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foundational problem for the early Leibnizian calculus
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Abstract

Transcendental curves posed a foundational challenge for the early calculus, as they demanded an extension
of traditional notions of geometrical rigour and method. One of the main early responses to this challenge was
to strive for the reduction of quadratures to rectifications. I analyse the arguments given to justify this enterprise
and propose a hypothesis as to their underlying rationale. I then go on to argue that these foundational con-
cerns provided the true motivation for much ostensibly applied work in this period, using Leibniz’s envelope
paper of 1694 as a case study.
� 2012 Elsevier Inc. All rights reserved.
Zusammenfassung

Transzendentale Kurven stellten eine grundlegende Herausforderung für die frühen Infinitesimalkalkül dar,
da sie eine Erweiterung der traditionellen Vorstellungen von geometrischen Strenge und Verfahren gefordert
haben. Eines der wichtigsten frühen Antworten auf diese Herausforderung war ein Streben nach die Reduktion
von Quadraturen zu Rektifikationen. Ich analysiere die Argumente die dieses Unternehmen gerechtfertigt
haben und schlage eine Hypothese im Hinblick auf ihre grundlegenden Prinzipien vor. Ich behaupte weiter, dass
diese grundlegenden Fragenkomplexe die wahre Motivation für viel scheinbar angewandte Arbeit in dieser Zeit
waren, und benutze dafür Leibniz’ Enveloppeartikel von 1694 als Fallstudie.
� 2012 Elsevier Inc. All rights reserved.
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1. Introduction

In the early 1690s, when the Leibnizian calculus was in its infancy, a foundational problem
long since forgotten was universally acknowledged to be of the greatest importance. This was
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the problem of reducing quadratures to rectifications. That is to say, in modern terms, when
encountering an integral such as

R ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x4
p

dx, which cannot be evaluated in closed algebraic
form, the pioneers of the Leibnizian calculus preferred to express it in terms of the arc length
of an auxiliary curve instead of leaving it as an area, i.e., in effect, to rewrite the integral in the

form
R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðy0Þ2
q

dx for some algebraic curve y(x) concocted solely for this purpose. They
were fully aware that the opposite reduction (expressing an arc length as an integral) is the
easy and natural one computationally from the point of view of the integral calculus. Nev-
ertheless they insisted on reducing quadratures to rectifications for a variety of reasons to be
discussed in detail below. But first a few words about the broader context.

The problem of rectification of quadratures was generally encountered in the setting of
differential equations. Many differential equations that cannot be solved in closed algebraic
form can be solved “by quadratures,” i.e., the solution curve can be constructed given the
assumption that areas of curvilinear figures can always be determined. In particular, any
differential equation with separated variables, f(x)dx = g(y)dy, amounts to a recipe for con-
structing a solution curve “by quadratures,” as indicated in Fig. 1. But the assumption that
general curvilinear areas can always be determined was considered deeply unsatisfactory
and was accepted as a last resort only. A method for rectifying quadratures would mean
that this assumption could be replaced by the assumption that arc lengths of curvilinear
figures can be determined, which was considered more reasonable. For this reason the rec-
tification of quadratures was considered to be one of the most promising general methods
for constructing curves known only by their differential equation.

In this way the rectification of quadratures formed one of the cornerstones of a broader
complex of foundational concerns regarding the representation of transcendental curves.
The proper means of representing transcendental curves was a—or, arguably, the—preem-
inent foundational problem for the early Leibnizian calculus. Transcendental curves and
the quantities constructible with their aid were found to be indispensable in numerous
branches of mathematics and physics, such as the brachistochrone in dynamics, the cate-
Figure 1. Solution “by quadratures” of the differential equation adx = a2dy/y in [Johann Bernoulli,
1692c, lecture 10] (figure from [Johann Bernoulli, 1914, 41]). The lines EN and PG are chosen so that
the areas KBNE (area under a2/y) and AJPG (area under a) are equal. Their intersection D is then a
point on the sought curve. Bernoulli was well aware that the solution curve is what we would call an
exponential function (he calls it “Logarithmica”) but he evidently considered the geometrical
construction more fundamental than a description in such terms (see Section 3.1 below for further
discussion of this point).
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nary in statics, the cycloidal path of the optimal pendulum clock in horology, the loxo-
drome in navigation, caustics in optics, arc lengths of ellipses in astronomy, and logarithms
in computational mathematics. However, these curves were profoundly incompatible with
the norms of mathematical rigour current at the time, as the very epithet “transcendental”
(coined by Leibniz1) attests—the point being that these curves “transcend” the domain of
algebra. In his epoch-making work La Géométrie of 1637, Descartes had taught the world
how to represent curves by algebraic equations. With the lines, circles and conic sections of
classical geometry being of degree one and two, Descartes’s reconceptualisation of geome-
try to include algebraic equations of any degree was a way of subsuming and extending vir-
tually all previous knowledge of geometry. This continuity with classical geometry lent
credence to Descartes’s claim that only curves that could be expressed by polynomial equa-
tions were susceptible to geometrical rigour. In the later half of the 17th century, however,
even Descartes’s extended notion of geometry was found to be too restrictive, as one curve
after another that transcended its bounds proved vital to this era’s revolutionary mathe-
matisation of nature. With nothing like the clear-cut rigour of Greek and Cartesian geom-
etry available to deal with their multitude and complexity, these new transcendental curves
exerted a profound strain on the foundations of the subject. The variety of new techniques
for characterising these curves—such as differential equations, infinite series, analytic
expressions, and numerous mechanical and geometrical constructions—blurred the bound-
aries between known and unknown, while the fact that many of these curves were most nat-
urally defined in physical terms left the foundations of geometry entangled with mechanics.

In a such period of foundational turmoil, mathematical considerations alone are insuf-
ficient to uniquely determine the path of progress. Extramathematical choices must neces-
sarily play a part in directing research, whether they be philosophical, psychological,
aesthetic, or otherwise. But these extramathematical considerations have a fleeting life span.
Though once the torches that reveal the first contours of a terra incognita, they are swapped
for swords as the new area is conquered, and altogether antiquated by the time the battle-
front has pushed ahead toward new frontiers. Today the infinitesimal calculus is a pastoral
idyll where we send our young to practice, but it looked very different to the first explorers
to glimpse this land in the flickering light of philosophical torches, and the manner in which
it was conquered was largely determined by the dragons they imagined themselves seeing
there. The problem of rectification of quadratures was one of these foundational dragons
whose imposing presence profoundly shaped the development of the calculus.

2. Why rectify quadratures?

The importance and value of reducing quadratures to rectifications is attested in both
words and deeds by all the major figures involved the early Leibnizian calculus,2 but the moti-
1 Leibniz used this term in private manuscripts as early as 1673 (see [Knobloch, 2006]) and
subsequently in print from his first calculus-related paper [Leibniz, 1682] onwards.

2 To wit, Leibniz, Jacob and Johann Bernoulli, Huygens and l’Hôpital. I give a few general
quotations to this effect here; below follow many more.

Leibniz [1691c]:
I would also like to be able to reduce quadratures to the dimensions of curved lines, which I
consider to be simpler. Have you perhaps considered this matter, sir?
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vation for doing so is not completely unambiguous. The most common argument is that “the
dimension of the line is simpler than that of an area,” as Leibniz repeatedly stressed.3 Leibniz
even traced the pedigree of this principle back to Archimedes’s reduction of the area of a circle
Je souhaitterois aussi de pouvoir tousjours reduire les quadratures aux dimensions des
lignes courbes, ce que je tiens plus simple. Avés vous peutestre pensé à ce point,
Monsieur?

Huygens [1691]:
I would also like to be able to reduce the dimensions of unknown spaces to the measurement of
some curved line . . . but I think in most cases it will be very difficult.
J’aimerois bien aussi de pouvoir reduire les dimensions des espaces inconnus à la mesure de
quelque ligne courbe, lors que ces deux quadratures n’ont point de lieu, mais je le crois le plus
souvent tres difficile.

Leibniz [1693a]:
I would like completely general and short ways of reducing inverse tangent problems in
any case at least to quadratures, and then the quadratures to the extension of curves
into lines, since it is more natural to measure areas by lines than the other way
around.
Ich mochte wündschen vollkommene allgemeine und kurze wege, die problemata Tangen-
tium conversa allezeit wenigstens auff quadraturas zubringen, und dann die quadraturas
auff extensiones curvarum in rectas, denn ja naturlicher ist spatia zu meßen per lineas,
als contra.

Johann Bernoulli [1694d]:
I believe you are right to say that it is better to reduce quadratures to rectifications of curves,
rather than the other way around.
Recte ut opinor mones quod praestat reducere quadraturas ad Rectificationes curvarum quam
contra.

Leibniz evidently worked on this problem at least as early as April 1686, judging by his dating of
a note accompanying a manuscript of his entitled “De reductione quadraturarum ad curvarum
rectificationem” (“On the reduction of quadratures to the rectification of curves”). See [Bode-
mann, 1895, 297].

3 Leibniz [1693d]:
I would much prefer, for example, to reduce to quadratures to the rectification of curves,
because the dimension of the line is simpler than that of an area.
Mais il y a des methodes que je souhaiterois bien d’avantage, par exemple de pouvoir reduire
les quadratures aux rectifications des courbes, car la dimension de la ligne est plus simple que
celle d’un espace.

Leibniz [1694a]:
It is better to reduce quadratures to the rectifications of curves than the other way around, as is
commonly done. . . . For certainly the dimension of a line is simpler than the dimension of a
surface.
Praestat reducere Quadraturas ad Rectificationes Curvarum, quam contra, ut vulgo fieri solet.
. . . Nam simplicior utique est dimensio lineae quam dimensio superficiei.
The same point is expressed in Leibniz [1693b]; see Footnote 42 below.
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to its circumference.4 But elsewhere Leibniz emphasised instead that a rectification “enlight-
ens the mind” more than a quadrature.5 Then again in other cases rectifications seem to be
preferred over quadratures for the sake of greater practical feasibility.6 Altogether the diver-
sity of arguments at first appears quite confusing.
4 Leibniz [1691a]:
I would like to be able to always reduce the dimensions of areas or spaces to the dimensions of
lines, since they are simpler. And that is why Archimedes reduced the area of the circle to the
circumference, and you [i.e., Huygens], Wallis and Heuraet reduces the area of the hyperbola to
the arc of the parabola. It is easy to reduce arcs to areas, but the converse—that is the task,
that is the toil. If you should come to facilitate this research some day, Sir, I would be delighted
to benefit thereof.
Je souhaitte de pouvoir tousjours reduire les dimensions des aires ou espaces, aux dimensions
des lignes, comme plus simples. Et c’est pour cela qu’Archimede a reduit l’aire du cercle à la
circomference, et vous[,] Mons. Wallis et Mons. Heuraet avés reduit l’aire de l’Hyperbole à
la ligne de la parabole. Il est bien aisé de reduire les lignes aux aires, mais vice versa, hoc opus
hic labor est. Si vous y voyés quelque jour, pour faciliter cette recherche, Monsieur, je seray
bien aise d’en profiter.

5 Leibniz [1693f]:
But among the geometrical constructions I prefer not only those which are the simplest but
also those which serve to reduce the problem to another, simpler problem and that contribute
to enlighten the mind; for example, I would wish to reduce quadratures or the dimensions of
areas to the dimensions of curved lines.
Mais entre les constructions Geometriques je prefere non seulement celles qui sont les
plus simples mais aussi celles qui servent à reduire le probleme à un autre probleme
plus simple et contribuent à éclairer l’esprit; Par exemple je souhaiterois de reduire
les quadratures ou les dimensions des aires aux dimensions des lignes courbes.

6 Huygens [1694]:
It is a strange assumption to take the quadratures of every curve as given, and if the construc-
tion of a problem ends with that, apart from the quadrature of the circle and the hyperbola, I
would have believed that nothing had been accomplished, since even mechanically one does
not know how to carry anything out. It is better to assume that we can measure any curved
line, as I see your opinion is also.
C’est une etrange supposition de prendre les quadratures de toute courbe comme estant don-
nées, et quand la construction d’un Probleme aboutist à cela, hormis que ce ne soit celle de
l’hyperbole ou du cercle, j’aurois cru n’avoir rien fait; parce que mesme mechaniquement on
ne scauroit rien effectuer. Il vaut un peu mieux de supposer qu’on peut mesurer toute ligne
courbe, comme je vois que s’est aussi vostre sentiment.
Jacob Bernoulli [1695] also stressed the importance of practical feasibility in a very similar
context:

Certainly I consider curves which nature herself can produce with a simple and free motion, what-
ever their type and degree, preferable in constructions than other curves, even algebraic ones,
which can be drawn either not at all or with difficulty; since that which joins the greatest exac-
titude with the greatest ease must be judged the best in the practical accomplishment of the work.
Nempe existimo curvas, quas natura ipsa simplici & expedito motu producere potest, quorumcun-
que sint generum & graduum, in constructionibus praeferendas esse aliis, etiam algebraicis, quas
arte vel nullo modo vel difficulter delineamus; cum illud semper in practica effectione operis sit cens-
endum optimum, quod cum summa exactitudine summam quoque facilitatem conjunctam habet.
See also Footnotes 9, 13 and 14 for further expressions of the same idea by both Bernoullis.



Figure 2. The elastica. The elastic beam AB bends under the weight C. From Jacob Bernoulli [1691].
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Extramathematical principles such as these often show their true colour only in moments
of conflict, so we should be grateful that the problem of rectification of quadratures was
involved in one major confrontation of opposing views. This concerned Jacob Bernoulli’s
solution [1694a] of the paracentric isochrone problem7 by rectification of the elastica, i.e.,
the curve assumed by a bent elastic beam (Fig. 2). In introducing his solution, Jacob Ber-
noulli appears quite certain that it will be appreciated. And with good reason: the rectifica-
tion of quadratures was universally valued, as we have just seen, and the use of one
mechanically defined curve to construct another also had ample precedent.8 Thus, by
way of justification, Bernoulli only passingly alludes to the practical feasibility of his
solution:
7 A
differ

8 Fa
Leibn
[Bos,

9 Ja
algeb
praxi
conve
10 Hu
For although it is possible to carry out constructions by means of the squaring of any
algebraic area, [the construction by rectification of the elastica] is to be preferred, I judge,
since it is generally easier in practice to rectify a curve than to square an area, and espe-
cially since nature herself seems to have drawn it.9
Perhaps to his surprise, Bernoulli’s construction was universally condemned. Huygens finds
it “strange” and would prefer a construction by rectification of an algebraic curve,10 as
challenge problem posed by Leibniz [1689]. See [Bos, 1993, 31–34] for more details, including
ential equations for both the elastica and the paracentric isoscrone.

mous examples include Leibniz’s construction of logarithms by the catenary [Leibniz, 1691b,d;
iz, 1692a,c] and Leibniz’s and Huygens’s use of the tractrix to, e.g., square a hyperbola (see
1988]).

cob Bernoulli [1694a]. “Nam quanquam idem exequi liceat, mediante quadratura spatii alicujus
raici, alterum tamen construendi modum praeferendum censeo, tum quod generaliter facilius in
rectificentur curvae, quam quadrentur spatia, tum praesertim quod ipsa natura (siquidem
nientem tensionis legem observet) illum praescripsisse videatur.”
ygens [1694]:
It seems that you hold for true his construction of your paracentric [isochrone], after having
examined, as I believe, the demonstration, as I have not yet done. It’s quite a strange encounter
to have there been able to employ his elastic curve; but your construction will assuredly be
much better, if you only need to measure a geometric curve, or at least [a curve] for which
you know how to find the points.
Il semble que vous teniez pour veritable sa construction de vostre paracentrique, apres en
avoir, comme je crois, examiné la demonstration, ce que je n’ay pas encore fait. C’est une ren-
contre assez etrange d’y avoir pu emploier sa courbe du ressort; mais vostre construction sera
assurement meilleure de beaucoup, si vous n’avez besoin que de mesurer une courbe geomet-
rique, ou de laquelle du moins vous scachiez trouver les points.
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would Leibniz11 and l’Hôpital.12 The strongest condemnation, however, came from Jacob’s
younger brother, Johann:
11 Le

12 l’H

13 Jo
quia
quae
mech
descr
No one can fail to see how to construct [the paracentric isochrone] by quadrature of cur-
vilinear areas [i.e., from the differential equation with separated variables]; but because
the squaring of areas is not easy in practice, one attempts to do it by rectification of some
other curve; if this curve can be algebraic, he sins against the laws of geometry who has
recourse to a mechanical [curve]; especially if this very mechanical [curve] is no less com-
plicated to describe than the quadrature of areas.13
This attack is issued in a paper where Johann Bernoulli instead constructs the paracentric
isochrone by the rectification of an algebraic curve. But before this attack went to print Ja-
cob Bernoulli had already arrived at the same rectification himself. However, he did so
without altering his extramathematical views. In response to criticisms he instead elabo-
rated on his original justification for his construction:
There are three main methods for constructing mechanical or transcendental curves. The
first is by areas of curvilinear figures, but it is ill-suited for practice. It is better to employ
a construction by rectification of an algebraic curve; for curves can be more quickly and
ibniz [1694b]:
The difference between us there is that he uses the rectification of a curve, which is itself
already transcendental, namely his Elastica, and that thus his construction is transcendental
of the second kind. Instead of like me using only the rectification of an ordinary curve of which
I give the construction through common geometry.
La difference qu’il y a entre nous là dessus est qu’il se sert de la rectification d’une courbe, qui
est elle même deja transcendante, sc�avoir de son Elastique, et qu’ainsi sa construction est tran-
scendente du second genre. Au lieu que je me sers seulement de la rectification d’une courbe
ordinaire dont je donne la construction par la Geometrie commune.
Leibniz’s rectification construction is in Leibniz [1694d], where the same point is repeated in
similar words: Bernoullis construction is “transcendentalem secundi generis” since it starts
with a transcendental curve (the elastica) and then performs a transcendental operation (rec-
tification), which makes Leibniz’s construction by a rectification of an algebraic curve “toto
genere simpliciorem” (“of an entirely simpler kind”).
ôpital [1694]:
Regarding the curve which you call the paracentric isochrone, I am very pleased that one has
finally found its solution, but as my remoteness from Paris has prevented me from seeing the
Acts of Leipzig, I am not yet able to judge. It seems to me from what you tell me that your own
[solution] will be much simpler and more general than that of Mr Bernoulli, since you find that
there is an infinity [of solutions] where he only finds one, and since you use the rectification of
an algebraic curve while he uses that of a transcendental one.
A l’egard de la ligne que vous appellez isochrone paracentrique, je suis bien aise qu’on en ait
enfin trouvé la solution, mais comme mon éloignement de Paris m’a empesché de voir les Actes
de Leipsic, je n’en puis encore juger. Il me paroît par ce que vous me mandez que la vôtre sera
beaucoup plus simple et plus generale que celle de Mr Bernoulli, puisque vous trouvez qu’il y
en a une infinité où il n’en trouve qu’une seule, et que vous vous servez de la rectification d’une
courbe algebraique lorsqu’il en employe une transcendente.

hann Bernoulli [1694e]. “Per quadraturam spatii curvilinei construi posse nemo non videt; sed
in praxi non facile quadrantur spatia, tentandum illud est per rectificationem curvae alicujus;

si potest esse algebraica, in leges Geometriae censendus est peccare qui recurrit ad
anicam; praesertim si haec ipsa mechanica non minus operose per quadraturas spatiorura
ibatur.”
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accurately rectified, using a string or small chain wrapped around them, than areas can
be squared. I hold as equally good such constructions as are carried out without rectifi-
cation and quadrature, by means of a single description of some mechanical curve, whose
points, though not the whole curve, can be found geometrically in infinite number and
arbitrarily close to each other; such is the usual Logarithmica, and perhaps others of
the same type. The best method, however, wherever it is applicable, is that which uses
a curve that Nature herself, without artifice, produces with a quick motion, almost
instanteneously at the will of the geometer; for the preceding methods require curves
whose construction, whether by continuous motion or by the finding of many points,
is usually either slow or exceedingly difficult to carry out. Thus constructions of prob-
lems that assume the quadrature of a hyperbola or the description of the Logarithmica,
other things being equal, I consider to be inferior to those which are carried out using the
Catenary, as a suspended chain quickly assumes this shape of its own accord before the
hand carries out the rest of the construction.14
Thus the construction of the paracentric isochrone by the elastica “would without a doubt
be the best,” he continues, if the assumption regarding the laws of tension made in the der-
ivation of the elastica was truthful. But “it is safer not to trust” this assumption, and instead
“have recourse to the second mode of construction and seek an algebraic curve whose rec-
tification achieves the result.”15

The fact that both Bernoullis found the construction by rectification of an algebraic
curve almost immediately following the initial construction using the elastica speaks to
the credibility of Jacob Bernoulli’s professed preferences when he first introduced the elas-
tica construction. For had he not truly felt that the rectification of the elastica was prefer-
able to the rectification of an algebraic curve, he would surely have sought—and thus found
rather easily, as subsequent history shows—the solution by algebraic curves, rather than
allowing his brother the opportunity to immediately undermine his work with what he calls
a “more excellent” solution.

Thus I believe that we have here a genuine conflict of extramathematical preferences, as
opposed to a mere attempt to save face. Whereas some enthusiastic phrase casually
cob Bernoulli [1694c]. “Triplex praecipue modus habetur construendi curvas mechanicas, sive
cendentes. Primus, sed ad praxin parum idoneus, fit per curvaturas spatiorum curvilineorum.
r est, qui instituitur per rectificationes curvarum algebraicarum; accuratius enim & expeditius
cari possunt curvae, ope fili vel catenulae ipsis circumplicatae, quam quadrari spatia. Eodem

habeo illas constructiones, quae peraguntur absque ulla rectificatione & quadratura, per solam
iptionem curvae alicujus mechanicae, cujus puncta, licet non omnia, infinita tamen, &
tumvis proxima, geometrice inveniri possunt, qualis esse solet Logarithmica, & si quae sint ejus
is aliae. Optimus vero modus, sicubi haberi possit, ille est, qui peragitur ope alicujus curvae,
Natura ipsa, absque arte, motu quodam celerrimo & quasi instantaneo ad nutum Geometra
cit; cum praaecedentes modi requirant curvas, quarum delineatio, sive per motum continuum,
er plurium punctorum inventionem, ab Artifice instituatur, communiter vel lenta vel impedita
existit. Ita constructiones illas Problematum, quae Hyperbolae quadraturam vel Logarith-
descriptionem supponunt, caeteris paribus, posthabendas censeo iis, quae ope Catenariae

untur, seu curvae, quam suspensa catena sponte sua citius induerit, quam reliquis ipse
ibendis primam manum admoveris.”
cob Bernoulli [1694c]. “Tertii modi Constructio, quae fieret mediante Linea Elastica . . . sine

foret optima; si natura, alicubi tensiones viribus tendentibus simpliciter proportionales
sset . . . Idcirco nec isti fidere satis tutum; praestatque recurrere ad secundum, construendi
m, & quaerere Curvam Algebraicam, cujus rectificatione scopum assequamur.”
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dropped by Leibniz in a personal letter to a friend may have to be taken with a grain of salt,
the raging sibling rivalry between the Bernoullis suggests that they would have taken these
matters with the utmost seriousness and left no room for error when they put their extra-
mathematical preferences on record in these articles.

For this reason I shall consider this conflict as the key to evaluating extramathematical
motivations for rectifying quadratures. So what does this episode tell us? In part it concerns
the legitimacy of using physically given curves in mathematics, an issue which we must set
aside for our present purposes. But it also casts some light on the motivations for the prob-
lem of rectification of quadratures.

In particular, Jacob Bernoulli’s idea that a rectification is preferable to a quadrature
since it can be effected by placing “a string or small chain” along the curve and then pulling
it taut has been treated by several scholars as more or less interchangeable with the Leib-
nizian dimensionality argument.16 However, the quotation from Bernoulli above is, to my
knowledge, the first explicit mention of it,17 despite the numerous discussions of the prob-
lem of rectification of quadratures predating this paper. And, as we have seen, Jacob Ber-
noulli stood alone against the rest of the establishment in this conflict.

In opposition to this concrete argument rooted in practice we saw Johann Bernoulli
argue a more abstract case, namely that using a mechanical curve where an algebraic
one will do is to “sin against the laws of geometry.” To be sure, Johann also refers to prac-
tical ease as a motivation, but practice plays a different role in his argument. To him, it
seems, practical simplicity is merely a suggestive justification for the “laws” of geometry,
not an ultimate arbiter in and of itself. This point of view is certainly consistent with Leib-
niz’s views cited above. Leibniz’s appeals to a dimensional hierarchy, though initially sug-
gested by simplicity considerations, seems to go beyond whatever partial justification such
considerations can confer upon them and take on an absolute, legislative stature akin to
Johann’s “laws.” This is reminiscent of the hierarchy of degrees in Cartesian geometry,
or the distinction between “plane,” “solid,” and “linear” problems in ancient Greek geom-
etry.18 According to Pappus, it is “not a small error for geometers” to solve a problem
16 See [Bos, 1974, 8], [Bos, 1993, 105] and [Weil, 1999, 9]. Hodgkin [2005, 180], even takes the string
argument to have been the main motivation for preferring rectifications over quadratures.
17 It is true that the very term “rectification” suggests this idea. However, in its technical usage it was
not primarily intended thus, just as a “quadrature” or “squaring” usually no longer referred to the
literal finding of a square of equal area as the figure in question. It should also be noted that the idea
of measuring arc lengths by unwrapping strings was well-known in the context of evolutes (see
below, esp. Fig. 7).
18 I.e., problems that can be solved by ruler and compasses, by conic sections, and by more
complicated curves respectively. This classification is famously expressed by Pappus (Collection,
Book IV; see [Pappus, 2010, 144–146]) but did not originate with him. As Jones writes, “Pappus is
our only explicit authority on this mathematical pigeon-holing, and he says nothing about how it
developed and when. However, it is difficult not to see Apollonius’ two books on Neuses as inspired
by the constraints of method imposed on the geometer . . . The only conceivable use for such a work
would be as a reference useful for identifying ‘plane’ problems, and hence avoid the solecism of
treating them as if they were ‘solid’.” [Pappus, 1986, 530] Descartes refers to Pappus’s classification
but of course goes on to refine it by requiring that one “go further, and distinguish between different
degrees of these more complex curves” [Descartes, 1954, 40]. (“Ie m’estonne de ce qu’ils n’ont point
outre cela distingué diuers degrés entre ces lignes plus composées” [Descartes, 1637, 315].)
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“from a non-kindred kind,” i.e., using curves of a higher order than necessary.19 Descartes
legislates similarly:
19 [Pa
20 [D
soit p
seulem
const
sont
1637,
21 Se
22 Le
trans
immo
We should always choose with care the simplest curve that can be used in the solution of
a problem, but it should be noted that the simplest means not merely the one most easily
described, not the one that leads to the easiest demonstration or construction of the
problem, but rather the one of the simplest class [i.e., degree] that can be used to deter-
mine the required quantity.20
As in these cases, so in ours: simplicity, practical feasibility, or, for that matter, properties of
“mind”—a favourite with Descartes as well as Leibniz—is invoked to justify the hierarchy,
but once in place it is the hierarchy itself that is used to evaluate mathematics, not the
underlying reasons originally used to justify it. In this way I think the conflict over the para-
centric isochrone suggests a useful framework for imposing some order on the multitude of
arguments thrown about to motivate the problem of rectification of quadratures. This point
of view squares well with Leibniz’s reproof of Jacob Bernoulli’s construction by rectifica-
tion of the elastica as “transcendental of the second order”21: the construction is judged
by its hierarchal classification rather than on the basis of simplicity, the enlightening of
minds, or what have you. Indeed, the connection with the geometrical tradition that we
have just highlighted is invoked by Leibniz himself is a very similar context, namely when
he condemns Fatio de Duillier for using a curvature-based approach where a first-order dif-
ferential equation suffices. For, says Leibniz, curvatures “depend on differentio-differentials
[i.e., second derivatives], which are what we call transcendental of the second order: it is as if
one were to solve a plane problem by conic sections or even higher [curves].”22

Another interesting parallel suggested by this point of view concerns the underlying need
for imposing a hierarchy in the first place. In the case of the ancient Greek hierarchy of
curves, Jones notes:
Restrictions on the permissible use of higher orders of loci . . . probably became prevalent
only after experience had shown how easily conic sections made possible the solutions
not only of problems that had not been solved by compass and straight edge, but also
of problems . . . that were already soluble, but only with difficulty. (Jones in [Pappus,
1986, 540])
In other words, the introduction of a new mathematical technique must be accompanied by
methodological restrictions so as not to trivialise the Gordian knots of old by allowing
them to be cut with modern weaponry incongruous with the spirit of the challenge. Again
there is a parallel in Leibniz when he stresses that his criterion of reducing quadratures to
rectifications is consistent with earlier work such as Archimedes’s reduction of the area of a
ppus, 2010, 145].
escartes, 1954, 152, 155]. “Il faut auoir soin de choisir tousiours la plus simples, par laquelle il
ossible de le resoudre. Et mesme il est a remarquer, que par les plus simples on ne doit pas
ent entendre celles, qui peuuent le plus aysement estre descrites, ny celles qui rendent la

ruction, ou la demonstration du Problesme proposé plus facile, mais principalement celles, qui
du plus simple genre, qui puisse seruir a determiner la quantité qui est cherchée.” [Descartes,
370].

e Footnote 11.
ibniz [1700]: “haec vero a differentio-differentialibus pendeat, quae sunt, ut nos loquimur,
cendentia secundi gradus: quod perinde est, ac si quis problema planum ad sectiones Conicas,

altiores referat.”
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circle to its circumference and the reductions of the quadrature of the hyperbola to the arc
length of a parabola by Wallis, Heuraet and Huygens.23

In general, when a radically new mathematical technique is introduced that poses a
potential threat to established norms of mathematical practice, the need arises to impose
methodological restrictions in the form of a hierarchy of methods. The methodological
framework chosen must not be too restrictive, as it must allow the new mathematics room
to flourish, but it must also not be too liberal, as it should respect cherished parts of the
mathematical canon and not render them obsolete by allowing old problems to be solved
in trivial ways. This latter requirement I call retroconsistency. A further important desider-
atum of the methodological hierarchy imposed is that it be broadly justifiable on grounds
independent of the new mathematics in question. In other words, methodological oppor-
tunism is considered bad form. This desiderata I shall refer to as pre facto justifiability.24

I propose that the need for such a hierarchy of methods was the fundamental force
underlying the principled preference for rectification over quadratures. In this way some
cohesion emerges in the variety of arguments presented for reducing quadratures to recti-
fications. In particular, the numerous arguments alluding to simplicity in various forms
speak only to pre facto justifiability, which explains to some extent the indefinite nature
of these arguments and their weak force in an actual moment of conflict. Thus, as we have
seen above, the various arguments raised by Leibniz are readily interpreted as alternately
addressing these desiderata, but at the moment of truth, when the elastica conflict cut to
the heart of the matter, he phrased his judgment in terms of the hierarchy of methods itself
rather than its subsidiary desiderata. Again, this explains also why Jacob Bernoulli’s sim-
plicity arguments were unanimously opposed despite their prima facie similarity to previ-
ous arguments by his opponents: he did not recognise the subordinate role of such
arguments as addressing pre facto justifiability only.

This point of view can also help us bring out a certain measure of common ground
between the otherwise widely different treatments of the foundational challenge posed by
transcendental curves in the Leibnizian and Newtonian traditions. Newton took no foun-
dational interest in the problem of reducing quadratures to rectification, and very little
interest in the problem of constructing transcendental curves generally. Indeed, when
Leibniz [1693b] wrote to Newton asking for “something big,”25 namely a solution to the
problem of rectification of quadratures, Newton [1693] offered with considerable indiffer-
ence the solution “which you seem to want.”26 The solution he offered was based on his
1666 notes, where this problem occurs inconspicuously as one among many possible per-
mutations of geometrical problems of the form “given this, find that,” without any indica-
tion that this problem has a special foundational status.

However, at the same time as foundational issues such as that of rectifying quadratures
commanded centre stage on the continent, Newton likewise found occasion to set out his
23 See Footnote 4.
24 I have chosen this term with the legal phrase ex post facto in mind. The concept of a retroactive
law introduced after the fact is suggestive in the context of mathematics, as the history of
mathematics is replete with after-the-fact rulings legitimising objects originally found abhorrent,
such as complex numbers or, in our case, analytic expressions such as ex or log(x) as a primary
means of describing curves. Such rulings tend to be more pragmatically motivated than the
principled argument of a pre facto justification.
25 “Sed à TE adhuc magni aliquid exspecto.” Quoted from Newton [1959–1977, III, 257/258].
26 “Quam desiderare videris.” Quoted from Newton [1959–1977, III, 285/286].
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own delineation of “all legitimate geometry” in his extensive but ultimately abandoned
drafts for a projected work on Geometria.27 It is possible to extract a rationale for Newton’s
lack of interest in the foundational problem of transcendental curves from these manu-
scripts, although the extent to which they are representative of Newton’s geometrical work
generally is not beyond dispute. This draft treatise is a magistral monograph postdating
most of his creative work, as opposed to the in medias res philosophising of the continen-
tals. And, as is well-known, Newton’s mature predilection for synthetic geometry “in the
manner of the Ancients” stands in contrast to much of his earlier, more boldly modern
work. On the other hand, the ideas explored in the manuscripts on Geometria appear in ger-
minal form in the preface to the first edition of the Principia [1687], a fact testifying to their
sincerity and centrality at least in Newton’s mature thought.

Newton’s vision of geometry in these manuscripts stems from the idea that the subject
matter of geometry is measurements and inferences about measurements, not constructions.
So for example he writes:
27 Th
1981]
28 p.
Nihil
29 p.
30 p.
31 Cf
32 p.
quod
33 p.
34 p.
The purpose of geometry is neither to form nor move magnitudes, but merely to measure
them. Geometry forms nothing except modes of measuring.28
In particular, “geometry does not posit modes of description”29; rather it “postulates be-
cause it knows not how to teach the mode of effection.”30 The role of constructions in an-
cient Greek geometry is indeed ambiguous.31 The surviving corpus allows several
interpretations, and the Leibnizian and Newtonian modes of dealing with transcendental
curves can be seen as belonging to different trajectories of extrapolation from it. The Leib-
nizian tradition is associated with the idea that that which is known is that which is con-
structed, thus making construction postulates the bedrock of geometrical knowledge.
Newton, on the other hand, takes construction postulates as a licence for ignorance, stip-
ulating what falls outside the purview of geometry proper. From this point of view the
problem of the construction of transcendental curves, so fundamental in the Leibnizian tra-
dition, becomes a non-problem, or a non-geometrical one at any rate. Instead, “any plane
figures executed by God, nature or any technician you will are measured by geometry in the
hypothesis that they are exactly constructed,”32 a proclamation underwritten later by a pos-
tulate allowing the drawing of essentially any curve given by a “precise rule.”33

Newton’s discussion serves a second purpose for us, namely as an illustration of how
fundamental the need was at the time for a hierarchy of methods satisfying the desiderata
outlined above. Certainly Newton recognised that the drastic multiplication of geometrical
techniques in the late 17th century had left the field in want of clear methodological foun-
dations: “In such a diversity of opinion let us see what lead we need at length to follow,” he
writes.34 The “lead” proposed by Newton is indeed motivated in terms of the desiderata we
ese manuscripts, dating from the early 1690s, are in Newton’s Mathematical Papers [1967–
, VII. The quoted phrase is from p. 389. “Geometriam om[n]em legitimam” (p. 388).
291. “Intentio Geometriae est megnitudines nec formare nec movere sed mensurare tantum.
format Geometria praeter mensurandi modos.” (p. 290).
289. “Geometria modos descriptionum non ponit.” (p. 288).
291. “Postulat Geometra quia modum effectionis docere nescit.” (p. 290).
., e.g., [Knorr, 1983].
289. “Figuras quasvis planas a Deo Natura Artifice quovis confectas Geometra ex hypotesi
sunt exactè fabricatae mensurat.” (p. 288).

389. “certa lege” (p. 388).
295. In tanta sententiarum diversitate videamus quid tandem sequendum sit. (p. 294).
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have outlined. To begin with, Newton supports his characterisation of geometry as being
about measurement rather than construction in the first instance by reference to the early
history of the subject: “‘Geometry’ means the art of ‘earth-measure’” and “the reason for
its first intuition must be preserved.”35 In our terms, this is a pre facto justification. Further-
more, Newton is quite explicitly concerned with retroconsistency, discussing in some detail
how ill-chosen postulates would “put all ancient geometry out of joint.”36 And when he
introduces his “precise rule” postulate he takes great pains to construe it as a generalisation
of Euclid’s postulate of circles, and hastens to add that:
35 p.
ratio
36 p.
37 p.
inniti
I do not recount these [postulates], however, in order to displace Euclid’s postulates. On
those ‘plane’ geometry best relies. The present ones we will be free to employ each time
the topic is one of ‘solid’ and ‘higher than solid’ geometry.37
In conclusion, I have argued in this section that cohesion and rationale can be brought out
in the apparent diversity and disparity of extramathematical arguments regarding the rec-
tification of quadratures by considering them as subsidiary to more fundamental principles,
namely the need for a hierarchy of methods being both retroconsistent and justifiable pre
facto. I have briefly argued further that the same fundamental principles were appreciated
by Newton when he faced a similar problematic, which adds credibility to my initial thesis
and can be taken as a modicum of reconciliation between the perplexingly different atti-
tudes towards the foundational status of transcendental curves, and the problem of rectifi-
cation of quadratures in particular, in the Leibnizian and Newtonian traditions of the
calculus.

I use the term “foundational” as a convenient shorthand for the complex of issues dis-
cussed in this section, although the precise sense in which they were foundational admit-
tedly remains somewhat elusive. At the very least they were clearly foundational in the
general sense of pertaining to underlying principles, as they did not concern specific results
or problems but rather addressed the underpinnings of all work on transcendental curves. It
is debatable to what extent they were also foundational in the stricter sense of pertaining to
the certainty of mathematical knowledge and the delineation of which objects and methods
are acceptable in mathematics. I believe our protagonists deliberately left this question
open, and that they did so with good reason. On the one hand, to rectify quadratures is
to build up the complicated from the simple—arguably the premier safeguard of certainty
and exactness in Euclid and Descartes alike, as well as a time-honoured principle of meth-
odological purity. Thus the motivation for elevating the requirement that quadratures be
reduced to rectifications to a “law of geometry” akin to the foundational principles of
Euclid and Descartes is readily apparent. On the other hand, such a move would have been
premature given the lack of general methods for actually performing this reduction in prac-
tice and the exceptional state of flux and rapid expansion of the field at this time. Indeed, as
we have seen, Leibniz often spoke of the rectification of quadratures as a kind of research
program rather than an absolute law, though at the same time recognising its foundational
potential. If this research program had been conclusive, it may very well have led to defin-
itive proclamations on the foundational status of the rectifications of quadratures, just as
287, p. 291. “Geometria idem sonat quod Ars mensurandi terram.” (p. 286) “Et servanda est
instutionis primae” (p. 290).
297. “Geometria omnis antiqua luxabitur.” (p. 296).
391. “Haec autem non trado ut Postulata Euclidis submoveam. Illis Geometria plana optime
tur. His uti licebit quoties in Geometria solida et sursolida res est.” (pp. 388, 390).
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Descartes’s foundational program was the conclusion of his geometrical research rather
than its starting point, as Bos [2001] has shown. But things did not turn out that way,
and the program never advanced beyond its exploratory, pre-legislative stage.

3. How the problem of rectification of quadratures shaped the early development of the
calculus

From the general considerations above I shall now turn to the question of how the prob-
lem of rectification of quadratures shaped the early development of the calculus. My inter-
est in doing so is not to trace the details of the various attempts at actually solving the
problem—a tragic story, no doubt, of a tortuous struggle to realise a dream that ultimately
had to be abandoned. Rather my interest lies in arguing that an appreciation of these
foundational concerns illuminates choices made by mathematicians in this period that
are systematically misconstrued from the points of view of alternative historiographical
perspectives.

3.1. Geometrical versus analytical conceptions of the calculus

For the modern reader, the preoccupation with the representation of curves in the early
history of the calculus is readily perceived as the perhaps unavoidable but ultimately
incidental teething troubles of an adolescent branch of mathematics. On this view, the
transition from geometrical constructions to the analytic view of the calculus that won
ascendancy in the 18th century was a rather straightforward process in which superfluous
relics of tradition gave way in light of reason. Though rarely spelled out in so many words,
a conception such as this seems to underlie for example the following passage in a recent
history of analysis.
38 Jo
39 Le
When [Johann] Bernoulli wrote this in 1692, he could not carry out the final integration
[of the differential equation for the catenary] since he did not yet know that the integral
of 1/x is the logarithm. . . . [Instead] he reduced the construction of the catenary to squar-
ing a hyperbola. This example shows clearly the role of geometry in infinitesimal calculus
at the beginning of the 18th century. [Jahnke, 2003, 111]
Thus Bernoulli’s preferred manner of representing this transcendental curve is here charac-
terised as an idiosyncrasy stemming from ignorance, and this is furthermore taken to have
been the general pattern at the time.

But the claim that Bernoulli “did not yet know that the integral of 1/x is the logarithm” is
an oversimplification at best. The work referred to is his lectures on the integral calculus.38

But, as we have seen above (Fig. 1), earlier in the very same work Bernoulli treated the dif-
ferential equation adx ¼ a2dy

y and concluded correctly that “curva est Logarithmica” (p.
421). The step from here to explicitly writing log(x) for the antiderivative of 1/x was in
no way profound, as witnessed by its inconspicuous first appearance in print two years
later, when Leibniz casually wrote “dy

v ¼
dy
a , ergo log v ¼ y

a” without further ado in the course
of a parenthetical remark.39 Furthermore, immediately after giving his own construction of
the catenary, Bernoulli went on to discuss Leibniz’s construction of the same curve, which is
based on logarithms. In the course of this discussion Bernoulli writes “per naturam Loga-
hann Bernoulli [1692c, lecture 36].
ibniz [1694d, lecture 36].
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rithmicae, zdy = adz” (p. 494), thus demonstrating again his complete understanding of the
differential equation of the logarithmic curve. But neither Bernoulli nor Leibniz took this to
mean that an analytic expression involving log(x) or ex should be considered a “solution”
to the differential equation for the catenary. On the contrary, Leibniz explicitly states that
the catenary is “second to no transcendental curve” in terms of simplicity.40 Thus Leibniz
did not consider his construction of the catenary to have reduced it to a more elementary
function but rather as having established a connection between two equally complicated
curves (as underlined by his discussion of how to use the catenary to compute logarithms).

In all, these considerations show that reason rather than ignorance lay behind Bernoulli’s
preferred mode of representation of the catenary, and that the eventual transition to a
standardised analytic mode of expression was a far more complex process than one of
straightforward enlightenment. Indeed, the aversion to analytical representations of tran-
scendental curves exhibited by the early pioneers of the calculus is highly rational in light
of the hierarchy of methods hypothesis that I proposed above, as it is very difficult to imag-
ine an analytically based hierarchy of methods that meets the demands of retroconsistency
and pre facto justifiability as convincingly as the geometrically based alternatives.

3.2. The relation between pure and applied mathematics

A second traditional view that obscures the importance of foundational quandaries over
transcendental curves is the notion that the calculus was developed to meet the needs of
applied mathematics. This view is expressed for example by Truesdell [1987]: “the infinites-
imal calculus and rational mechanics [developed] together, the former largely responding to
conceptual problems set by the latter” (p. 77). Provocatively put, my thesis in the remaining
part of this essay is that this common view should be turned on its head: it was the foun-
dational needs of mathematics that motivated physical investigations rather than the other
way around.

Indeed, the early history of the calculus appears paradoxical from Truesdell’s point of
view, as he himself admits. For instance, in concluding his account of “the first researches
on the catenary,” Truesdell [1960] writes:
40 Le
Nearly everything that concerns principle is taken from sources that lay unpublished for
fifty to one hundred and fifty years. Indeed, the original papers consist in little else than
‘constructions’, i.e., the explanation of a desired curve in terms of properties of possibly
more familiar ones. From the standpoint of mechanics, at least, the first researchers con-
cealed everything they ought to have published and published only what they had better
discarded. (p. 85)
“From the standpoint of mechanics”—yes. But from the standpoint of foundational inves-
tigations regarding transcendental curves—no. The catenary was a showcase for the reduc-
tion of quadratures to rectifications, with both Huygens and Johann Bernoulli publishing
constructions based on rectification. Their choices in publishing make perfect sense from
this point of view. By contrast, general investigations of the underlying physical laws were
apparently not considered worthy of publication, even though Truesdell praises them in the
highest terms:
[Jacob] Bernoulli reached deepest of all the students of continuum mechanics of his cen-
tury. In the theory of perfectly flexible lines in the plane, he derived the general equations
ibniz [1691b, 277]. “nec ulli Transcendentium secundam.”
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and thus, had his work been known, would have closed the subject. (p. 109) Elegant as
were the quick solutions of Leibniz and [Johann] Bernoulli for the ordinary catenary,
these achievements of [Jacob] Bernoulli are of a different order of worth. (pp. 84–85)
Besides these unpublished “achievements of a different order of worth” on the theory be-
hind the catenary, Jacob Bernoulli’s second main claim to fame is, according to Truesdell,
his paper on the elastica [Jacob Bernoulli, 1694b]. “It is difficult,” writes Truesdell, “to find
words to describe the power and beauty of this paper,” which deals with what was then “the
deepest and most difficult problem yet to be solved in mechanics” (p. 96). This he did pub-
lish, and from Truesdell’s point of view it is inexplicable why Bernoulli chose to publish one
of his excellent discoveries but not the other. From our point of view, however, an expla-
nation suggests itself. For Bernoulli did not publish his elastica paper until at least three
years after his initial discovery,41 and then this publication is accompanied in the same vol-
ume of the Acta by a paper [Jacob Bernoulli, 1694a] using the rectification of the elastica to
give a “most elegant” solution to a longstanding challenge problem of Leibniz’, as discussed
above. Thus it is tempting to imagine that Bernoulli judged his investigations worthy of
publication largely because of its application to the problem of rectification of quadratures,
which would be consistent with the publication choices we saw in the catenary case.

Unfortunately the historical sources left to us are insufficient to determine what relative
weights Bernoulli attached to his theory of the elastica and his application of it, so this epi-
sode must remain suggestive only. Instead I shall now turn to a different case study—one in
which a quirk of history affords an opportunity to test my thesis regarding the importance
of the problem of rectification of quadratures in guiding the direction of mathematical
research.

3.3. Case study: The motivation for Leibniz’s envelope paper of 1694

In 1693, Leibniz wrote to Newton asking him for a solution to the general problem of
reducing quadratures to rectifications: “I would very much like to see how squarings
may be reduced to the rectifications of curves, simpler in all cases than the measurings of
surfaces or volumes.”42 Newton [1693] wrote back with a solution that produces the recti-
fying curve by an envelope construction. Leibniz never referred to or made any use of New-
ton’s construction in any of his writings, and subsequently the matter has been largely
ignored by historians. However, Leibniz did publish an important paper on envelopes less
than one year later, which, I claim, shows clear signs of being the outcome of Leibniz’s
study of Newton’s solution. Indeed, I shall show how a simple train of thought leads nat-
urally from Newton’s letter to this paper.43

3.3.1. Newton’s method for rectifying quadratures
Newton’s solution as sent to Leibniz goes as follows (Fig. 3). A curve y(x) is given and we

seek to express its quadrature
R B

0 yðxÞdx in terms of arc lengths. For each point on the x-
axis from x = 0 to x = B we draw a ray whose angle / with the x-axis is defined by cos/
= y(x) (or, more generally, acos/ = y(x), where a is a constant large enough so that y(x)/a
announced the problem and claimed to have a solution in Jacob Bernoulli [1691].
ibniz [1693b], quoted from Newton [1959, III, 258]. “ut quadraturae . . . (quod valde vellem)
antur ad curvarum rectificationes, ubique superficierum aut corporum dimensionibus
iciores.”
y argument is based entirely on published sources. I have not consulted Leibniz’s Nachlass.
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Figure 3. Left: Newton’s figure from his 1693 letter to Leibniz. Right: the same configuration with
my notation.
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does not exceed 1; for the moment I limit my discussion to the case a = 1 for clarity). Next
we find the curve FG enveloped by all these rays, where F is the point corresponding to
x = 0 and G to x = B. Then

R B
0 yðxÞdx ¼ BG � ðGF þ FDÞ, where D is the origin of the

coordinate system, so the integral has been expressed in terms of arc lengths, as required.
Newton does not include a derivation in his letter but his solution can be verified as fol-

lows. Pick one of the rays in the enveloping family. The condition cos/ = y(x) means that if
we take a dx-step away from its x-intercept and use this step length as the hypothenuse of a
right-angled triangle determined by the ray then the leg of that triangle adjacent to / is ydx,
as illustrated in Fig. 3. Writing L(x) for the distance to the envelope and ds for the enve-
lope’s arc element, we see from the figure that L(x) + ds + ydx = L(x + dx), or dL = ds +
ydx, which integrates to L ¼ sþ

R
ydxþ c. Our s is Newton’s FG = CG, and our constant

of integration c is the quantity DF = CH appearing in Newton’s solution, as we see by let-
ting x! 0 (and thus s! 0 and

R
ydx! 0) in Fig. 3. Thus our formula

R
ydx ¼ L� ðsþ cÞ

corresponds to Newton’s formula
R B

0 yðxÞdx ¼ BG � ðGF þ FDÞ.
Fig. 4 shows Newton’s method applied to two specific examples. The method works flaw-

lessly for yðxÞ ¼
ffiffiffi
x
p

. However, for y(x) = x2 it fails: the line segment FD assumed in the
construction is not finite, as required. And the same problem occurs for many other choices
of y(x). But in light of the above derivation this is a minor problem. It means only that the
constant of integration c cannot be immediately read off from the figure. However, the rec-
tification still applies in the form D

R
ydx ¼ DL� Ds for any choice of the bounds of inte-

gration that does not include the origin.
Figure 4. The enveloped curve FG of Newton’s construction in the cases yðxÞ ¼
ffiffiffi
x
p

(left) and
y(x) = x2 (right).
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3.3.2. Hypothetical reconstruction of Leibniz’s reading of Newton’s letter
Let us now consider Newton’s construction from Leibniz’s perspective. First I wish to

indicate a derivation of Newton’s result which is more heuristic and Leibnizian in spirit
than the verification offered above. This will show that Newton’s construction is highly
amenable to Leibniz’s way of thinking and that Leibniz would certainly have been able
to master it with ease.

We want to find a line segment of length equal to the quadrature
R

ydx. Thus the arc
elements dr of the sought line will effectively equal the area elements ydx of the quadrature.
The standard Leibnizian principle of dimensional homogeneity, however, requires that one
expresses this in the form adr = ydx for some constant a, so that both sides of the equation
have the dimension of an area. The simplest way to create an area equal to ydx is to make a
parallelogram with the same base and height, as indicated in Fig. 5. To rewrite this area in
the form adr we take a to be its length and dr its width, which must be placed at an angle to
the x-axis as dr is generally not equal to dx. This angle is denoted / in the figure and it
follows at once that cos(/) = y/a, just as in Newton’s construction. Repeating the same con-
struction for each dx produces many arc elements dr along the x-axis as shown. To assem-
ble these into a single line segment, each arc element is rotated until it aligns with the final
dr, producing a line segment (shown grey) equivalent to BH of Newton’s figure. The rota-
tions need to take place along a family of circles perpendicular to each consecutive pair of
arc elements. In other words, the centre of each circle is determined by the point of inter-
section of the extensions of two consecutive arc elements, as this guarantees that the arc
elements are part of radial rays and thus perpendicular to the circle in question. But this
means that the centres of these circles form the envelope of the extensions of the arc ele-
ments, and thus the enveloped curve FG of Newton’s construction naturally emerges from
this line of reasoning.

In this way Leibniz could quite seamlessly subsume Newton’s general construction
within his own framework. However, some problems present themselves when one tries
to apply this method in specific instances using Leibnizian reasoning. At this point Leibniz
already had his famous method of envelope determination, which may be stated thus in
Figure 5. A heuristic argument leading to Newton’s construction.
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modern terms: to find the envelope of the family of curves f(x,y,a) = 0, combine the two
equations f(x,y,a) = 0 and d

da f ðx; y; aÞ ¼ 0 so as to eliminate a.44 So the obvious thing to
do from Leibniz’s point of view would be to attempt to find Newton’s envelope curve
FG using this method. For this purpose it is necessary to translate Newton’s condition
cos/ = y(x) into an algebraic equation for the family of enveloping lines. An easy calcula-

tion shows that Newton’s condition translates into a slope of �
ffiffiffiffiffiffiffi
1�y2
p

y , so the line in the fam-

ily having x-intercept a has the equation Y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðyðaÞÞ2
p

yðaÞ ðX � aÞ (I use capital letters for
the variables as y(x) already has a meaning).

To go further we must specify the curve whose area is to be rectified. Let us consider the

case y(x) = x2. In this case the family of enveloping lines is Y ¼ �
ffiffiffiffiffiffiffi
1�a4
p

a2 ðX � aÞ. Leibniz’s
method for finding envelopes tells us to eliminate a by combining this equation with

0 ¼ d
da

�Y �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a4
p

a2
ðX � aÞ

 !

¼ � 2affiffiffiffiffiffiffiffiffiffiffiffiffi
1� a4
p � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a4
p

a3

 !
ðX � aÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a4
p

a2

¼ � a5 þ a� 2X

a3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a4
p ;

i.e., 2X � a5 � a = 0, a formidable task which would have been all but unsolvable for Leib-
niz. And this was the very easy case y(x) = x2, which is by no means atypically complicated.
For almost any other choice of y(x) the situation is just as bad if not worse.45

Leibniz’s envelope paper (1694c) provides some evidence that he indeed attempted to
approach Newton’s solution in this way. For the first problem proposed in Leibniz’s paper
is exactly identical to the problem of finding FG in Newton’s construction: given the slopes
of the enveloping lines as a function of their x-intercept, find the envelope (see Fig. 6). Fur-
thermore, Leibniz never actually works out any instance of this problem, which makes
sense in light of the fact that the problem is generally intractable in the cases relating to
Newton’s construction. Thus we already have a significant indication that Newton’s letter
influenced Leibniz’s paper. This hypothesis is strengthened further as we continue to recon-
struct hypothetically Leibniz’s train of thought upon reading Newton’s letter.

Having failed to find the envelope, it is easy to imagine that Leibniz would have gone on
to seize on the idea that Newton’s rectification is based on evolutes, as the “unwrapping” of
GFD into GCH in Fig. 3 clearly suggests. This would have been easy to see for Leibniz, who
was very familiar with Huygens’s systematic investigation of the use of evolutes for recti-
fication in his work on the pendulum clock [Huygens, 1673, part III]. However, Huygens’s
idea, outlined in Fig. 7, only enables us to rectify curves whose involutes are known. While
Huygens was able to give a general method for finding the evolute of a given curve, he had
no general method for finding the involute for a given evolute. Thus he was able to rectify a
44 Leibniz’s justification for this rule is sketchy, but the basic idea is that a point on the envelope is
not only on one of the enveloping curves, so that f(x,y,a) = 0 for some a, but also on the “next” one,
i.e., it satisfies f(x,y,a + da) = 0 as well, whence d

da f ðx; y; aÞ ¼ 0.
45 yðxÞ ¼

ffiffiffi
x
p

happens to be an exception. In this case Leibniz’s method works and Newton’s
construction can be confirmed.



Figure 6. The main figure of Leibniz’s paper on envelopes [1694c] (as reproduced in [Leibniz, 1908]).
Below is a complete list of the problems considered by Leibniz in the order in which they appear in
the paper, followed by a note on how they can be interpreted in the context of Newton’s rectification
method. Given the tangent line CT as a function of its axis intercepts T and #, find the curve CC.
This is equivalent to Newton’s construction with / = \AT#. Given the point e on the curve ee as a
function of T, find the curve CC. This variant of the first problem is analogous to uncovering the
hidden involute curve not mentioned by Newton in his letter and using this curve in place of the
earlier angle condition, as Newton did in his 1666 notes. Given the normal PC as a function of its
axis intercepts P and p, find CC. As Leibniz remarks, this problem is reducible to the above since the
normals also define the evolute FF (equivalent to the CC of the first problem), from which CC is
given by evolution. This is Newton’s construction with / = \ApP and the evolute–involute pair
explicitly indicated. Given the length of the normal PC as a function of the coordinate AP, find the
curve CC. This is the problem of finding the involute curve needed for Newton’s construction for a
given f(x) (= PC). (This is the only problem Leibniz actually works out in the paper.) Given the
length of the tangent TC as a function of the coordinate AT, find the curve CC. This is the problem
of finding the evolute curve given l(x). This is how Newton in fact finds the evolute in his 1666 notes
(using a curvaturesque formula for l(x); see below). (As Leibniz notes, this problem is not solvable
by his envelope method; instead he refers to his method of construction by tractional motion
[Leibniz, 1693e]. See [Bos, 1988, 44–52] for a discussion of this paper.)
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great many curves by starting with various involutes, but the general problem of rectifying
any given curve remained unresolved.

Newton has an ingenious trick for circumventing this problem, as we know from his
more complete account of his construction in his October 1666 tract on fluxions,46 namely
to consider the involute in terms of what Whiteside calls an “unusual semi-intrinsic system
of co-ordinates.” It is quite easy to reconstruct this trick from Newton’s letter. One only
needs to add the hidden evolute to the diagram to obtain Fig. 8 and proceed as above.
In the exact same way as we found the expression L ¼ sþ

R
ydxþ c above, we find that

l ¼ s�
R

ydxþ C in this diagram. Applying an analogous argument for f(x) gives
46 Newton [1967–1981, I, 400–450, Problem 10].
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Figure 7. Left: The general method of evolute rectification. OE is the evolute of the involute OI. The
arc OE = the line segment EI. (OE is the locus of centres of curvature of OI. OI is the path traced by
the end of a string unwound from OE.) Right: The special case of the cycloid. The cycloid generated
by C is the evolute of the congruent cycloid generated by C0. The arc CP = the line segment CC0. In
particular, arc OP = line segment OT = twice the diameter of the generating circle.

Figure 8. Left: The hidden evolute geometry of Newton’s rectification method, not mentioned in the
letter to Leibniz but seen here in Newton’s 1666 tract on fluxions. Right: The same figure with my
notation. The quadrature

R X
0 ydx can be expressed in terms of arc lengths as C + s(X) � l(X). (The

L(x) from Fig. 3 would be obtained by extending l(x) to the y-axis in this figure, although the angle /
has now been redefined since the condition cos(/) = y(x) now takes its x-values from a different
axis.)

Rectification of quadratures in the early Leibnizian calculus 425425
f(x) + l(x) + ds = f(x + dx) + l(x + dx), i.e., df = ds � dl. Integrating and substituting the
known expression for l, we obtain f ¼

R
ydx. This uncovers Newton’s fundamental idea:

to find the involute needed to rectify zðxÞ ¼
R

ydx, form the curve with this z as the radial
coordinate f(x) in the “semi-intrinsic” coordinate system (x,f(x)) of Fig. 8. Once this idea is
in place everything about cos(/) can be forgotten and the rectification can be restated
purely in terms of evolute and involute.

This would have given Leibniz fresh hope after his failed attempt to calculate FG as an
envelope, because he already knew other methods for finding evolutes. But to do this one
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must first find the hidden curve determined by the z’s. This is another envelope problem: to
find the envelope of the families of circles with centres at x and radius z. But contrary to the
previous envelope problem this one is solvable by Leibniz’s method. In fact, it is the very
problem solved in Leibniz’s envelope paper (see Fig. 6).

Leibniz’s solution is as follows. We seek the curve (x,y) enveloped by a family of circles
centred on the x-axis whose radii are determined by the values of an auxiliary function (b,c).
The circle centred at the point (b,0) has the equation (x � b)2 + y2 = c2. If we take the aux-
iliary function to be the parabola b = c2, then this equation reduces to x2 + y2 + b2 =
2bx + b. Following Leibniz’s general envelope method, we differentiate this expression with
respect to b to get b ¼ xþ 1

2. Then we use this equation to eliminate b from the equation we
have before differentiating, which leaves us with the equation for the envelope, y2 ¼ xþ 1

4.
Thus Newton’s method for rectifying zðxÞ ¼

R
ydx ¼ x2 involves finding the evolute of

this other parabola, y2 ¼ xþ 1
4. Using one of the several available general methods for find-

ing evolutes, Leibniz could now easily compute the equation for the envelope curve FG
required for Newton’s construction. In this case the evolute is the semicubical parabola

16 y� 1
2

� �3 ¼ 27 xþ 1
4

� �2
, as was well known.47 Indeed, the rectification is easily confirmed

in this case. See Fig. 9.
However, this method of finding the involute is not very powerful. It fails, prima facie, as

soon as y(x) does not have an explicit algebraic antiderivative, since then it is typically not
possible to eliminate the parameter as required by Leibniz’s method. But Newton claims in
his letter that the evolute can be found “geometrically” (i.e., algebraically) whenever y(x) is
“geometrical.” In fact, Newton is right, as we know from his 1666 notes. There he derives an
expression for l(x) equivalent to a radius of curvature calculation, namely

lðxÞ ¼ � 1� y2

y0
:

Since the right-angle triangle with l(x) as its hypothenuse and its other legs parallel to the
coordinate axes contains an angle /, it is similar to the infinitesimal triangle with hypoth-
enuse dx and legs ydx and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
dx in Fig. 3 above. From this its horizontal and vertical

components are easily computed to be � y�y3

y0 and ð1�y2Þ3=2

y0 respectively, so the evolute has the
parametrisation

x� y� y3

y0
;
ð1� y2Þ3=2

y0

 !
:

47 The particular case of an evolute of a parabola was a standard example which had been solved in
print by Huygens and both Bernoullis. Huygens gave a general method for finding evolutes in his
book on the pendulum clock [Huygens, 1673, part III], which is also where he introduced the concept
of evolute. Calculus-based methods where later developed based on the osculating circle of Leibniz
[1686], whose centres of curvature define the evolute (as noted by Leibniz [1691d]). Jacob Bernoulli
[1692a] used this idea to devise a calculus-based method for finding evolutes: the osculating circle
intersects the curve with multiplicity 3, which corresponds to a vanishing second derivative. Johann
Bernoulli [1692b] (also Johann Bernoulli [1692c, lecture 16] ) gave a solution in more elementary
terms by avoiding the differentiation in favour of expressing the multiplicity of the root in algebraic
terms.



Figure 9. The evolute form of Newton’s rectification method applied to the quadrature
R

dx
2
ffiffi
x
p . The

dashed parabola has a y-value of f ðxÞ ¼
R

dx
2
ffiffi
x
p ¼

ffiffiffi
x
p

. For each point on the x-axis, a circle is drawn
(shown dashed) with this point as its centre and f(x) as its radius. These circles envelope the involute
needed, the solid parabola. The evolute of this curve is the semi-cubical parabola also shown solid.
Drawn thin is the tangent line needed for the rectification of

R 0:65
0

dx
2
ffiffi
x
p .
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Thus the evolute is indeed geometrical whenever y is—at least in the sense of having an
algebraic parametrisation—so Newton’s claim is correct.48

It is doubtful whether Leibniz pursued the problem in this direction. However, two con-
siderations suggest this possibility. Firstly, an approach based on curvature readily suggests
itself as a means of avoiding integrating y(x) since evolutes are loci of centres of curvature
and curvatures generally involve only derivatives and second derivatives, two facts very
familiar to Leibniz. Secondly, Leibniz’s envelope paper closes with a quite inexplicable men-
tion of a problem that does not involve envelopes and cannot be solved using the methods
of the paper (see Fig. 6). This oddity could be explained by the fact that the problem is
equivalent to finding the evolute when l(x) is given, which as we just saw is precisely the
way in which Newton found this curve.
3.3.3. What did Leibniz think of Newton’s solution?
Leibniz quite probably did not consider Newton’s construction a fully satisfactory solu-

tion to the problem he had in mind. It seems that Leibniz was thinking of the more direct
problem: given a quadrature

R
ydx, find a curve g(x) whose arc-length equals it, i.e.,Z

ydx ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðg0Þ2
q

dx:
48 Whiteside is confused on this point. In his excellent notes on the 1666 treatise he recognises that
Newton is correct [Newton, 1967–1981, I, 439, esp. n. 137]. When commenting on the letter to
Leibniz, however, he mistakenly claims that Newton is wrong “since all but a few functions z having
‘geometrical’ fluxional derivatives will not themselves be algebraic” [Newton, 1967–1981, VII, xx, n.
46], a point which is irrelevant since Newton’s expression for the evolute involves only y = z0 and y0,
not z.
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For when Leibniz next brings up the problem of rectifying quadratures in an article in the
Acta the following month, he claims that

R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ x4
p

dx can be rectified by a hyperbola,49

and this is certainly not the result of using Newton’s construction, which would give a much
more complicated curve.

Thus when Leibniz says that he wants to “reduce squarings to the rectifications of
curves” he means that he wants to transform a quadrature problem into a rectification
problem. Newton, on the other hand, takes the problem to be about actually rectifying
the quadrature, that is to say, to find a straight line segment with a length equal to the given
area. No wonder, then, that Newton’s method gives a more complicated solution than Leib-
niz desires, since it in effect solves two problems at once: it both reduces the quadrature to a
rectification problem and then solves the rectification problem at the same time.

Nevertheless, it seems plausible that Leibniz would have considered Newton’s construc-
tion as important, not only because it provides one very general and powerful way of rec-
tifying quadratures (although perhaps too indirectly for Leibniz’s tastes), but also since it in
a way solves the problem of rectifying a curve by evolutes when the involute is unknown,
which had been a recognised lacuna in the theory of evolutes since its introduction by
Huygens.
3.3.4. Conclusion
We have seen that the examples used in Leibniz’s envelope paper are precisely the prob-

lems he would have faced had he tried to untangle the rectification of integrals in Newton’s
letter. My hypothesis that this was indeed the actual background for the paper is strength-
ened by the fact that Leibniz elsewhere showed a tendency to rework ideas that he came
across and publish his own variants of them. Notable cases includes his introduction of
the osculating circle in response to Huygens’s theory of curvature,50 as well as his planetary
theory, which Meli [1997] has shown to have been a reworked version of Newton’s theory
in the Principia rather than an independent discovery. To some extent it appears that Leib-
niz used this publication strategy to establish, if not outright priority of discovery, at least
the fruitfulness of his own methods in generating organically the results of others. His enve-
lope paper of 1694 and the specific choices of examples in it make sense from this point of
view.

Further evidence for my thesis is provided by a letter by Leibniz [1693c] to l’Hôpital writ-
ten a few months before he received Newton’s construction. In reply to l’Hôpital’s queries,
Leibniz here outlines his envelope method and provides a worked example which he says he
has chosen for simplicity of illustration. But this example is not used in the 1694 paper,
again suggesting that the problems of the 1694 paper were occasioned by Newton’s letter.

But for our purposes the most remarkable thing about the story of Leibniz’s envelope
rule is how strikingly it fits the inversion of the traditional conception of the interplay
49 It happens that Leibniz was mistaken, as he later admitted [Leibniz, 1695]. A cubical parabola is
needed rather than a hyperbola. But this does not alter my point.
50 In a letter to Leibniz, Huygens [1691] pointed out that the idea of the osculating circle was
implicit in his work all along:

You can easily believe that in reading it I did not find this consideration novel, since these sorts of
contact enter naturally into my Evolutions of Curved Lines.
Vous pouvez bien croire qu’en le lisant je ne trouvay pas cette consideration nouvelle, parce que
ces sortes de contact entrent naturellement dans mes Evolutions des Lignes courbes.
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between “pure” and “applied” mathematics that I suggested above. Before receiving New-
ton’s letter, Leibniz had already known for some time that his rule was useful in optics;
quite possibly he even discovered it in this context. But with this as its only merit he treated
the rule rather disparagingly. The year before Newton’s letter, Leibniz [1692b] published his
rule in an inconspicuous little article under the pseudonym “O. V. E.” The article is just
over three pages, and a good part of it is spent discussing matters of vocabulary that has
no direct bearing on the envelope rule. Optical problems are mentioned as motivation,
and the rule is then alluded to in abstract terms without a single formula or figure appear-
ing in the entire paper. After having received Newton’s letter, where the envelope rule is
found to be of consequence for foundational questions, Leibniz’s tone is markedly different.
He now publishes a five-page paper with detailed calculations and figures devoted entirely
to his envelope rule, calling it a “new” application of his calculus “of no small importance
for the development of geometry.”

In short, viewing this episode through the lens of foundational concerns regarding the
representation of curves explains the timing, the specific content, and the rhetoric of the
envelope paper. The same cannot be said for the traditional lens of taking mathematical
advances as driven by the need to solve “applied” problems—which is indeed the approach
taken in a recent study arguing that optical problems regarding caustics were a key moti-
vation for Leibniz’s paper.51
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