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SUMMARIES 

In his work, The Method, Archimedes displays the 
heuristic technique by which he discovered many of his 
geometric theorems, but he offers there no examples 
of results from Spiral Lines. The present study 
argues that a number of theorems on spirals in Pappus' 
Collectio are based on early drchimedean treatments. 
It thus emerges that Archimedes' discoveries on the 
areas bound by spirals and on the properties of the 
tangents drawn to the spirals were based on ingenious 
constructions involving solid figures and curves. A 
comparison of Pappus' treatments with the drchimedean 
proofs reveals how a formal stricture against the use 
of solids in problems relating exclusively to plane 
figures induced radical modifications in the character 
of the early treatments. 

Dans son livre, La methode, drchimbde d&voile par 
quelles m&bodes heuristiques il a ddcouvert plusieurs 
de ses thdor8mes de g&om&trie, mais aucun de ses 
exemples illustrent des r&ultats de son Lignes 
spirales. Dans la pr&ente Etude, nous soutenons 
que nombre de theor2mes sur les spirales dans le 
Collectio de Pappus reposent sur les premiers essais 
d'drchimsde. I1 s'ensuit que les d&couvertes 
d'drchimbde sur les surfaces d6limit6es par une 
spirale et sur les propriQt6.s des tangentes .3 une 
spirale sont bas6es sur des constructions inggnieuses 
impliquant des figures solides et des courbes. Une 
comparaison de l'approche de Pappus et des preuves 
d'drchimede r&~le comment la restriction compl&te 
de l'usage des solides dans les probl&mes reli& 
exclusivement aux figures planes induisit des 
modifications radicales du caractOr% des premiers 
essais. 
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Pappus begins his presentation of a set of theorems on the 
Archimedean spiral with the following remark: 

The geometer Conon of Samos put forward the theorem on 
the spiral described in the plane, while Archimedes 
proved it by means of a remarkable procedure. 

[Collectio IV, 211 

The theorem in question states that the area enclosed by a full 
turn of the spiral is one-third that of the circle generated 
simultaneously. The proof Pappus provides [IV, 221 is indeed 
remarkable, transforming the determination of the area of the 
spiral into that of the volume of a cone. It would thus appear 
that this theorem originated in some form with Archimedes’ 
respected friend Conon, but received its proof by Archimedes, 
in the manner to be presented by Pappus. 

However, historians have not adopted this interpretation. 
T. L. Heath summarizes the accepted version thus: 

Conon .,. [is] cited as the propounder of a theorem 
about the spiral in a plane which Archimedes proved: 
this would, however, seem to be a mistake, as 
Archimedes says at the beginning of his treatise 
[On Spiral Lines] that he sent certain theorems 
without proofs, to Conon, who would certainly have 
proved them had he lived. [1921, II, 3591 

P. Ver Eecke extends this judgment: Pappus, so far removed from 
the time of Archimedes, knew of many of the Archimedean works 
probably only through excerpts and summaries. From Pappus’ 
allegedly incorrect attribution of the invention of the spiral 
to Conon, Ver Eecke infers that Pappus could consult only 
defective versions of the Spiral Lines, in particular, lacking 
the prefatory letter. This also explains why Pappus’ demon- 
stration of the theorem on the area of the spiral [IV, 221 is 
“plus abregee et un peu differente” from that of Archimedes 
[SL, prop. 241, even though Pappus’ borrowing from Archimedes 
“sa methode f&onde d’exhaustion” is evident. In sum, Ver Eecke 
views Pappus’ treatment of the spirals as little more than a 
small commentary on the Archimedean work, containing a few 
alternative proofs to some of its theorems [1933, I, xxviii-ix]. 

By contrast, F. Hultsch, editor of the Greek text of the 
Collectio (1875-78), is less harsh in his judgment of Pappus. 
While admitting that Pappus’ proof proceeds differently, he 
perceives that Pappus’ whole manner of argument stems from the 
“genius and authority” of Archimedes [1875, I, 237n, 239111 . 

Through an examination and comparison of the treatments of 
the spiral by Pappus and Archimedes we shall seek to make the 
following points : (1) The adverse comments by Heath and Ver Eecke 
are largely unwarranted, at best founded on assumptions which, 
if possible, are yet of little use for a historical analysis. 
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(2) Accepting that Pappus' treatment was based on an early 
Archimedean work on spirals, we can infer a possible heuristic 
background for the theorems on areas bound by spirals. (3) The 
theorem on the spherical spiral given by Pappus appears likewise 
to be of Archimedean origin. Remarks by Pappus and others on the 
properties of the conical and the cylindrical spirals will enable 
us to infer how Archimedes discovered the manner of drawing 
tangents to the plane spiral. (4) Certain features of the formal 
proofs in Spiral Lines will suggest Archimedes' reasons for 
instituting such a major revision of the earlier treatment of the 
spirals. These reasons include the availability of more 
advanced mathematical techniques and his own sensitivity to a 
formal stricture against the use of solids in the investigation 
of purely planar figures. 

We thus hope to retrieve from Pappus an understanding of 
the development of Archimedes' study of spirals, from its 
heuristic stages to its complete formal presentation. Such a 
perspective is otherwise obscured by the formality of Archimedes' 
Spiral Lines and is not to be obtained from other works in the 
extant Archimedean corpus. 

1. THE BASIS OF PAPPUS' TREATMENT OF THE SPIRALS 

The interpretation of Pappus' treatment of the spirals 
proposed by Heath and Ver Eecke consists of three points: 
(a) that Pappus' statement about Conon is inconsistent with what 
Archimedes says in the preface to Spiral Lines; (b) that Pappus 
was working with defective source materials; and (c) that 
Pappus' treatment was intended to be a small commentary on 
Archimedes' formal treatise. We shall indicate the inaccuracy 
of each of these points. 

First, there is nothing in Archimedes' preface incompatible 
with the attribution to Conon of the invention and prior study 
of the spiral. To see this, let us review what Archimedes says 
there. He first recalls to his correspondent Dositheus a list 
of theorems without proofs sent to Conon much earlier. Archimedes 
explains his delay in forwarding the proofs by his hope thereby 
to encourage other geometers to explore the areas represented 
by those theorems. Unfortunately, Conon had died before he had 
time to investigate the theorems; otherwise he would have worked 
out proofs and made many new discoveries besides, for his mathe- 
matical expertise was considerable. After deploring that no 
one in the "many years" since Conon's death had contributed any- 
thing to the study of these areas, Archimedes proceeds to name 
the theorems at issue. They include nine of the ten problems 
examined in a work he had already sent to Dositheus (and now 
extant as the second book On the Sphere and Cylinder); four 
theorems on conoids whose proofs Archimedes promises to send 
later. (these are contained in the extant Conoids and Spheroids); 
and four theorems on the spiral, whose proofs are given in the 
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communication at hand (namely, the extant treatise On Spiral 
Lines). Now, there is no suggestion in this that Conon had 
initiated the study of any of these theorems, nor is there any 
special association of Conon with the one theorem stated on the 
area of the spiral. It would thus be purely arbitrary to 
suppose, as Heath and Ver Eecke do, that Pappus or some earlier 
commentator had drawn such mistaken inferences from the preface. 
On the other hand, if Pappus knew from an independent source 
that Conon had introduced the study of the spiral, this does not 
contradict what Archimedes says in Spiral Lines. 

Second, the gratuitous assumption that Pappus’ sources are 
defective ought to astound us. In Pappus’ Collectio we have 
received a wealth of mathematical materials, excerpts from works, 
many of which would otherwise have been lost entirely, and from 
authors, many of whom would otherwise be unknown to us. In the 
frequent instances where we can check him, Pappus possesses 
sources as good as the best extant and follows them closely, 
For instance, in Book VII so much detail is presented on the 
works in the ~6~0s ‘c~vahv6ucvos (the so-called Treasury of 
Analysis) that remarkable restorations of several of them have 
been possible [l] . Pappus’ proof of the manner of cutting the 
surface of a sphere into segments in a given ratio [V, 421 
follows verbatim the Archimedean proof in Sphere and Cylinder 
[II, 31. A lengthy development on isoperimetric plane figures, 
leading to the conclusion that the circle is the greatest of 
those plane figures having a given perimeter [V, l-101 agrees 
virtually word for word with part of Theon of Alexandria’s later 
commentary on Ptolemy [355-3741; as Theon cites one Zenodorus 
as his source, Pappus must also have been following Zenodorus. 
Pappus ’ silence is thus no indication that he is presenting 
original material. Pappus even transfers verbatim portions of 
one book into another, such as his own solution of the problem 
of the duplication of the cube [cf. III, 10 and VIII, 121. When 
Eutocius later reproduces Pappus’ solution in his commentary on 
Archimedes, he cites the “Mechanical Introduction,” that is, 
Book VIII [III, 70-741. This is remarkable in that it is Book 
III which contains Pappus’ major exposition of the methods of 
duplicating the cube. Now, Eutocius provides many methods not 
given by Pappus; on Hero’s method, given by both, their dis- 
cussions are sufficiently different to indicate independent 
sources [ 21. Thus, in the instance of Nicomedes’ method, where 
Pappus and Eutocius agree in close detail, we may infer that they 
were following a common source, rather than assume that Eutocius 
was quoting from Pappus. The degree of agreement here indicates 
how closely Pappus follows his source. Many other such indica- 
tions could be cited. We should thus feel ourselves moved to 
assume the integrity of Pappus 1 sources and his close adherence 
to them, and, conversely, to view as significant any marked 
discrepancies between the text in Pappus and that in the quoted 
original [ 31. 
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Third, Ver Eecke's assessment of Pappus' theorems on the 
spiral as a small commentary on Archimedes' treatise is simply 
inaccurate. As we shall discuss below, Pappus presents theorems 
not to be found in Archimedes' Spiral Lines, yet omits mention 
of all but four of the 28 theorems which are in it. Of these 
four, only one is important for itself, the theorem on the area 
of the spiral--but it is treated in a manner entirely different 
from the Archimedean. Significantly, Pappus passes over with a 
single word, "obvious," the entire convergence argument in this 
theorem. By contrast, Archimedes takes pains to effect this by 
a careful "exhaustion" treatment [4]. Thus, Pappus is hardly 
acting as a mere commentator on Archimedes. Moreover, given the 
excellence of the Archimedean treatise and, by comparison, the 
inelegance of the proofs provided by Pappus, one should wonder 
that Pappus--or, for that matter, any post-Archimedean author-- 
sought to invent a treatment of the spiral along these lines. 
That is, it appears more likely that Pappus was following a work 
antedating the extant work on Spiral Lines. 

One might suppose, accepting this inference, that Pappus' 
text derived from a pre-Archimedean author, for instance, Conon, 
and that Pappus' allusion to Archimedes' "remarkable proof" 
referred to the extant Spiral Lines. But two things argue against 
this. First, Pappus does restrict Conon's contribution to the 
proposing of the theorem, reserving its proof to Archimedes. 
Indeed, the treatment presented by Pappus, for all its formal 
limitations, is accepted by him as a t'proof" [IV, 22: Gcfkvurat]. 
Moreover, by treating this theorem at length in a formal work 
(Spiral Lines), Archimedes indicates the result as being an 
original discovery. For his works are not compilations of the 
discoveries of others; they are research communications, as he 
makes abundantly clear in the prefaces. His handling of works 
known from previous study, whether by himself or by others, is 
perfunctory: such theorems are grouped as preliminary lemmas, 
their proofs often omitted as "obvious,? or as "already proved" 
in other works. Thus, to be consistent, we must take Archimedes 
to be the source of Pappus' proof of the area-theorem on the 
spiral. It is entirely in the character of Archimedes' corre- 
spondence with the Alexandrian mathematicians, that the problem 
of what the area enclosed by the spiral was should have been 
proposed by one of them, for instance Conon, to be solved by the 
others. This was, as we have seen, the purpose behind Archimedes' 
own list of theorems addressed to Conon. Moreover, the preface 
to an Archimedean work on the spiral sent to Conon would 
certainly have contained information of this sort, so to serve 
as the basis of Pappus' opening remark on the spiral. 

Second, Pappus does not appear to have in hand the work we 
know as Spiral Lines. The striking differences between his 
treatment of the area of the spiral and that in SL, 21-28 have 
already been taken to indicate this. Further, the manner of 
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drawing the tangents to the spiral, by which the spiral may be 
used to solve the problem of squaring the circle, is of central 
interest in Spiral Lines, 12-20. Yet in his copious remarks on 
the use of the quadratrix of Nicomedes in this connection, Pappus 
does not mention the property of the tangents of the spiral, 
not even when he compares the spiral and the quadratrix in the 
manner of their construction [IV, 33-341 or when he applies both 
curves for the multisection of angles [IV, 45-461. To be sure, 
Pappus does twice mention the theorem on the tangent to the 
spiral [IV, 36, 541. But in both instances the issue is 
Archimedes' inappropriate use of a "solid neusis," that is, of 
a construction involving the sections of solids, in the solution 
of a plane problem [S]. Yet Pappus' own resolution of the 
difficulty [IV, 541 is by his own classification a "solid" 
method, as it makes USC of conic sections. Thus,historians have 
been puzzled as to what Pappus' objection precisely was [6]. 
The root of this puzzle is revealed when Pappus says that others 
have criticized Archimedes for an improper use of a solid 
construction and that they show how to find a straight line 
equal to a circle by means of the spiral [IV, 541. That is, 
Pappus is dependent on sources commenting on and criticizing 
Archimedes' study of the tangents to the spiral; he does not 
have the Archimedean work itself. Indeed, given the confusion 
in his criticism, it is to be suspected that even his sources 
were commenting on a treatment of the tangent-theorem different 
from SL, 18. 

These considerations lead us to infer that Pappus drew his 
discussion of the spiral from an Archimedean work addressed to 
Conon, and thus, as we have seen, antedating by "many years" the 
extant Spiral Lines. This readily accounts for the comparative 
crudeness of the treatment in Pappus. But more interestingly, 
this assumption enables us to view Pappus' treatment as 
representing an early stage of Archimedes' study of the spirals. 
Thus,we may hope to get closer to the heuristic notions on 
which Archimedes' extant formal treatment was based. With this 
objective in mind, we shall now survey the theorems presented 
by Pappus. 

2. PAPPUS' AND ARCHIMEDES' THEOREMS ON THE PLANE SPIRAL 

Subtle differences between the treatments by Pappus and by 
Archimedes are in evidence right from the start--in the very 
definitions introduced for the spiral. In the preface to Spiral 
Lines and again in the definition preceding prop. 12, the spiral 
is conceived as the path of a point moved "with equal speed 
itself to itself" (iao-ra&s c&b &ur,) along a line, as the 
line simultaneously rotates "with equal speed" about a fixed 
end-point; the fixed point is termed the "origin of the spiral," 
the initial position of the line the "origin of the revolution." 
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As these motions may be continued indefinitely, we obtain a 
"first revolution," a "second," a "third," and SO on, as the 
rotating line passes through its initial position. In Pappus, 
the point moves "uniformly" (o~~ahws) from one end-point to the 
other of a finite line-segment AB "in the same time" as the 
segment makes one complete rotation "uniformly" about its fixed 
end-point B. Thus, although the curve traced out according to 
the two definitions is the same, there are variations in 
terminology. Moreover, Pappus' definition does not allow for 
continuation of the spiral beyond the first turn, whereas 
Archimedes devotes seven theorems to the higher turns in Spiral 
Lines. (Proclus recognizes the definition in the restricted 
form preserved by Pappus; he terms it "monostrophic," that is, 
"single-turned," and likens it to the circle and the cissoid 
because of its finite character [In Euclidem, 180, 1871. It is 
odd that for Pappus, unlike Proclus, the "monostrophic" spiral 
is a single turn of the cylindrical spiral [VIII, 28, p. 11101.) 
The definition provided by Pappus has another limitation: to 
construct the spiral in this manner, whether mechanically or 
conceptually, requires that two motions, one linear, the other 
circular, be completed in the same time. This in effect assumes 
solution of the quadrature of the circle; and in the case of 
another curve, the "quadratrix," which also assumes this 
synchrony, Sporus made this a ground for attacking Nicomedes' 
studies [Pappus IV, 311. As we shall discuss below, both the 
spiral and the quadratrix were used to square the circle, and 
the construction of either can be reduced to that of the other 
[Pappus IV, 341. Thus,we may infer a factor encouraging 
Archimedes to provide in Spiral Lines an altered definition 
which avoids the objectionable asspption of synchrony. 

Pappus' term "uniformly" (~~aXws) is the same as that used 
by Autolycus (c. 300 B.C.) in his tract On the Moving Sphere. 
In fact, this is but one of a variety of indicators which link 
Pappus' treatment stylistically t? Autolycus. In using &&s 
instead of the Archimedean \oo-raXws, Pappus appears to prefer 
conformity with an earlier mathematical tradition. The issue 
is more complicated than this, however, since both terms are 
found in pre-Euclidean writing. For instance, in general 
discussions of the concepts of motion in the Physics Aristotle 
speaks of "uniform" motion; e.g., motion in a spiral is not 
"uniform" because the path of motion is not a "uniform" magni- 
tude (in contrast with lines and circles which are "uniform" 
magnitudes) [Physics, 228b20]. In de caelo [II, 4, 61 he terms 
"uniform" the motions of the heavenly bodies. But motion is 
termed :oo-ca~fjs whenever a comparison between motions is under- 
stood (cf. Physics, 216a20: the heavy and the light would fall 
"with equal speed" in a void space); when Aristotle defines 
constant potion as moving equal length in equal time, he 
terms it lao-raxfjs (249a13); and he employs this term throughout 
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his detailed proofs of the impossibility of the existence of 
indivisible parts of magnitude or motion [Physics, VI, 11. Such 
usage appears even earlier with Archytas (fr. 1): that when 
bodies move, "but not with equal speed," noise is produced. 

While a full analysis of the usage of these terms and their 
relation to Archimedes cannot be gfven here, I believe the 
following view emerges. The term ~ao-caxl!s appears to be 
characteristic of Eudoxus' mathematical treatment of motion, the 
background to his system of planetary motion based on homocentric, 
uniformly_rotating spheres, in the tract (now lost) On Speeds 
(mp'i Taxwv) . Eudoxus thus conforms with usage in prior studies 
of motion, as by Archytas, while Aristotle follows Eudoxus in 
the more mathematical arguments of the Physics. When Eudoxus' 
successors, e.g., Callippus, revised and improved his astronomi- 
cal system, they also introduced changes of terminology, such as 
&ah6s for ;aoraxfis. It is the revised tradition which 
Aristotle follows in his discussions of the uniform circular 
motions (de Caelo), and the new terminology became fixed in the 
subsequent literature of spherics and astronomy (as by Autolycus 
and Theodosius). Pappus' treatment of the spiral, which we 
take to represent Archimedes' early studies, conforms with usage 
in the tradition of spherics. As far as Archimedes is concerned, 
this is not at all surprising. His father Phidias was an 
astronomer [cf. Sand-Reckoner, I, 91, as was his colleague Conon, 
and a firm grounding in spherics is implicit in most of the 
Archimedean works, notably in the books On the Sphere and Cylinder. 
Now, one should note that when Eudoxus' astronomical system was 
reworked, there was no need to change the mathematical foundation 
of motion which Eudoxus had established. Autolycus, for 
instance, assumes without proof several basic theorems on 
uniform motion, such as the fact that the distances traversed 
have the same ratio as the times. Indeed, Pappus does the same 
in his treatment of the spirals, as we shall see below. Thus, 
when Archimedes wished to formalize his treatment of the spirals 
in Spiral Lines, he could not use the works on spherics as a 
model, but had to return to,the Eudoxean theory of motion. I 
thus view Archimedes' term 1aoTaxEws in Spiral Lines as a 
revival of Eudoxean usage, as Archimedes drew from and tightened 
the earlier treatments of proportion and motion in the course of 
formalizing his own studies in geometry. 

Following the definition of the spiral, Pappus presents two 
lemmas. The first shows that if the spiral is cut by the line 
BZ, which continued meets at rthe circle generated by the motion 
of A (see Fig. l), then BZ is to AB as the circular arc AM is 
to the whole circumference of the circle. He says this is "easy 
to see," since each line and its associated arc will be traversed 
in the same time. He*then‘addsi "the motions are equally swift 
they to themselves (amal Eau'Ials :aoraxe;s) so that they are 
also in proportion." This last remark thus introduces the term 
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FIGURE 1 

used in Spiral Lines and, in effect, completes the argument by 
a loosely worded appeal to SL, 2. It is tempting, in the light 
of our earlier comments, to detect here a remnant of Eudoxean 
terminology, introduced by Archimedes into his early study of 
the spiral. But for several reasons we do better to view the 
remark as a post-Archimedean interpolation. First, the phrase 
“motions equally swift they to themselves” in Pappus is an 
imprecise echo of the Archimedean phrase “the point moving with 
equal speed it,self to itself.” In Spiral Lines, the term “with 
equal speed” (zooTa$ws) is used adverbially, never as an 
adjective . Pappus’ phrase “they to themselves” is supposed to 
mean “each to itself;” unfortunately, it might easily be under- 
stood as “each to the other,” which would here be a plain error. 
Second, Pappus’ inference that “they [SC. the motions] are also 
in proportion” is simply incorrect; it is not the motions which 
are in proportion, but the distances and the times. Third, a 
perfectly clear expression can be provided in accordance with 
tte terminology of spherics: “since the two motions are uniform 
(opaXaf), the times and distances traversed according to each 
are in proportion; and as the corresponding times are the same 
in both motions, the corresponding arcs and lines traversed are 
in proportion.” It thus seems that the original of the version 
followed by Pappus left this argument incomplete and a later 
interpolator, possessed of an imperfect understanding of 
Archimedes’ terminology, sought to remedy the gap by an allusion 
to Spiral Lines. 
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Thus, in Pappus this lemma is termed “easy to see” and his 
brief discussion contains at best the germ of a satisfactory 
proof. By contrast, Archimedes demonstrates an analogous theorem 
[SL, 141: that for two arbitrary lines drawn to the spiral the 
lines and arcs marked off are in proportion. As in Pappus, 
Archimedes identifies the arcs and lines traversed by two points 
moving, the one along a circle, the other along a line, “each 
with equal speed itself to itself;” that the claimed proportion 
among lines and arcs holds is thus “clear.” He adds, “for this 
has been proved outside in the preliminaries.” In fact, the 
required step is proven in SL, 2 via a complete argument based 
on the Euclidean definition of proportion [Elements, V, Def. 51. 
A comparison of these treatments by Pappus and Archimedes thus 
weighs against Ver Eecke’s view that the one is a “commentary” 
on the other, but rather encourages us to view Pappus’ version 
as an informal argument, subsequently amplified in Spiral Lines. 

After this lemma, Pappus states without proof a second 
“obvious” property of the spiral: that any lines drawn from the 
origin to the spiral as to contain equal angles exceed each other 
by an equal amount. Archimedes’ statement in SL, 12 is similar, 
but he provides a full proof. He makes clear that a sequence 
of rays is intended, drawn at equal angles and thus increasing 
in length arithmetically. The treatment is careful, referring 
back to SL, 1, which itself applies Archimedes’ axiom on the 
continuity of magnitude, stated explicitly in the preface. From 
the formal point of view, this is hardly to be dismissed as 
“obvious I1 and it would be extraordinary for a commentator with 
Archimedis’ proof before him so to dismiss it. On the other 
hand, in the initial stages of thinking through the properties 
of the spiral and their proof, this one might well be taken as 
evident. This thus conforms to our general view: that Pappus ’ 
version is an early draft by Archimedes of some of the results 
now extant in Spiral Lines, and that the preliminary theorems 
in the extant treatise were added by him in the process of 
formalizing the proofs. 

Pappus is now ready to give the main theorem: that the area 
bounded by the spiral and the original line AB is one-third 
that of the circle which contains the spiral. We may outline 
his proof as follows: let the spiral be drawn as in Fig. 2 and 
let a rectangle KNI\II be drawn with diagonal KA as in Fig. 3. 
From the circle containing the spiral an arbitrary integral 
fractional part Ar of the circumference is marked off and the 
same part of the side of the rectangle Kn. is marked off as KP. 
The ray Brmeets the spiral at Z and the circular arc ZH is 
drawn; thus the sector BZH is inscribed in the portion of the 
area BZA bounded by the spiral. In turn, the rectangle KPTN 
is completed and the line MSl drawn to the diagonal. From the 
first lemma it follows that the radii BZ, BF have the same ratio 
as the lines TCl, TP. Now, the sectors BZH, BrA will have the 
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ratio of the squares of 
these radii, as they are 
similar plane figures. 
Moreover, if the rectangle 
KIIAN is conceived to 
revolve around its side 
NA as axis, so generating 
a cylinder, the rectangles 
KPTN, MfiTN will likewise 
generate cylinders, and 
the volumes of these latter 
will be in the ratio of 
the squares of the lines 
TP, Til (being, respective- 
ly, the radii of the 
circular bases of cylinders 
having equal height). Thus, 
the ratio of the areas of 
the sectors BZH, BRA is 
the same as the ratio of FIGURE 2 
the volumes of the cylinders 
generated by M~~TN, KPTN. In the same manner, an arc TA equal to 
AT is marked off, and a line PX equal to KP; then, the ratio of 
the sectors BEB, BAr will be the same as the ratio of the cylin- 
ders generated by EO Q T, PXQT. This procedure is to be continued 
(although Pappus complicates the diagram no further), so that 
the ensemble of sectors (literally: “all the sectors”) inscribed 
within the spiral has to the circle the same ratio which the 
ensemble of cylinders inscribed within the cone (generated by 
the revolution of the triangle KAN) has to the entire cylinder 
generated by KIIh N. The same holds for the ensemble of sectors 
circumscribed about the spiral and the ensemble of cylinders 
circumscribed about the cone (Pappus does not provide details 

here). From this it is 
“obvious” that the area 

KPX n bounded by the spiral has 
to the area of the circle 
the same ratio which the 
cone has to the cylinder, 
namely, one-third. 

Pappus I earlier 
assessment of this pro- 
cedure as t’remarkablelV 
appears entirely justified. 
By means of familiar 

N T + A 
elementary theorems on 
similar figures and the 
notion of solids generated 

FIGURE 3 by revolution, the area of 
the spiral is determined. 
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As we shall see, the procedure 
employed is surprisingly unlike 
that given in Spiral Lines [ 71. 
In fact, the closest analogues are 
to be found in The Method, where 
Archimedes presents the heuristic 
arguments behind his theorems on 
the volumes and centers of gravity 
of solids of revolution and 
related figures, but none on the 
spiral. In the Method the 
evaluation of a volume as the sum 
of constituent parallel elements 

FIGURE 4 is commonplace; but unlike the 
theorem in Pappus, the elements of 

volume are indivisibles. In prop. 4, for instance, Archimedes 
compares the paraboloid segment and the cylinder which contains 
it by establishing a proportion involving the associated circu- 
lar sections of each (Fig. 4). Archimedes speaks here of the 
sections "filling up " the volumes. When he formalizes this 
theorem in Conoids and Spheroids, prop. 21, the circular sections 
are replaced by narrow cylinders whose aggregates bound the 
segment above and below (Fig. 5). The expression for the 
aggregate, "all the cylinders," recalls the similar phrase 
which appears in Pappus, and in fact is usual in Archimedean 
theorems on area and volume. As another instance, in Method, 
prop. 12-15, Archimedes determines, first heuristically, then 
formally, the volume of a cylinder cut obliquely by a plane 
through a diameter of its base. In prop. 14 this is done via 
indivisibles and a reduction of the volume-problem to the area 
of a parabolic segment: a proportion is established linking "all 
the triangles" which comprise a solid prism and all the surfaces 
which comprise the solid to be measured to "all the lines" 
which comprise a rectangle and all 
the lines which comprise the para- 
bolic area. In prop. 15 the formally 
correct proof is given, in which 
the solids are bounded by aggregates 
of prisms and the plane figures by 
aggregates of rectangles. In 
relation to the spiral-theorem in 
Pappus, these are interesting not 
only for their similar subdivision 
of volumes, but also for their 
transformation of the given problem 
to one of a different dimension. 

Comparison with the theorems 
in The Method reveals how far the 
treatment in Pappus still is from FIGURE 5 



HM5 Archimedes and the spirals 55 

confronting the demands of a 
fully formal argument. Asserting 
as llobviousl’ the convergence of 
the bounding aggregates to the 
cone might seem to rely on the 
Euclidean treatment of the cone 
[Elements XII, lo], but this is 
not possible in the present case, 
since Euclid conceives the cone 
as the limit of inscribed recti- 
linear pyramids, not aggregates 
of cylinders. Thus, an inde- FIGURE 6 
pendent convergence argument 
must be given. On the model of the convergence theorem for 
conoids [CS, 191, it would take this form: the circumscribed and 
inscribed aggregates are considered together (Fig. 6); their 
difference is seen to equal one of the sections of the large 
enclosing cylinder. If, then, the axis of the cylinder is 
successively bisected, the cylindrical section will eventually 
become less than any preassigned magnitude. Thus, the circum- 
scribed and inscribed aggregates may be constructed as to differ 
by less than a preassigned amount. It follows that the aggregates 
converge to the cone. To complete the convergence argument for 
the spiral, we employ the fact that each aggregate of cylinders 
has to the whole cylinder the same ratio that a corresponding 
aggregate of sectors has to the whole circle. By an indirect 
argument, the assumption that the ratios of volumes and the 
ratios of areas tend to different limits leads to contradiction. 
Thus, the aggregates of sectors must converge to the spiral and 
have the same ratio to the whole circle as the cone to the 
cylinder, namely, one-third. 

From the formal viewpoint, therefore, the conclusion asserted 
by Pappus is far from “obvious.” He has not introduced the 
notions required for the indirect proof of convergence: 
preassigned differences of area and volume, subdivision of the 
circle or the cylinder into sufficiently many parts so that the 
difference between constructed figures circumscribing and 
inscribed in the spiral and the cone will be less than those 
preassigned, and so on. In fact, the consideration of the 
inscribed cone in separation from the circumscribed suggests 
that convergence is being viewed in the Euclidean manner of 
“approximation,” rather than in the Archimedean manner of 
“compression” [ 81. If so, the convergence argument would turn 
out to be even more complicated than sketched above. This lends 
further support to our view that the treatment in Pappus derives 
from an early stage of Archimedes’ mathematical studies, when he 
would be more apt to apply the methods of Euclidean geometry, 
rather than the methods of his mature works. At any rate, the 
present theorem shows no concern over formal matters--a fact 
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which would be surprising if it had been composed after 
Archimedes had worked out the formally correct proof in Spiral 
Lines. 

Archimedes’ presentation of the theorem in SL, 24 differs 
strikingly from that in Pappus [IV, 221, both in conception and 
in attention to formal detail. As in Pappus, the spiral is 
bounded above and below by aggregates of sectors. But in a 
prior theorem [SL, 211 Archimedes has shown how to construct the 
sectors so that the difference of the circumscribed and inscribed 
aggregates shall be less than a preassigned magnitude; since 
that difference equals the area of one of the sectors of the 
circle, the construction follows by successive bisection of one 
quadrant. Now, the radii of the sectors increase in arithmetic 
progression (from SL, 12). Thus, the sectors increase as the 
sequence of square integers. Via an arithmetic lemma [SL, 101 

to the effect that the sum of the squares 1, 4, . . . . n2 is 

greater than (1/3)n3 but less than (l/3) (r1+1~, it follows that 
the inscribed aggregate is less than one-third the whole circle, 
while the circumscribed aggregate is greater. If, then, the 
area enclosed by the spiral is assumed not to equal one-third 
the circle, the bounding aggregates may be constructed to differ 
by less than their difference. In conjunction with the result 
on the sums of the squares, the contradiction follows, first that 
the third of the circle both exceeds and is exceeded by the 
circumscribed aggregate, next that it both exceeds and is 
exceeded by the inscribed aggregate. As this is impossible, the 
spiral must equal one-third the circle. 

Among the many changes between the version in Pappus and this 
one, those occasioned by formal necessity are easily understood. 
But why Archimedes should have introduced the argument based on 
arithmetic manipulations --more complicated than the above 
indicates--in preference to the ingenious solid construction is 
far from obvious. It will emerge from what follows later that 
a formal convention is the likely explanation: namely, that in 
a plane investigation, such as the determination of an area, 
the use of solids is viewed as inappropriate. We have noted 
already that Archimedes’ construction of the tangent to the 
spiral had been criticized for unnecessarily employing solid 
methods. The same objections would certainly have been raised 
against their use in the theorems on area. 

Having established the area bound by the whole spiral, Pappus 
asserts the analogous theorem for sectors of it. “We will prove,” 
he says, that if any line BZ is drawn in the spiral, the area 
between it and the spiral is one-third the circular sector of 
radius BZ and contained between BZ and the initial line of the 
spiral [IV, 231. The proof is omitted, however, presumably for 
its close resemblance to that already given. In SL, 26, 
Archimedes provides the complete formal proof of a related theorem 
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on the sectors of the spiral, Pappus’ theorem being a special 
case of it. 

The remaining two theorems in Pappus are actually only 
corollaries to the area-theorems and do not appear in.Spiral 
Lines. The first is that the ratio of a sector of the spiral 
(bounded, as before, by the line BZ) to the whole spiral 
(terminated by the line AB) is the same as that of the cube on 
BZ to the cube on AB [IV, 241. The proof is effected via the 
manipulation of compound ratios. From the two prior theorems 
each area is the third part of a sector or of the whole circle, 
respectively; hence, their ratio equals that of the sector to 
the whole circle. Now, sectors are in the ratio compounded of 
the squares of their radii and the lengths of the bounding arcs. 
In the present case, we compound the ratio of the square on BZ 
to the square on AB with the ratio of BZ to AB (since, by Pappus’ 
first lemma, the arcs are proportional to the terminating lines) 
and obtain the ratio of the cube on BZ to the cube on AB. 

A noteworthy feature of this proof is its phrasing in terms 
of the ratio between cubes. We should have expected instead the 

expression “triplicate ratio of BZ to AB," that is, (BZ:AB) 3 

rather than ~2~ :AB~, in accordance with virtually unanimous 
usage by Euclid (as in Elements XII) and by Archimedes. But the 
phrasing in terms of cubes does occur in Archimedes, in one 
theorem of Plane Equilibria [II, lo] and in the alternative proof 
to a theorem from Sphere and Cylinder [II, 81. In the former, 
two segments of the same parabola, cut off by parallel chords, 
are shown to be in the ratio of the cubes of their ordinates 
(i.e., the respective half-chords) by an argument similar to 
that in Pappus. In the latter, proving an inequality on the 
segments of the surface of a sphere, there is a manipulation of 
compound ratio also in the syle of the Pappus theorem [9]. As 
observed by Heiberg [Archimedes I, 217n] this alternative proof 
is neither clearer nor briefer than the principal proof. Why, 
then, should it have been included by Archimedes? Significantly, 
its use of cubes and other solid terms is not adopted in the 
main proof. In line with our remarks above, the alternative 
proof can be understood as an earlier version of the proof which 
was subsequently replaced owing to the stricture against solid 
methods in plane or surface problems. In addition, as Archimedes’ 
studies of the sphere and of the centers of gravity of plane 
figures appear to have been done considerably before the compo- 
sition of such mature treatises as Spiral Lines, this unusual 
phrasing of proportions serves to support our view that Pappus’ 
theorems on the spiral are drawn from an early Archimedean 
work [lo]. 

From the theorem on cubes, Pappus draws the “obvious” 
corollary that the areas bound by successive quadrants of the 
spiral are in the ratio 1 : 7 : 19 : 37 (that is, areas BA E, 
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BEMN, BN~Z, BZEA in Fig. 
71. Here, Pappus' second 
lemma is applied: since 
the terminating lines 
are at equal angles, their 
lengths are in arithmetic 
progression, namely, as 
1:2:3:4. Nofurther 
detail is provided; but 
from the previous theorem, 
it is clear that the 
areas bound by the spiral 
between each line and the 
initial position will be 
as 1 : 8 : 27 : 64. Taking 
the consecutive differences 
produces the areas of 
the quadrants, as claimed. 

Although Archimedes 
does not include this 
property in Spiral Lines, 
he does prove a similar 
theorem for the areas 

bound between successive higher turns of the spiral [SL, 271. 
If the area contained under the first turn is 1, then that 
between it and the second turn will be 6, that between the 
second and third 12, between the third and fourth 18, and SO on 
in arithmetic progression. The proof is effected by the manipu- 
lation of plane expressions only, based on an extension of the 
principal area-theorem to the higher turns of the spiral [SL, 
251. Nevertheless, it is readily seen how the result in Pappus 
leads to Archimedes' theorem. The lines terminating the 
successive turns of the spiral are in the ratio 1 : 2 : 3 : 4 : 
etc. Forming the cubes and taking consecutive differences yields 
the ratio of the areas of the spiral between each line and the 
initial position, namely, 1 : 7 : 19 : 37 : etc. Hence, the 
areas bound between consecutive turns of the spiral will be as 
the differences of these terms, 1 : 6 : 12 : 18 : etc. The 
proof for the general turn requires but a single straightforward 
identity of differences among cubes [ll]. Such observations 
could well have marked the heuristic stage of Arcimedes' study 
of the higher turns of the spiral [12]. But, as before, the 
use of solid terms in a plane problem and the generation of 
overlapping areas through rotation would present difficulties 
for a formal treatment along these lines. Thus, it is not 
surprising to find that the proofs in Spiral Lines became more 
complicated, through the effort to avoid these formal objections. 

It is interesting that only in this theorem on the areas of 
the quadrants of the spiral does Pappus use his lemma on the 
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arithmetic increase of the radii drawn at equal angles. Whereas 
this same lemma (in the form of SL, 12) was the foundation of 
Archimedes’ proof of the principal area-theorem [SL, 241, as we 
have seen, Pappus’ version of the proof, making use of the cone, 
did not require it. Thus, the theorem on the quadrants [IV, 251 
may well have performed the additional service of suggesting 
the way to revise the proof of the area-theorem. For it makes 
explicit the need for a comparison of the radii drawn at equal 
angles, and this, in conjunction with the proportions of square 
terms employed throughout Pappus’ version of the principal 
area-theorem, points to the relevance of the sum of consecutive 
square numbers for the preparation of an alternative proof. 

This comparison of the treatments by Pappus and by Archimedes 
has revealed numerous discrepancies which are not well understood 
under Ver Eecke’s assumption that Pappus’ treatment is merely 
a commentary on Archimedes. Pappus appears to introduce needless 
variations of order and terminology, he includes results not to 
be found in the Archimedean work, and he captures none of the 
formal sophistication of the Archimedean proofs. On the other 
hand, these difficulties disappear when we view Pappus’ version 
as based on an earlier stage of Archimedes’ study of the spiral. 
We can thereby begin to perceive how Archimedes discovered the 
theorems on the areas bound by spirals and what considerations 
affected his devising the formal proofs in spiral tines. We 
shall now turn to discussions by Pappus on other forms of the 
spiral and show how these may indicate the heuristic thought 
behind Archimedes’ study of the tangents to the spiral. 

3. SPHERICAL, CONICAL AND CYLINDRICAL SPIRALS 

We have surveyed Pappus’ discussion of the “spiral in the 
plane .I’ Later in the Collectio he takes up the construction of 
a related curve, the “spiral on the sphere,” [IV, 351 and, by a 
proof which bears striking resemblance to his treatment of the 
plane spiral, he determines the area bound by the spherical 
form [13]. Given a sphere with a great circle KAM described 
about the polar point 0, the quadrant of a great circle 6NK is 
taken as reference line. If now the quadrant of the circle I3OA 
is conceived to rotate about 0 from the initial position ONK, 
the spiral on the sphere will be the path of a point moving from 
8 toward A in such a manner that at each position 0, the arc 
KA has to the circumference of the great circle the same ratio 
that the arc 80 has to the arc 0A (Fig. 8). Pappus claims that 
if a quadrant of a circle AAT is drawn with radius AA, equal to 
that of the great circle of the sphere, and if its chord Ar is 
drawn, then the area between the spiral and the terminal position 
of the rotating generator has to the area of the hemisphere the 
same ratio that the area of the segment has to the area of the 
sector (Fig. 9). The proof is remarkably like that of the area 
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of the plane spiral. An 
arbitrary part KA of the cir- 
cumference of the great circle 
is taken, the point 0 deter- 
mined, and a spherical sector 
BNO marked off. At the same 
time, the sector ACZ is drawn 
(being equal in area to sector 
&Ar) and an arc ZE marked off 
as the same part of ZA that 

K KA is of the great circle. 
The sector ZfE is drawn, its 
radius Er meeting the original 
circle at B. Finally, the 
small sector rBH is completed. 
Now, arc @A = arc Ar and arc 
00 = arc Br. It follows that 
the corresponding chords are 
also equal. From Archimedes' 
theorem on the surface of the 

segment of the sphere [SC I, 421, it is known that the spherical 
sector ON0 has to the spherical sector 8Kh the ratio of the 
square on chord 00 to the square on chord BA ,which is the same 
as the ratio of the plane sector HTB to the plane sector ZrE. 
From here, Pappus’ remarks become very condensed. The same 
proportion holds for each subsequent part of the great circle. 
“We will show ” he says, that “all the sectors in the hemisphere 
equal to EIKA )I which are the whole surface of the hemisphere” 
have to the aggregate of circumscribed sectors the same ratio 
that "all the sectors in AZrequal to EZr, that is, the whole 
sector AZI-," have to the aggregate of sectors which circumscribe 
the segment ABr. “In the same manner it will be shown" that 
the analogous proportion obtains for the inscribed figures; "SO 
that also" the surface of the hemi- 
sphere has to the area bound by the 
spiral the same ratio which the r 2 
sector AAr has to the segment ABr. 
Since the hemispherical surface is 
eight times the sector [cf. SC I, 331, 
it follows that the area bound by the 
spiral and the terminal quadrant of E 
the great circle is eight times the 
segment ABr. 

This proof, like that of the 
area-theorem for the plane spiral, is 
really but a sketch. On numerous D A 
points the two treatments are compar- 
able: for instance, marking off an 
arbitrary portion of the entire FIGURE 9 
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circumference; establishing proportions between the figures in 
two separate diagrams; constructing the circumscribing ensembles 
apart from the inscribed ensembles. In neither case is the 
passage to the limiting spiral explained; nor is it precisely 
clear how this was to be effected--whether by a Euclidean 
“approximation” argument (as the separation of the circumscribing 
and inscribed figures suggests) or by an Archimedean “compression” 
procedure. Moreover, they agree on points of terminology, in 
particular, speaking of “all the figures” to designate the 
bounding aggregates--this being, as we have said, commonplace in 
Archimedean treatments. They are even linked by the common use 
of future tense (“we will show,” or “it will be shown”) to 
indicate proofs which can be given, but which in fact are 
omitted. This usage is common in Autolycus, for instance, and 
is found often in Archimedes’ Spiral Lines [props. 1, 14, 15, 16, 
17, 19, 20, 25, 271, Sphere and Cylinder [I, props. 6, 441 and 
elsewhere. (When in the Method, prop. 1, he closes the 
heuristic argument by saying, “we will place in order the 
geometric proof which we have discovered and published earlier,” 
[ed. Heiberg, II, 4381 Archimedes may thus be indicating that 
the informal proof can or must be followed by a formal version, 
without actually intending to do so here, as Heiberg assumes.) 

A major difference between the theorem on the plane spiral 
and that on the spherical spiral is the technical level assumed. 
Whereas the former requires only such theorems on areas and 
volumes which may be found in Euclid’s Books VI and XII, the 
spherical curve requires Archimedes’ theorems on the surface of 
the segments of the sphere [SC I, 33, 421. Now, this might be 
supposed to compel us to date the study of the spherical spiral 
after the composition of Sphere and Cylinder. But, in fact, it 
does not. As indicated earlier [3], both Hero and Pappus had 
access to a book called by the same title, but differing from 
the one we know. Pappus presents many theorems from it in Book 
V of the Collectio, among them versions of the two theorems 
required for the spiral theorem [V, 30-311. An indication that 
the spiral theorem in fact refers to this version, rather than 
the extant Archimedean treatise we know, is that it speaks of the 
“pole” [CHAOS] of the segment, as do Pappus and Hero, rather 
than the “ve;~;;rtv~;opu@j] which is usual in the Archimedean 
treatises. 
the theorems 

on the grounds of the methods employed in 
presentid by Pappus, it is apparent that his version 

of Sphere and Cylinder represents an earlier stage of Archimedes’ 
treatment of these materials. It would thus appear that Pappus’ 
theorem on the spherical spiral, arguably an Archimedean work 
from its close resemblance to the theorem on the plane spiral, 
derives from an early period of Archimedes’ researches, but 
after his first presentation of his results on the sphere and 
cylinder. 

Beyond the spherical spiral, the ancients also recognized the 
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conical spiral [Proclus, 1111. This may be conceived as the 
path of a point which, as it generates the spiral in the lane 
is simultaneously moving perpendicularly to the plane wit E a 
uniform motion. It is thus the vertical projection of the plane 
spiral onto an isosceles cone, or the intersection of that cone 
with the vertical cylindrical surface generated by the spiral. 
It is this last conception which appears in Pappus [IV, 341. 
Among its properties, the area bound by the spiral and the 
projection of the initial line may readily be found. (This is 
not cited by Pappus.) Archimedes determined the surface of the 
cone [SC I, 141 and it is cited in this form by Pappus [V, 231. 
But Hero [Metrica, I, 371 has preserved a different conception 
of the area of the cone which makes it evident: if the cone is 
cut along a radius and unfolded, it becomes a plane circular 
sector. From a theorem attributed by Hero to Archimedes and 
related to the first proposition of niznension of the Circle, it 
is known that the area of the sector is one-half the radius times 
the bounding circular arc; thus, the area of the cone is half 
the slant-height times the circumference of the base. Now, if 
the spiral is described on the cone, one may show easily that 
when it is unfolded, as above, the conical spiral will become 
the familiar plane spiral. Thus, the area bound by it and by 
the conical spiral is the same, namely, one-third the surface 
of the cone. 

The ancient studies of the conical spiral must surely have 
included theorems like the one above, although none of this 
type has been preserved in Pappus. But one property of the 
conical spiral does appear in Pappus, and it has interesting 
implications for the problem, not of areas, but of tangents to 
the spiral. In IV, 33-34 Pappus shows how the spiral can be 
related to another plane curve, the “quadratrix,” by means of 
projections involving the conical spiral and the cylindrical 
spiral. Now, the principal property of interest of the quadratrix 
is its use to construct a rectilinear area equal to a given 
circle [IV, 30-321. This curve is defined as the intersection 
of a line ST (in Fig. 10) moving 
vertically from B to A with a uniform B r 
motion and a radius AB, equal to ST 
and rotating uniformly through a 
quadrant in the same time. Thus, for 
any point Z on the curve, ZB:AB = arc 
EA:arc BA. As Pappus proves, the 
terminal position H of the curve BZH 
so generated is such that the lines AB, 
AH have the same ratio as the arc BA 
and the line AB. From this, the circle- 
quadrature is evident. Now, Pappus 
relates two objections by Sporus of A 0H A 

Nicaea. First, that the construction FIGURE 10 
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requires the synchrony of two motions, one circular and one 
linear, and thus appears to beg the principle; second, the 
terminal point H of the curve is not determinate, since here the 
two moving lines coincide. In presenting the solid construction 
by which the quadratrix and the spiral are related, Pappus seeks 
effectively to circumvent the former criticism. But the latter 
objection still holds: the terminal position of the quadratrix 
can be specified only as the limiting point of curves determined 
by intersecting surfaces. 

But more interesting than these remarks by Pappus are some 
he omits. If, in Fig. 10, accompanying the quadratrix, the 
plane spiral is traced from B to A (where the genesis is the 
reverse of the usual, so that A is actually the “origin”), the 
tangents to both curves at B will be one and the same line. 
Moreover, the intercept of this mutual tangent with the terminal 
line AA extended equals the length of the quadrant BEA (a known 
property of the tangent to the spiral), SO that we obtain an 
alternative means of solving by the quadratrix the very problem 
for which it was named. In view of Pappus’ interest in these 
curves, it is surprising that such properties should be omitted. 
Did the ancients remain unaware of these facts? Perhaps. But 
if we take the far more likely view that they did perceive them, 
we can discover the heuristic insight behind Archimedes’ 
theorems on the tangents to the plane spiral. 

From Pappus’ discussion of the conical spiral [IV, 341 the 
following relations are known: if the spiral BHA in the plane is 
projected vertically onto a right isosceles cone, the curve 
described is a conical spiral. In Fig. 11, the latter is the 
path of the moving point K where BH = KH [14]. If, in its turn, 
the conical spiral is projected horizontally onto the vertical 
cylindrical sheet whose base lies along the quadrant AAT, the 
cylindrical spiral re results [15]. Now, the cylindrical spiral 
is also formed as the distortion of the diagonal of a rectangle 
into a space-curve when the rectangle is folded around to form 
a cylinder. With reference to Fig. 12, it follows that the 
tangent ED drawn to the cylindrical spiral at E will intercept 
the plane at its base to produce a line segment BD equal to the 
corresponding arc AB of the plane projection of the spiral. 
Moreover, when one of these curves is projected onto another, 
the tangent to the first will be projected onto the tangent to 
the second (since the generating motions in the plane of 
projection are the same). Thus, in Fig. 11, the tangent to 
the conical spiral at K will project onto the tangent to the 
cylindrical spiral at 8. Where the two curves meet at M, their 
tangents have intercepts in the plane of the plane spiral each 
equal to the arc AAr of the circle. Similarly, the tangent to 
the plane spiral at H projects onto the tangent of the conical 
spiral at K. The latter lies in a plane which intersects the 
base plane in the line BN, perpendicular to the radius BH of the 
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plane spiral [16]. The tangents at A and M will thus meet on 
the line or. From before, the intercept along Br equals the arc 
AdI-. Thus, we obtain the property of the tangent drawn to the 
plane spiral at A: its intercept with ST equals the arc AAT [17]. 

This construction may seem complicated. But it entails 
nothing beyond the capabilities of the Greek geometers and, in 
fact, accords well with the methods favored in many of their 
theorems. As instances of the Greeks' phenomenal intuition, one 
can recall Archytas' use of intersecting solids to duplicate 
the cube, Eudoxus' generation of the hippopede to Simulate 
planetary motion by compounding spherical revolutions, Apollonius' 
extensive inquiry into the sections of cones, and numerous other 
feats of solid geometry. Indeed, Pappus' discussion of the conical 
spiral reveals an ease working with the intersections of solids 
that makes the tangent-construction seem relatively straight- 
forward. To a modern eye, trained in the algebraic tradition of 
analysis, it might seem remarkable that this property of the 
tangent might be discovered through such a spatial image, rather 
than one, say, drawing on the composition of the two motions by 
which the spiral is generated. This latter type of argument has 
been proposed by Heath, for instance, and also serves well to 
make the tangent-property clear [18]. But the Greek mathema- 
ticians seem to have had difficulty with the notion of 
instantaneous velocity, on which it depends, and may thus have 
missed seeing it. 

Accepting a solid construction of the type just given as the 
basis of Archimedes' discovery of the property of the tangent 
to the spiral, the objections to his procedure raised by Pappus 
now become clearer. As in the examination of the area-theorem, 
it is the actual introduction of solids which is inappropriate, 
since these problems are plane. Upon reconsideration, Archimedes 
could devise the neusis-constructions given in Spiral Lines, so 
to eliminate the solids. Apparently, Pappus, in replacing the 
neuses by the intersection of two conic sections, a parabola 
and a hyperbola [IV, 541, did not perceive that he was reintro- 
ducing a solid method into the problem. But he derived his 
classification of geometric problems--into plane, solid and 
linear--from Apollonius [cf. Collectio III, 7; IV, 36; VII, 6621. 
Indeed, Apollonius' extensive work, the two books on Neuses, 
arranged systematically all those instances which could be 
effected by plane methods, that is, constructions involving only 
circles and lines [Heath 1921, II, 189-1921. The confusion in 
Pappus is thus accountable under the assumption that the source 
from which he drew his objections to Archimedes' neuses and his 
own alternative construction via conic sections was composed 
soon after Archimedes' early studies of the spiral, but before 
Apollonius' studies. In the extant Spiral Lines Archimedes 
introduces the constructions by neuses without concern for their 
alternative execution, whether by plane or by solid means [19]. 
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It would thus appear that in his own treatment he was mindful 
of the stricture against the use of actual solids in problems 
of this type, yet unaware of Apollonius' classification of neuses. 

As presented above, the construction of the tangents to the 
spiral via the conical and cylindrical spirals has not yet 
referred to the quadratrix. Since at the initial point the 
motions which begin its generation are the same as those which 
generate the spiral in the plane, it follows that a single line 
is tangent to both curves at that point [ZO]. In this connection, 
it is interesting to examine a remark by Simplicius (drawn from 
Iamblichus) on the use of curved lines to solve the problem of 
squaring the circle: 

Archimedes constructed [a solution] to the problem by 
means of the helicoid (?) curve, and Nicomedes by 
means of the curve called specifically the quadratrix, 
and Apollonius by means of a certain curve which he 
himself names sister of the cochlioid, but this is 
the same as that of Nicomedes, and Carpus by means of 
a certain curve which he calls simply of double 
motion, and many others in a variety of ways. 1211 

Now, Pappus' construction [IV, 331 produces the quadratrix via 
projection from the cylindrical spiral. As Apollonius called 
this spiral the "cochlias," it would thus appear that this 
relation prompted Apollonius to refer to Nicomedes' quadratrix 
as the "sister of the cochlioid" [SC. the cylindrical spiral]. 
The curve would thus have acquired its name "quadratrix" only 
later, with Nicomedes. In fact, this curve has another basic 
property: its use to trisect any rectilinear angle. Its 
invention appears to date back to Eudoxus' colleague Dinostratus 
[=I, and Pappus describes how to use this curve, as well as the 
plane spiral, not only to trisect a given angle, but to solve 
the general problem of angle-division [IV, 45-461. In view of 
this, it seems plausible that Apollonius was the source of 
Pappus' solid construction, designed to relate the tangent 
properties of the plane spiral and the "sister of the cochlioid," 
the latter then being known only as Dinostratus' angle-trisector. 
Under this view, the discovery which led to renaming this curve 
the "quadratrix" --namely that the limiting position (point H in 
Fig. 10) enabled an alternative solution to the quadrature 
problem--was made somewhat later by Nicomedes [23]. 

4. ARCHIMEDES' FORMAL TREATMENT OF THE SPIRALS 

We have argued that Pappus' discussions of spirals can be 
taken as a guide to understanding the development of Archimedes' 
study from its heuristic stage to its formal stage. The book 
Spiral Lines itself contains internal indications of stages in 
its composition. 

One such indicator is Archimedes' use of a special "lemma" 
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in his proofs of convergence. In SL, 21-23 (as in Conoids and 
Spheroids, 19-20) he shows how the difference between circum- 
scribed and inscribed aggregates can be made smaller than a 
preassigned magnitude via the continual bisection of a given 
magnitude until it becomes less than that preassigned. Archimedes 
thus relies upon the principle proved in Elements X, 1, that 
continual bisection of a given finite magnitude will eventually 
produce a remainder less than any preassigned magnitude. But in 
other works, Quadrature of the Parabola (prop. 16), Sphere and 
Cylinder I (props. 2, 6, 33-34, 42-43) and in the opening 
sections of Spiral Lines (props. 1, 4), this lemma is understood 
in a different form. In the prefaces to these works, Archimedes 
states it as an explicit assumption: that, given two unequal 
magnitudes, their difference may by finite multiplication be 
made to exceed any preassigned magnitude of the same type. In 
view of his care in making this assumption explicit, and in view 
of his uneasiness in requiring such an assumption (QP, preface), 
it is odd that he discontinues its use, reverting to the 
Euclidean lemma in the area-theorems of spiral Lines and in the 
later book on Conoids. This is especially the case, since more 
efficient proofs of convergence in SL, 21-23 and CS, 19-20 are 
obtainable by means of Archimedes' version of the lemma. But 
our survey of Archimedes' early studies of the spiral has 
suggested that the theorems on area were begun considerably 
before the writing of Spiral Lines, at a time when the elementary 
methods were a stronger influence on his style and before he had 
discovered the need for such formal improvements as a new axiom 
of convergence. Of course, the Euclidean form is valid. Such 
early proofs as SL, 21 and CS, 19 might retain their original 
form when they were incorporated into the later formal treatises. 
But once his own more exact and efficient form of the axiom of 
convergence had been formulated, Archimedes would surely frame 
the proofs of new theorems around it [24]. That this happened 
with the tangent-theorems in Spiral Lines also agrees with our 
view that the neusis-constructions in the formal treatment were 
a later modification following criticisms of the initial studies 
which employed solids. 

We might find additional confirmation of the claim that the 
tangent-theorems were worked out after the area-theorems (in the 
form preserved by Pappus) from the fact that when Archimedes 
lists the principal results proved in Spiral Lines in the preface 
to that work, he gives first place to SL, 24--the area-theorem 
central to Pappus' treatment [IV, 221. Archimedes next cites 
the major tangent-theorem [SL, 181, the theorem on the areas 
bound by consecutive turns of the spiral [SL, 271, and a theorem 
on the portions of area divided by the spiral in a sector [SL, 
281. Now, these theorems in the preface formed a section of a 
list of theorems sent much earlier to Conon. Consequently, it 
appears from our discussion of Pappus' theorems that this list 
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announced not new discoveries, but new proofs--at least as far as 
SL, 24 was concerned, and perhaps also SL, 18. But the formal 
proofs now extant were considerably later than the early studies 
and profited from Archimedes' notable advances in technique, the 
nature of which we have seen through our comparison of the 
treatments by Pappus and by Archimedes. 

Second, we recall that Pappus 1 treatment of the area-theorem 
opened with two lemmas: (1) on the proportionality between the 
angles and the radii of the spiral and (2) on the arithmetic 
increase of radii drawn at equal angles. Pappus offers no proof 
of (2), treating it as "obvious;" and , in fact, it is an 
immediate corollary to (1). It is thus surprising that Archimedes 
gives complete and independent proofs of both, in reverse order, 
lemma (2) as SL, 12, lemma (1) as SL, 14. The explanation, I 
believe, is to be found in a change in the theory of proportions 
he was using. In the proof of SL, 14 appeal is made to SL, 2 
in which the Euclidean definition of proportion [Elements V, Def. 
S] is understood. But there are indications that in earlier 
studies he employed a different theory, more closely related to 
the anthyphairetic approach developed in the mid-fourth century 
[.=I. In this theory there is characteristically a division 
into commensurable and incommensurable cases. Under it, 
Archimedes' theorem on the proportionality between angles and 
radii in the spiral would first require a proof for commensurable 
angles, equivalent to SL, 12. Then the incommensurable case 
would follow, in which the assumption of non-proportionality 
could be reduced to the commensurable case to obtain a contra- 
diction. In the later revision, Archimedes could draw from the 
Euclidean theory to produce a general theorem on motions: that 
the distances covered in equal times according to two uniform 
motions have a constant ratio [SL, 21. The theorem on the lines 
in the spiral [SL, 141 is merely a special case of this, so that 
it can be accepted as "clear," with a passing reference to "the 
preliminaries outside" for justification. The commensurable 
case of the earlier version could be retained virtually 
unaltered as a separate theorem [SL, 121, being in this form 
useful for the proof of the area-theorem [SL, 243. Thus, the 
ordering of these theorems in Spiral Lines appears to betray a 
stage when the proofs were effected under the older proportion 
theory, subsequently revised under the Euclidean. The theorems 
in Pappus then represent an even earlier pre-formal stage, when 
the proportionality in lemma (1) could be passed over altogether 
as "easy to see." 

5. SUMMARY AND CONCLUSION 

Our argument concerning Archimedes' early study of the spiral 
has been founded on the assumption, confirmed in one instance 
after another, that Pappus possessed sources we no longer have 
and quoted from them verbatim, sometimes at length, even when 
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not saying explicitly that he was doing this. But in the case 
of the theorems on the area of the spiral he does give the 
impression of following a source: he assigns to Conon a role in 
their formulation and pronounces on the “remarkable procedure” 
employed in Archimedes ’ proof. This source was not the extant 
Spiral Lines--and, in fact, Pappus seems not to have had access 
to that work at all. Comparison of the excerpts with related 
sections of the extant work recommends viewing it as an early 
Archimedean effort, more heuristic than formal, yet ingenious 
in its conceptions, particularly in the use of the cone and the 
cylinder to determine the ratio of the areas of the spiral and 
its enclosing circle. 

Although Pappus attributes the initiation of the study of the 
spiral to Conon, it is not likely that Conon had worked out the 
theorem on the area of the spiral, as that is the project of the 
Archimedean proofs. Rather, one may infer that Conon had 
introduced the spiral for another purpose: to effect the division 
of any angle in a given ratio, that is, the general form of the 
problem of the trisection of the angle. This is a use which 
Pappus makes of the spiral [IV, 461 and which is easily deduced 
from an Archimedean theorem [SL, 141 included among the results 
leading up to Pappus’ version of the area-theorem [IV, 211. 
Archimedes I silence on this basic property of the spiral in 
Spiral Lines would be virtually unaccountable, save under the 
view that he could assume this to be a familiar result due to 
another mathematician. Conon’s definition of the spiral, perhaps 
accompanied by a statement of the problem of determining what 
the area bound by the spiral was, might thus have served to 
stimulate Archimedes’ researches. 

In addition to the area-theorem of the plane spiral, solutions 
of the area bound by the spherical and conical spirals were 
possible under the same methods, and Pappus has preserved a 
treatment of the former which leaves the impression of being 
another early Archimedean study [IV, 351. Once the space curves 
have been introduced, a route is opened to the discovery of the 
properties of the tangents to the spiral. An intricate con- 
s truction, linking the plane, conical and cylindrical spirals 
with the quadratrix is given by Pappus [IV, 33-341, and although 
we have argued this as derived from Apollonius, it may repre- 
sent the manner of Archimedes’ early investigation of the 
tangents. The extensive use of solids in the study of plane 
curves was deemed improper, however, and this formal stricture 
appears to have encouraged Archimedes to devise alternative 
neusis-constructions to prove the tangent-properties. In 
addition, it led Apollonius to classify the different types of 
Reuses and to show which neusis-problems were solvable by plane 
methods. 

With few exceptions, the Archimedean proofs are ruthlessly 
formal and precise. From the seventeenth century onward the 
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complaint has frequently been made that Archimedes and other 
ancient geometers deliberately hid their heuristic methods. 
But after Heiberg retrieved and published The Method early in 
this century, this view has been seen as inaccurate. While great 
emphasis was indeed set on formal rigor, geometers like 
Archimedes made free use of heuristic devices, such as the 
introduction of mechanical notions and the manipulation of 
indivisibles, and were eager to communicate them. A review of 
Pappus ’ theorems on the spiral,accepted as an extract from early 
Archimedean studies, shows how a different set of heuristic 
devices--a modification of the technique of indivisibles and the 
introduction of auxiliary solids--formed the basis of Archimedes’ 
discoveries on the spiral. But proofs along such lines could 
not satisfy the formal conditions recognized by the Alexandrian 
geometers of that time. Just as Apollonius allowed the circula- 
tion of a hurriedly written and uncorrected draft of the Conies, 
but subsequently deemed it wise to prepare a revised edition 
[Conies, I, preface], so it would appear that Archimedes’ formal 
treatises, Spiral Lines and others, were reworkings of earlier 
versions known at Alexandria [26]. Through the materials 
preserved by Pappus we can better appreciate the manner and the 
motives under which the heuristic thought leading to discoveries 
about the spirals was transformed into formal demonstrations. 

NOTES 

The following conventions are followed in citing mathematical 
authors : (1) Pappus--by the book and chapter in the Collectio, 
ed. Hultsch; (2) Archimedes--by the proposition in the edition 
of Heiberg; SL = Spiral Lines, SC I = Sphere and Cylinder, Book 
I; CS = Conoids and Spheroids; (3) Euclid--by the book and 
proposition of the Elements, ed. Heiberg; (4) Apollonius, Theon, 
Proclus, Eutocius--by the page of the cited editions. 

1. Ver Eecke cites the following works reconstructed on the 
basis of the account in Pappus’ Book VII: of Apollonius, “Section 
of an Area” [1933, I, lix] , “On Determinate Section” [ibid., lxi] , 
the two books on “Neuses” [lxv] , “On Contacts” [lxix] , and “Plane 
Loci” [ lxxv] ; of Euclid, the “Porisms” [lxxxiii-viii] . Cf. also 
the commentary by Heath [1921 I, 435-437; II, 179-1921. 

2. Hero gave his construction in at least two different 
places : the Mechanica and the Belopoeica; cf. I. Thomas [ 1939 I, 
267111. 

3. An instance of this will be important for our discussion 
later. In V, 30 Pappus provides an alternative proof of the 
theorem on the surface of a segment of the sphere, proved by 
Archimedes as SC I, 42. However, Pappus’ statement of the 
theorem, as well as his proof, differs from Archimedes’ 
statement; in particular, Pappus speaks of the “pole” of the 
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segment, rather than the “vertex.” One might suppose that 
Pappus had produced the alternative proof himself, to complement 
the familiar Archimedean treatment; indeed, Pappus refers 
frequently to an Archimedean work he calls “The Book on the 
Sphere and Cylinder.” However, when Hero cites this same 
theorem, from the book of the same title, he uses the phraseology 
of Pappus, not Archimedes [Metrica I, 391. Since Hero lived 
over two centuries before Pappus, he could certainly not be 
quoting from Pappus. Moreover, Pappus could not derive his far 
more extensive materials from Hero. Rather, both must have been 
drawing from an earlier work, known under the name of Archimedes 
and the title “Sphere and Cylinder,” but markedly different from 
the work we know by that title. Comparison of the extracts 
produced by Pappus in Collectio, Book V with the extant treatise 
reveals the source for the’former to be an early Archimedean 
work, as I argue in detail in a study in progress. Thus, Pappus’ 
theorems on the sphere and cylinder in Book V bear to the extant 
formal work by Archimedes a relation similar to that proposed 
in the present paper for Pappus 1 theorems on the spiral and 
Archimedes ( Spiral Lines. 

It is remarkable that Ver Eecke interprets the “procedure” 
(E~~liohfi) which Pappus praises as used in Archimedes’ proof 
[IV, 21; quoted above] as a reference to Archimedes’ method of 
exhaustion [1933, I, xxviii; cf. 182n]. For the heart of that 
method is the indirect argument justifying the assertion of a 
property for a limiting case, and this is entirely lacking in 
Pappus’ proof. Moreover, ;nlBoXij ought to refer to the overall 
procedure or general conception, literally the “plan of attack.” 
Hultsch interprets the term as referring to the conception 
(ratio) of points moving uniformly [Collectio, 2351. But this 
is essential for the very definition of the curve and would 
hardly have been absent from Conon’s treatment of it. Rather, 
as we shall show, the “procedure” or “conception” was the 
ingenious use of an equation between the ratios of areas and of 
volumes to effect the proof of the theorem on the area bound 
by the spiral [IV, 221. 

5. A construction by neusis, or “inclination” (that is, by 
means of a marked ruler) involves placing a line segment of 
given length between two given curves so that the segment 
inclines toward a given point (i.e., the point lies on the 
extension of the line segment). Such constructions are an 
important device in Archimedes’ proofs on the tangents to the 
spiral in Spiral Lines. On these constructions, see Heath [1897, 
ch. V] and Dijksterhuis [1957, 133-1401. 

6. For discussions of this question, see Heath [1897, ciii- 
v; 1921 II, 68, 556-5611, Dijksterhuis [1957, 1381, and Ver 
Eecke [1933 I, 209n]. 

7. It is interesting that A. Czwalina has proposed as the 
heuristic basis of Archimedes t theorem on the spiral an argument 
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precisely like that just given: namely, the reduction of the 
determination of the area of the spiral to that of the volume 
of the cone [1922, 61-711. Czwalina calls the conception 
"algebraic," apparently because the link between the two problems 
lies in their common solution via the summation of second-powers. 
Unfortunately, the points he raises in support of his view are 
largely unpersuasive. Moreover, he is unaware of the strongest 
point in its favor: that Pappus presents this same proof in 
association with the name of Archimedes. 

8. These are the terms for Archimedes' convergence-proofs 
used by Dijksterhuis [1957, 130-1331. In a study now in 
preparation, I am employing this distinction of "approximation" 
vs. "compression" as one criterion for separating earlier and 
later parts of the Archimedean corpus. 

9. One may note further that "composite ratio" appears in 
the Elements, notably in VI, 23. The terminology for proportion 
used by Pappus [IV, 22, 241 and in the Archimedean theorems at 
issue here ("as A is to B, so c is to 0') is standard in Euclid 
(146 occurrences in Book XII alone). It is often used by 

Archimedes (see Heiberg's index); but he tends to prefer an 
alternative expression: "A has the same ratio to B that C has to 
D. " 

10. As indicated in note 3, I will argue that a substantial 
work on the sphere and cylinder appeared as an earlier version 
of the formal work we know by that title. The placement of 
Plane Equilibria, II, has been debated: Heiberg favoring an 
early placement [Archimedes III, xc; cf. II, 53n]; Arendt 
arguing a much later date [1913, 296-3011. In the study in 
progress, referred to in note 8, I argue an early date for this 
work, more in line with Heiberg's view. 

11. 3 3 Namely, [(n+l) - n ] - [n 
3 - (n-l) 3] = 6n. A proof of 

this identity can be effected easily by means of the geometric 
techniques of Elements II, as extended to the solid case. 

12. Heath [1897, 180-1821 attempts a different heuristic 
argument for the area of the higher turns of the spiral [SL, 271, 
based on a generalization of the principal area-theorem [SL, 241. 
However, Archimedes nowhere states the theorem in the form 
employed by Heath (contrast SL, 26). 

13. Besides the text in Hultsch's edition and the translation 
by Ver Eecke, see also the text with translation by I. Thomas 
[1941, II, SSO-5871 and Heath's discussion [1921, II, 382-3851. 

14. The diagram in Fig. 11 combines the two diagrams of 
Pappus: that in IV, 34 where BHA is the plane spiral and K the 
tracer of the conical spiral; and that in IV, 33 where 8 traces 
the cylindrical spiral. In both diagrams, the point E traces 
the quadratrix and I a spiral whose plane projection is the 
quadratrix. It is noteworthy that the lettering in these two 
diagrams is consistent. 

15. Apollonius devoted a work to the cylindrical spiral 
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(“cochlias”) as we learn from Pappus [VIII, 281 and Proclus 
[p. 1051; cf. Heath [1921 I, 231-232; II, 1931 and Heiberg 
[Apollonius II, 1171. 

16. This follows since the tangent to the conical spiral 
at K lies in the plane which contains BK and is perpendicular to 
the plane of BHK; as the plane of the tangent intersects the 
plane of the spiral BHA in the line BN, the tangent must meet 
the plane of the spiral in the same line. 

17. The property of the tangent drawn to any point of the 
plane spiral follows in the same fashion. Let there be drawn 
the cylindrical spiral which meets the conical spiral at K and 
has radius BH and its initial point on the line Bl- in the plane 
Of BHA. As seen above, the line from H to the point of inter- 
ception of the tangent to the cylindrical spiral with the plane 
of BHA will equal the arc of the circle of radius BH and angle 
HEV. The tangent drawn to the conical spiral at K will cut off 
from BN a segment of the same length. Hence, the tangent to the 
plane spiral at H, being the plane projection of the tangent to 
the conical spiral at K, will intercept the same line BN, 
cutting off the same segment--equal to the arc of angle HBf in 
the circle of radius BH. This is the relation stated in the 
Archimedean theorems SL, 18- 20. 

18. According to Heath [1921 II, 557-5581, Archimedes “must 
have . . , divined the result” in such a manner. To be sure, 
the Greeks knew of the mechanical principle of the parallelogram 
of motions (cf. the Aristotelian Mechanica 2, 848blO). But, 
apparently, instantaneous velocity was a notion which eluded 
them (cf. the arguments on the impossibility of motion in an 
instant in Aristotle’s Physics VI, l-2). The heuristic argument 
I have proposed, by contrast, avoids instantaneous velocity by 
referring the tangents of the plane and conical spirals to that 
of the cylindrical spiral, the latter being “obvious,” at least 
in a heuristic context. 

19. Neuses are employed in SL, 5-9, to be applied in SL, 
18-20. See Heath [1897, chapter V] and Dijksterhuis [ 1957, 133- 
1401. 

20. In Fig. 10 the tangents drawn at B to the spiral BKA 
and the quadratrix BZH are one and the same line. Its intercept 
with the line AA extended equals the arc BEA. 

21. Simplicus, In Aristotelis Physica [ed. J. L. Heiberg I, 
601; text reproduced by I. Thomas [1939 I, 3341. (Translation 
is mine.) The “cochlioid” (or “cochlias”) is the cylindrical 
spiral of Apollonius, while its “sister” is the quadratrix of 
Nicomedes. I take Carpus’ curve to be the cylindrical spiral 
also. According to Heath [1921 I, 2321, Tannery claimed, but 
without evidence, that it was the cycloid. My view draws 
support from a question raised by Proclus [In Euclidem, 105, 1121: 
is the cylindrical spiral a “simple” or a “mixed” curve? 
Apollonius had shown that this spiral, like the line and.the 
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circle, is "homoeomeric*" that is, any part of it can be super- 
imposed precisely over &y other part. Some had therefore 
classed the spiral as a third "simple" curve. But Proclus 
(apparently here following Geminus) argues that the two 
classifications are different; since the spiral is generated 
through two dissimilar simple motions, one linear, the other 
circular, the curve must be called "mixed." I infer that Carpus, 
in light of Apollonius' study, called the cylindrical spiral 
Fhe_"simple curve of (double motion." (This may require altering 
WTXWS of the text to CXIT~~V.) As Pappus draws from Carpus 
biographical information on Archimedes [VIII, 1026]--namely, 
that he wrote only one mechanical book, the Sphaeropoeia ("On 
Sphere-Making"), and as both Pappus and Proclus appear to report 
through the mediation of Geminus (first century B.C.), any 
dating of Carpus between the times of Apollonius and Geminus is 
consistent with my remarks. 

22. Pappus names Dinostratus and Nicomedes as having 
employed the quadratrix [IV, 301; in this same connection, Proclus 
names Nicomedes and a mathematician Hippias [pp. 272, 3561. The 
standard view that this is Hippias of Elis, the Sophist of 
Socrates' generation [cf. Heath 1921, I, 225-2261 is incredible. 
It entirely overlooks the technical level of geometry ca. 400 B.C. 
and the significant demands required for the investigation of 
the quadratrix. Details cannot be provided here, but a far 
more probable view is to place the Hippias of the quadratrix 
close to the time of Nicomedes, that is, late in the third 
century B.C. 

23. This passage is interpreted in an entirely different 
way by Heath Cl921 I, 225, 231-2321. He wishes to take 
Apollonius t 'Isister of the cochlioid" itself to be the "cochlias" 
(cylindrical spiral); moreover, the curve of Nicomedes to which 
it is likened is not, he believes, the quadratrix, but rather 
the "conchoid," another curve studied by Nicomedes. This 
requires some questionable philological moves and is ultimately 
senseless, since, as Heath admits, the conchoid of Nicomedes 
was not used for squaring the circle and the "sisterhood" of the 
"conchoid" and the "cochlias" would thus rest on nothing more 
than the similarity of their names. Moreover, Heath does not 
relate Pappus' constructions of these curves [IV, 33-341 to this 
passage, even in his own discussion of Pappus [op. cit., II, 
380-3821. He thus missed the way to a far more straightforward 
interpretation of Simplicius' passage, as given here. 

24. Archimedes' lemma and its relation to the Euclidean 
lemma are discussed in detail in the paper in progress [8]. 

25. On the anthyphairetic proportion theory and its 
connection with fourth-century studies of incommensurable 
magnitudes, see Knorr [1975, ch. VIII/II-III and Appendix B]. 
The technical features of the older theory can be retrieved from 
mathematical arguments in Archimedes and contemporary authors 
(paper in progress). 
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26. The mathematicians were not alone at Alexandria in 
engaging in heated debates on formal style. In a famous episode, 
the followers of the poet Callimachus ridiculed Apollonius of 
Rhodes for violating the canons of syle in his verse epic, the 
Argonautica. Apollonius eventually regained his good reputation 
after publishing a suitably revised second edition of the work 
[cf. Oxford Classical Dictionary 1970, "Apollonius of Rhodes"]. 
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