicians, the problem of summing a give
series was essentially different from our problem (P.2.b) and does not properly concern numerical ser
there is no sense in speaking about the development or envelopment of a number. Numeric
cannot be enveloped but only summed. Eighteenth-century mathematicians had a perfect know
the fact that certain series can be used to express numbers (in particular, irrational numbers); h
they usually considered a series like

∑∞
i=0ai as a particular case of the power series

∑∞
i=0 aix

i for the
positionx = 1, and thought that the most natural way to sum

∑∞
i=0ai was to determine the envelopme

f (x) of
∑∞

i=0 aix
i and then take

∑∞
i=0 ai = f (1). This should make it clear that 18th-century analy

unlike modern real analysis, was not a theory of real numbers. It was rather a theory of (cont
quantities, insofar as they were expressed by means of a convenient expression.

To end this section, we make explicit a general condition concerning the problems (P.1.a) and (P.1.b),
which was only implicit in the previous remarks. The generic symbol “f (x),” which indicates a function
in the equality (1), is nothing but a written convention and cannot therefore support any formal proc
the generic symbol “

∑∞
i=0 aix

i ,” which indicates a power series in such an equality, is instead an ex
exhibition of a particular type of series and can support some formal procedures. Therefore, in ord

denote an unknown function (but subject to certain general conditions) such thatd[∫ g(x)dx] = g(x)dx, and to which one
could give a geometric meaning (area, length,. . .).

28 On the notion of analytic and synthetic as they are used here, cf. Panza [1997a].
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from the first symbol to a complete determination of a particular object, one has to follow differen
which are part of a process of progressive determination that necessarily includes the determinati
particular form of the function. Only once these different steps are performed can a formal proce
applied tof (x). In order to proceed from the second symbol to a complete determination of a par
object, only one step has to be made, i.e., the determination of the coefficients occurring in it. An
if this step is not performed, a formal procedure can be applied to the series. In other words: no
procedure can be applied to a (completely) generic function, while certain formal procedures
applied to (completely) generic power series.

5. Direct and inverse strategies to develop a function and envelop a series

We are now ready to consider different strategies to solve the problems (P.1). We shall distinguish fou
pairs of them, each pair being composed of a strategy to solve the problem (P.1.a) and a strategy to solv
the problem (P.1.b). Since each of these problems is the inverse of the other, we could take each
these strategies as the inverse of the other strategy belonging to the same pair. However, we s
distinguish between the first pair, composed of two strategies aiming to solve the problem (P.1.a) and
the problem (P.1.b) respectively, in a direct way, and the other three pairs, each of which is com
of two strategies aiming to solve the problem (P.1.a) and the problem (P.1.b) respectively, in an invers
way (that is, by looking for a solution of the inverse problem). Thus, we prefer to consider in g
the two strategies belonging to the first pair as being direct strategies to solve the problems (P.1.a) and
(P.1.b) respectively, and the six strategies belonging to the other three pairs as being inverse st
to solve these same problems. This is because we shall denote, for short, the two strategies b
to the first pair respectively asDS.a andDS.b, and the six strategies belonging to the three other p
respectively asiIS.a and iIS.b, tIS.a andtIS.b, andaIS.a andaIS.b. The meaning of the small lette
“ i”, “ t” and “a” in these acronyms are the following: the letter “i” denotes immediate strategies; the let
“ t” denotes transformative strategies; and the letter “a” denotes analogic strategies. We shall see w
this means exactly in the different cases. For the time being, let us simply present the scheme, illu
our classification in a compact way (see Table 1).

Let us first imagine that a particular functionf (x) is given. An initial obvious way for solving th
problem (P.1.a) with respect to this function is:

(DS.a) To apply directly tof (x) one of the procedures (P1)–(P4), an appropriate combination of them
or any other particular accepted procedure of development.

Table 1

Strategies To solveP.1.a To solveP.1.b

Direct DS.a DS.b
Inverse

Immediate iIS.a iIS.b
Transformative tIS.a tIS.b
Analogic aIS.a aIS.b
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Let us now imagine, instead, that a particular power series
∑∞

i=0Aix
i is given. An obvious strategy t

solve the problem (P.1.b) with respect to this series is:

(DS.b) To operate directly on the given series
∑∞

i=0Aix
i and transform it, by suitable manipulatio

and/or substitutions, into a finitary expressionf (x), which is assumed to be the sum of t
series.

A subsequent application of strategy (DS.a) to f (x) can then confirm that this function is precise
the solution to the problem (P.1.b) with respect to

∑∞
i=0Aix

i .

Two examples of (DS.a) are Euler’s and Lagrange’s developments of the exponential functiony = ax ,
respectively, in Euler [1748, 1, pp. 123, 124] and in Lagrange [1797, pp. 18–20] and [1813, pp.
Œuvr., 9, pp. 45–48]. Let us consider the second of these examples. Lagrange started from the i

(7)ax = [(
1+ (a − 1)

)n] xn
and, by applying the binomial expansion, he obtained

ax =
[
1+ n(a− 1)+ n(n− 1)

2! (a − 1)2 + n(n− 1)(n− 2)

3! (a − 1)3 + &c.

] x
n

.

By rearranging this equality, it is possible to put it in the form

(8)ax = [
1+H1n+H2n

2 +H3n
3 + &c.

] x
n ,

where the first coefficientH1 is the series

(a − 1)− 1

2! (a − 1)2 + 2

3!(a − 1)3 + &c.

By applying the binomial expansion to (8) Lagrange obtained, then:

ax=1+ x
(
H1 +H2n+H3n

2 + &c.
)

+ x(x − n)

2!
(
H1 +H2n+H3n

2 + &c.
)2

+ x(x − n)(x − 2n)

3!
(
H1 +H2n+H3n

2 + &c.
)3 + &c.

This equality clearly holds for anyn, whatever the values of the variablex and of the constanta. This is
becausen is, as Lagrange remarks, “entirely arbitrary.” Thus the second member of such an equa
to be independent ofn, which is possible only if all its terms wheren occurs cancel each other. Thus,

ax = 1+Ax + A2

2! x
2 + A3

3! x
3 + &c.,

where

A= (a − 1)− 1
(a − 1)2 + 2

(a − 1)3 + &c.

2! 3!
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As a first example of (DS.b) let us consider the sum of the geometric series
∑∞

i=0 x
α+iβ . In his [1732–

1733, pp. 44, 45], Euler set

S =
m∑
i=0

xα+iβ

and obtained

(9)S − xα =
m∑
i=1

xα+iβ .

By addingxα+(m+1)β to both the sides of (9) and dividing them byxβ, he obtained

S − xα + xα+(m+1)β

xβ
=

m∑
i=0

xα+iβ = S

and then

(10)S =
m∑
i=0

xα+iβ = xα − xα+(m+1)β

1− xβ
.

Takingm= ∞ in (10) and assuming that|x|< 1, Euler concluded that

(11)
∞∑
i=0

xα+iβ = xα

1− xβ
.

As another example, consider the series
∑∞

i=1(2i− 1) x
i

i! . In his [1732–1733, pp. 70, 71], Euler first s

m∑
i=1

(2i − 1)
xi

i! = S(x,m)

and, by integrating term by term (and assuming that the constant of integration is null), derived
the equality

(12)
1

2
x

1
2

[∫
x− 3

2
[
S(x,m)

]
dx

]
=

m∑
i=1

xi

i! .

He differentiated (12) and obtained∫
x− 3

2 [S(x,m)]dx
4x

1
2

+ S(x,m)

2x
= 1+

m∑
i=1

xi

i! − xm

m! .

By comparison with (12) he derived

(1− 2x)
∫
x− 3

2
[
S(x,m)

]
dx = 4x

1
2 − 2S(x,m)

x
1
2

− 4xm+ 1
2

m! .

Assuming thatm= ∞, this equality reduces to

(13)
∫
x− 3

2
[
S(x)

]
dx = 4x − 2S(x)

1 ,

(1− 2x)x 2
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the

].
whereS(x)= S(x,∞). By differentiating (13) and consideringS(x) as an independent variableS, Euler
had

Sdx

x
√
x

= 2x dx + 4x2 dx + S dx − 6Sx dx − 2x dS + 4x2 dS

(1− 2x)2x
√
x

.

Hence

dx + 2x dx − S dx − 2xS dx − dS + 2x dS = 0

and

dS + S(1+ 2x) dx

1− 2x
= (1+ 2x) dx

1− 2x
.

Euler then multiplied this equality bye
−x

1−2x and noted that the left-hand side becomes equal to

differential of the functione
−xS

1−2x of two variablesx andS. Thus he obtained

e−xS
1− 2x

=
∫
e−x(1+ 2x)

(1− 2x)2
dx = e−x

1− 2x
− 1

(the constant−1 being determined under the conditionS(0)= 0) and finally

(14)S =
∞∑
i=1

(2i − 1)
xi

i! = 1− ex(1− 2x).

A third example is taken from theInstitutiones calculi differentialis[Euler, 1755, 2, pp. 217, 218
Supposing that a power series

∑∞
i=1Aix

i is given, Euler transformed it by the substitution

x = y

1+ y
.

Since, for any integeri, we have

xi =
(

y

1+ y

)i
=

∞∑
k=0

(−i
k

)
yi+k,

he obtained

∞∑
i=1

Aix
i=

∞∑
i=1

Ai

[ ∞∑
k=0

(−i
k

)
yi+k

]
=

∞∑
i=1

[
i−1∑
k=0

(
k− i

k

)
Ai−k

]
yi

=
∞∑
i=1

[
i−1∑
k=0

(
k − i

k

)
Ai−k

](
x

1− x

)i
,

and, since

i−1∑(
k− i

k

)
Ai−k =*i−1A1,
k=0
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(15)
∞∑
i=1

Aix
i =

∞∑
i=1

*i−1A1

(
x

1− x

)i
.

If the differences*jA1 are equal to zero for large enoughj , then
∑∞

i=1*
i−1A1(

x
1−x )

i reduces to a finite
expression which Euler assumed to be the envelopment of the given series

∑∞
i=1Aix

i . For instance, by
applying (15) to the series

∑∞
i=1 i

2xi , one has

∞∑
i=1

i2xi=
∞∑
i=1

*i−1
[(
i2
)
i=1

]( x

1− x

)i

= x

1− x
+ 3

(
x

1− x

)2

+ 2

(
x

1− x

)3

= x + x2

(1− x)2
,

because

*0[(i2)
i=1

]=1,

*1[(i2)
i=1

]=3,

*2[(i2)
i=1

]=2,

and

*r
[(
i2
)
i=1

]= 0,

for anyr > 2.
Shortly afterwards, Euler [1755, 2, pp. 240–242] considered a series

∑∞
i=0Aix

i , such thatAi = uivi ,
where the envelopment of

∑∞
i=0 vix

i is a known functionf (x), and{ui}∞
i=0 is a suitable sequence. T

envelop such a series, he put it in the form

∞∑
i=0

Aix
i =

∞∑
i=0

Ci
xi

i!
dif (x)

dxi
,

where the coefficientsCi had to be determined. To determine these coefficients, Euler remarked tha
the assumed equality

f (x)=
∞∑
i=0

vix
i ,

the other equality

Ci
xi

i!
dif (x)

dxi
=

∞∑
Ci

(
j

i

)
vjx

j

j=0
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follows. Thus
∞∑
i=0

uivix
i =

∞∑
i=0

( ∞∑
j=0

Ci

(
j

i

)
vjx

j

)
=

∞∑
j=0

vjx
j

(
j∑
i=0

Ci

(
j

i

))
,

and then, by the method of undetermined coefficients,

uj =
j∑
i=0

Ci

(
j

i

)
;

that is

Ci =*iu0,

and therefore
∞∑
i=0

Aix
i =

∞∑
i=0

uivix
i =

∞∑
i=0

xi

i!
dif (x)

dxi
*iu0.

Once again, if the differences*iu0 are equal to zero for large enoughi, then
∑∞

i=0
xi

i!
dif (x)

dxi
*iu0 reduces

to a finite expression, which Euler assumed to be the envelopment of the given series
∑∞

i=0Aix
i .

As an example, Euler considered the series
∑∞

i=0
(i+1)2+1

i! xi . Since one knows that
∑∞

i=0
1
i!x

i = ex , one

can set
∑∞

i=0
(i+1)2+1

i! xi =∑∞
i=0uivix

i , where(i + 1)2 + 1= ui and 1
i! = vi . One would thus obtain

∞∑
i=0

(i + 1)2 + 1

i! xi=
∞∑
i=0

xi

i!
di(ex)

dxi
*i
[(
(i + 1)2 + 1

)
i=0

]

=ex
∞∑
i=0

xi

i!*
i
[(
(i + 1)2 + 1

)
i=0

]
=ex(2+ 3x + x2),

since

*0[((i + 1)2 + 1
)
i=0

]=2,

*1
[(
(i + 1)2 + 1

)
i=0

]=3,

*2[((i + 1)2 + 1
)
i=0

]=2,

and

*r
[(
(i + 1)2 + 1

)
i=0

]= 0

for anyr > 2.
These examples show that the strategy (DS.b) could have different forms. The previous examples r

on the following versions of it:

(DS.b.1) To construct the sequence{∑j

i=0Aix
i}∞
j=0 of the partial sums of the given series

∑∞
i=0Aix

i ,
and to search for a (recursive or direct) rule of formation of the terms of this sequence
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the expression of its generic term
∑m

i=0Aix
i ; if this expression reduces to another finita

expressionf (x) for the positionm = ∞ this latter expression can be supposed to be
envelopment of the given series.

(DS.b.2) Imagine that, using some known developments, it is possible to transform a given powe∑∞
i=0Aix

i into another series
∑∞

i=0Bix
i , the terms of which are equal to 0 wheni is greater

than an appropriatem; then the series
∑∞

i=0Bix
i is reduced to a finitary expression which

supposed to be the envelopment of the given series.

Both (DS.a) and (DS.b) are direct strategies for solving the problems (P.1.a) and (P.1.b), respectively:
indeed they lead us to the desired result by manipulating the given object. In the case of (DS.a), by
manipulating a known function, one derives a series which is its development; in the case of (DS.b), by
manipulating a given series, one derives a function which is its envelopment. To use a classic exp
we can say that these strategies are synthetic. This is because, by performing them, one oper
known object to find the object considered to be unknown in the formulation of the problem.

Direct strategies are very natural, but they are not the only possible ones, and, as a matter of f
are not the only ones that were followed in 18th-century analysis. In fact, although the problemsP.1.a)
and (P.1.b) were conceived as essentially distinct from each other, it is clear that the solution to
them also provides the solution of the other, supposing that in this latter problem what is consid
given is that which is sought in the former and vice versa. As an example, consider the equality
has been obtained following a direct strategy and states that 1− ex(1 − 2x) is the envelopment of th
given series

(16)x + 3
x2

2! + 5
x3

3! + 7
x4

4! + &c.

It is clear that, once this equality has been stated, and the function 1− ex(1− 2x) is assumed to be given
one can easily conclude that the series (16) is its development. This is a simple example of the fo
inverse strategy to solve the problem (P.1.a):

(iIS.a) If a particular functionf (x) is given and it is possible to recognize it as a known envelopmen
known series

∑∞
i=0Aix

i , then it can be immediately concluded that
∑∞

i=0Aix
i is the developmen

of f (x).29

A similar strategy can be followed in order to solve the problem (P.1.b). Let us imagine, for example
that the series

2+ x − 6x2 − 3x3 + 18x4 + 9x5 − 54x6 − 27x7 + &c.

is given and one recognizes it as the development of the functionx+2
1+3x2 . One can thus immediate

conclude that x+2
1+3x2 is the envelopment of this series.

This is the strategy Newton used in a sketch of a treatise on quadratures and binomial develo
composed in the summer of 1665, in order to express the area of the hyperbola of equationy = a2

(b+x)2 by

29 An interesting example of this procedure can be found in Euler [1730–1731a, 1730–1731b, 1732–1733]. We pre
present it here because it involves some difficulties concerning the nature of integrals which are beyond of the sco
paper.
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means of a finitary expression (cf. [Newton MP, I, p. 129]. By using the development ofy into a power
series, he first found that this area could be expressed by the power series

a2

b2
x − a2

b3
x2 + a2

b4
x3 − &c.

Then he compared this series with the development ofa2

b+x , that is,

a2

b
− a2

b2
x + a2

b3
x2 − &c.,

and concluded that the area he was looking is was equal to

a2

b
− a2

b+ x
.

Generally speaking, such a strategy is the following:

(iIS.b) If a particular series
∑∞

i=0Aix
i is given and it is possible to recognize it as a known developm

of a known function, then, it can be immediately concluded thatf (x) is the envelopment o∑∞
i=0Aix

i .

To illustrate how this strategy works, let us consider the series

1+ x + 2x2 + 3x3 + 5x4 + 8x5 + &c.=
∞∑
j=0

[
j∑
k=0

(
j − k

k

)]
xj .

According to the binomial expansion for positive integers exponents, it follows that

1+ x + 2x2 + 3x3 + 5x4 + 8x5 + &c.=
∞∑
i=0

(
x + x2

)i
.

But, by settingx + x2 = y and applying the previous procedure to sum a geometric series, we hav
n∑
i=0

(
x + x2)i = n∑

i=0

yi = 1− yn

1− y
,

and thus

1+ x + 2x2 + 3x3 + 5x4 + 8x5 + &c.=
∞∑
i=0

(
x + x2

)i = 1

1− y
= 1

1− x − x2
,

and 1
1−x−x2 is thus the envelopment of the given series 1+ x + 2x2 + 3x3 + 5x4 + 8x5 + &c., this result

being obtained by observing that this latter series is the sum of an infinite number of finite develop
The strategies (iIS.a) and (iIS.b) are two inverse strategies for solving (P.1.a) and (P.1.b), but they are

also immediate, since they immediately refer to an already given solution to the opposite problem
cases allow one to obtain the desired result by using an already known result which has been
by operating on the object that is considered as unknown in the given problem. Using a more
language, we can say that they are analytic procedures.
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It is interesting to note that these procedures are analytic though they do not solve the problem
is proposed by manipulating a generic function or a generic series, but by handling a functio
series guessed at in some way, i.e., by following a synthetic path. This shows that an analytic pro
consisting in working on an unknown objectK which is to be found as if it were given, can sometim
be performed by following a synthetic path: one works on a determinate objectK and verifies that the
given object can be derived fromK . This is not the same as operating on a undetermined objectX which
is precisely what has to be found. In this latter case the path also is analytic.30

Let us now imagine that a particular functionf (x) is given and that it is possible to recognize it as
result of the application of a certain operation (also applicable to power series, term by term) to a
envelopmentg(x) of a known series

∑∞
i=0Aix

i . This provides another strategy to solve the prob
(P.1.a):

(tIS.a) The operation, which leads from a functiong(x) to another functionf (x), can be applied to th
development

∑∞
i=0Aix

i of g(x); this produces a new series
∑∞

i=0Bix
i , which is the developmen

of the functionf (x).

The successive application of one of the strategies (DS.a) or (DS.b) to f (x) or to
∑∞

i=0Bix
i ,

respectively, can successively confirm such a result.
A similar strategy for solving (P.1.b) is then obvious. Let us imagine then that a particular se∑∞
i=0Aix

i is given and that it is possible to recognize it as the result of the application of a c
operation (also applicable to finitary analytic forms) to a known development

∑∞
i=0Bix

i of a known
functionf (x); then:

(tIS.b) The operation, which leads from
∑∞

i=0Bix
i to

∑∞
i=0Aix

i , can be applied tof (x); this produces
a new functiong(x), which is the envelopment of the series

∑∞
i=0Aix

i .

The successive application of one of the strategies (DS.a) or (DS.b) to g(x) or to
∑∞

i=0Aix
i ,

respectively, can successively confirm such a result.
(tIS.a) and (tIS.b) are two inverse strategies for solving (P.1.a) and (P.2.b). Indeed, in this case as we

one arrives at the result by operating on an object that is not given in the proposed problem. Howe
object is not the unknown object of the problem but an object that is connected to the unknown ob
means of a certain transformation. We can say that these strategies are not only inverse (i.e., ana
also transformative.

As an example of the strategy (tIS.a), let us consider Euler’s development of the functiony =
log(1+ x + x2 + x3) in his [1768–1770, 1, p. 83]. Euler started from the equality

y = log
(
1+ x + x2 + x3)= log

1− x4

1− x
= log

(
1− x4)− log(1− x)

30 This remark should justify Euler’s use of the term “synthetic” to characterize the procedure of development he ad
his [1732–1733]. Here Euler termed as “synthetic” a procedure he described as consisting in wondering “what the se
be whose sums are expressed” by certain formulas (cf. Euler [1732–1733, p. 42]. By asserting that this is a synthetic p
Euler seems to insist on the logical nature of the path rather that on the logical nature of the argument. He underlines
that, even if his procedure is regressive, it does not consist in operating on an unknown object since it concerns know
is already available. A scheme based upon this point of view is presented in Ferraro [1998].
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given
and observed that

d

dx
(y)= d

dx

(
log
(
1− x4)− log(1− x)

)= − 4x3

1− x4
+ 1

1− x

and, according to (11),

x3

1− x4
=

∞∑
i=0

x3+4i; 1

1− x
=

∞∑
i=0

xi.

He concluded from here that integrating term by term the series

∞∑
i=0

xi −
∞∑
i=0

4x3+4i

(and supposing that the constant of integration is null), one should have the development of log(1+ x +
x2 + x3) which was sought,

log
(
1+ x + x2 + x3)=

∞∑
i=0

xi+1

i + 1
−

∞∑
i=0

x4+4i

i + 1
=

∞∑
i=0

(−3)([
i+1

4 ]−[ i4 ]) x
i+1

i + 1
,

where the symbol[q] denotes the integral part of the numberq.
As an example of (tIS.b) consider the series 1− 2x + 3x2 − 4x3 + &c. It is easy to recognize tha

this series can be obtained by differentiating the power series
∑∞

i=0(−1)i+1xi term by term and dividing
the result by the differentialdx. Since

∑∞
i=0(−1)i+1xi is the known development of− 1

1+x , it is then
sufficient to calculate the differential ratio of the last function in order to derive the sum of the
series:

1− 2x + 3x2 − 4x3 + &c.= 1

(1+ x)2
.

This is the procedure by which Euler found in his [1761, pp. 71, 72] the sum of the series

1− 2nx + 3nx2 − 4nx3 + · · ·
for n= 2,3, . . . ,6, which are thus

1− x

(1+ x)3
,

1− 4x + x2

(1+ x)4
,

1− 11x + 11x2 − x3

(1+ x)5
,

1− 26x + 66x2 − 26x3 + x4

(1+ x)6
,

1− 57x + 302x2 − 302x3 + 57x4 + x5

(1+ x)7
,

respectively.
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Let us finally suppose that a particular functionf (x) is given and that it is in a certain respect simi
to a known envelopmentg(x) of a known series

∑∞
i=0Aix

i . One could try to transform this latter seri
into a new series

∑∞
i=0Bix

i as similar to it asf (x) is similar tog(x). If this is possible, one could gue
that

∑∞
i=0Bix

i is the development of the given functionf (x), and then try to verify this conjecture
same way, for instance by applying the strategy (DS.b) to

∑∞
i=0Bix

i . This is a further strategy to solv
the problem (P.1.a):

(aIS.a) If a particular functionf (x) is given and it is in a certain respect similar to a known envelopm
g(x) of a known series

∑∞
i=0Aix

i , and it is possible to transform
∑∞

i=0Aix
i into a new series∑∞

i=0Bix
i , which is as similar to

∑∞
i=0Aix

i asf (x) is similar tog(x), one could guess tha∑∞
i=0Bix

i is the development off (x), and try to verify this conjecture in some way.

The inverse strategy to solve (P.1.b) is obvious, in this case as well:

(aIS.b) If a particular series
∑∞

i=0Aix
i is given and it is in a certain respect similar to a kno

development
∑∞

i=0Bix
i of a known functionf (x), and it is possible to transformf (x) into

a new functiong(x) as similar tof (x) as
∑∞

i=0Aix
i is similar to

∑∞
i=0Bix

i , one could gues
thatg(x) is the envelopment of

∑∞
i=0Aix

i , and try to verify this conjecture in some way.

To perform this latter verification, one can apply, for instance, the strategy (DS.a) to g(x).
(aIS.a) and (aIS.b) are also inverse and indirect strategies for solving (P.1.a) and (P.2.b), respectively.

Indeed, in these cases we reach the result by operating on an object that is neither given in the p
problem nor is the unknown object of this problem. But, in this case, the object we operate on is con
to the unknown object not by means of a certain transformation, but by a sort of analogy. We can th
say that not only are these strategies inverse (i.e., analytic) and indirect, but also analogic, rat
deductive.

An example of an analogic procedure is the transition from the discrete to the continuous,
as “Wallis’s interpolation.” Following Newton, Jakob Bernoulli ([1689–1704, 2, pp. 957–958]
[1713, p. 294]) considered the development of( l

m−n)
r for any natural integerr and derived from it the

development of( l
m−n )

α for any real numberα. In general, such a procedure is performed by examin
the known developments of a sequence of functionsFn(x) according to the scheme

F0(x)=A0,0 +A1,0x +A2,0x
2 +A3,0x

3 +A4,0x
4 +A5,0x

5 + · · · ,
F1(x)=A0,1 +A1,1x +A2,1x

2 +A3,1x
3 +A4,1x

4 +A5,1x
5 + · · · ,

F2(x)=A0,2 +A1,2x +A2,2x
2 +A3,2x

3 +A4,2x
4 +A5,2x

5 + · · · ,
&c.

If the law of coefficientsAn,m is known, one has

Fα(x)=A0,α +A1,αx +A2,αx
2 +A3,αx

3 +A4,αx
4 +A5,αx

5 + &c.,

whereα is any real number. If the function is given, this procedure is an example of (aIS.a); instead, if
the series is given, it is an example of (aIS.b).

We have thus presented the four pairs of strategies to solve the problems (P.1.a) and (P.1.b) we
announced at the beginning of this section. Of course, we do not claim that this exhausts
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roblems.
and a

rmining
30], de

luded

ubtler
s
s.
cedures
An

d upon
cients.
re being
tic path.
e pairs

Basileæ.
42, Vol.

de ludo
possible analytic or synthetic procedures used by 18th-century mathematicians to solve these p
For instance, we can hypothesize that, if a relation of the form (1) between a certain function
determinate power series is already given, it is then possible to move on from this relation to dete
the development of other functions or the envelopments of other series. For instance, in his [17
Moivre considered the development

1

1− x − x2
= 1+ x + 2x2 + 3x3 + 5x4 + 8x5 + &c.

and observed that

1

1− x − x2
= 1− x2

1− 3x2 + x4
+ x

1− 3x2 + x4
,

1−x2

1−3x2+x4 and x

1−3x2+x4 being, respectively, an even function and odd function. From here he conc
that

1− x2

1− 3x2 + x4
= 1+ 2x2 + 5x4 + &c.

x

1− 3x2 + x4
= x + 3x3 + 8x5 + &c.

Given the distinctions we have introduced, it would seem moreover that further even s
distinctions can be identified. For example, the strategy (DS.a) can be performed in different way
according to the procedure chosen among the procedures (P1)–(P4) and their possible combination
Another possible distinction has already been mentioned briefly: the distinction between the pro
that follow a synthetic path, like (iIS.a) and (iIS.b), and the procedures that follow an analytic path.
analogous distinction could be made between the procedures of development of a functionf (x) which
merely operate upon this given function, and the procedures which operate on this function an
the generic form of a power series, for example by following the method of undetermined coeffi
According to such a method, the coefficients of the development participate in the procedure befo
determined and we could say, also in this case, that such an analytical procedure follows a synthe

Of course, other different classifications can be made, based upon different pairs than th
analytic/synthetic or direct/indirect. However, it is not our aim to investigate this possibility here.
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