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NOTE 

Oresme's Proof of the Density of Rotations of a Circle through 
an Irrational Angle 

JAN VON PLATO 

Academy of Finland, Unioninkatu 40 B, Helsinki, Finland 

One of the theorems of Nicole Oresme's (ca. 1320-1382) says that, for two points moving 
uniformly but incommensurably along a circle, "no sector of a circle is so small that two 
such mobiles could not conjunct in it at some future time, and could not have conjuncted 
in it at some time." A detailed study of his proof of this and related theorems shows that 
he was in the possession of all the arguments needed for the proof to be conclusive. © 1993 
Academic Press, Inc. 

Nicole Oresme (ca. 1320-1382) gibt folgenden Satz. F~ir zwei Punkte, die sich gleichf6rmig, 
abet inkommensurabel auf einem Kreis bewegen, gilt, dab "kein Sektor des Kreises so klein 
ist, dab nicht zwei solche bewegliche Punkte einmal in der Zukunft in Konjunktion stehen 
k6nnten, und einmal in Konjunktion h/itten stehen k6nnen." Eine genaue Untersuchung 
yon Oresmes Beweis dieses Satzes und einiger damit zusammenh/ingender S/itze zeigt, dab 
er alle Argumente zur Verffigung hatte, die man ffir einen schltissigen Beweis braucht. © 1993 
Academic Press, Inc. 

Nicole Oresme (ca. 1320-1382) enuncia il teorema second© il quale, dati due punti in 
movimento rotatorio uniforme ma incommensurabile, "non vie alcun settore del cerchio 
tanto piccolo, che tali due re©bill non possano congiungersi in futuro, e non avrebbero potuto 
farlo." L© studio dettagliato della prova di quest© teorema e di alcuni altri connessi dimostra 
che Oresme possedeva tutti gli argomenti necessari per una prova conclusiva. ¢ 1993 Academic 
Press, Inc. 
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1. I N T R O D U C T I O N  

In  a two-par t  t ract  on  the c o m m e n s u r a b i l i t y  versus  i n c o m m e n s u r a b i l i t y  of  celes- 

tial mo t ions ,  Nico le  Oresme  s tudied the proper t ies  of  un i fo rm c i rcular  mo t ions  

[1]. In  the second  part ,  deal ing with c o m b i n a t i o n s  of  i n c o m m e n s u r a b l e  mot ions ,  

the fo l lowing Propos i t ion  4 appears .  " N o  sector  of  a circle is so small  that  two 

such mobi l e s  could  no t  c o n j u n c t  in it at some fu ture  t ime,  and  could  no t  have  

c o n j u n c t e d  in it at some t ime [Grant  1971, 253]. I f  we a s sume  the point - l ike  bodies  

to ro ta te  in the same sense ,  po in ts  of  c o n j u n c t i o n  are those  po in ts  of  the circle 

which  the bodies  occupy  at the same t ime. The  arcs b e t w e e n  two success ive  
po in ts  of  c o n j u n c t i o n  are equal  in length,  as are the angles  [Grant  1971, 257]. 
The re fo re  O r e s m e  is s tudy ing  what  are now called ro ta t ions  of  a circle th rough  a 
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given angle. A sector obviously is an interval of positive length of the circle, and 
with this reading Oresme's proposition can be formulated as saying that rotations 
with an irrational angle yield a dense set of points. It is interesting to inquire how 
complete Oresme's suggested proof was, especially since his result is usually 
known as a special case of Kronecker's theorem of 1884 [2]. (Dirichlet remarked 
already in 1842 that this special case had been "known for a long time" [3].) 

Oresme proves in the first part that two bodies in commensurable motion have 
a finite number of conjunction points so that their motion is periodic [Grant 1971, 
199]. In the second part he proves that, in the case of incommensurability, there 
are infinitely many conjunction points. Any arc between two points of conjunction 
is cut by a further conjunction. At several places Oresme seems to take it for 
granted that one may infer his proposition from this. What is missing from the 
argument is that the length of all the arcs produced by the conjunction points 
diminishes without limit [4]. By following his (rather verbal) proof and ensuing 
remarks, we shall see that the omissions in Oresme's argumentation can be ac- 
counted for with reasonings very close to Oresme's own in all respects. 

2. THE PROOF AND ITS ANALYSIS 

Oresme denotes by d the first point of conjunction and by e the following 
one. These are separated by the arc de. The velocities of the two bodies are 
incommensurable, which is the same as saying the arc de is incommensurable to 
the circle. Referring to his previous Proposition 3, Oresme says "after an arc 
equal to de is applied a certain number of times, the circle is surpassed and this 
arc crosses beyond point d by cutting arc de in point g"  [Grant 1971, 255]. 
Proposition 3 says that "whenever one of the two bodies is in the point where 
they are now, they will never be separated by a part commensurable to the circle." 
[Grant 1971, 253]. Its proof ends with the conclusion that no two conjunction 
points are separated by an angle commensurable to the whole circle [5]. This 
remark is the same as Proposition 2 [Grant 1971,251]. Apparently Oresme thought 
it necessary to be explicit about not ending in point d but beyond it [6]. 

Oresme continued: "The arc lying between the second and third points of 
conjunction will be cut in exactly the same manner, and so on in succession until 
the whole circle will be so divided that no part greater than arc dg will remain 
undivided." [Grant 1971, 255]. Here we encounter a problem. The argument 
assumes, without stating it, that dg > ge [7]. In this case it is true after two full 
circles are completed that there is no part greater than dg left, as in Figure 1. In 
the contrary case of dg < ge, this would not be the case. But if we iterate one 
full circle from g onward, a point Jl is reached, as in Figure 2. Since dg = gJl, 
gj~ < ge so that jl divides the arc ge. One more iteration gives a point J2 cutting 
j~e if gj~ < jle, so that after a certain number n of iterations, the point Jn passes 
e and the remaining part is smaller than dg. In other words, there is no part greater 
than dg as claimed by Oresme. 

Another repetition of Oresme's procedure gives a point k in the arc dg, "until 
finally the circle will be divided in such a way that no part of it will be greater 
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FIGURE I 

than arc dk" [Grant 1971, 255] [8]. Oresme says "this process can be carried into 
infinity by always dividing the circle into smaller parts ad infinitum. Thus, no part 
of the circle will remain but that it could not, at some time, be imagined as divisible 
in this way"  [Grant 1971, 255]. Oresme compares this to the division of the 
diagonal of a square by its side. Taking the remaining part, or excess of the side, 
and applying it, another part is left. Iteration produces a set of points on the 
diagonal cutting any two previous points reached. Here Oresme assumes that the 
remaining part "diminishes to infinity" so that a dense set on the diagonal is 
produced. A similar diminution is assumed when he concludes the proof of his 
proposition, stating that "no sector of the circle will be so small but that at some 
time in the future the mobiles could not conjunct in some point of it, and this is 
what we have proposed" [Grant 1971, 255-257]. 

There is a problematic point in Oresme's proof, and another in his proposition. 

9 
Jl 

FIGURE 2 
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He does not prove that the arcs "diminish to infinity," only that they are cut 
smaller. Sometimes he takes it as obvious that if there is an infinity of different 
conjunction points, they must be dense [Grant 1971, 255,257]. In the proposition, 
he says any sector will have a conjunction point. But in the proof he only concludes 
this for parts of the circle. A part is an arc between two conjunction points that 
have already been reached by the process. Oresme is fully aware that given a 
conjunction point, there will be infinitely many distinct points in the past as well 
as in the future; further, there is also space in the circle for the commensurable 
points not reached by the process at all [Grant 1971, 257-259]. Therefore not all 
sectors are parts of the circle in Oresme's sense. 

How should one supply the missing limiting argument in Oresme? Is there an 
elementary proof of Proposition 4, and how closely would it follow arguments 
used by Oresme? Oresme only proves that the greatest arc is cut smaller, but 
does not say anything about the proportion--for example, by giving it upper and 
lower bounds distinct from 1 and 0. An idea that immediately comes to mind is 
the procedure suggested above for handling the case of dg < ge. There, the arc 
ge was divided in a finite number of steps into parts not greater than dg. Since 
dg is smaller than half of the original arc de, after n steps all the parts reached 
are smaller than half of de. By repeating the process ad infinitum, it can now be 
seen as true that the greatest arc "diminishes to infinity." This would also at once 
justify the step from parts to sectors, for any sector would contain a part. 

How faithful is this argument? It turns out that the very next result, Oresme's 
Proposition 5, provides the answer. This proposition says that objects in incom- 
mensurable motion '~will conjunct infinitely close to any given point of conjunction, 
and have already conjuncted infinitely near to it" [Grant 1971, 259]. The proof is 
very brief. Let d be a point of conjunction, and c another point close to it. By 
Proposition 4, there is a conjunction between c and d. "And if another point, say 
f ,  were assigned halfway between, it is again obvious--by the same--that the 
points will conjunct between d andf. In this manner their conjunctions will approxi- 
mate infinitely close" [Grant 1971, 259-261]. The method of proof used here is 
the one we suggested above as a simple argument for the proof of Proposition 4. 
One cannot argue directly from Proposition 5 to Proposition 4, for the former is 
based on the latter, specifically, on the crucial step from "smaller parts ad infini- 
tum" to an arbitrarily small part. That is exactly the step in need of justification. 
But if we only apply the method, the proof it gives for Proposition 4 is our refined 
version of the original. Therefore, we may conclude that Oresme's proof for the 
density of rotations of a circle by an irrational angle, while not entirely conclusive, 
can be completed by elementary arguments used by himself in the very same 
context. 

3. GEOMETRIC DIOPHANTINE APPROXIMATIONS 

Oresme approached the density theorem by geometric means. This was neces- 
sary since he had no number concept available for formulating the property. A 
comparison with [Dirichlet 1842, 635] is instructive in this respect. Dirichlet indi- 
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cated that the following result from the theory of continued fractions had been 
known "for a long time": if a is irrational, there is always an infinity of integers 
x and y depending on each other ("zusammengeh6rig"), such that x-ay is smaller 
than 1/y. Since y must take an infinity of separate values, the decimal part of 
multiples of a has arbitrarily small values. A few steps give the connection to 
Oresme's theorem. We can obtain from an irrational a an incommensurable motion 
by taking o~ as the arc length between two conjunctions and by taking the circumfer- 
ence of the circle as rational, say, to simplify matters, of unit length with a < 1. 
With these conventions, the result Dirichlet refers to says that there is an infinity 
of numbers n such that the decimal part of an is less than 1/n [9]. In terms of 
rotations, a point is reached whose arc length is 1/n units from the starting point. 
Iteration gives a point 2/n distant,, and so on, yielding a dense set on the circle. 

Oresme's tract contains a beautiful description of a dense trajectory for the 
center point B of the sun. Assuming the incommensurability of the (apparent) 
daily and yearly rotations of the sun, the combined motion gives a spiral-like line 
of motion of B between the two tropics. "In accordance with what has been 
imagined here, the whole celestial space between the two tropics is traversed by 
B, leaving behind a web- or net-like figure expanded through the whole of this 
space. The structure of this figure was already infinitely dense [in infinitum inspis- 
sara] through the course of an infinite past time, and yet, nonetheless, it will be 
made continually more dense, since it produces a new spiral every day [Grant 1971, 
277]. In reading Oresme it at times appears as if he thought the incommensurable 
conjunctions would be equally distributed in all directions. Such equidistribution 
results were first proven by Bohl, Sierpinski, and Weyl in 1909-1910 [10]. In 
Oresme's work, only vague hints in this direction can be found, as when he says 
that "by means of the greatest inequality, which departs from every equality, the 
most just and established order is preserved" [Grant 1971, 257]. 
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NOTES 

1. The text, written around 1360, is found in [Grant 1971]. This volume also explains the more 
general significance of Oresme's work. 

2. Kronecker's result can be found in his [1884]. 

3. See Dirichlet [1842, 93]. The same result can be formulated as the statement that the combination 
of two incommensurable harmonic oscillations describes a dense motion. It can be given as a trajectory 
on a toms, known since 1857 as a Lissajous figure. This special case of Kronecker's density theorem 
seems to have been well known. It appears, for example, in Ludwig Boltzmann's paper on gas theory, 
as a motivation for ergodic motions of gas molecules; see [Boltzmann 1871]. 

4. This goes without comment in [Grant 1971, 45; Grant 1961, 445], as well as in [yon Plato 1981]. 

5. There is a slip or misprint in the translation here, rendering the Latin cornmensurabilem into its 
contrary; cf [Grant 1971, 252, line 64]. 

6. Why he refers to Proposition 3 instead of 2 is perhaps because its proof concludes with the 
remark Oresme needs, immediately preceding Proposition 4, as he notes. Grant refers to Oresme's 
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Proposition 1 [Grant 1971, 44, note 64]. This proposition states that in the case of incommensurable 
motion, two mobiles now in conjunction will never conjunct at that point at other times [Grant 1971, 
249]. 

7. This is noted by Grant, who says it is implicitly assumed [Grant 1971, 44]. See also [Grant 1961, 
445]. The notation for inequality and equality of arcs is just a shorthand. Oresme had a geometric 
notion of irrationals as incommensurable quantities. He would not consider them numbers. 

8. After what we have presented above, this should be put: no part remains that is greater than 
the smaller of dk or ke. 

9. By putting for x the integer next greater to an. A similar case, referred to in Oresme's proof of 
Proposition 4, would be given by the square with a diagonal of unit length. 

10. See [Hlawka & Binder 1986] for the history of these results. 
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