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We investigate Newton’s understanding of the limit concept through a study of certain proofs ap-
pearing in thePrincipia. We find that Newton, not Cauchy, was the first to present an epsilon argument,
and that, in general, Newton’s understanding of limits was clearer than commonly thought. We observe
Newton’s distinction between two properties easily confused, namelyf/g→ 1 and f − g→ 0, we
resolve a problem created by a spurious translation appearing in Cajori’s revision of Motte’s origi-
nal translation, and we come to a deeper understanding of the well-known but less well understood
Lemma XI of Section I, Book I. C© 2001 Academic Press

Nous examinons la notion newtonienne du concept de limite en étudiant certaines preuves qui
apparaissent dans lesPrincipia. Nous découvrons que Newton, et non pas Cauchy, a été le premier à
présenter un argument d’epsilon et que, en général, la compréhension newtonienne de la limite était
bien plus lucide qu’on ne le pense communément. Nous observons la distinction que fait Newton entre
deux propriétes qui se confondent facilement, à savoirf/g→ 1 et f − g→ 0, et nous résolvons un
problème né d’une traduction incorrecte parue dans la révision par Cajori de la traduction de Motte.
Nous parvenons ainsi à comprendre plus complètement le Lemma XI, Section I, Livre I, bien connu
mais moins bien compris. C© 2001 Academic Press
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How well did Newton understand the notion of limit? In chapters on the evolution of the
limit concept in standard books on the history of mathematics, Newton comes across as
vague and confused, almost clueless, especially compared, for example, to Cauchy:

Newton.

He had no approach to a limit that would be recognized today. [Bell 1945, 151]
This is the clearest statement Newton gave as to the nature of ultimate ratios, but ... it is precisely this
lack of arithmetical clarity which led to controversial discussions ... as to what Newton really meant....
The meanings of the terms ... “prime and ultimate ratio” had not been clearly explained by Newton, his
answers being equivalent to tautologies. ...Such an interpretation of Newton’s meaning, which of course
results in the ... indeterminate ratio 0/0, is not unjustified. [Boyer 1959, 198, 216, and 226]
Though by no means clear, this is the clearest statement Newton ever gave.... [Kline 1980, 135]
In this ... there are obscurities and difficulties. Newton appears to teach that a variable quantity and its
limit will ultimately coincide and be equal. [Cajori 1991, 199]
Newton [spoke] of “ultimate values of vanishing quantities,” but this is only to cover up with words the
imprecision of the ideas. [Dieudonné 1992, 62]
[Newton] ... succeeded in doing [nothing] more with the limit concept than confusing himself ... [Kline
1953, 231]

Cauchy.

The definitions of limit ... current today in thoughtfully written texts on elementary calculus are sub-
stantially those expounded and applied by Cauchy. [Bell 1945, 292]
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This is the most clear-cut definition of the concept which had been given up to that time. [Boyer 1959,
273]
It is essentially [Cauchy’s] definitions that we find in the more carefully written of today’s elementary
textbooks on the calculus. [Eves 1983, 425]
Even today Cauchy’s definition of limit ... will be found in any carefully written book on the calculus.
[Bell 1937, 286]
Cauchy’s work ... presented an acceptable set of definitions ... needed for a rigorous calculus. [Fauvel
and Gray 1987, 563]
He defined carefully ... the basic notions of the calculus—function, limit.... [Kline 1980, 174]
With the teaching work of Cauchy ... we find ourselves at last on solid ground. ...The notion of limit,
fixed once and for all, is taken as the point of departure. [Bourbaki 1994, 196]

Based on these statements, a search through original sources for the actual definitions
of limit given by these two mathematicians should reveal the stark contrast of a muddled
Newton and a rigorous Cauchy. The leading section of Newton’sPrincipiaopens with eleven
preliminary mathematical lemmas and closes with a discussion of limits, in particular limits
of quotients, or, as Newton puts it, ultimate ratios, and it is here in this closing discussion
that we find Newton’s best definition of limit:

Those ultimate ratios ... are not actually ratios of ultimate quantities, but limits ... which they can approach
so closely that their difference is less than any given quantity.... [Newton 1999, 442; Newton 1946, 39]1

A surprise: this is not the confused Newton we were led to expect. It may be more an
epsilon than an epsilon-delta definition, but the core intuition is clear and correct. Well,
perhaps Newton’s definition will look more confused when we compare it to Cauchy’s
1821 definition, which comes from hisCours d’Analyse:

When the successively attributed values of the same variable indefinitely approach a fixed value, so that
finally they differ from it by as little as desired, the last is called thelimit of all the others. [Grabiner
1981, 80]

Surprised again: where is the rigorous Cauchy, the Cauchy whose “definition of limit ...
will be found in any carefully written book on the calculus”? One would be hard pressed to
squeeze 34 much less 134 (=1821–1687) years worth of difference between the definitions
given by Newton and Cauchy. What’s going on?

Partly the problem stems from our tight focus on the definitions, a narrowness that has
inadvertently led us to compare the worst of Cauchy with the best of Newton and to obtain
as a result a misleading gauge of their relative command of the limit notion. In modern
mathematics, we naturally look for the meaning of a concept in its given definition, but in
Newton’s work and Cauchy’s as well, the intended meaning often lies hidden in a relatively
vague definition and only comes out explicitly and more precisely in subsequent calculations
and proofs. For example, in thePrincipia the more precise meaning behind Newton’s rough
definition of acceleration—as a quantity “proportional to the velocity which it generates
in a given time” [Newton 1999, 407; Newton 1946, 4]—only becomes clear later, in the
demonstrations of certain following propositions, where Newton computes accelerations
with a careful limit argument. Similarly, the real meaning of Cauchy’s definition of limit
becomes manifest in later proofs, where, given an², Cauchy determines an appropriate±.

1 Our translations throughout will follow Cohen and Whitman [Newton 1999], but we give page numbers for
both [Newton 1999] and Cajori’s revision [Newton 1946] of Andrew Motte’s 1729 translation.
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Concentrating on just hisdefinition, we thus underestimate Cauchy’sunderstandingof
limits. Do we make the same error with Newton, but in the opposite direction? Singling
out his definition from the Principia, do weoverestimateNewton’s understanding of lim-
its? We shall argue here that the answer is no, at least with regard to Newton’smature
understanding, that in fact by the time he wrote thePrincipia in 1687, Newton’s under-
standing of the limit process was as good as his surprisingly good definition and signifi-
cantly better than many works on the history of mathematics would have us believe. This
position would be difficult to defend if Newton’s definition stood alone. A single call
of clarity never duplicated, never amplified or applied in any demonstration, could well
seem almost accidental. But as we shall see, Newtondoesapply his definition while prov-
ing three preliminary mathematical lemmas of thePrincipia, and a study of these proofs
will tell us more about Newton’s understanding of limits (including the limits of that un-
derstanding) and will convince us, in particular, that the clarity of his definition was no
accident.

As we noted earlier, the statement we have taken as Newton’s definition of limit appears
early in thePrincipia in a discussion of the limit concept that follows the eleven preliminary
mathematical lemmas of Section I. Let us return to that point in thePrincipia, before we go
on to the lemmas themselves, because the two sentences which follow the definition provide
special insight into Newton’s command of the limit notion. At this stage of the discussion,
Newton tries to make clear (without the benefit of function notation) that the limit of a ratio
f/g, where bothf andg tend to 0, is not the ratio of the limits:

It can also be contended, that if the ultimate ratios of vanishing quantities [that is, the limits of such
ratios] are given, their ultimate magnitudes will also be given; and thus every quantity will consist of
indivisibles, contrary to what Euclid has proved.... But this objection is based on a false hypothesis.
Those ultimate ratios with which quantities vanish are not actually ratios of ultimate quantities, but
limits which ... they can approach so closely that their difference is less than any given quantity...This
matter will be understood more clearly in the case of quantities indefinitely great. If two quantities
whose difference is given are increased indefinitely, their ultimate ratio will be given, namely the ratio
of equality, and yet the ultimate or maximal quantities of which this is the ratio will not on this account
be given. [Newton 1999, 443; Newton 1946, 39, italics added]

In the calculus classroom, students always want to “plug in,” to calculate limits, whether
it’s plugging in the limits of the numerator and denominator to compute the limit of the
ratio or plugging in the value of the function to find the limit of the function. To get them to
see, not just the possibility of error in this, but themisunderstandingof the limit notion it
implies, a good teacher might provide his class with many examples where one manifestly
cannot plug in at all. One such example: the limit of a ratiof/g where the difference
f − g remains fixed as bothf andg become arbitrarily large. Newton, a good teacher often
in the Principia (but not in the lecture hall, where he cared little and students responded
in kind), offers exactly this example in the two sentences above that we have stressed
with italic. As he correctly points out, in a case like thisf/g→ 1 even thoughf andg
themselves have no limits at all. (A simple instance of this: (t + 1)/t → 1 ast →+∞.)
Newton’s illustration is the excellent pedagogical choice of a teacher who knows his subject
well, who knows in particular the distinction between having a ratio that tends to 1 and
having a difference that tends to 0, that one can have, as in his example,f/g→ 1 without
f − g→ 0.
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Ironically, just at this point where Newton, in making this distinction, illustrates his grasp
of the limit concept, a 19th-century commentator on thePrincipia, J.F.M. Wright, illustrates
his own confusion:

The fact is, Newton himself, if we may judge from his own words..., “If two quantities, whose difference
is given, be augmented continually, the ultimate ratio of these quantities will be a ratio of equality,”
had no knowledge of the true nature of his method of prime and ultimate ratios. If there be meaning in
words, he plainly supposes in this passage, a mere approximation to be the same with an ultimate ratio.
[Wright 1833,3]

Thus Wright, in 1833, believed thatf/g→ 1 necessarily impliesf − g→ 0, but Newton,
in 1687, knew better. Not to dwell on the confusion of Principian commentators, since
it does little to extend our case for Newton’s understanding of limits, but Wright also
believed the converse, namely thatf − g→ 0 entails f/g→ 1, which is false as well:
t − t2→ 0 if t → 0 with t > 0, yet t/t2 becomes arbitrarily large. Our study of the pre-
liminary mathematical lemmas and their proofs, even just the three we take up below, will
reveal that Newton knew exactly when these conditions,f/g→ 1 and f − g→ 0, were
equivalent.

Let us then turn to these lemmas that fill out Section I, Book One, of thePrincipia. “I
have presented these lemmas before the propositions,” Newton tells us,

to avoid the tedium of working out lengthy proofs byreductio ad absurdum, in the manner of the ancient
geometers. ...I preferred to make the proofs of what follows depend on the ultimate sums and ratios of
vanishing quantities [instead of the method of indivisibles]... For the same result is obtained by these as
by the method of indivisibles, and we shall be on safer ground using principles that have been proved.
[Newton 1999, 441; Newton 1946, 38]

When he composed the lemmas, Newton may well have thought of them as foundational,
as basic results in his geometric calculus that he would refer to frequently in subsequent
arguments of thePrincipia. On the other hand, he may have inserted them later, creating a sort
of “retrospective gloss” as Whiteside puts it [Newton 1967–1981 VI, 108], to increase the
apparent rigor of the exposition. Whatever the case, these eleven preliminary mathematical
lemmas are not in fact cited often in the demonstrations which follow Section I, but they
are, nonetheless, truly foundational in a different sense, for not only is each lemma the
geometric version of a basic definition, property, or theorem of calculus, but taken together
the lemmas form a coherent and natural whole: in their geometric disguise, they are just
the calculus results one would expect to need in any mathematical study of orbital motion.
More on this aspect of the lemmas can be found in [Pourciau 1998].

In the present study, we have a particular interest in three of these lemmas—Lemma I
on the limit of a difference, Lemma II on the existence of the integral, and Lemma XI on
the second derivative—because their statements and proofs most clearly reveal Newton’s
grasp of the limit process. To read these lemmas requires a double translation, not only a
first translation from the original Latin into English (for which we rely on [Newton 1999]),
but then a second translation as well, for the lemmas come to us packed in thePrincipia’s
unique blend of Euclidean geometry and limits, a sort of geometric calculus, and we cannot
sort out what the lemmas really say without doing some unpacking. But any translation
disturbs meaning, and we must take great care to minimize that disturbance, to preserve as
far as possible Newton’s original intent.
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We begin with Lemma I and its brief demonstration:

LEMMA I. Quantities,and also ratios of quantities,which in any finite time constantly tend to equality,
and which before the end of that time approach so close to one another that their difference is less than
any given quantity,become ultimately equal.

If you deny this, let them become ultimately unequal, and let their ultimate difference beD. Then they
cannot approach so close to equality that their difference is less than the given differenceD, contrary
to the hypothesis. [Newton 1999, 433; Newton 1946, 29]

Let us try to tease the meaning out line by line. To introduce “quantities, and also ratios of
quantities” is to introduce, without the benefit of function notation, two functions,f andg
say, which themselves may be ratios of other functions. To suppose off andg that “before
the end of [some finite] time [they] approach so close to one another that their difference
is less than any given quantity,” is to suppose that ast → c− (that is, ast approachesc
from theleft), wherec is finite and positive,f (t)− g(t)→ 0. When Newton requires that
f andg “constantlytend to equality,” [my italics], he is assuming further thatf (t)− g(t)
not only converges to 0, but actually decreasesmonotonicallyto 0. (We may abbreviate this
by writing f (t)− g(t) ↓ 0.) Under these conditions, the lemma concludes that the limits
l ≡ lim t→c− f (t) andm≡ limt→c− g(t) exist and are equal.

Newton assumesc finite presumably to rule out cases likef (t) = t, g(t) = t + (1/t),
where f − g ↓ 0 as t→+∞, yet the individual limits off andg fail to exist. Of course
taking c finite does not exclude an example such asf (t)= 1/(1− t)+ 1− t, g(t)= 1/
(1− t), where againf − g ↓ 0 (ast → 1−) while f and g themselves grow arbitrarily
large, but then part of the meaning of Newton’s “quantities” may have been that they could
not become arbitrarily large in finite time. Moreover, these “quantities” (which are generally
lengths or areas of geometric figures) appear by implicit assumption to be smooth (in fact
to possess as many derivatives as required) and (at least locally) monotonic.

With these constraints, the ultimate values off and g (that is, l ≡ limt→c− f (t) and
m≡ limt→c− g(t)) must indeed exist, and the proof of Lemma I is simple and correct. For
if we deny the conclusion,D ≡ l −m would be positive, not zero, and then the inequality
D < f (t)− g(t) (for t < c), which follows from the assumption in the lemma that the dif-
ferencef (t)− g(t) decreases monotonically, would prevent that difference from becoming
as small as we please, a contradiction.

Certain aspects of Lemma I remain unclear, and our interpretation of Newton’s intended
meaning must be somewhat tentative. For example, is it reasonable (that is, how much
distortion does it cause) to think of Newton’s “quantities” as functions? Continuous func-
tions? Smooth functions? Is the existence of the limitsl andm an implicit hypothesis of
this particular lemma, a consequence of some background assumption about “quantities,” a
result of assumptions in the lemma, presumed in error, or the product of some combination
of these possibilities? Whatdoesremain clear, however, is Newton’s core understanding,
here a special case of his definition of limit, that a quantity has limit zero if it can be made
less than any given distance. Simple and clear. No indivisibles nor “ghosts of departed
quantities.” No confusion.

The same basic clarity comes out in Lemma II and its proof:

LEMMA II. If in any figure AacE, comprehended by the straight lines Aa and AE and the curve acE,

any number of parallelograms Ab, Bc,Cd, ... are inscribed upon equal bases AB, BC,C D, ... and
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sides,Bb,Cc, Dd, ... parallel to the side Aa of the figure; and if the parallelograms aKbl, bLcm, cMdn,
... are completed;if then the width of these parallelograms is diminished and their number increased
indefinitely,I say that the ultimate ratios which the inscribed figure AKbLcMd D, the circumscribed
figure AalbmcndoE, and the curvilinear figure Aabcd E, have to one another are ratios of equality.

For the difference of the inscribed and circumscribed figures is the sum of the parallelogramsKl , Lm,Mn,
and Do, that is (because they all have equal bases), the rectangle having as baseKb (the base of one
of them) and as altitudeAa (the sum of the altitudes), that is,the rectangleABla. But this rectangle,
because its widthAB is diminished indefinitely, becomes less than any given rectangle. Therefore, (by
lem. I) the inscribed figure and the circumscribed figure and, all the more,the intermediate curvilinear
figure become ultimately equal. Q.E.D. [Newton 1999, 433; Newton 1946, 29]

In notation more comfortable for us (and doing no real damage to Newton’s original mean-
ing), the figureAacEwould be the graph of a functionf defined on the segmentAE. Newton
clearly (but without saying so) takesf to be monotone decreasing withf (E) = 0. Of course
the areas of the inscribed and circumscribed figures,AKbLcMd DandAalbmcndoE, cor-
respond to lower and upper sums,

Ln ≡ f (t1)1t + · · · + f (tn)1t and Un ≡ f (t0)1t + · · · + f (tn−1)1t,

that arise from a partition

A = t0 < t1 < · · · < tn−1 < tn = E

of the segmentAE into n subintervals of equal length1t = AE/n. If by we denote the
area under the graph off (an area which Newton takes here to be computed, not defined),
then the lemma concludes: “the ultimate ratios [whichLn, , andUn] have to one another
are ratios of equality,” that is, the ratio of any one to the other will tend to 1 asn→∞.

Turning to Newton’s proof, he notes that the difference of the inscribed and circumscribed
areas is less than the area of the rectangleABla; that is,

Un − Ln < Aa · AB= Aa · AE

n
.

Then he remarks that the area of this rectangle “becomes less than any given rectangle,”
and concludes, from Lemma I, that

lim
n→∞ Ln = = lim

n→∞Un.
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In his geometric style, Newton has stated and proved a basic theorem of calculus—

THEOREMEvery monotonic function on a closed and bounded interval must be integrable.

—and his demonstration is essentially the proof “that we find in the more carefully writ-
ten of today’s elementary textbooks on the calculus,” to borrow from [Eves 1983, 425]
an appreciation of Cauchy. We also see again the fundamental understanding and definition
of a limit as a value approached “so closely that their difference is less than any given
quantity.” [Newton 1999, 442; Newton 1946, 39] On the other hand, having earlier seen
Newton give an example wheref/g→ 1 yet f − g does not go to 0, we now find him
apparently equatingLn/Un→ 1 (“ratios of equality,” in the statement of the lemma) with
Un − Ln→ 0 (“difference ... becomes less than any given rectangle,” in his demonstration).
Has he forgotten himself? Surely not. He just knows the conditions under which these two
limit properties are equivalent—namely, that either the limit off or the limit of g is finite
and nonzero.

Impressed again with Newton’s understanding of the limit process, let us skip ahead to
the somewhat more obscure yet enlightening case of Lemma XI. All along our translations
have followed Cohen and Whitman [Newton 1999], but for reasons that will become clear
soon, in the case of Lemma XI we first give the version found in Cajori’s revision of Motte’s
original 1729 translation:

LEMMA XI. The evanescent subtense of the angle of contact, in all curves which at that point of
contact have a finite curvature, is ultimately as the square of the subtense of the conterminous arc.
[Newton 1946, 36]

Some translation work of our own would seem to be in order here, since the English
sounds as foreign as the original Latin. In the figure above, the lineAD is tangent to the
curve AB at the pointA. By the “evanescent subtense of the angle of contact” Newton
means the lengthB D and by the “subtense of the conterminous arc” he means the length
AB of the chord. (For simplicity and to follow thePrincipia’s style, AB and B D, and
similar notations, may refer to curves, lines, segments, or segment lengths. Context and
verbal cues—for instance, “the lengthAB”—should help us from getting confused.)
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Furthermore, one quantity “is ultimately as” another, according to Newton, when their
ratio tends to a finite positive number. Thus to claim that the “evanescent subtense of the
angle of contact ... is ultimately as the square of the subtense of the conterminous arc” boils
down to claiming that the ratioB D/AB2 tends to a finite positive number asD tends to
A. Intuitively, this tells us that in a small neighborhood of the pointA, B D is just about
proportional toAB2, since in such a neighborhood their ratio remains almost (a positive)
constant.

Now the lemma makes this claim, not for all curves, but only those with “finite curvature”
at A. Note first that Newton’s original Latin,finitam, translated naturally as “finite,” should
actually be taken as meaning “finite and nonzero” or perhaps “finite and positive” in many
contexts, including this one, in part because a vanished quantity in thePrincipia (often
a length, area, or volume) is not considered “finite,” like the number zero, but gone, like
a nonexistent length. More importantly, when the assumption “...finitam” appears in a
lemma or proposition, we can often tell from the way Newton applies this assumption in a
subsequent demonstration that “finite and nonzero” is the intended meaning.

As for “curvature,” this needs no translation, for it means to us what it did to Newton.
Just to remind ourselves, the curvature at any point of a circle is the reciprocal of the
radius, and the curvature at the pointA of a curve AB is the curvature of that circle
which “fits the curve best” atA. (We have no need for the precise definition here.) As
early as 1671, in his long tract on series and fluxions [Newton 1967–1981 III, 32–353],
Newton had defined curvature for plane curves, given several equivalent characterizations,
obtained formulas for it, one involving partial derivatives, and calculated the curvature
of many different curves. A comment in hisWaste Book, recorded in December 1664 or
January 1665, indicates that he also understood the connection between curvature and
the mathematical study of orbital motion: “If the body b moved in an Ellipsis, then its
force in each point (if its motion in that point bee given) may bee found by a tangent
circle of equall crookednesse with that point of the Ellipsis” [Whiteside 1991, 14]. In
spite of this, curvature remains generally behind the scenes in the first (1687) edition
of the Principia. By 1694, however, as he planned for the second edition, Newton had
drafted extensive revisions for the early sections of Book One following a scheme that
actuallycenteredon curvature. (See [Brackenridge 1992; Newton 1967–1981 VI; Pourciau
1992) In the end, these radical revisions never made it into thePrincipia, and Newton
had to content himself with pasting little pieces of his grand scheme into the second
(1713) edition as added assumptions, brief asides, new corollaries, and alternate demon-
strations.

Our Lemma XI carries a reminder of this renewed attention to curvature. In the second
edition (in fact in his annotated copy of the first edition), Newton added the assumption that
the arcAB has finite [and nonzero] curvature at the pointA [Newton 1972, 83]. And with
this assumption, we can see (from a modern perspective) why the conclusion of Lemma XI
(as translated in Cajori’s revision [Newton 1946] of Motte) should hold. If we think of
the arcAB as the graph of a smooth functionf with f (0)= 0= f ′(0), then the standard
calculus formula for the curvature att = 0 gives

·(0)= f ′′(0)

[1+ f ′(0)2]3/2
= f ′′(0).
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On the other hand, forx near 0, sincef is smooth,

f (x) = f (0)+ f ′(0)x + 1

2!
f ′′(0)x2+ 1

3!
f ′′′(0)x3+ · · ·

= 1

2!
f ′′(0)x2+ terms involvingx3

and thus

f (x)

x2
→ 1

2
f ′′(0) asx→ 0.

Given that·(0)= f ′′(0) is finite and positive, we could therefore use Newton’s phrasing
and say thatf (x) is ultimately asx2, or, using his notation as well, thatB D is ultimately as
AD2. But sinceAD/AB→ 1 (from the earlier Lemma VII or from the fact thatAD/AB
is the cosine of the vanishing angle), we see thatBD is ultimately asAB2, which is the
conclusion of Lemma XI (in [Newton 1946]).

Naturally the demonstration of Lemma XI in thePrincipia has a more geometric flavor,
for Newton cultivated classical geometry in thePrincipia generally, hoping to inherit the
clarity, simplicity, elegance, and rigor he saw in classical geometric reasoning. But Newton’s
actual proof of Lemma XI (which we take up soon), though it contains a lovely geometric
kernel, seems at first both less elegant and less rigorous than we might expect—less elegant
because apparently extraneous points and lines are introduced and less rigorous because
the conclusion of the proof does not quite match the conclusion of the lemma (as given
in [Newton 1946]). Moreover, after we read Newton’s demonstration, an obvious revision
immediately presents itself, a simpler argument based on the same geometric construction,
and one naturally wonders why this simpler, correct argument fails to appear in thePrincipia.

Here is that simpler argument: DrawBG perpendicular to the lineAB. (See Newton’s
original figure for Lemma XI below. It contains a couple of points and lines we do not
require at the moment.) AsD approachesA, the pointG tends toJ (that is, the length
G J can be made less than any assignable distance), whereAJ is a finite, nonzero length.
[That AJ is a finite, nonzero length follows directly from Newton’s definition of curvature,
which, ironically, thePrincipia omits. In fact,AJ turns out to be the diameter of curvature
at A.] By the nature of the circle passing throughA, B, andG, we haveAB2 = AG · B D
(because the trianglesABG and ABC are similar) and it follows thatAB2/B D = AG is
ultimately AJ. HenceB D is ultimately asAB2 ·QED.

An elegant and simple geometric proof. Why doesn’t Newton give it? In part because,
following Euclidean conventions, Newton prefers to regard his ratios, not as quotients of
numbers, but as proportions between geometric quantities, indeed as proportions between
geometric quantitiesof the same kind: lengths to lengths, areas to areas, volumes to volumes.
This leads him to introduce pointsd, b, andg, in addition toD, B, andG, so that instead of
comparing an areaAB2 to a lengthB D, he can compare areas to areas (AB2 to Ab2) and
lengths to lengths (BD to bd).

He then hasD andd approachA together, in the sense thatAd is ultimately asAD (at least
this is my interpretation of his directions) and proves that ultimatelyAB2/Ab2 = B D/bd,
that is, that limD→A AB2/Ab2 = limD→A B D/bd.
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Here then we see an (uncommon) instance where Newton’s desire to be Euclidean (rather
than just geometric) has led to alesselegant construction. But more interestingly, and
more potentially damaging to our confidence in Newton’s understanding of limits, no-
tice the apparent error in the argument, for what has been proved here is not actually
quod erat demonstrandum(at least not according to the translation in [Newton 1946]), but
something else. Newton does prove that limD→A(B D/bd) is finite, nonzero, and equal to
limD→A(AB2/Ab2), but from this it does not automatically follow that limD→A(AB2/B D)
is finite and nonzero, that is, that BD is ultimately asAB2, which is (in [Newton 1946])
quod erat demonstrandum. For example,

lim
t→0+

t

t
= 1= lim

t→0+

t2

t2
, and yet lim

t→0+

t

t2
= +∞ = lim

t→0+

t

t2
.

Has his need to be Euclidean, in this place at least, led Newton not only to needless com-
plication, but to error as well?

No. In fact the error lies not with Newton but with a spurious translation of Lemma XI
in Cajori’s revision [Newton 1946] of Motte’s translation. Here is the original Latin from
the third (1726) edition of thePrincipia, as recorded in [Newton 1972, 83]:

Subtensa evanescens anguli contactus, in curvis omnibus curvaturam finitam ad punctum contactus
habentibus, est ultimo in ratione duplicata subtensæ arcus contermini.

Motte translated this correctly in 1729 and Cohen and Whitman have translated it correctly
in 1999:

In all curves having a finite curvature at the point of contact, the vanishing subtense of the angle of
contact is ultimately in the squared ratio of the subtense of the conterminous arc. [Newton 1999, 439]

To claim that the “vanishing subtense of the angle of contact is ultimately in the squared ratio
of the subtense of the conterminous arc,” is to claim that limD→A AB2/Ab2 =
limD→A B D/bd, and this is precisely what Newton proves. Cajori—or perhaps more likely
R.T. Crawford, who edited Cajori’s manuscripts after Cajori’s death in 1930—striving to
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modernize the Motte translation, changes “ultimately in the squared ratio of the subtense
of the conterminous arc” to “ultimately as the square of the subtense of the conterminous
arc,” and while this revised conclusion to Lemma XI is indeed more modern, and still true,
it is not what Newton asserts and it is not what Newton proves. (See [Newton 1999, 26–42]
for a discussion of the difficulties involved in translating thePrincipia.)

Thus thePrincipia’s demonstration of Lemma XI is in fact correct. Earlier an outline of
that demonstration was enough, but now we need to study the details to see what they tell
us about Newton’s grasp of the limit concept. We omit some preliminary lines where the
notation (referring to the figure above) is introduced:

...let J be the intersection of linesBG and AG, which ultimately occurs when pointsD and B reach
A. It is evident that the distanceG J can be less than any assigned distance. And (from the nature of
the circles passing through pointsA, B, G anda, b, g) AB2 is equal toAG× B D, andAb2 is equal to
Ag× bd, and thus the ratio ofAB2 to Ab2 is compounded of the ratios ofAG to Ag andB D to bd. But
since G J can be taken as less than any assigned length, it can happen that the ratio of AG to Ag differs
from the ratio of equality by less than any assigned difference, and thus that the ratio of AB2 to Ab2

differs from the ratio of BD to bd by any assigned difference. Therefore, by lem. 1, the ultimate ratio of
AB2 to Ab2 is the same as the ultimate ratio of BD to bd.Q.E.D. [Newton 1999, 439, italics added]

If we look at the lines in italic, we see what may be the first algebraic epsilon-argument
ever given! It is simple, but correct, and it shows that by 1687 Newton had acquired a
surprisingly clear conception of the limit process. We remain impressed, here in this proof
and in the early sections of thePrincipia generally, by Newton’s mastery of the basic idea.
There are no infinitely small quantities, no ratios of indivisibles, no plugging-in to compute
the limit, no kinematic comments about velocity. Just the correct fundamental question:
Can we make the difference between this quantity and this fixed value less than any given
positive number?

Of course Cauchy would have been altogether more explicit. For instance, instead of
merely claiming that the “ratio ofAB2 to Ab2 differs from the ratio ofB D to bd by any
assigned difference,” Cauchy, in a clarifying function notation, would have given himself
an², written

AB2

Ab2
− B D

bd
=
(

1− Ag

AG

)
AB2

Ab2
,

noted thatAB2/Ab2 was bounded (becauseAD is ultimately asAd, which impliesAB is
ultimately asAb), and used the algebra of inequalities to compute an appropriate±.

Certainly then, Newton’s argument is not Cauchy’s, but still it is unexpectedly sophisti-
cated, especially given the received opinion that Newton was more confused than clear on
the notion of limits. Grabiner’sThe Origins of Cauchy’s Rigorous Calculusprobably has
the most accurate appraisal of Newton’s understanding of the limit concept, but even the
thoughtful and scholarly opinion received from this work fails to account for what we see
in the proof of Lemma XI. Pointing to Newton’s definition of limit which follows the pre-
liminary lemmas, Grabiner remarks on his “influential statements about the limit concept,
in words that were to recur throughout the eighteenth century,” and yet she sees the

history of the limit concept until 1810 [as] the gradual solution of the verbal problems implicit in Newton’s
explanation: the eventual substitution of algebraic language for Newton’s kinematic expressions; the
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broadening of the limit concept to include variables that oscillate about their limits; and—crucially—the
abandonment of concern over whether a variable reaches its limit.

A wise comment, but after our review of Lemmas I, II, and XI it becomes hard to see Newton
as merely a confusion to be clarified. Indeed Newton’s epsilon argument in Lemma XI
comes within epsilon of epsilon arguments produced by D’Alembert in 1789 and Lacroix
in 1802, and while Grabiner praises the work of D’Alembert and Lacroix for “freeing the
limit concept from physics and making it algebraic,” [Grabiner 1981, 83] she fails to note
the similar work of Newton (in the proof of Lemma XI) 100 years earlier.

Of course at different times, in other places, and even in Section I (Book One) of the
Principia, Newton gave us arguments and explanations less clear than those we have studied
here. In fact, in his discussion following Lemma XI, but before he gives his definition of
limit, Newton provides the following intuitive view of the limit concept:

It may be objected that there is no such thing as an ultimate proportion of vanishing quantities, in as
much as before vanishing the proportion is not ultimate, and after vanishing it does not exist at all. But
by the same argument it could equally be contended that there is no ultimate velocity of a body reaching
a certain place at which the motion ceases; for before the body arrives at this place, the velocity is not
the ultimate velocity, and when it arrives there, there is no velocity at all. But the answer is easy: to
understand the ultimate velocity as that with which a body is moving, neither before it arrives at its
ultimate place and the motion ceases, nor after it has arrived there, but at the very instant when it arrives,
that is, the very velocity with which the body arrives at its ultimate place and with which the motion
ceases. And similarly the ultimate ratio of vanishing quantities is to be understood not as the ratio of
quantities before they vanish or after they have vanished, but the ratio with which they vanish. [Newton
1999, 442; Newton 1946, 39]

However, such informal and kinematic descriptions should be seen, not as a confused
definition, but as an attempt to give the reader some intuitive insight into the limit process.
How can we be sure? Look at the proofs. These kinematic descriptions may have been
the source for Newton’sintuition about limits, but if they were much more, if they were
in fact part of hisdefinition, then these kinematic notions would appear in the proofs we
have studied. But they do not. It is in the proofs that we see the intended mathematical
meaning. To see how Cauchy understood the limit concept, we look at his proofs; to see
how Newton understood the limit concept, we have done the same. For a measure of his
mature understanding, we took thePrincipia, which was revised almost to the day he died,
and examined proofs in the section he devoted specifically to the limit process. Our study
shows that by 1687, 100 years before D’Alembert and 134 years before Cauchy, Newton
had a very clear grasp of the limit concept and was far less confused than the most common
portrayals have led us to believe. In [Grabiner 1983] Grabiner asks, “Who gave you the
epsilon?” and answers Cauchy. Our work here suggests a different Q& A: Who found the
first delta? Cauchy. Who gave us the first epsilon? Newton.
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