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Abstract

This article deals with Leibniz’s reception of Descartes’ “geometry.” Leibnizian mathematics was based on five
fundamental notions: calculus, characteristic, art of invention, method, and freedom. On the basis of methodolog-
ical considerations Leibniz criticized Descartes’ restriction of geometry to objects that could be given in terms of
algebraic (i.e., finite) equations: “Descartes’s mind was the limit of science.” The failure of algebra to solve equa-
tions of higher degree led Leibniz to develop linear algebra, and the failure of algebra to deal with transcendental
problems led him to conceive of a science of the infinite. Hence Leibniz reconstructed the mathematical corpus,
created new (transcendental) notions, and redefined known notions (equality, exactness, construction), thus estab-
lishing “a veritable complement of algebra for the transcendentals”: infinite equations, i.e., infinite series, became
inestimable tools of mathematical research.

0 2004 Elsevier Inc. All rights reserved.

Zusammenfassung

Der Aufsatz behandelt Leibniz’ Aufnahme von Descartes’ ,Geometrie“. Die Leibnizsche Mathematik war auf
funf grundlegenden Begriffen aufgebaut: Kalkil, Charakteristik, Erfindungskunst, Methode, Freiheit. Leibniz’
methodologische Betrachtungen zogen seine Kritik der cartesischen algebraischen Methoden nach sich, die das
Gebiet der Geometrie definierten: ,Descartes’ Geist war die Grenze der Wissenschaft‘. Die Unvollkommenheit
der Algebra (L6sung algebraischer Gleichungen héheren Grades) lief3 Leibniz lineare Algebra entwickeln und eine
Wissenschaft des Unendlichen entwerfen. Leibniz baute also das Gebaude der Mathematik neu auf, schuf neue
Begriffe (transzendent) und definierte bekannte Begriffe neu (Gleichheit, Genauigkeit, Konstruktion). Auf diese
Weise begriindete er eine ,wahre Ergénzung der Algebra fiir transzendente Gro3en“: unendliche Gleichungen, das
heil3t unendliche Reihen, wurden unschatzbare Hilfsmittel der mathematischen Forschung.
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Introduction: sources

Since 1976, seven volumes have appeared, comprising about three thousand printed pages of Leikt
nizian mathematical studies. They partly, mainly, or exclusively deal with algebra or related topics:

[Leibniz, 1976& combinatorics (340 pp.),

[Leibniz, 1976M arithmetic, algebra (200 pp.),

[Knobloch, 1980 determinant theory (330 pp.),

[Leibniz, 1990: geometry, number theory, algebra (954 pp.),

[Leibniz, 1993 infinite series (160 pp.),

[Leibniz, 1996: algebra (870 pp.),

[Leibniz, 2003 infinite series and sequences (880 pp.).

These writings support by documentary evidence Leibniz’'s overwhelming interest in algebra and its
relation to geometry.

The present article is based on these new, available scuttages to show in what ways Leibniz’s
contributions to linear algebra and his understanding of Descd&&smetrywere motivated by imper-
fections in algebra and were profoundly influenced by Leibniz’s new conception of mathematics.

1. From the theory of equations to linear algebra

In 1924, the French poet Paul Valéry praised the algebraic use of unknowns in the following way:

Quelle idée plus digne de I'homme que d’avoir nommeé ce qu'il ne sait point ? Je pus engager ce que
jignore dans les constructions de mon esprit, et faire d’'une chose inconnue une piéce de la machine de ma
pensée.VYaléry, 1999

Yet, in Leibniz’s eyes algebra suffered from two imperfections:

(1) The algorithmic solution of the general algebraic equationtiofdegree was still unavailable;
(2) Algebraic equations did not suffice to comprehend transcendental problems in geometry.

Like all of his contemporaries, Leibniz was convinced of the solvability of the first problem. His own
attempts in this direction resulted in the emergence of determinant theory. His studies of transcendenta

1 The authors of the monogragihe Beginning and Evolution of AlgebfBashmakova and Smirnova, 2Qafid not take
notice of these volumes. Their only reference to Leibniz concerns his well-known letter to I'Hospital dating from 1693 and
published in 1850Leibniz, 1850, pp. 236—24lin which Leibniz derived the solution of a system of three linear equations. In
this respect, the monograph represents the state of affairs of 1850.
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problems, such as the quadrature of conic sections, resulted in the invention of his differential and integral
calculus.

In order to solve the quintic equation Leibniz generalized Cardano’s approach by using a substitution
of the form

X =ay+ ax+ asz+ as.

His calculations resulted in essential results in the theory of symmetric functions and additive number
theory Knobloch, 197Band led Leibniz to believe that the problem could be reduced to the solution of
systems of linear equations. In May 1678 he wrote:

| shall demonstrate that the labor of calculating is not difficult, because what is important is the fact that
the quantities looked for are not multiplied by each other or by themselves. Hence every calculation arising
from the equations used for elimination (destructitiae) is done exclusively by addition and subtraction of
arbitrary quantities having only signs and known (sufficiently simple) numerical coefficients. This is neither

laborious, nor difficult, nor prolix.

Indeed, these tiny equations used for elimination cannot lead to confusion because they do not ascend
either to rectangles or to powers, even if their number is large. For example, in the case of the [equation of
the] fifth degree there are at most 284 equations serving for elimination or—if one uses an abbreviation—
about 160 such equations. Yet, they are written down without any calculation and afterward the calculation
derived from them is carried out by addition and subtraction alone.

Hence to carry out the elimination calculation is no more difficult than to diligently write down 160
small lines, that is, the values of the unknowns. The value of every unknown can be written down at once
without any calculation by the estimation of a glance.

The writing down of the equations used for elimination does not require a great deal of attention. If
somebody should follow the method prescribed by me, a mere description would do. In order to write
down the values deduced from the equations no calculation is necessary. What is needed is attention in
substituting. For that reason an attentive and industrious person who is not distracted could carry out the
whole calculation for an equation of the fifth degree, within, | think, the space of one day, provided that
everything has been rightly preparedeibniz, 1976a, p. 113

This long citation should make it clear that in Leibniz's opinion, progress in algebra depended on
combinatoricsiKnobloch, 1974 that algebra was subordinated to combinatorics. As he remarked in his
decisive treatise on systems of linear equations dating from January 1684 and published in 1972:

In this attempt | solved the problem, whereas earlier | always got stuck at some point. What is done here is
an eminent example of the combinatorial aknpbloch, 1972, p. 167

2 eibniz obtained essential results in three areas of determinant theory: inhomogeneous systems of linear equations, resultants
of two polynomials, and elimination of a common variable from algebraic equations. These results are deséhitmddioich
[2001].
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2. Descartes vs Leibniz: the realm of geometry

What can be called the realm of geometry? Leibniz developed a conception which differed decisively
from that of Descartes. He did this in the course of a silent, yet enormously creative conversation with
the French mathematician.

Descartes had explained:

Aptius quidquam afferre nescio, quam ut dicam, quod puncta omnia illarum,Geametricaeappellari
possunt, hoc est, quae smgnsuranaliguamcertametexactancadunt, necessario ad puncta omnia lineae
rectae certamquandanrelationemhabeant, quae paequationenaliguam, omnia puncta respicientem,
exprimipossit.

[The most appropriate thing | can say is that all points of those curved lines which are usually called
geometricthat is those which are subject to atgterminedandexact measutenecessarily bear a certain
determinedelation to all points of a straight line which can &epressedby someequationregarding all
points.] Descartes, 16591661, vol. |, p. 21, emphasis added

Leibniz thoroughly discussed this Cartesian characterization of geometrical lines in October 1674
[Leibniz, 2003, No. 38] in his hitherto unpublished extraordinarily interesting and long inqligy
serierum summis et de quadraturis plagulae quinde@B sheets on sums of series and quadratures)
[Leibniz, 2003, No. 3B

First of all, Leibniz accepted Descartes’ axiom:

exactness implies geometricity.

In his historical study of geometrical exactneBes [2001, p. 405pbserves that the dissatisfaction with
the Cartesian interpretation of geometrical exactness was caused by its exclusion of nonalgebraic curves
In his 1674 inquiry Leibniz still excluded helical curves (space curves on a cylinder), on the grounds that
spirals cannot be exactly described because they depend on two motions being independent from on
another. Human beings are not able to give their determined proportion (certa proportio). Such spirals can
only be described by a divine art, by means of an intelligence whose distinct thoughts are realized in time
intervals which are smaller than any arbitrarily given time. This, he thought, did not apply even to angels.
Yet a family of curves, the trochoids, are described by a continuous motion and thus are exactly
described. Hence Descartes was obligated to explain in what respect their description is not exact. While
he was right in blaming the ancients for having confused the conchoids and cissoids with helical curves
and spirals respectively, he mustin turn be blamed for having confused trochoids and evolutes with spirals
and helical curves respectively. Leibniz disputed Descartes’ notion of exacBes2D01, p. 336
Leibniz considered a parabola AM@nrolling on the tangent AB. A point F of the axis of the
parabola is describing the parabolic trochoid’ FGeibniz, 2003, No. 38] (seeFig. 1). In [Leibniz,
2003, No. 38;] he studied the “parabolic trochoid here invented for the first time” (trochois parabol-
ica hic primum inventa). It is described by the focus B of the generating parabola (parabola genitrix)
unrolling on the tangent FTM (sd€g. 2). He was still unaware that the described line is the catenary.
Leibniz carried on a dialogue with a fictitious interlocutor:

But you will say, then we have realized the quadrature of the circle. | deny that we have a quadrature
as desired. You say: ‘By means of the circular trochoid, a moving curve, we have exactly a straight line
which is equal to the circumference of the circle.” ‘Yes,' Leibniz answered, ‘if exactly, then certainly also
geometrically. But not only a geometrical but also an analytical quadrature of the circle is required.’
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This is the crucial point: Descartes restricted geometrical lines to analytical lines, thus depriving sci-
ence of a necessary aid (scientiam auxilio necessario privat). Leibniz believed that Descartes did this for
a secret reason: he wanted to be able to boast of having given a method for obtaining all geometrical
curves and their tangents.

Leibniz disagreed emphatically. Such nonanalytical curves are no less geometrical just because they
are exact. Also, they have excellent uses. Examples of useful curves are Huygens's cycloid and his own
parabolic trochoid. He explicitly said.gibniz, 2003, No. 3&]: “We must admit that nonanalytical lines
are necessary in geometry. For there are problems that can be solved, that is, by calculation without the

H

Fig. 1. Parabolic trochoid 1LEibniz, 2003, 48P

G

M

Fig. 2. Parabolic trochoid 4_gibniz, 2003, 49F.
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existence of a geometrical construction by analytical lines; for example, consider the problem of dividing
a ratio into a ratio of two irrational numbers. Such problems can be solved only by means of nonanalytical
lines.” By “dividing a ratio into a ratio of two irrational numbers” Leibniz and the mathematicians of
his time meant the insertion of an irrational mean proportional between two given numbershe
logarithmic curve provided the general solution of this problem. In other words, according to Leibniz,
exactness is indispensable, but analyticity is not. What counts is the solvability of problems. For Leibniz,
solvability was a central notion of mathematcs.

For Leibniz the boundary between geometric and nongeometric lines is not fixed once and for all.
It can happen that a nongeometrical line becomes geometrical when a way of describing it is found
(for example, the logarithmic curve) and that a nonanalytical line becomes analytical (for example, the
trochoid of the quadratocubic parabofa= x2). Only after Hendrik van Heuraet had found its measure
(dimensio) did it become analytical. (Leibniz was referring to Heurdedtter on the transformation of
curved lines into right line§Heuraet, 165P)

In other words, Descartes adhered to a mathematically fixed, closed, static realm of geometry, while
Leibniz adhered to a mathematically changing, open, dynamical realm of geometry in which the classifi-
cation of lines depends on our current knowledge. The following diagram describes Leibniz’s classifica-
tion of lines as of October 1674:

geometrical mechanical
(there is a pointwise rather than
a continuous description of the
line)
e.g., alogarithmic curve

analytical tetragonisticagsquaring)
(the relation between ordinates and (their quadratures can be reduced to a
abscissas can be expressed by a calculation only after the measures
linear, quadratic, cubic, etc. (dimensiones) or quadratures of certain
equation, according to the degree curvilinear figures have been found; their
of the equation) degree is uncertain)
under control not under control
(e.g., evolutes trochoids) (e.g., spirals)

It is worth mentioning that spirals are, so to speak, candidates for the realm of geometrical lines.
Just one year later, Leibniz seemed to have changed this classification regarding the logarithmic curve
In April/May 1675 he wrote hisseometrical contemplation on the diminution of motion which represents

3 Such an approach reminds one of Hilbert's conviction of the solvability of every mathematical problem, of his saying that in
mathematics there is rignorabimugHilbert, 1900, p. 110R
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Fig. 3. “Physical” construction of logarithm&éibniz, 1689, Fig. 1b

the logarithms by a wonderful artifice of natugPe detrimento motus contemplatio geometrica quae
mirabili naturae ingenio repraesentat logarithmédydud, 1914-1924, No. 946He published it only

in 1689 [Leibniz, 1689. His method consists in “a physical way of constructing logarithms which cannot
be exactly constructed by the common geometry” Gge?3).

A body undergoes a uniform motion, which is retarded in proportion to the distance traversed. Let AE
be the initial velocity at the beginning, AB the distance to be traversed. Let AM be the distance traversed,
MB the distance still to be traversed, MC the remaining velocity, and FE the velocity which has been lost.
If the remaining distances MB LT are to each other like numbers, then the spent times=MIB are to
each other like their logarithms. For if the elements of the distance belong to a geometrical sequence, then
the remaining distances belong to the same geometrical sequence, and consequently also the remaining
velocities. Hence the increments of time are equal, the times belong to a corresponding arithmetical
sequence, that is, they form the logarithms.

In 1693 Leibniz alluded to this “construction which has admixed something physical” Bugple-
ment to the measuring geometry or the most general realization of all quadratures by means of a motion
and in a similar way a multiple construction of a line according to a given tangent conditieibniz,

1693. In this paper he described the gradually growing realm of geometry:

In order to construct transcendental quantities an application or adaptation of curves to straight lines has
hitherto been used, as occurs in the description of the cycloid or in the case of the unwinding of a thread,
or leaf, tied up with a line or surface. ... Should someone wish to describe geometrically the spiral of
Archimedes or the quadratrix of the ancients, that is, by means of an exact, continuous motion, he will
easily do that by a certain adaptation of a straight line to a curve, such that the rectilinear motion is adapted
to the circular. Leibniz, 1693, 295

We see that while Descartes excluded these curves from geometry Leibniz insisted on including them.
His reasons are that lines described in such a way are exact, have very useful properties, and are applicabls
to transcendental quantities. Exactness of the method of construction is the decisive criterion for inclusion
within geometry. If a construction is easy and useful, then it becomes part of practice.

In 1693, at the latest, Leibniz had in mind a bipartite geometry corresponding to a bipartite analysis:
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/ geometry.
determinative geometry \

(geometria determinatrix) metric ge_omt_atry _
(geometria dimensoria)

algebra
supplement of algebra (analysis of

transcendentals: science of the
infinite = differential calculus)

analySis /

3. Descartes and Leibniz: differences and similarities

While Descartes’ and Leibniz’s mathematical programs differed fundamentally, their style of mathe-
matical writing reveals some striking similarities. Descartes had written that

cum ratio, quae inter rectas et curvas existit, non cognita sit, nec etiam ab hominibus (ut arbitror) cognosci
gueat ; nihilque inde, quod exactum atque certum est, concludere posdiressaftes, 1659-1661, vol. |,
p. 39

since the ratios between straight and curved lines are not known, and | believe cannot be discovered
by human minds, no conclusion based upon such ratios can be accepted as rigorous aridescactef,
1954, p. 9]

The contributions of mathematicians like Christopher Wren, William Neile, Pierre de Fermat, and James
Gregory to rectifications of curves are well knowdipe, 1972, p. 3541. They obtained their results
before Leibniz began his mathematical studies in Paris. To some extent, their work rendered Descartes
invalid. Nevertheless, the Cartesian demand for exactness remained a challenge. Leibniz took this de
mand seriously when he wrote about his arithmetical quadrature of the circle by means of an infinite
series:

Hactenus appropinquationes tantum proditae sunt verus autem valor nemini quod sciam visus nec a quo-
gquam aequatione exacta comprehensus est, quam hoc loco damus, licet infinitam, satis tamen cognitam,
guoniam simplicissima progressione constantem uno velut ictu mens perkadihif, 1993, p. 8

Up to now, only approximations have been produced. But to my knowledge the true value has not been
envisaged by anybody, and has not been expressed by anybody by means of an exact equation such as we
are giving here. This is, admittedly, an infinite equation, but one that is readily perceived in view of its easy
law of formation; the mind rushes through it, so to speak by a single stroke.

Leibniz consciously took up the Cartesian expressiexactaand cognita We will return to this
issue in Sectiorb. What is important here is the fact that Leibniz denied Descartes’ assertion, while
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acknowledging Descartes’ own criteria and using his own terminology. Later, he repeatedly criticized
Descartes for having made his own mind the limit of geometry and of sci&mesbloch, 1999, p. 221

Yet both mathematicians believed that they had initiated a broad field of research without, however,
having explicitly set down everything that there was to do. Descartes finished his Geometry by saying:

. it is only necessary to follow the same general method to construct all problems, more and more
complex, ad infinitum; for in the case of a mathematical progression, whenever the first two or three terms
are given, itis easy to find the rest.

| hope that posterity will judge me kindly, not only as to the things which | have explained, but also as
to those which | have intentionally omitted so as to leave to others the pleasure of discDesgaftes,
1659-1661, vol. |, p. 106; Descartes, 1954, p.]290

When Leibniz illustrated earlier the use of logarithms in the above cited treatise, he interrupted his ex-
planations by saying:

Their use could also be shown in the solution of equations and in many other questions. But whoever will
have understood that, will easily notice what large field of invention lies open. And | prefer to leave it to
others in what they might successfully exercise themselves than to try in vain by an obscure diligence that
| seem to have said everythind.dibniz, 1993, p. 12b

4. Leibniz’'s mathematics: aims, notions, terminology, objects, operations, problems

We present some general conclusions regarding Leibniz’'s mathematics, in order to better understand
his mathematical approach and his criticism of Descartes. Leibniz's main aims were fruitfulness, cer-
tainty, conclusiveness, and universality. He explicitly adhered to them in his treatise on the arithmetical
quadrature of conic sectionkdibniz, 1993. For that reason, he always set the highest value on five key
notions: calculus, characteristic, art of invention, method, and freedom. (I have shown elsewhere how
these notions guided his mathematical thinkikg¢bloch, 1999)

A calculus implies universality and fruitfulness. Something should always be calculated in such a way
that uniformity and justice (iustitia) or symmetry are preserved. A calculus might result in a powerful
algorithm, as is the case for the differential calculus. The “characteristic art” (ars characteristica) is the art
of creating and applying suitable signs. A characteristic makes it possible to examine calculations without
additional computing, reveals laws of formations, and makes possible new insights. Leibniz’s determinant
theory and his differential calculus are excellent examples in order to illustrate these implications of
calculus and characteristic. The art of invention expresses the dynamical principle of increasing human
knowledge, a principle to which Leibniz subordinated all his mathematical efforts. It is evident that he
adhered to an open, dynamical conception of geometry. Methods should comply with all four conditions,
that is to say, fruitfulness, certainty, conclusiveness, and universality. Hence he always esteemed methods
more than special solutions of particular problems. His famous first publication of his differential calculus
was entitled “New Method” (Nova methodus). Yet, in spite of his preference for universal methods he
knew very well that special procedures permitted abbreviations and simplifications. Finally, freedom of
thought was a necessary presupposition for the art of invention and the introduction of new methods.
Leibniz valued intellectual liberty (as Copernicus did before him or Georg Cantor after) and invoked this
liberty when he treated curves as lines in the form of infinitangular polygons.
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Leibniz’s basic objection to the geometry of Grégoire de St. Vincent, Guldin, Cavalieri, and espe-
cially Descartes, was rooted in his conviction that their geometry was confined within certain limits
(certi limites) [Leibniz, 1686, 232; Sasaki, 2003, 378 his eyes Descartes’ method lacked fruitfulness,
universality, and freedom of thought. For this reason he reinvented the mathematical corpus, creating &
new terminology, new objects, and new operations, thus inevitably encountering new problems. His new
terminology concerned new meanings of old notions or new categories created by him. The first category
included

algebrg which to him was subordinated to the combinatorial art (Sedt)on

constructionwhich became equivalent with “general quadrature” (Sedijon

equal which became equivalent with “the difference is smaller than any given quanitigbiiz,
1993,

geometrical which became equivalent with “exact” (Sectign

The second category concerned the téranscendentalHe used this expression from the autumn of
1673 [Leibniz, 2003, No. 2Band applied it to curves, figures, problems, and equations (Seg}tidtis
new objects included

infinitely small or large quantitiegsmaller or larger than any given quantityefbniz, 1993,

infinite equationssubject to all algebraic operations (Secti®)n

determinantgLeibniz spoke about “aequationes resultantes” without using the term “determinant”)
(Sectionl),

indeterminatesquations, such as’ — x = 24 [Leibniz, 1987, 844, 846, 889, 898, 903

In April/May 1673 he spoke of “new algebraic arts” (novae artes algebraitaé)riz, 2003, No. 1]
emerging from the study of roots of binomials. Among the countless new problems envisaged by Leib-
niz, infinite equations played a fundamental role. The main question was how to compute the sums of
infinitely many terms, a subject to which we turn in the next section.

5. The infinite and infinite series

From the very beginning of his mathematical studies in Paris Leibniz dealt with the infinite and tried to
identify its peculiarities, nature, way of handling, and utility. His thinking was guided by two convictions:

(1) There is no exception to Euclid’s common notion: the whole is greater than the part;
(2) The same rules hold in the domain of the infinite as in the domain of the finite (law of continuity).

5.1. Peculiarities

Very early in his investigations Leibniz noticed some peculiarities of the infinite. At the turn of the
years 1672 to 1673 he wrote the remarkable sihdyrogressionibus et de arithmetica infinitord@®n
progressions and the arithmetic of the infinitdsgipniz, 2003, No. J. In it he stated:
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Cognitio infiniti apex est humanae subtilitatis.
The recognition of the infinite is the summit of human acuteness.

And somewhat later:

Non est dubitandum, quin aliquae series constantes licet ex numeris rationalibus, aequentur numeris surdis,
guod investigandum.

There cannot be any doubt that some series are equal to irrational numbers though they consist of
rational numbers. This must be investigated.

In 1674 his research led him to an arithmetical quadrature of the ciFeledro and Panza, 2003,]20

a result that expresses an irrational number in terms of a series of rational numbers. It is apparent that
such a result will not hold for finite series: it is a peculiarity of the infinite.

5.2. Nature

On sheet 10 (No. 38) of his inquiry into sums of series and quadratures Leibniz subtracted the area
CFGBC from the area ACBEMA between the hyperbola GBE,.tkexis AC, they-axis AF and the
ordinate CB, shown iffrig. 4.

Because of the symmetry of the figure, CFGBC can be considered as part of the infinitely long area
ACBEMA. Putting DE=1/(1—y), HL=1/(1+ y), he obtained

DE=1+y+y*+y°+--,
HL=1-y+y*—y3+...

a F

Fig. 4. Hyperbolic aread pibniz, 2003, 46}
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or as the sums of all DE or all HL, respectively (“integrating” termwise):

1 1 1 1
ACBEMA =1+ -+ -+ -+ —
totzt Tt
1 1 1 1
FGBC=1—--+-—>+4=
CFGBC= 2+ 3 4+ 5T
Subtracting the second series from the first he obtained
11 1 1 1 1 1 1 1 1
l1-14-4+=-+=-—=+-+- =1 -=ACBEMA.
totstgogtgtg =l syttt

Leibniz commented:

Quod satis mirabile est, et ostendit, summam ipsius seriés % etc.

esse infinitam ...

Hoc argumento concluditur, infinitum non esse totum ; nec nisi fictionem, alioqui enim foret pars ae-
qualis toti.

This is quite wonderful and demonstrates that the sum of the series

1, 1 1 etc. is infinite ... This argument leads to the conclusion that the infinite is not whole and only a
f|ct|on For otherwise a part would be equal to the whole.

In other words, the actual infinite cannot exist because its existence would lead to an exception to Euclid’s
axiom.

5.3. Way of handling

In April or May 1673 Leibniz wrote his three-pdde progressionibus intervallorum tangentium a ver-
tice (On progressions of the intervals of tangents from the verteaiphiz, 2003, No. 1] He explained
why the whole of the alternating series

1-2+4-8+16,etc,

must be finite. He envisaged two possibilities. If one were allowed each time to subtract the preceding
term from the following and to add these differences, the whole would become infinite:

14+ (4—2)+(16—8)+---

If one were allowed each time to subtract the following term from the preceding one and to add these
differences, the whole would become less than nothing, less than the whole infinite:

—[@—4y+@—1®+~‘

Nunc fere cum neutrum liceat, aut potius cum non possit determinari utrum liceat, natura medium eligit, et
totum aequatur finito.
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Now normally nature chooses the middle if neither of the two is permitted, or rather if it cannot be
determined which of the two is permitted, and the whole is equal to a finite quantity.

Following this reasoning, ignorance of what is permitted is said to imply the choice of the middle,
which in this case leads to a finite ansWétris worth mentioning that Leibniz did not speak of a sum in
this case. “Pretending that a series was equal to a finite quantity was not the same as asserting that it hac
a sum,” as Ferraro and Panza put it when dealing with 18th-century andfgsiafo and Panza, 2003,

p. 21].

Approximately two years later, Leibniz proved the first convergence criterion for infinite series in the
history of mathematics, namely for the alternating series. He did this in his treatise on the arithmetical
quadrature of conic sections, published only in 19R8ipniz, 1993, Prop. 49 In order to facilitate
understanding, | replace his letteds b, ¢, d, etc. bys and indexed letterg,, k =1,2,3,.... Leibniz’s
criterion reads as follows:

Lets = a1 —az + az + - - - be such that the terms finally become smaller than any given quantity (Leib-
niz's equivalent terminology would be: finally become infinitely small). Then the following inequalities
expressed in words hold,

ap>s and a1 —s <ap
al—az<s and s— (a1 —ap) <az
ai—az+az>s and (a1—ax+a3) —s <ay

a1—ax+az—as<s and s— (a1 —az+az—as) < as, etq

or a partial sums, ending with an addition is larger than a partial sum ending with a subtraction is
smaller thary. The error or the difference is smaller than the immediately following term.

If we use modern symbolism, the procedure can be describeq byA| < a,11, wherebya, 1 be-
comes smaller than any given quantity. Or: the sequence of the partialssunas the limits. Leibniz’s
proof runs as follows: he compares the partial series consisting of terms with even or odd indices, respec-
tively,

o o0
a1 < ag Or E dgy > E a2k41, (1)
k=1 k=1

because the sequence of thas monotonically decreasing. Now

o0 o0
ap — E az. + E a1 =S5.
k=1 k=1

4 Leibniz is not quite consistent here, since the second series reduces @mibus infinity) = plus infinity, just as the first
series did. He apparently intended to mean that the series could be rewritten in th@ fer2n+ (4 — 8) + (16 —32) + - - -,
which is equal to minus infinity. Hence the middle choice between the two possibilities of plus infinity and minus infinity is a
finite quantity.
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To obtains, we have more to subtract than to add. Hence
S1=d1>S.
In the same way Leibniz demonstrated that

53>, S5 > S, etc,

oo o0

agp+1 > Agk42  OF E a2k+l>E ai42-

k=1 k=1

Now

o0 o0
ay—az+ E A2k+1 — E a2 =S.
k=1 k=1

To obtains we have more to add than to subtract. Hence
S2 < S.

In the same way Leibniz demonstrated that

S4<S, 56 < S.
Assertion:

ap— s <as.
According to(1), (2) a1 > s

ar—ax<s

or
ar—s <ay— (ap—ap) Or a;—s <ap.
In the same way Leibniz proved that
s — (a1 —ap) <as
because; —ar < s ands < aj; —as +az or
s — (a1 —az) < (a1 —az+az) — (a1 — az)
or

s — (a1 —ap) <as, eftc.

(2)

3)
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What is important here is the fact that Leibrdid not calculate with inequalitie$which we would

do today)but compared difference§ herefore, he needed two columns, although he could have just
changed the inequalities in the left column. In other words, in his mathematical thinking series are new
mathematical objects, while inequalities are not. He showed that the difference betamethe partial
sumss,, becomes smaller than any given quantity for a sufficiently high imdéx order to equate with

the sum of the series. That is, he implicitly used the modern convergence definition,

|s, —s| <é&

for sufficiently largen and arbitrarily smalk > O.

It is useful to continue the comparison between Leibniz’s approach and the modern procedure. While
Leibniz compared partial sums of terms with even or odd indices, respectively (see steps (1), (2)), a mod-
ern proof compares such partial sums with themselves:

(1) s2,42 > 524, that is,sy, is monotonically increasing.

(2) 52,43 < $2,41, that is,s,,_1 is monotonically decreasing.

(3) Son+1 > S25-

(4) Hencesy, is a sequence that is bounded above gnd is a sequence that is bounded below.
(5) Therefore both sequences must have a limit point.

(6) This limit point is the same for both sequences because the diffesigricenverges” to zero.

Leibniz did not have at his disposal the underlying topology. Yet, steps (4) and (6) describe exactly the
situation of James Gregory’s “convergent” double series which Leibniz especially studied in June 1676
[Leibniz, 2003, No. 64; Gregory, 1668, definitigns

5.4. Utility

Leibniz again and again underlined the overwhelming importance of the infinite: it is the source of the
transcendental quantities like logarithmsejbniz, 1693, p. 294° He called these quantities transcen-
dental because they transcended every algebraic equatdmiz, 1686, pp. 228f. adding: “Finally
| found a veritable complement of algebra for the ‘transcendentals, that is, my calculus of indefinitely
small quantities, which | also call differential or summing calculus®ipniz, 1686, pp. 232}. In other
words, his new analysis corresponding to the geometry of transcendentals is the science of the infinite.

6. Quadrature or construction: more or less geometrical

When in 1668 Nicolaus Mercator calculated areas under the hyperbola by means of infinite series
he still called his treatiskogarithmotechnia: sive methodus construendi logarithmos nova, accurata,
et facilis (Logarithmotechnia: or new, accurate, and easy method of constructing logaritierspfor,

5 This remark reminds one of Anaximander’s saying that the apeiron (the unrestricted) is the beginning and the element of the
being of things Diels/Kranz fragment 12 A 9, B1



128 E. Knobloch / Historia Mathematica 33 (2006) 113-131

1669, not “method of calculating or determining.” Leibniz cited it seven times in his work on the arith-
metical quadrature of conic sections. In it he deduced his famous infinite converging alternating series
for 7 /4 mentioned in Sectiob [Leibniz, 1993, Prop. 32 The 51st and last theorem asserted that this
arithmetical quadrature is the most geometrical quadrature, that is possible. In other words, a more geo:
metrical quadrature would consist of a finite formula. There is not such a formula or—in Cartesian
terms—algebraic equation. (In 1974, the historian Joseph Hofmann wrote that Leibniz believed it was
impossible to represent as the quotient of two finite numbersdgfmann, 1974, p. 95 This is saying

much too little: Leibniz claimed to have demonstrated it.)

First of all, the equation

. . . . 1 1 1
area of circle circumscribed square arc of the quadrantdiameter=1 — 3 + 57 etc.: 1
is an exact equation. Yet, it is readily perceived because the mind rushes through it so to speak by a single
stroke (unus ictus)eibniz, 1993, p. 8D(cf. Section3).

“Unus ictus” was a key notion for Leibniz. At the end of 1672, he had written about “one of the most
difficult problems which can be devised’dibniz, 2003, No. J.

Let there be given a monotonically decreasing series having a finite sum. To find another monotonically
decreasing series (of finite or infinite sum) whose differences are the terms of the preceding series. This
series can be used to find the sum of the given series because the beginning of the series so found will be
the sum of the given series. Whoever will have solved this problem will have led geometry to an admirable
perfection by, so to say, a single stroke (uno velut ictu).

According to Leibniz, the given result in the theory of series would lead by “a single stroke” to the
perfection of geometry.

Second, in order to prove Theorem 51 Leibniz behaved like a partner in a critical dialagbkehe
arc of the circlet the corresponding length of the tangent, 1 the length of the radius. Let us assume,
said Leibniz, that there is a more geometrical relation (relatio)—he again consciously used a Cartesian
expressionDescartes, 1659-1661, vol. |, p.]2between the arc and the tangent, and that this relation
is expressed by a finite formula instead of the equation given above. For example, it might be expressec
by one of the following equations:

(1) ct+ma=>h,
(2) ¢t +dt®+ eta +na®+ma=h,
(3)  fr34+dt® +ct +eta + gt* + gt’a + hta® + pa® + na® + ma = b,
etc.
Assume without loss of generality that the third equation is the one which holds for our problem. Let us
suppose that a given arc BO must to be divided into 11 equal parts. This can be done by means of the

third equation because we are looking for the tangent of the arc which is the 11th part of the arc BO.
Once the tangent has been found, the arc or angle will be divided into 11 parts.
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Let a/11 be the eleventh part of the ang,the corresponding tangeriEquation (3)expresses the
general relation between an arbitrary arc and its tangent. Hence it also expresses the relation between
a/11 andy. Leibniz replaces by a/11,r by %, and thus obtains

hta®> eda pa® na® ma

il s N B
112 * 11 +113+112+ 11

e +dv+ o3+

By means of this algebraic equation we will find the unknatvrOnly the third power of occurs, and

so it is a matter of a cubic problem. Hence the division of an arbitrary angle into 11 parts will be a cubic
problem. Instead of 11 we could take an arbitrary number, so that the division of an angle into an arbitrary
number of parts will be only a cubic problem. This is absurd because, according to Viéte's treatise on
angular sections\iete, 1613, we know that for the division of an angle into equal parts an equation of
ever-higher degree is necessary. Hence the general angle-division problem is neither a cubic problem nor
a problem of a determined finite degree. Whatever polynomial equatioisitaken, it does not suffice

for the division of an angle into a prime number of equal parts which is larger than the exponent of the
largest power of.

Hence such an equation cannot express either a general relation between arc and tangent or between ar
and sine. The same holds if we replace the arc by a sector or segment. Hence there is ho comprehensive
analytical quadrature of the circle and its parts thadse geometricathan Leibniz’'s quadrature.

The same argumentation can be applied to the quadrature of the hyperbola. For if there existed a single
equation of determined degree for the quadrature of the hyperbola or for the relation between a number
and its logarithm, then we could find arbitrarily many mean proportionals by means of a single equation
of determined degree.

Leibniz concluded by saying: “Hence there is no general quadrature or construction (quadratura gen-
eralis sive constructio), serving for an arbitrary given part of the hyperbola or circle and therefore also
for an ellipse, which is more geometrical than our quadrature.”

Leibniz’s whole proof was elaborated along the lines of Descartes’ terminology.

7. Epilogue

Leibniz’s scientific credo is to be found on the 16th sheet of his inquiry into sums of series and
guadratureslieibniz, 2003, No. 3&]:

Malo enim bis idem agere, quam semel nihil.
For | prefer to do the same twice instead of doing nothing once.

It is the bequest of a restless scholar.
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