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Abstract

This article deals with Leibniz’s reception of Descartes’ “geometry.” Leibnizian mathematics was based
fundamental notions: calculus, characteristic, art of invention, method, and freedom. On the basis of meth
ical considerations Leibniz criticized Descartes’ restriction of geometry to objects that could be given in te
algebraic (i.e., finite) equations: “Descartes’s mind was the limit of science.” The failure of algebra to solve
tions of higher degree led Leibniz to develop linear algebra, and the failure of algebra to deal with transce
problems led him to conceive of a science of the infinite. Hence Leibniz reconstructed the mathematical
created new (transcendental) notions, and redefined known notions (equality, exactness, construction), th
lishing “a veritable complement of algebra for the transcendentals”: infinite equations, i.e., infinite series,
inestimable tools of mathematical research.
 2004 Elsevier Inc. All rights reserved.

Zusammenfassung

Der Aufsatz behandelt Leibniz’ Aufnahme von Descartes’ „Geometrie“. Die Leibnizsche Mathematik w
fünf grundlegenden Begriffen aufgebaut: Kalkül, Charakteristik, Erfindungskunst, Methode, Freiheit. L
methodologische Betrachtungen zogen seine Kritik der cartesischen algebraischen Methoden nach sic
Gebiet der Geometrie definierten: „Descartes’ Geist war die Grenze der Wissenschaft“. Die Unvollkomm
der Algebra (Lösung algebraischer Gleichungen höheren Grades) ließ Leibniz lineare Algebra entwickeln
Wissenschaft des Unendlichen entwerfen. Leibniz baute also das Gebäude der Mathematik neu auf, sc
Begriffe (transzendent) und definierte bekannte Begriffe neu (Gleichheit, Genauigkeit, Konstruktion). Au
Weise begründete er eine „wahre Ergänzung der Algebra für transzendente Größen“: unendliche Gleichu
heißt unendliche Reihen, wurden unschätzbare Hilfsmittel der mathematischen Forschung.
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Introduction: sources

Since 1976, seven volumes have appeared, comprising about three thousand printed pages
nizian mathematical studies. They partly, mainly, or exclusively deal with algebra or related topic

[Leibniz, 1976a]: combinatorics (340 pp.),
[Leibniz, 1976b]: arithmetic, algebra (200 pp.),
[Knobloch, 1980]: determinant theory (330 pp.),
[Leibniz, 1990]: geometry, number theory, algebra (954 pp.),
[Leibniz, 1993]: infinite series (160 pp.),
[Leibniz, 1996]: algebra (870 pp.),
[Leibniz, 2003]: infinite series and sequences (880 pp.).
These writings support by documentary evidence Leibniz’s overwhelming interest in algebra

relation to geometry.
The present article is based on these new, available sources.1 It tries to show in what ways Leibniz’

contributions to linear algebra and his understanding of Descartes’Geometrywere motivated by imper
fections in algebra and were profoundly influenced by Leibniz’s new conception of mathematics.

1. From the theory of equations to linear algebra

In 1924, the French poet Paul Valéry praised the algebraic use of unknowns in the following w

Quelle idée plus digne de l’homme que d’avoir nommé ce qu’il ne sait point ? Je pus engager ce
j’ignore dans les constructions de mon esprit, et faire d’une chose inconnue une pièce de la machine d
pensée. [Valéry, 1999]

Yet, in Leibniz’s eyes algebra suffered from two imperfections:

(1) The algorithmic solution of the general algebraic equation ofnth degree was still unavailable;
(2) Algebraic equations did not suffice to comprehend transcendental problems in geometry.

Like all of his contemporaries, Leibniz was convinced of the solvability of the first problem. His
attempts in this direction resulted in the emergence of determinant theory. His studies of transce

1 The authors of the monographThe Beginning and Evolution of Algebra[Bashmakova and Smirnova, 2000] did not take
notice of these volumes. Their only reference to Leibniz concerns his well-known letter to l’Hospital dating from 16
published in 1850 [Leibniz, 1850, pp. 236–241], in which Leibniz derived the solution of a system of three linear equation
this respect, the monograph represents the state of affairs of 1850.
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problems, such as the quadrature of conic sections, resulted in the invention of his differential and
calculus.

In order to solve the quintic equation Leibniz generalized Cardano’s approach by using a subs
of the form

x = a1 + a2 + a3 + a4.

His calculations resulted in essential results in the theory of symmetric functions and additive n
theory [Knobloch, 1973] and led Leibniz to believe that the problem could be reduced to the soluti
systems of linear equations. In May 1678 he wrote:

I shall demonstrate that the labor of calculating is not difficult, because what is important is the fact t
the quantities looked for are not multiplied by each other or by themselves. Hence every calculation aris
from the equations used for elimination (destructitiae) is done exclusively by addition and subtraction
arbitrary quantities having only signs and known (sufficiently simple) numerical coefficients. This is neith
laborious, nor difficult, nor prolix.

Indeed, these tiny equations used for elimination cannot lead to confusion because they do not as
either to rectangles or to powers, even if their number is large. For example, in the case of the [equatio
the] fifth degree there are at most 284 equations serving for elimination or—if one uses an abbreviatio
about 160 such equations. Yet, they are written down without any calculation and afterward the calcula
derived from them is carried out by addition and subtraction alone.

Hence to carry out the elimination calculation is no more difficult than to diligently write down 16
small lines, that is, the values of the unknowns. The value of every unknown can be written down at o
without any calculation by the estimation of a glance.

The writing down of the equations used for elimination does not require a great deal of attention
somebody should follow the method prescribed by me, a mere description would do. In order to w
down the values deduced from the equations no calculation is necessary. What is needed is attenti
substituting. For that reason an attentive and industrious person who is not distracted could carry ou
whole calculation for an equation of the fifth degree, within, I think, the space of one day, provided th
everything has been rightly prepared. [Leibniz, 1976a, p. 113]

This long citation should make it clear that in Leibniz’s opinion, progress in algebra depend
combinatorics [Knobloch, 1974], that algebra was subordinated to combinatorics. As he remarked
decisive treatise on systems of linear equations dating from January 1684 and published in 1972

In this attempt I solved the problem, whereas earlier I always got stuck at some point. What is done he
an eminent example of the combinatorial art. [Knobloch, 1972, p. 167]2

2 Leibniz obtained essential results in three areas of determinant theory: inhomogeneous systems of linear equations
of two polynomials, and elimination of a common variable from algebraic equations. These results are described inKnobloch
[2001].
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2. Descartes vs Leibniz: the realm of geometry

What can be called the realm of geometry? Leibniz developed a conception which differed dec
from that of Descartes. He did this in the course of a silent, yet enormously creative conversatio
the French mathematician.

Descartes had explained:

Aptius quidquam afferre nescio, quam ut dicam, quod puncta omnia illarum, quaeGeometricaeappellari
possunt, hoc est, quae submensuramaliquamcertametexactamcadunt, necessario ad puncta omnia lineae
rectae,certamquandamrelationemhabeant, quae peraequationemaliquam, omnia puncta respicientem,
exprimipossit.

[The most appropriate thing I can say is that all points of those curved lines which are usually cal
geometric,that is those which are subject to anydeterminedandexact measure, necessarily bear a certain
determinedrelation to all points of a straight line which can beexpressedby someequationregarding all
points.] [Descartes, 1659–1661, vol. I, p. 21, emphasis added]

Leibniz thoroughly discussed this Cartesian characterization of geometrical lines in Octobe
[Leibniz, 2003, No. 3812] in his hitherto unpublished extraordinarily interesting and long inquiryDe
serierum summis et de quadraturis plagulae quindecim(15 sheets on sums of series and quadratu
[Leibniz, 2003, No. 38].

First of all, Leibniz accepted Descartes’ axiom:

exactness implies geometricity.

In his historical study of geometrical exactness,Bos [2001, p. 405]observes that the dissatisfaction w
the Cartesian interpretation of geometrical exactness was caused by its exclusion of nonalgebrai
In his 1674 inquiry Leibniz still excluded helical curves (space curves on a cylinder), on the groun
spirals cannot be exactly described because they depend on two motions being independent
another. Human beings are not able to give their determined proportion (certa proportio). Such sp
only be described by a divine art, by means of an intelligence whose distinct thoughts are realized
intervals which are smaller than any arbitrarily given time. This, he thought, did not apply even to a

Yet a family of curves, the trochoids, are described by a continuous motion and thus are
described. Hence Descartes was obligated to explain in what respect their description is not exac
he was right in blaming the ancients for having confused the conchoids and cissoids with helical
and spirals respectively, he must in turn be blamed for having confused trochoids and evolutes with
and helical curves respectively. Leibniz disputed Descartes’ notion of exactness [Bos, 2001, p. 336].

Leibniz considered a parabola AMG′ unrolling on the tangent AB. A point F of the axis of th
parabola is describing the parabolic trochoid FG′ [Leibniz, 2003, No. 3812] (seeFig. 1). In [Leibniz,
2003, No. 3813] he studied the “parabolic trochoid here invented for the first time” (trochois par
ica hic primum inventa). It is described by the focus B of the generating parabola (parabola ge
unrolling on the tangent FTM (seeFig. 2). He was still unaware that the described line is the catena

Leibniz carried on a dialogue with a fictitious interlocutor:

But you will say, then we have realized the quadrature of the circle. I deny that we have a quadra
as desired. You say: ‘By means of the circular trochoid, a moving curve, we have exactly a straight l
which is equal to the circumference of the circle.’ ‘Yes,’ Leibniz answered, ‘if exactly, then certainly als
geometrically. But not only a geometrical but also an analytical quadrature of the circle is required.’
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This is the crucial point: Descartes restricted geometrical lines to analytical lines, thus deprivi
ence of a necessary aid (scientiam auxilio necessario privat). Leibniz believed that Descartes did
a secret reason: he wanted to be able to boast of having given a method for obtaining all geo
curves and their tangents.

Leibniz disagreed emphatically. Such nonanalytical curves are no less geometrical just beca
are exact. Also, they have excellent uses. Examples of useful curves are Huygens’s cycloid and
parabolic trochoid. He explicitly said [Leibniz, 2003, No. 3813]: “We must admit that nonanalytical line
are necessary in geometry. For there are problems that can be solved, that is, by calculation wit

Fig. 1. Parabolic trochoid 1 [Leibniz, 2003, 489].

Fig. 2. Parabolic trochoid 2 [Leibniz, 2003, 497].
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existence of a geometrical construction by analytical lines; for example, consider the problem of d
a ratio into a ratio of two irrational numbers. Such problems can be solved only by means of nonan
lines.” By “dividing a ratio into a ratio of two irrational numbers” Leibniz and the mathematician
his time meant the insertion of an irrational mean proportional between two given numbersa, b. The
logarithmic curve provided the general solution of this problem. In other words, according to Le
exactness is indispensable, but analyticity is not. What counts is the solvability of problems. For L
solvability was a central notion of mathematics.3

For Leibniz the boundary between geometric and nongeometric lines is not fixed once and
It can happen that a nongeometrical line becomes geometrical when a way of describing it is
(for example, the logarithmic curve) and that a nonanalytical line becomes analytical (for examp
trochoid of the quadratocubic parabolay2 = x3). Only after Hendrik van Heuraet had found its meas
(dimensio) did it become analytical. (Leibniz was referring to Heuraet’sLetter on the transformation o
curved lines into right lines[Heuraet, 1659].)

In other words, Descartes adhered to a mathematically fixed, closed, static realm of geometr
Leibniz adhered to a mathematically changing, open, dynamical realm of geometry in which the c
cation of lines depends on our current knowledge. The following diagram describes Leibniz’s cla
tion of lines as of October 1674:

lines���������������

����������
geometrical mechanical

(there is a pointwise rather than
a continuous description of the
line)
e.g., a logarithmic curve

������������������������
analytical
(the relation between ordinates and
abscissas can be expressed by a
linear, quadratic, cubic, etc.
equation, according to the degree
of the equation)

tetragonisticae(squaring)
(their quadratures can be reduced to a
calculation only after the measures
(dimensiones) or quadratures of certain
curvilinear figures have been found; their
degree is uncertain)

���������

���������
under control
(e.g., evolutes trochoids)

not under control
(e.g., spirals)

It is worth mentioning that spirals are, so to speak, candidates for the realm of geometrical lines.
Just one year later, Leibniz seemed to have changed this classification regarding the logarithm

In April/May 1675 he wrote hisGeometrical contemplation on the diminution of motion which repres

3 Such an approach reminds one of Hilbert’s conviction of the solvability of every mathematical problem, of his saying
mathematics there is noignorabimus[Hilbert, 1900, p. 1102].
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Fig. 3. “Physical” construction of logarithms [Leibniz, 1689, Fig. 15].

the logarithms by a wonderful artifice of nature(De detrimento motus contemplatio geometrica q
mirabili naturae ingenio repraesentat logarithmos) [Rivaud, 1914–1924, No. 946]. He published it only
in 1689 [Leibniz, 1689]. His method consists in “a physical way of constructing logarithms which ca
be exactly constructed by the common geometry” (seeFig. 3).

A body undergoes a uniform motion, which is retarded in proportion to the distance traversed.
be the initial velocity at the beginning, AB the distance to be traversed. Let AM be the distance tra
MB the distance still to be traversed, MC the remaining velocity, and FE the velocity which has bee
If the remaining distances MB= LT are to each other like numbers, then the spent times ML= TB are to
each other like their logarithms. For if the elements of the distance belong to a geometrical sequen
the remaining distances belong to the same geometrical sequence, and consequently also the
velocities. Hence the increments of time are equal, the times belong to a corresponding arith
sequence, that is, they form the logarithms.

In 1693 Leibniz alluded to this “construction which has admixed something physical” in hisSupple-
ment to the measuring geometry or the most general realization of all quadratures by means of a;
and in a similar way a multiple construction of a line according to a given tangent condition[Leibniz,
1693]. In this paper he described the gradually growing realm of geometry:

In order to construct transcendental quantities an application or adaptation of curves to straight lines
hitherto been used, as occurs in the description of the cycloid or in the case of the unwinding of a thre
or leaf, tied up with a line or surface. . . . Should someone wish to describe geometrically the spira
Archimedes or the quadratrix of the ancients, that is, by means of an exact, continuous motion, he
easily do that by a certain adaptation of a straight line to a curve, such that the rectilinear motion is ada
to the circular. [Leibniz, 1693, 295]

We see that while Descartes excluded these curves from geometry Leibniz insisted on includin
His reasons are that lines described in such a way are exact, have very useful properties, and are a
to transcendental quantities. Exactness of the method of construction is the decisive criterion for in
within geometry. If a construction is easy and useful, then it becomes part of practice.

In 1693, at the latest, Leibniz had in mind a bipartite geometry corresponding to a bipartite ana
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3. Descartes and Leibniz: differences and similarities

While Descartes’ and Leibniz’s mathematical programs differed fundamentally, their style of m
matical writing reveals some striking similarities. Descartes had written that

cum ratio, quae inter rectas et curvas existit, non cognita sit, nec etiam ab hominibus (ut arbitror) cogn
queat ; nihilque inde, quod exactum atque certum est, concludere possimus. [Descartes, 1659–1661, vol. I,
p. 39]

since the ratios between straight and curved lines are not known, and I believe cannot be discov
by human minds, no conclusion based upon such ratios can be accepted as rigorous and exact. [Descartes,
1954, p. 91]

The contributions of mathematicians like Christopher Wren, William Neile, Pierre de Fermat, and
Gregory to rectifications of curves are well known [Kline, 1972, p. 354f.]. They obtained their result
before Leibniz began his mathematical studies in Paris. To some extent, their work rendered De
invalid. Nevertheless, the Cartesian demand for exactness remained a challenge. Leibniz took
mand seriously when he wrote about his arithmetical quadrature of the circle by means of an
series:

Hactenus appropinquationes tantum proditae sunt verus autem valor nemini quod sciam visus nec a
quam aequatione exacta comprehensus est, quam hoc loco damus, licet infinitam, satis tamen cogn
quoniam simplicissima progressione constantem uno velut ictu mens pervadit. [Leibniz, 1993, p. 8]

Up to now, only approximations have been produced. But to my knowledge the true value has not b
envisaged by anybody, and has not been expressed by anybody by means of an exact equation such
are giving here. This is, admittedly, an infinite equation, but one that is readily perceived in view of its ea
law of formation; the mind rushes through it, so to speak by a single stroke.

Leibniz consciously took up the Cartesian expressionsexactaand cognita. We will return to this
issue in Section6. What is important here is the fact that Leibniz denied Descartes’ assertion,
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acknowledging Descartes’ own criteria and using his own terminology. Later, he repeatedly cri
Descartes for having made his own mind the limit of geometry and of science [Knobloch, 1999, p. 221].

Yet both mathematicians believed that they had initiated a broad field of research without, ho
having explicitly set down everything that there was to do. Descartes finished his Geometry by sa

. . . it is only necessary to follow the same general method to construct all problems, more and m
complex, ad infinitum; for in the case of a mathematical progression, whenever the first two or three te
are given, it is easy to find the rest.

I hope that posterity will judge me kindly, not only as to the things which I have explained, but also
to those which I have intentionally omitted so as to leave to others the pleasure of discovery. [Descartes,
1659–1661, vol. I, p. 106; Descartes, 1954, p. 290]

When Leibniz illustrated earlier the use of logarithms in the above cited treatise, he interrupted
planations by saying:

Their use could also be shown in the solution of equations and in many other questions. But whoever
have understood that, will easily notice what large field of invention lies open. And I prefer to leave it
others in what they might successfully exercise themselves than to try in vain by an obscure diligence
I seem to have said everything. [Leibniz, 1993, p. 125]

4. Leibniz’s mathematics: aims, notions, terminology, objects, operations, problems

We present some general conclusions regarding Leibniz’s mathematics, in order to better und
his mathematical approach and his criticism of Descartes. Leibniz’s main aims were fruitfulnes
tainty, conclusiveness, and universality. He explicitly adhered to them in his treatise on the arith
quadrature of conic sections [Leibniz, 1993]. For that reason, he always set the highest value on five
notions: calculus, characteristic, art of invention, method, and freedom. (I have shown elsewhe
these notions guided his mathematical thinking [Knobloch, 1999].)

A calculus implies universality and fruitfulness. Something should always be calculated in such
that uniformity and justice (iustitia) or symmetry are preserved. A calculus might result in a pow
algorithm, as is the case for the differential calculus. The “characteristic art” (ars characteristica) is
of creating and applying suitable signs. A characteristic makes it possible to examine calculations
additional computing, reveals laws of formations, and makes possible new insights. Leibniz’s dete
theory and his differential calculus are excellent examples in order to illustrate these implicati
calculus and characteristic. The art of invention expresses the dynamical principle of increasing
knowledge, a principle to which Leibniz subordinated all his mathematical efforts. It is evident th
adhered to an open, dynamical conception of geometry. Methods should comply with all four cond
that is to say, fruitfulness, certainty, conclusiveness, and universality. Hence he always esteemed
more than special solutions of particular problems. His famous first publication of his differential ca
was entitled “New Method” (Nova methodus). Yet, in spite of his preference for universal metho
knew very well that special procedures permitted abbreviations and simplifications. Finally, freed
thought was a necessary presupposition for the art of invention and the introduction of new m
Leibniz valued intellectual liberty (as Copernicus did before him or Georg Cantor after) and invok
liberty when he treated curves as lines in the form of infinitangular polygons.
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Leibniz’s basic objection to the geometry of Grégoire de St. Vincent, Guldin, Cavalieri, and
cially Descartes, was rooted in his conviction that their geometry was confined within certain
(certi limites) [Leibniz, 1686, 232; Sasaki, 2003, 276]. In his eyes Descartes’ method lacked fruitfulne
universality, and freedom of thought. For this reason he reinvented the mathematical corpus, cr
new terminology, new objects, and new operations, thus inevitably encountering new problems. H
terminology concerned new meanings of old notions or new categories created by him. The first c
included

algebra, which to him was subordinated to the combinatorial art (Section1),
construction,which became equivalent with “general quadrature” (Section6),
equal, which became equivalent with “the difference is smaller than any given quantity” [Leibniz,
1993],
geometrical, which became equivalent with “exact” (Section2).

The second category concerned the termtranscendental. He used this expression from the autumn
1673 [Leibniz, 2003, No. 23] and applied it to curves, figures, problems, and equations (Section5). His
new objects included

infinitely small or large quantities(smaller or larger than any given quantity) [Leibniz, 1993],
infinite equations, subject to all algebraic operations (Section5),
determinants(Leibniz spoke about “aequationes resultantes” without using the term “determin
(Section1),
indeterminateequations, such asxx − x = 24 [Leibniz, 1987, 844, 846, 889, 898, 903].

In April/May 1673 he spoke of “new algebraic arts” (novae artes algebraicae) [Leibniz, 2003, No. 171]
emerging from the study of roots of binomials. Among the countless new problems envisaged b
niz, infinite equations played a fundamental role. The main question was how to compute the s
infinitely many terms, a subject to which we turn in the next section.

5. The infinite and infinite series

From the very beginning of his mathematical studies in Paris Leibniz dealt with the infinite and t
identify its peculiarities, nature, way of handling, and utility. His thinking was guided by two convict

(1) There is no exception to Euclid’s common notion: the whole is greater than the part;
(2) The same rules hold in the domain of the infinite as in the domain of the finite (law of continu

5.1. Peculiarities

Very early in his investigations Leibniz noticed some peculiarities of the infinite. At the turn o
years 1672 to 1673 he wrote the remarkable studyDe progressionibus et de arithmetica infinitorum(On
progressions and the arithmetic of the infinites) [Leibniz, 2003, No. 7]. In it he stated:
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Cognitio infiniti apex est humanae subtilitatis.
The recognition of the infinite is the summit of human acuteness.

And somewhat later:

Non est dubitandum, quin aliquae series constantes licet ex numeris rationalibus, aequentur numeris s
quod investigandum.

There cannot be any doubt that some series are equal to irrational numbers though they consi
rational numbers. This must be investigated.

In 1674 his research led him to an arithmetical quadrature of the circle [Ferraro and Panza, 2003, 20],

π

4
= 1− 1

3
+ 1

5
− 1

7
+ · · · ,

a result that expresses an irrational number in terms of a series of rational numbers. It is appa
such a result will not hold for finite series: it is a peculiarity of the infinite.

5.2. Nature

On sheet 10 (No. 3810) of his inquiry into sums of series and quadratures Leibniz subtracted the
CFGBC from the area ACBEMA between the hyperbola GBE, thex-axis AC, they-axis AF and the
ordinate CB, shown inFig. 4.

Because of the symmetry of the figure, CFGBC can be considered as part of the infinitely lon
ACBEMA. Putting DE= 1/(1− y), HL = 1/(1+ y), he obtained

DE= 1+ y + y2 + y3 + · · · ,
HL = 1− y + y2 − y3 ± · · ·

Fig. 4. Hyperbolic areas [Leibniz, 2003, 467].
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or as the sums of all DE or all HL, respectively (“integrating” termwise):

ACBEMA = 1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ · · · ,

CFGBC= 1− 1

2
+ 1

3
− 1

4
+ 1

5
∓ · · · .

Subtracting the second series from the first he obtained

1− 1+ 1

2
+ 1

2
+ 1

3
− 1

3
+ 1

4
+ 1

4
+ · · · = 1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ · · · = ACBEMA.

Leibniz commented:

Quod satis mirabile est, et ostendit, summam ipsius series 1· 1
2 · 1

3 etc.
esse infinitam . . .
Hoc argumento concluditur, infinitum non esse totum ; nec nisi fictionem, alioqui enim foret pars a

qualis toti.
This is quite wonderful and demonstrates that the sum of the series
1, 1

2, 1
3 etc. is infinite . . . This argument leads to the conclusion that the infinite is not whole and only

fiction. For otherwise a part would be equal to the whole.

In other words, the actual infinite cannot exist because its existence would lead to an exception to
axiom.

5.3. Way of handling

In April or May 1673 Leibniz wrote his three-partDe progressionibus intervallorum tangentium a v
tice (On progressions of the intervals of tangents from the vertex) [Leibniz, 2003, No. 17]. He explained
why the whole of the alternating series

1− 2+ 4− 8+ 16,etc.,

must be finite. He envisaged two possibilities. If one were allowed each time to subtract the pre
term from the following and to add these differences, the whole would become infinite:

1+ (4− 2) + (16− 8) + · · · .
If one were allowed each time to subtract the following term from the preceding one and to add
differences, the whole would become less than nothing, less than the whole infinite:

1−
[
(2− 4) + (8− 16) + · · · .

Nunc fere cum neutrum liceat, aut potius cum non possit determinari utrum liceat, natura medium eligi
totum aequatur finito.
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Now normally nature chooses the middle if neither of the two is permitted, or rather if it cannot b
determined which of the two is permitted, and the whole is equal to a finite quantity.

Following this reasoning, ignorance of what is permitted is said to imply the choice of the m
which in this case leads to a finite answer.4 It is worth mentioning that Leibniz did not speak of a sum
this case. “Pretending that a series was equal to a finite quantity was not the same as asserting t
a sum,” as Ferraro and Panza put it when dealing with 18th-century analysis [Ferraro and Panza, 200
p. 21].

Approximately two years later, Leibniz proved the first convergence criterion for infinite series
history of mathematics, namely for the alternating series. He did this in his treatise on the arith
quadrature of conic sections, published only in 1993 [Leibniz, 1993, Prop. 49]. In order to facilitate
understanding, I replace his lettersA, b, c, d , etc. bys and indexed lettersak , k = 1,2,3, . . . . Leibniz’s
criterion reads as follows:

Let s = a1 − a2 + a3 ± · · · be such that the termsai finally become smaller than any given quantity (Leib-
niz’s equivalent terminology would be: finally become infinitely small). Then the following inequalitie
expressed in words hold,

a1 > s and a1 − s < a2

a1 − a2 < s and s − (a1 − a2) < a3

a1 − a2 + a3 > s and (a1 − a2 + a3) − s < a4

a1 − a2 + a3 − a4 < s and s − (a1 − a2 + a3 − a4) < a5, etc,

or a partial sumsn ending with an addition is larger thans, a partial sum ending with a subtraction is
smaller thans. The error or the difference is smaller than the immediately following term.

If we use modern symbolism, the procedure can be described by|sn − A| < an+1, wherebyan+1 be-
comes smaller than any given quantity. Or: the sequence of the partial sumssn has the limits. Leibniz’s
proof runs as follows: he compares the partial series consisting of terms with even or odd indices,
tively,

a2k+1 < a2k or
∞∑

k=1

a2k >

∞∑
k=1

a2k+1, (1)

because the sequence of theak is monotonically decreasing. Now

a1 −
∞∑

k=1

a2k +
∞∑

k=1

a2k+1 = s.

4 Leibniz is not quite consistent here, since the second series reduces to 1− (minus infinity) = plus infinity, just as the firs
series did. He apparently intended to mean that the series could be rewritten in the form(1 − 2) + (4 − 8) + (16− 32) + · · · ,
which is equal to minus infinity. Hence the middle choice between the two possibilities of plus infinity and minus infin
finite quantity.
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To obtains, we have more to subtract than to add. Hence

s1 = a1 > s.

In the same way Leibniz demonstrated that

s3 > s, s5 > s, etc.,

a2k+1 > a2k+2 or
∞∑

k=1

a2k+1 >

∞∑
k=1

a2k+2. (2)

Now

a1 − a2 +
∞∑

k=1

a2k+1 −
∞∑

k=1

a2k+2 = s.

To obtains we have more to add than to subtract. Hence

s2 < s.

In the same way Leibniz demonstrated that

s4 < s, s6 < s.

Assertion:

a1 − s < a2. (3)

According to(1), (2) a1 > s

a1 − a2 < s

or

a1 − s < a1 − (a1 − a2) or a1 − s < a2.

In the same way Leibniz proved that

s − (a1 − a2) < a3

becausea1 − a2 < s ands < a1 − a2 + a3 or

s − (a1 − a2) < (a1 − a2 + a3) − (a1 − a2)

or

s − (a1 − a2) < a3, etc.
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What is important here is the fact that Leibnizdid not calculate with inequalities(which we would
do today)but compared differences. Therefore, he needed two columns, although he could have
changed the inequalities in the left column. In other words, in his mathematical thinking series a
mathematical objects, while inequalities are not. He showed that the difference betweens and the partia
sumssn becomes smaller than any given quantity for a sufficiently high indexn, in order to equates with
the sum of the series. That is, he implicitly used the modern convergence definition,

|sn − s| < ε

for sufficiently largen and arbitrarily smallε > 0.
It is useful to continue the comparison between Leibniz’s approach and the modern procedure

Leibniz compared partial sums of terms with even or odd indices, respectively (see steps (1), (2)),
ern proof compares such partial sums with themselves:

(1) s2n+2 > s2n, that is,s2n is monotonically increasing.
(2) s2n+3 < s2n+1, that is,s2n−1 is monotonically decreasing.
(3) s2n+1 > s2n.
(4) Hences2n is a sequence that is bounded above ands2n+1 is a sequence that is bounded below.
(5) Therefore both sequences must have a limit point.
(6) This limit point is the same for both sequences because the differencean “converges” to zero.

Leibniz did not have at his disposal the underlying topology. Yet, steps (4) and (6) describe exa
situation of James Gregory’s “convergent” double series which Leibniz especially studied in Jun
[Leibniz, 2003, No. 64; Gregory, 1668, definitions].

5.4. Utility

Leibniz again and again underlined the overwhelming importance of the infinite: it is the source
transcendental quantities like logarithms [Leibniz, 1693, p. 294].5 He called these quantities transce
dental because they transcended every algebraic equation [Leibniz, 1686, pp. 228f.], adding: “Finally
I found a veritable complement of algebra for the ‘transcendentals,’ that is, my calculus of indefi
small quantities, which I also call differential or summing calculus” [Leibniz, 1686, pp. 232f.]. In other
words, his new analysis corresponding to the geometry of transcendentals is the science of the i

6. Quadrature or construction: more or less geometrical

When in 1668 Nicolaus Mercator calculated areas under the hyperbola by means of infinite
he still called his treatiseLogarithmotechnia: sive methodus construendi logarithmos nova, accu
et facilis (Logarithmotechnia: or new, accurate, and easy method of constructing logarithms) [Mercator,

5 This remark reminds one of Anaximander’s saying that the apeiron (the unrestricted) is the beginning and the elem
being of things [Diels/Kranz fragment 12 A 9, B1].
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1668], not “method of calculating or determining.” Leibniz cited it seven times in his work on the a
metical quadrature of conic sections. In it he deduced his famous infinite converging alternating
for π/4 mentioned in Section5 [Leibniz, 1993, Prop. 32]. The 51st and last theorem asserted that
arithmetical quadrature is the most geometrical quadrature, that is possible. In other words, a m
metrical quadrature would consist of a finite formula. There is not such a formula or—in Car
terms—algebraic equation. (In 1974, the historian Joseph Hofmann wrote that Leibniz believed
impossible to representπ as the quotient of two finite numbers [Hofmann, 1974, p. 95]. This is saying
much too little: Leibniz claimed to have demonstrated it.)

First of all, the equation

area of circle: circumscribed square= arc of the quadrant: diameter= 1− 1

3
+ 1

5
− 1

7
etc.: 1

is an exact equation. Yet, it is readily perceived because the mind rushes through it so to speak by a s
stroke (unus ictus) [Leibniz, 1993, p. 80] (cf. Section3).

“Unus ictus” was a key notion for Leibniz. At the end of 1672, he had written about “one of the
difficult problems which can be devised” [Leibniz, 2003, No. 7]:

Let there be given a monotonically decreasing series having a finite sum. To find another monotonic
decreasing series (of finite or infinite sum) whose differences are the terms of the preceding series.
series can be used to find the sum of the given series because the beginning of the series so found w
the sum of the given series. Whoever will have solved this problem will have led geometry to an admira
perfection by, so to say, a single stroke (uno velut ictu).

According to Leibniz, the given result in the theory of series would lead by “a single stroke” t
perfection of geometry.

Second, in order to prove Theorem 51 Leibniz behaved like a partner in a critical dialog. Leta be the
arc of the circle,t the corresponding length of the tangent, 1 the length of the radius. Let us as
said Leibniz, that there is a more geometrical relation (relatio)—he again consciously used a C
expression [Descartes, 1659–1661, vol. I, p. 21]—between the arc and the tangent, and that this rela
is expressed by a finite formula instead of the equation given above. For example, it might be ex
by one of the following equations:

(1) ct + ma = b,

(2) ct + dt2 + eta + na2 + ma = b,

(3) f t3 + dt2 + ct + eta + gt2 + gt2a + hta2 + pa3 + na2 + ma = b,

etc.

Assume without loss of generality that the third equation is the one which holds for our problem.
suppose that a given arc BO must to be divided into 11 equal parts. This can be done by mean
third equation because we are looking for the tangent of the arc which is the 11th part of the a
Once the tangent has been found, the arc or angle will be divided into 11 parts.
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Let a/11 be the eleventh part of the arc,ϑ the corresponding tangent.Equation (3)expresses th
general relation between an arbitrary arc and its tangent. Hence it also expresses the relation
a/11 andϑ . Leibniz replacesa by a/11, t by ϑ , and thus obtains

cϑ + dϑ2 + f ϑ3 + hϑa2

112
+ eϑa

11
+ pa3

113
+ na2

112
+ ma

11
= b.

By means of this algebraic equation we will find the unknownϑ . Only the third power ofϑ occurs, and
so it is a matter of a cubic problem. Hence the division of an arbitrary angle into 11 parts will be a
problem. Instead of 11 we could take an arbitrary number, so that the division of an angle into an a
number of parts will be only a cubic problem. This is absurd because, according to Viète’s trea
angular sections [Viète, 1615], we know that for the division of an angle into equal parts an equatio
ever-higher degree is necessary. Hence the general angle-division problem is neither a cubic pro
a problem of a determined finite degree. Whatever polynomial equation int is taken, it does not suffic
for the division of an angle into a prime number of equal parts which is larger than the exponen
largest power oft .

Hence such an equation cannot express either a general relation between arc and tangent or be
and sine. The same holds if we replace the arc by a sector or segment. Hence there is no compr
analytical quadrature of the circle and its parts that ismore geometricalthan Leibniz’s quadrature.

The same argumentation can be applied to the quadrature of the hyperbola. For if there existed
equation of determined degree for the quadrature of the hyperbola or for the relation between a
and its logarithm, then we could find arbitrarily many mean proportionals by means of a single eq
of determined degree.

Leibniz concluded by saying: “Hence there is no general quadrature or construction (quadratu
eralis sive constructio), serving for an arbitrary given part of the hyperbola or circle and therefo
for an ellipse, which is more geometrical than our quadrature.”

Leibniz’s whole proof was elaborated along the lines of Descartes’ terminology.

7. Epilogue

Leibniz’s scientific credo is to be found on the 16th sheet of his inquiry into sums of serie
quadratures [Leibniz, 2003, No. 3816]:

Malo enim bis idem agere, quam semel nihil.
For I prefer to do the same twice instead of doing nothing once.

It is the bequest of a restless scholar.
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