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In the third propos i t ion  of the Dimensio Circuti, ARCHIMEDES established 3-~ 
as an upper  bound ,  3~7~ ° as a lower b o u n d  for the ra t io  of the perimeter  to the 
diameter  of the circle. EUTOCIUS remarks  that  APOLLONIUS derived bounds  even 
more  accurate. 1 I shall argue in the present  study that ARCHIMEDES himself  
in t roduced  such refinements,  yielding bounds  at least twenty times more  ac- 
curate than those in the Dimensio Circuli. A close examina t ion  of these com- 
puta t ions  will affirm that the classical Greek mathematics ,  domina ted  by an 
interest in theoretical geometry, yet included expertise in practical arithmetic.  

HERO reports as follows of ARCHIMEDES' measu remen t  of the circle (Metrica I, 
25): 

Archimedes proves in his work on plinthides and  cylinders that  of every 
circle the perimeter has to the diameter  a greater rat io than 211875:67441, 
but  a lesser rat io than  197888:62351. But since these numbers  are not  well- 
suited for practical measurements ,  they are brought  down to very small  
numbers ,  such as 22: 7. 2 

As is evident from Plate I, the manuscr ip t  forms of the numera ls  are clear. 
They reappear  in the lower marg in  of the same folio. Yet the approximat ions  to rc 
derived from them are d i s a p p o i n t i n g )  The  fraction alleged to be a lower bound ,  
211875/67441 (=3.14163491.. .) ,  is in fact an upper bound.  Moreover,  the upper  

1 A critical Greek text of the Dimensio Circuti has been edited by J. L. HEIBERG in ARCHIMEDES, 
Opera, I, pp. 231-243. English translations and commentary appear in the editions by T.L. HEATh 
and E.J. DI/KSTERHUIS. For EUTOCIUS' commentary, see J.L. HEIBERG, Archimedis Opera, III, pp. 227- 
61 ; esp. p. 258 for his remark on AVOLLONIUS. 

2 I have translated from the Greek text edited by H. SCH6~E, pp. 64-66; cf also E.M. BRUINS, 
Codex, II, p. 105. 

The Greeks never adopted a special symbol to denote the constant we represent as z. In ARCHI- 
MEDES, HERO, PTOLEMY and others it is discussed always as ~" the ratio of the perimeter to the diameter 
of the circle." tt is applied always as a ratio, never as a number (in the modern sense of "~ real number"). 
With these reservations explicit, there should be no objection to our use of the symbol n in the present 
discussion. 
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Plate I. From Codex Constantinopolitanus, fi 81r (reprinted by permission of E. M. BRUINS). In lines 
1-7 HERO paraphrases ARCHIMEDES' Dimensio Circuli, prop. 2: that eleven times the square of the dia- 
meter equals fourteen times the area of the circle; he illustrates this rule in the case of the circle of 
diameter 10. In lines 7-13 HERO reports the refined ARCHIMEDEAN limits on the ratio of the circumference 
and the diameter; this ratio is said to be greater than 211875 (~:#,awoe) to 67441 (~#,¢v/~) (line 10), less 
than 197888 ('°#,~or~/) to 62351 (~#,flzw) (line 11). [One may note how the manuscript numerals differ 
in form from the modern typed convention.] HERO notes (lines 11-13) that these values are in practice 
reduced to small numbers, such as 22: 7. In lines 14-17 he computes the perimeter of the circle of dia- 
meter 14 by means of the less accurate constant, 22/7. In lines 18 and 19 (at the left) the refined ratios 
are repeated as a marginal note; but the words " greater ratio" and "lesser ratio" prefacing them reverse 
the order of magnitude. At the far right of these lines are the words "perimeter 22" and "diameter 7", 

referring to the less accurate reduced value. 

b o u n d  197888 /62351  ( = 3 . 1 7 3 7 7 . . . )  is r a t h e r  p o o r e r  a n  a p p r o x i m a t i o n  t h a n  
ARCI-UM~DES' e x t a n t  v a l u e  ~ ( = 3 . 1 4 2 8 . . . ) .  4 

W h a t  r i g h t  d id  we h a v e  t o  e x p e c t  b e t t e r ?  I n  t h e  Dimensio Circuli ARCHIMEDES 

c o m p u t e s  b y  m e a n s  of  t h e  c i r c u m s c r i b e d  p o l y g o n  of  96 s ides  t h a t  14688/4673½ > 7z; 

4 These may be compared with the approximation 3.141592654, correct to ten decimal places. 
The decimal equivalents are provided to facilitate comparisons. As ARCHIMEDES and HERO employed 
only rational (as opposed to radix) notations for fractional parts, we will later abandon the decimal 
notation and examine approximations strictly in terms of the ratios of integers. In Table 3 the decimal 
equivalents of the values discussed are listed for reference. (See p. 130.) 
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it follows afortiori that N is an upper bound. The fractional error entailed by the 
former ratio is less than 1 part in 2546, or 1.84 in 4673½. Similarly, ARCI4I~DES 
computes from the inscribed 96-gon that 6336/2017} is a lower bound; the 
fractional error is less than 1 part in 4599, or 0.44 in 2017¼. This indicates that 
the magnitude of the computed denominator is an index of the accuracy of the 
derived approximation. By analogy, we should expect that the ratios cited by 
HERO are not significantly more or less accurate than 1 part in 67441 and 62351, 
respectively, That the cited upper bound differs from n by more than 638 parts 
in 62351 thus points to a corruption in the text. 

In the second place, the text-figures are inconsistent with HERO'S remark that 
the large numbers "are brought down to very small numbers, such as 22:7". 
Under this procedure, a given ratio is replaced by one very nearly equal to it, 
but expressed in smaller numbers. 5 Such a step is employed by ARCHI~tEDES in 
the Dimensio Circuli. The computed upper bound 14688/4672 is rounded off 
upward to 3~; the computed lower bound 6336/2017¼ is rounded off downward 
to 3~z °. By analogy with this procedure, the ratio 197888/62351, which lies between 

and ~ ,  ought to be rounded off to ~ ,  an upper bound. Since the text treats 
211875/67441 as a lower bound, this ought to be rounded off downward to ~ .  
In neither case will the derived reduced value be 3+7, despite the fact that HERO 
explicitly cites this value. 

Given the modest accuracy entailed by the text-ratios, their terms are dispro- 
portionately large. The ratios, as shown above, only justify the bounding inequali- 
ties ~ < n < ~ .  But in the Dimensio Circuli ARChiMEDES obtains the equivalent 
accuracy by means of the inscribed and circumscribed 24-gons, leading to the 

24 x 240 24 x 153 <36. Thus, were the text-figures reported inequalities 8 < ~ < n < 1162~ 

by HERO correct, the upper bound denominator of 62351 would be more than 53 
times larger than necessary, while the lower bound denominator of 67441 would 
be more than 36 times larger than needed. This is a clear indication that any 
computation leading to the values reported by HERO must have differed radically 
from that of the Dimensio Circuli. 

Third, the text is mistaken in claiming 211875/67441 to be a lower bound for ~r. 
Thus, if we accept the text as given, we must also accept a plain error in ARCHI~tEDES' 
organization of the computation: an inadequate regard for the direction of round- 
ing off at each stage in the process of computing. In the general way of deriving 
approximations, rounding off is effected to nearest whole-values, either upward 
or downward, and the final estimate may benefit from a favorable cancellation of 
errors. But in the computations given by ARCnIMEDES and those implied by 
HERO'S report, the objective is to establish values as upper and lower bounds. This 
is a stronger result than mere approximation and necessitates control of the 
direction as well as the amount of all errors incurred in rounding off. That so able 

5 This procedure is to be effected by means  of the EUCLIDEAN division algorithm, equivalent to 
the expansion and t runcat ion of the continued fraction for the given ratio. EUCLID uses this algorithm 
for determining the greatest common  measure  of given integers (Elements, VII, 1-3). One may thus 
see the relation between the " 'reduction" cited by HERO and the more familiar "reduction to lowest 
terms." 
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a geometer and arithmetician as ARCHIMEDES should have been guilty of over- 
sight on such a fundamental point is a charge that I, for one, care not to level. 

These considerations lead me to conclude that the figures given by HERO are 
corruptions of those stemming from a more refined ARCHIMEDEAN computation. 
The project of discovering suitable emendations has already attracted scholarly 
comment. P.TANNERY has changed the upper bound into 195882/62351, the lower 
bound into 211872/67441. E. HOPeE has replaced the upper bound numerator by 
195883, the lower bound numerator by 211871. 6 Certain features of their method 
are worthy of note. 

It would appear that TANNERY obtained his values via the computations 
67441 x re( =211872.15 ...) and 62351 x ~ (=  195881.44...), using an approximation 
to ~ accurate to 9 or more places. 7 His method is arbitrary, jn that he does not 
relate these particular figures to the computational procedure of the Dimensio 
Circuli. TANNERY notes that the emended ratios, when expanded as continued 
fractions and truncated, come into agreement with the value 355/113 used by 
ADRIAEN METIUS in 1625. 8 Except for their common implicit application of the 
EUCLIDEAN division, the relevance of METIUS for a computation by ARCHIMEDES 
is not clear. But other considerations make TANNERY'S view untenable. As we 
have said, the expected fractional error in the ratios given by HERO is on the 
order of 1 part in 60,000. TANNERY'S bounds are much closer than this: the upper 
bound differs from zc by less than 1 part in 352,038 and the lower bound by less 
than I in 1,410,683. Thus, a consequence of his view is that HERO'S values are not 
"rough" figures, as we have until now assumed them to be, but are the result of a 

6 HEIBERG proposes the emendations 211875/67444 and 195_888/62351 (Archimedis Opera, II, 
p. 542; cf T.L. HEATH, Greek Mathematics, I, p. 233). These are defended by textual, but not mathe- 
matical, considerations. 

7 TANNERY, M~moires scient~iques, III, pp. 149, 198-200. TANNERY does not actually specify the 
way he produced the emended numerators. 

s METIUS ascribes to his father (ADRIAEN ANTHONISZOON) a pamphlet (libellus) in which he 
proved via '" Archimedean demonstrations" that n < 31@0 and n > 3~0~; as the value 3~-~3, or ~-~, lies 
between these, he says this was thus adopted as the approximation for m METIUS remarks further that 
this approximation errs in excess by less than 10 -6, as he knows from a comparison with the value 
computed by LUDOLVH VAN CEULEN [Practiea Geometriae, 1625, pp. 88f, 178t]. This LUDOLPHINE 
value must have been the 20-place approximation published in 1596; his 32-place value was first 
published in 1615, after the first edition of M~TIUS" Geometria (1611). In 1584 SYMON VA~ DER EVCr,.E 
published an alleged quadrature of the circle; at the instigation of ADRIAEN ANTHONISZOON, LUDOLPn 
refuted it, computing the bounds 3.141557587 and 3.141662746 via the ARCHI~DEAN method of 
inscribed and circumscribed polygons ["Proefs teen ' ,  1586; cf B. DE HAAN, pp. 106-113, 121-124]. 

31o6 and 31-t~0 by It would thus appear that ADRIAEN deduced from LUDOLPH'S result the bounds 
means of the EUCLIDEAN division or an equivalent, and then proposed the intermediate value 3~3 
as an appropriate approximation for practice. According to the division algorithm, this is the fraction 
3 ~-± ~ intermediate between the proven bounds, i 1 and 3 t 3 +v+2-~ +~+T~, respectively. ADRIAEN'S ~7+16~ 

procedure does not establish how much closer a bound 3 ~-i~ 3 is, or whether it errs by excess or by defect. 
That it is an upper bound, differing by less than 10-6, may be deduced from LUDOLPH'S later computa- 
tions; for instance, the inequality 7r < 3.14159281, established by the circumscribed 10240-gon, suffices 
[LuDoLPrt, De Circulo, pp. 28t]. It is of interest to note that slightly earlier (1573) the same value a~_~ 
was rigorously established as an upper bound for 7r by VALeNT1N OTHO, by means of a computation 
accurate to nine decimal places [TRoPFr,.E, Geschichte, 1923, IV, pp. 217f; CURTZE, 1895, p. 13]. The 
same value was employed even earlier by the Chinese (c. fifth century) [MIKA~a, 1909/10, pp. 195I]. 
The coincidence of these results indicates their common application both of the polygonal method 
and of the division algorithm as a technique for reduction. 
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reduction of rough values in still larger terms. If we follow TANNERY'S suggestion 
and expand the continued fraction of 195882/62351, then truncate it, we find that 
2862/911 is obtained as a convergent. This yields an approximation to n with 
fractional error less than 1 part in 314,788. But if the former ratio was itself the 
result of such a truncation process, it is a puzzle why the process was carried 
through to the equivalent of six quotients of the continued fraction, when virtually 
the same order of accuracy could be obtained by truncating after four. There is, 
finally, an irony in TANNERY'S introduction of the MExIVS-Value. Although 
195882/62351 is too accurate to be a " rough"  figure in the context of the passage, 
it is not accurate enough to establish 355/113 as an upper bound for n. For the 
fractional error of this last ratio is less than 1 part in 11,810,498. These remarks 
show that TANNERY'S casual comments on this passage entail complications he 
was but slightly aware of. 9 

HOPPE avoids such difficulties by developing his emendation from an estimate 
of the accuracy of the ratios. He argues that ARCHIMEDES employed the circum- 
scribed and inscribed 384-gons in his computation, from which values accurate 
to four decimal places would be attainable.l° On working out this computation, 
he found that ARCHIMEDES' initial values for 1/~, as given in the Dimensio Circuli, 
were not quite accurate enough for this process; but when he assumed somewhat 
better starting values, he found he could obtain suitably accurate bounds for n: 
namely, 3.141575 and 3.141617. He then supposed that HERO'S report of the de- 
nominators was correct and thus deduced as numerators 211871 and 195883, 
respectively. We may raise a number of criticisms against HOPPE'S argument. 
First, it suffers from a strong element of arbitrariness. Why, for instance, should 
we assume that the reported denominators are correct? If we adopt the numerators 
instead, or allow for corruptions in both numerators and denominators, we 
might discover many more values from which to choose. Second, the emendations 
HOPPE requires are not well attested in the extant mathematical manuscripts. 
Instances of the corruption of ~( = 1) into e( = 5), necessary to change 211871 into 
211875, are found. But I know of no instances of the corruption of e into ( ( =  7) 
or of y ( = 3) into 1I ( = 8), required to change 195883 into 197888. HOPPE'S judgment 
on this matter is guided by the numeral forms conventional in modem printed 
editions of the Greek texts. But as we shall discuss further below, the manner of 
writing numerals actually employed in the manuscripts could be quite different. 
Third, HOPPE'S grounds for introducing the 384-gons are rather dubious. He 

9 195882/62351 = 3  + - } . ~ .  ~ .6o,~' 2862/911 =3+~-,÷ ~-~6.½- Acceptinz~ this consequence, that 
the fractions cited by HERO might themselves have been " reduced" from fractions in even larger terms, 
I inquired whether a fraction resembling one of the HERONIAN fractions might be found to lie between 

and 355/113, thus to verify the latter as an upper bound for ~. A computer  program was devised to 
determine all such intermediate fractions, for integral denominator  ranging from 60,000 to 75,000. 
This yielded 207 values, of which only about  a dozen bore any near resemblance to HERO'S figures, in 
most  cases requiring three or more mistranscriptions plus changes in the ordering of digits. The value 
of greatest interest was 211891/67447: for this would demand only three alterations of the text-value 
21t875/67441, a number  within the range of scribal error. But on closer inspection, the value proves 
to be too good, entailing a fractional error of less than 1 part in 785,000,000. We should then be estab- 
lishing a bound over 70 times more  accurate than necessary to verify 355/113 as an upper bound. 
I thus conclude that the HERONIAN figures do not  point to a calculation which successfully established 
355/113 as an upper bound. But we shall take up an alternative approach to this problem below. 

10 E. HoPvE, "Zweite Methode des Archimedes",  pp. 104-7. 
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refers to the comment of a late Indian mathematician GANECA to the effect that 
ARYABrIATA (b. 476 A.D.) obtained the approximations 3927/1250 and 754/240 
for r~ via inscribed and circumscribed 384-gons. 11 As both values (equivalent 
respectively to 3.1416 and 3.14167) are upper bounds, the relevance of inscribed 

polygons is not clear. But more important, the suggestion of a direct influence of 
ARCHIMEDES o r  HERO o n  ARYABHATA would require very careful justification. 
As we shall argue, the existence of any such influence has no bearing on our 
understanding of the HERo-passage; for the key to the problem lies in ARCHIMEDES' 
Dimensio  Circuli, not in the later Indian arithmetic. 

Disdainful of such efforts at emendation, E.M.BRuINS has opted to accept 
HERO'S text exactly as given. 12 As his approach ignores the incongruity of the 
text-ratios, our earlier arguments already undermine his attempt. For instance, 
BRUINS' premisses that "great numbers do not necessarily indicate high accuracy" 
and that "the context gives the strong impression that the big numbers were used 
only to derive a first rough approximation, as 2.2:7" are, as we have shown, 
untenable and inconsistent. But as BRUINS presumes to supply the details of a 
computation leading to the manuscript figures, a few additional remarks are 
justified. 

BRUINS' ability to construct a complete computation might unduly impress 
the unwary. 13 But there are at least two major technical difficulties entailed by it. 
First, as the computation produces the text values from the inscribed and circum- 
scribed 16-gons, he must begin with bounding values for F/2. Those BRUINS 
adopts correspond to the inequalities 1093/773 < ] / 2 <  1104/780. These may be 
obtained, as BRUINS shows, via a "pythmen" technique facilitated by adroit use 
of the fact that square numbers are formed by the successive summation of 
consecutive odds. Here, in effect, one begins with the estimate 11/8 <] /~<10/7;  
multiplying the numerators by 10, one seeks the best denominators within that 
rank, so determining 110/78<]/~<110/77; then the numerators are corrected 
to yield 110/78 <] /~  < 109/77; continuing to the next decimal order, similar adjust- 
ments at last yield 1103/780<]/~<1104/780 and 1093/773<V~<1094/773. 
Now, I will admit that the Greeks were capable of developing such a method, in 
principle. ~4 But would ARCHIMEDES have troubled himself to obtain bounds to 
the root in this way? Greek arithmeticians, at least from the late fifth century B.C., 
were in possession of the much more efficient method, called the "side and 
diameter" numbers, is Here, the sequence of fractions 

1 3 7 17 41 99 239 a a + 2 b  

1 ' 2 ' 5 ' 1 2 ' 2 9 ' 7 0 ' 1 6 9  . . . . .  b'  a + b  ' " "  
11 For details on the Indian mathematics, HoT'rE follows CANTOR [Geschichte, I, pp. 646, 654]. 
12 Codex Constantinopolitanus, III, pp. 245ff. 
13 BRUINS' computation appeared in somewhat more detail in his Dutch articles of 1943 and 1946. 

I have seen only excerpts from them, but most of the argument has been communicated to me in private 
correspondence by the author. 

t4 BRUINS asserts that this method is to be found in the Babylonian texts and the Greek papyri. 
He gives no specific references. But I find in N~UGEBAUER'S studies of Babylonian mathematics no 
evidence of such a procedure. Moreover, the Greek methods of root-extract ion-namely,  Tr~ON 
of ALEXANDRIA'S long-method, HERO'S approximation rule, and the PYTHAGOREAN "" side and diameter" 
n u m b e r s -  have no relation to the method proposed by BRUINS. Explications of the Greek methods are 
given by HEATH, op. cir., I, pp. 60-3, II, pp. 323-6. 

15 References to the texts on "side and diameter" numbers in THEON OF SMYRNA, IAMBLICHUS 
and PROCLUS are given by HEATH, Op. cit., I, pp. 91-93. 
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is generated, in which the values alternate as upper and lower bounds for V#2.16 
The inequalities 

1093 239 , -  99 1104 
773 <1--~<1/2<7-6< 780 

show that the "side and diameter" rule readily provides better estimates in lower 
terms than does the procedure elaborated by BRUINS. Furthermore, ARCHIMEDES' 
values for ]/~ in the Dimensio Circuli (1351/780 > V~ > 265/153), like the fractions 
in the "side and diameter" sequence, coincide with the convergents of the respective 
continued fraction developments. 17 This further weakens the view that he should 
have employed the inefficient procedure suggested by BRt;INS. 

Second, BRUINS must obtain 211875/67441 (an upper bound for re) by a 
computation involving inscribed polygons. As we have seen, this is possible only 
if the direction of rounding off is handled improperly. By contrast, rounding off 
in the Dimensio Circuli is effected in the correct sense without exception. BRUINS 
evades this objection by persistently emphasizing the crudeness of the computation 
underlying the values given by HERO; he treats these as the work of a hypothetical 
"young" ARCHIMEDES, later to be supplanted by the mature author of the Dimensio 
Circuli. But this will hardly do. There is no indication that the Dimensio Circuli 
was written late in the sequence of ARCHIMEDEAN treatises, is Those works 
generally accepted as early (such as De Sphaera et Cylindro I and Quadratura 
Parabolae) already reveal on ARCHIMEDES' part a complete grasp of rigorous and 
formal geometrical argument. 19 Further, would not the mature ARCHIMEDES 
have striven to suppress such an embarrassingly flawed youthful effort? Yet if 
HERO was able to quote from the tract "On Plinthides and Cylinders", it must have 
had to remain in circulation under ARCHIMEDES'  name for at least three centuries 
after his death. Perhaps, then, the "Plinthides" was a later forgery - and perhaps 
HERO, although a competent mathematician and editor, was easily duped by it. 
But speculation on such questions is completely otiose. They disappear as soon 
as we acknowledge that the figures given by HERO are corrupt and need to be 
emended. 

Appropriate emendation is not difficult. First, the given fraction 211875/67441 
is in fact quite a good approximation to n. It differs by just more than 9 part 
in 67441, a fractional error precisely of the magnitude we should have expected. 
It is also the best approximation to 7r found in any extant Greek mathematical 
work. Unfortunately, HERO seems to treat it as a lower bound although it exceeds re. 
I deem it rash to discard such a value, to seek a different value, or to belittle the 
computation which produced it. The simplest resolution of this difficulty is to 
accept the figure as given, but as an upper bound, and to suggest that in the course 

16 The continued fraction for 1/2 is 1 +½+½+½ .... .  all subsequent  quotients being 2 ad infinitum. 
The convergent fractions, i.e., those obtained via successive truncat ion of the continued fraction, are 
precisely those formed via the " side and diameter °' rule. 

a 7 For further details, see the Appendix. 
x8 I intend to criticize in a separate note the claim of such editors as HEIBERG, HEATH and 

DIJKSTERHUIS, that the Dimensio Circuli was a relatively late ARCHIMEDEAN tract. 
19 B.L. VAN DER WAERDEN, for instance, describes the arguments  of  the Quadratura Parabolae 

as "'elegant" [Science Awakening, p. 218]. HEATH judges that the "treatises are, without exception, 
monumen t s  of mathematical  exposi t ion" lop. cir., II, p. 20; italics are mine]. 
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of  HERO'S writing of the Metr ica  or its subsequent  t ranscript ions the two bound ing  
ratios came to be interchanged. 

This leaves the fraction 197888/62351 as a cor rupt ion  of the original lower 
bound_ As we have seen, mos t  commenta to rs  have chosen to retain HERO'S 
denomina to r  and alter the numerator .  But the numera to r  has an overriding claim 
to be the correct  figure: it factors into 28 x 773 - sugges t i ve  of  its origin as the value 
of  the perimeter of  a regular polygon.  What  of  the denomina to r?  The value 
62989 yields an upper bound ;  62990 yields a lower bound,  as do all larger integral 
values. The fractional error  entailed by the ratio 197888/62991 is just  less than 1.3 
parts in 62991; moreover,  the replacement  of  62991 by 62351 requires us to account  
for the corrupt ion  of onty two digits. 

Fol lowing HERO'S suggestion, we may "br ing  d o w n "  the terms of  these frac- 
t i o n s -  that  is, by means of the EUCLIDEAN division. The  successive quotients of  
197888/62991 are 3, 7, 15, 4, 1, . . . ,  which when t runcated after three terms yield 
3 3 3 / 1 0 6 ( = 3 + - ~ + ~ )  as a fort iori  a lower bound  for re. Similarly, the quotients 
derived for 211875/67441 are 3, 7, 16, 1, 1, 4, ... and these, when t runcated  after 
four terms yield 377/120 as an upper bound_ To  summarize,  we take HERO'S 
passage to refer to the following " r o u g h "  inequalities: 197888/62991<rc< 

84 

/ g  9gg 4 ~ 6' 

~13 7 ~ 

]7  352 

J7 592 
tg  gS~ 4:7 s 

Ope ra t i on  7392 x 113 _-1/84=9,956 4_ 
7 7 

Plate II. From Codex Constantinopolitanus, f. 96r (reprinted by permission of E.M.BP.uINs). This 
passage contains part of a computation of the volume of a torus. The cylinder of diameter 28 and height 
12 has volume 7392 (,(zqfl) (line 2); the circle of diameter 12 has area 113~(p~y(') (lines 3-4). HERO next 
forms ½28 x ½12 = 84; he then finds the volume of the torus as 7392 x 113-~/84 (lines 5-8). But the result 
is incorrectly reported as 999~ (,0~'q~6"¢') in line 8. The same computation is effected in a different 
order in lines 9-16. Here, the end-result is correctly given as 995~ (,0~v¢cS'(') at the end of line 16; 
but the intermediate term is mistranscribed as 7992 (,('~qfl) earlier in the same line. This passage thus 
illustrates that in the orthography employed in the Codex or its prototypes, the characters for 900 and 
300 (% z in modern conventional type-face) can be confused, as can the characters for 90 and 50 (q, v). 
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211875/67441. In ARCmlV~DES' treatment, these were rounded off without sub- 
stantial loss of accuracy, so as to yield the inequalities 333/106< n < 377/120. 20 

We now defend these emendations by considering two issues: (1) Do they find 
support in corruptions which are actually detectable in the manuscript of the 
Metrica ? (2) Can an ARCHIMEDEAN computation be framed which produces the 
emended values ? 

In answer to (1) we must decide whether 62991 could be miscopied as 62351; 
that is, whether the figure q'(=900) may have been corrupted to z(= 300) and the 
figure 0(=90) corrupted into N(=50). In a later section of the Metrica (Codex 
Constantinopolitanus, fol. 96 r) we encounter a computation arising from the mea- 
surement of the volume of the torus. A portion of the page is reproduced in Plate II. 
Here, the operation 7392 x 11~/84= 995N is set up (lines 1-9); the same operation 
is then set up again in a different order (lines 9-16). The numeral 7392 is written 
correctly in lines 2 and 6; but it is miscopied as 7_992 in line 16. Thus, the numerals 
for 900 and 300 have been confused. The result of computation is given correctly 
as 995~ in line 16; but it is given incorrectly as 99_9~ in line 8. Here, the numerals 
for 90 and 50 (as well as those for 6 and 7) have been confused. The close resemblance 
of the forms ~" and T make readily understandable how they might be interchanged; 
in fact, their confusion is a common error in mathematical manuscripts. 21 The 
confusion of q and v seems less easy to account for. In slightly earlier orthographies 
they are figured respectively as ~/and H- tha t  is, one is the inverse image of the 
other, so that the motions of writing them are closely related. 22 At any rate, the 
manuscript of the Metrica confirms that the alterations which might change 62991 
into 62351 are quite within the range of admissible scribal error. 

What of the reversal of the order of the ratios? Anyone who has worked with 
inequalities in practice will admit how easily such reversals can occur. But we 
have in the Codex itself an indication of how the reversal might have been made in 
the present case In the lower margin of the same page (fol. 81r) containing the 
H~ao-passage, the following scholium is attached: "greater ratio 211875 67441" 

20 The continued fraction expansion of ~z is 3 +-: --~ ! ~_~ ! ! Successive truncation gives 7+15+1+292+14-1+-.. '  
rise to the following sequence of fractional approximations, alternating lower and upper bounds: 
3 22 333 ~ 103993 J_O43d-8 2.O83~-I I, 7, 106, 113, 33102, 33215 , 66317, " " "  Additional materials on the continued fraction for n are given 
by PZRaON (1913, pp. 61-63) and JOLLWt~ (1910, p. 31). 

2~ In his critical edition of EuvocIus'  commentary on the Dimensio Circuli (Archimedis Opera, 
III, pp. 234-256), HmBEaG indicates 90 instances of the mistranscription of one numeral for another; 
six of these involve the confusion between tau (300) and sampi (900). 

2: On these alternative forms of nu (50) and koppa (90) in the papyri, see the reproduction from 
Michigan Papyrus No. 621 by L. C. KAe, VINSKI, 1923; all 27 numerals appear in this plate. This unusual 
mistranscription suggests to me a possible link between the ARCmMEDES-passage (Metrica I, 25) and 
the torus-passage (Metrica II, 13). The latter is derived by HrRO from DIONYSODORUS and is intended to 
facilitate the measurement of architectural columns. The former is taken by HERO from a work on 
"'plinthides and cylinders"; here the word plinthide derives from plinthos, the term for the base of a 
column, while one might well associate the shaft of a column with the cylinder. Now, EUTOCIUS knew 
of  DIONYSODORUS as a c o m m e n t a t o r  on  ARCHIMEDES; for he cites DIONYSODORUS" construction filling 
a gap in the received argument of De Sphaera et Cylindro II, 4 ['cf. T. L. HEAT~, Archimedes, pp. 66, 72-4-[. 
If, then, HERO knew of ARCHIMEDES' work on "" plinthides" through a work by DIONYSODORUS, the 
mistranscriptions under discussion may have been introduced into the Metrica by HEaO himself 
following a corrupted DIONYSODORAN manuscript. On DIONYSODORUS, see HEATHs Greek Mathematics, 
II, pp. 218f. 
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and directly below this: "lesser ratio 197888 62351". These words appear to claim 
that 211875/67441 has a greater value, 197888/67441 a lesser value, the comparison 
in either case being made with the ratio of the circumference and diameter of the 
circle. But this reverses the order of the ratios as given in the text proper; for there 
211875/67441 is claimed as the lower bound on rc and 197888/62351 the upper 
bound. Of course, by assistance from the text, the scholium might be read as an 
ellipsis for "[the ratio of the circumference to the diameter is a] greater ratio 
[than that which] 211875 [has to] 67441" and similarly for the lesser ratio. 
But, taken in isolation, the words do not recommend this as the sense. 

Now, the copyist has maintained an even spacing in setting the scholium in the 
lower margin; this merely indicates that he has dutifully copied it from his reference 
manuscript after he completed the page. But what was the significance of the scholi- 
um in the earlier manuscript? Its introduction in itself implies that a user of that 
manuscript (or, of course, some even earlier prototype) wished to call attention 
to these ratios. Why? Let it be supposed that the ratios as I have emended them 
appeared in the original manuscripts of the Metrica and that at some later stage 
of the manuscript tradition the figure 62991 was corrupted to 62351. Although the 
ratios were never intended for use in practical geometry, and although the 
ARCHLMEDEAN and HERONIAN texts by which the corrupted figure might be detected 
and corrected were soon inaccessible, one anomalous feature of the altered passage 
could be easily seen: the claimed (corrupt) lower bound 197888/62351 was 
actually greater than the claimed upper bound 211875/67441. In my view, the 
scholium was written at the time this anomaly first became apparent. It was thus 
appropriate to reverse the order of the ratios. The resultant corrupted text, 
identical now with that of the Codex Constantinopolitanus, would be deemed 
consistent with the other approximations to rc then available. The ratio 
197888/62351 is indeed an upper bound, as it exceeds the ARCmMEDEAN upper 
bound ~ .  The ratio 211875/67441 could be compared with the PTOLEMAIC value 
377/120; if the latter were misconstrued as "the" value of ~ then the former would 
be recognized as a lower bound on it, as we have already seen. In this way, once 
these errors had crept into the manuscript tradition, the correct value would be 
irretrievable save by an arduous, and largely pointless, recomputation. To me 
the marvel is thus not that the text-figures, as extant, have been altered from their 
original form, but that in a tradition extending from ARcmMEI)rS (c. 250 B.C.) 
through HERO (C. 60A.D.) to the Codex Constantinopolitanus (XI. century) they 
survived with so few corruptions. 

Let us now consider (2), the manner of computation which would lead to the 
emended text-numbers. A brief review of ARCHIMEDES' arithmetical technique 
in the Dimensio Circuli will make clear the role that the I-~RONIaN numbers would 
fill in a refined computation of the same type. The theory behind the computation 
is straightforward: the areas (and the perimeters) of the inscribed and circumscribed 
regular polygons tend toward the area (and perimeter) of the circle which they 
bound as the number of sides increases indefinitely. Both EUCLID (Elements XII, 2) 
and ARCHIMEDES(Dimensio Circuli, prop. I) make critical use of the fact that the 
difference between the areas of the circle and the inscribed polygon of 2 n-many 
sides is less than half the difference between those of the circle and its inscribed 
n-gon. ARCHIMEDES establishes the same result for the areas of the circumscribed 
polygons. Analogous results may be obtained for the perimeters, although these 



Archimedes '  Measurement  of the Circle 125 

are not given explicitly. Thus, if we set out a sequence of inscribed or circumscribed 
polygons, each having twice as many sides as the one immediately preceding, then 
we know that convergence to the area and to the perimeter is faster than successive 
bisection of the difference at each stage. In fact, a better estimate of the convergence 
rate is obtainable. In the Metrica I, 32 HERO demonstrates that the area of a circular 
segment is greater than four-thirds the area of the largest inscribed triangle. 23 
It follows at once that the rate of convergence of the areas of the polygons to the 
area of the circle in which they are inscribed is slower (but only slightly so) than that 
of successive quadrisection. A like conclusion holds for their perimeters. Applying 
a similar analysis to the areas and perimeters of the circumscribed polygons, one 
finds that they converge faster (but only slightly so) than successive quadrisection. 
This furnishes a rough guide to determine how many sides the inscribed or circum- 
scribed polygons must have to approximate the circle they bound to within a 
preassigned degree. For instance, to increase the accuracy of the approximation 
by a factor of 1000 (the equivalent of obtaining three additional accurate decimal 
places for re), one will require 5 successive doublings of the number of the sides of 
the polygons (since 1000~ 45). 

To establish the upper bound, ARCHIMEDES starts with the circumscribed 
hexagon and an unexplained inequality, 265/153<1/~. He successively doubles 
the number of sides four times to obtain that the ratio of the perimeter of the 
circumscribed 96-gon to the diameter of the circle is less than 14688/467~. 
Here, 14688 =96 x 153. Since the circumference of the circle is less than the peri- 
meter of the 96-gon and the fraction is less than ~ ,  he concludes afortiori that 
~<3k. For the lower bound, he adduces the inequality 1351/780>V~. Starting 
from the inscribed hexagon and proceeding as above to the inscribed 96-gon, he 
obtains that the ratio of the perimeter of the 96-gon to the diameter of the circle 
exceeds 6336/2017¼. Here, 6336=96x66. As the circumference of the circle 
exceeds the perimeter of the inscribed 96-gon and the fraction is greater than 73~ °, 
the latter follows as a lower bound for re. 

Concealed within this computation are traces of a technique of approximation 
based on the EUCLIDEAN division algorithm, which yields results equivalent to 
continued-fraction expansions. The bounds ARCHIMEDES gives for l/~, for instance, 
are obtainable by truncating the division algorithm after 9 and 12 quotients. 24 
In rounding off 14688/467~ his application of such a procedure is explicit. He 
first observes that the fraction exceeds the value 3 by the amount 667½; the fraction 
667½/467~ is in turn exceeded by one-seventh; he so concludes that ~ is greater 
than the initial fraction. While ARCHIMEDES does not explain his method of approx- 
imating the lower bound in such detail, one finds that the division algorithm for 
6336/2017¼, when truncated after three quotients, yields ARCHIMEDES' value 

10 1 1 3-¢r(=3+7+~-6). The use of the division algorithm is instanced in arithmetic 
work by others, such as the PYTHAGOREANS and ARISTARCHUS. 25 It is certainly 
beyond dispute that the division algorithm, as a theoretical device, was the founda- 
tion of the EUCLIDEAN theory of numbers (Elements VII) and the related theory of 

23 I4~RO'S proof  is patterned after ARCHIMEDES' proof of the analogous result for parabolic seg- 
ments  in Quadratura Parabolae, 24. 

2, An alternative derivation is given in the Appendix. 
z5 For references and discussion, see my Evolution of the Euclidean Elements, Chapter VIII, Sec- 

tion II. 
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irrationals (Elements X). But that the Greeks made use of this computational 
procedure in the practical manipulation of fractions and ratios of integers has not 
generally been recognized. The examples offered here ought to justify our intro- 
duction of the algorithm into parts of the discussion below. 

We may presume that at ARCTJIM~DES' time the approximation N was 
recognized in metrical practice. 26 We may suppose also that to frame a formal 
justification of this approximation ARCmMED~S could be aware beforehand that 

was in fact an upper bound and the amount of difference was on the order of 
1/500.  27 This estimate influences his choice of the lower bound to 1/3, namely 
265/153 (accurate to within 3 x 10-5). 28 It was also in his power to predict the 
number of computations required: since the difference between the circumscribed 
and inscribed hexagons (assuming unit radius) is 2 1 / 3 - 3 ,  or slightly less then ½, 
to reduce this difference to the order of 1/500 would require four successive 
quadrisections, or the construction of the circumscribed 96-gon through four 
doublings of the number of sides. In the event, by carefully controlling the degree 
of rounding-off ARCHIM~DF.S was just barely able to verify the expected upper bound 

Table 1, ARCHIMEDES" Computation of Bounds for rr 

Upper Bounds Lower Bounds 

n A B C n A' B' C' f 

6 153 265 306 6 780 1351 1560 
12 153 571 591½ 12 780 2911 3013¼ 
24 153 1162~ 1172½ 24 780 5924¼ 

240 1823 1828~ 
48 153 2334¼ 2339¼ 48 240 3661~ 

66 1007 1009~ 
96 153 4673½ 96 66 201~ 2017¼ 

4/13 

11/40 

These are the values reported by ARCHIMEDES in Dimensio Circuli, prop, 3. They are computed by the 
rule Bz. = C. + B,, C~ = A~ + B~ from suitable initial values of A6, B 6; the primed terms follow the same 
rule of formation. The numbers A,, B. express the ratio of the side of the circumscribed n-gon to the 
diameter of the circle (as do the numbers A'~, B'~); the numbers A., C, express the ratio of the side of the 
inscribed n-gon to the diameter of the circle (as do A',, C',). In approximating the square roots, rounding- 
off of C is downward, of C" upward. Fractional errors incurred are on the order of 1 or 2 parts in 
40,000 for the 12- and 24-gons, between 1 and 4 parts in 600,000 for the 48- and 96-gons. 

The value nA. is an upper bound for the perimeter of the n-gon circumscribed about the circle 
of diameter B,; thus, nA,/B.>n and one may deduce n <96 x 153/4673½ < ~ ,  The value nA, is also an 
upper bound of the perimeter of the n-gon inscribed in the circle of diameter C.; this fact is useful for the 
computations reported in Table 4. Analogously, n A'. is a lower bound for the perimeter of the n-gon 
circumscribed about the circle of diameter B'~ or inscribed in the circle of diameter C'~. One deduces 
that ~z>96 x 66/2017¼ > 3~7~ °, 

26 Demotic (Egyptian) mathematical papyri from about the time of ARCnIM~HES employ the 
value 3. But better approximations were also known. The traditional Egyptian value was 4(~) z, or 
just less than 3z6, while the ancient Babylonians used both 3 and ~.  See R. A. PARKER, Papyri, p. 40 and 
O. NEUGEBAUER, Exact Sciences, pp. 46f, 51 f, 78. 

27 In planning the formal computation, ARCHIMEDES would know beforehand (by what means we 
cannot say) the bounds to be established. Their difference (-17 - - ~ = ~ )  is thus an index of the degree 
of accuracy which must be maintained in the computation. 

2s The accuracy of this value may be estimated from the relation 265z+ 2 = 3 x 1532. Such iden- 
tities are associated with the "side and diameter" numbers and have a bearing on the method by which 
ARCHIMEDES derived his estimates for 1/~. See also the Appendix. 
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by means of the 96-gon. For in rounding off his last result 14688/467~ upward to 
N, he increases the difference by less than 1/32,713. Similar considerations might 
guide the planning out of the formal verification of the lower bound. 

In Table 1 the figures computed by ARCHIMEDES are given. In each row, the 
numbers A, B, C specify the ratio of the three sides of a right triangle whose hypo- 
tenuse is proportional to C and whose vertex angle is one-half the angle subtended 
by the side of the circumscribed n-gon. By the PYTHAGOm~AN relation, A 2 + B 2 = C z. 
ARCmMEDES demonstrates that if one bisects the vertex angle of a right triangle of 
legs A, B and hypotenuse C, the legs of the right triangle whose vertex equals the 
bisected angle have the ratio (B + C): A. Hence, in the table, we may keep A con- 
stant and derive Bz, as B, + C,. The same properties hold for the sides associated 
with the inscribed triangles of sides A', B', C'. 

In all computations of C a square root must be extracted and rounded off 
downward to ensure that the ratio nA/B remains an upper bound on re. Similarly, 
to compute C' square roots are extracted and rounded off upward so that nA'/C' 
remains a lower bound to re. The rounding-off technique which ARCHIMEDES 
employs is extremely subtle, z9 One indication of his adroitness is that twice in 
the calculation of the lower bound ARCHIMEDES adjusts the terms of the triangles, 
by factors of 4/13 and 11/40, respectively, in order to remove fractional remainders 
and thus facilitate further computation. The choice of the fractional remainders ¼ 
and 9 was thus made after considerable forethought. As already explained, the 
values associated with the 96-gons are finally expanded to produce the bounds 
3-}v and lo 3~-i-. 

To obtain the refined estimates cited by HERO, we might first attempt merely 
to extend ARCHIMEDES' computation and examine the bounding approximations 
so derived. But ARCmMEDES has introduced such a large fractional error at the 
96-gon stage that this effort, however indefinitely extended, could never attain 
suitable accuracy. If, beginning with the same initial values, we reduce the succes- 
sive losses incurred in rounding-off, we may attain a degree of accuracy adequate 
for establishing our emended upper bound by way of the circumscribed 384-gon; 
the inscribed 768-gon will suffice for the emended lower bound (here, the 384-gon 
is not sufficient). Alternatively, we may begin with somewhat better approxima- 
tions to t/3, as HOPPE does in his treatment. The associated 384-gons will then 
permit the derivation of both bounds. 

But these approaches ignore an important fact: the numerator of the proposed 
upper bound is 197888 = 2 s x 773 and that of the proposed lower bound is 211875--- 
5 '~ × 3 × 113; the presence of powers of 2 and 5 as factors appropriately reflects the 
formation of these numbers as the perimeters of regular polygons, where the num- 
ber of sides n arises from a process of successive doubling? ° But how is one to 

29 I am including a discussion of ARCHIr,,mDES' technique of rounding-offin an article in prepara- 
tion on HERO'S rule for square roots. 

30 The appearance of a power of 5 is unexpected, perhaps, but need not be problematic. It may be 
explained, for instance, via the multiplication by a '" myriad" (10,000) and the subsequent removal of 
the factors of 2 by successive bisection. In the Dimensio Circuli ARCHIMEDES modifies the terms in his 
computation by multiplying by fractions in small terms. Such an adjustment, by repeated multiplication 
by ¼, for instance, could also produce a final numerator divisible by a power of 5. In the computation 
proposed in Table 2 we discover the convenience of multiplying the final terms by 125/128, thus 
obtaining a fraction whose terms are integers (rather than integers with fractional remainders) without 
change in the value of the fraction itself. 
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account for the presence of the large prime factors 773 and 113, if the initial sides 
are 780 and 153, respectively? The artificial introduction of such large and un- 
wieldy factors in the course of the computation does not well conform to the struc- 
ture of ARCHIMEDES' argument in the Dimensio Circuli. It is thus clear that the 
factors 773 and 113 must be divisors of the sides A' and A of the initial triangles. 
Unfortunately, if we examine the sequence of convergent fractions for l/~, we find 
none in the appropriate range of accuracy (i.e., of difference no less than 10-lo) 
which possesses a denominator factorable by either prime. The same holds for the 
sequence of "side and diameter" numbers, the convergents for I/~, so that an 
alternative computation beginning from the square is also ruled out. 

We meet success, however, when we choose the decagon as our starting-point. 
The geometry of the pentagon and decagon is dominated by a ratio, ( t / 5+  1):2, 
much studied by the Greeks; they styled it the "extreme and mean ratio", but it is 
most familiar now as the "golden section". 3~ Just as in the case of the "side and 
diameter" numbers, which approximate 1/~, there is here a very easily computed 
alternating sequence which converges to this ratio: namely, 

1 2 3 5 8 a a + b  32 

1 ' 1 ' 2 ' 3 ' 5  . . . .  ' b '  a ' " ' "  

We may assume that, just as ARCHIMEDES had at his disposal the "side and dia- 
meter" numbers and some analogous sequence for 1/~, so also he knew how to form 
the related sequence for the extreme and mean ratio, or some equivalent, when 
occasion demanded. (A more detailed discussion of the method he may have 
employed is presented in the Appendix.) Within this sequence we find a value 
6765/4181, a lower bound to the extreme and mean ratio, whose denominator 
4181 is the product 37 x 113. We recognize this at once as suited to the side of the 
circumscribed polygons which produce our desired upper bound for r~. Correspond- 
ing to the initial value A=4181, C = 2  x 6765=13530, while B=12867-~ via the 
PYTHAGOREAN relation and a small downward rounding-off. 

Five terms further on in the sequence there appears the upper bound 
75025/46368. While the denominator of this is not exactly divisible by 773, it 
very nearly is so, and we easily deduce that 75025/46368<75045/46380= 
15 x 5003/60 x 773. This suggests adopting A ' = 4 x  773 as initial side for the 
inscribed decagon, and C ' =  2 x 5003; via the PYTHAOOREAN relation and a small 
upward rounding-off, we obtain B '=  951~.  We thus have suitable initial triangles 
by which to effect a computation precisely in the manner of ARCHIMEDES in the 
Dimensio Circuli. The result is given in Table 2. 

At the 640-gon stage we may examine the bounds derivable for n. The lower 
bound will be nA'/C'  =640 x 3092/629909. If we relax this bound by raising the 
denominator to 629910 and then remove the common factor of 10, we obtain 
197888/62991 as a lower bound for n. As already explained, a further relaxation 

31 The ~" extreme and mean  ratio" is introduced by EUCLID in several contexts in Books II, IV, VI, 
X and XIII. For a review of this material  and an interpretation of its significance for the studies on 
irrationals by THEAETETtIS and EUDOXUS, see my book Evolution, Chapters II/II, VI/IV and VIII/IV. 

~2 One sees in the rule of formation the so-called " FIBONACCI" sequence. References to the massive 
literature on this sequence may be found in L. E. DICKSON, Theory of Numbers, I, ch. XVII, pp. 393-407. 
On possible Greek precedents for studies of this sequence, see my discussion of S. HELLER'S account of 
TIaEODORIJS, Evolution, Chapter II/II. 
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Table 2. Scheme for a Refined Computation 

Upper Bounds Lower Bounds 

n A B C n A' B' C' 

10 4181 12867~ 13530 10 3092 9516~- 10006 
20 4181 26397~ 20 3092 19522~ 19765¼ 

339 2140~z4z½ 2167-f~ 5 
40 339 43077~5 43210~J5 40 3092 39288 39402 
80 339 8628~ 8634~ 5 80 3092 78697½ 78758¼ 

160 339 17262~ 1726~6~z~ 160 3092 157456 15748 2 
320 339 34528~ 3453~0~285 320 3092 314942½ 314958 
640 339 6905~9~,~ 640 3092 629901 629909 

The numbers in this table are formed according to the same method as that in Table 1. Fractional 
errors here in the square root approximations are much smaller, ranging from I to 3 parts in 2,500,000 
for the lower bounds, somewhat smaller generally for the upper bounds. The terms of the 20-gon (upper 
bound) have been adjusted by a factor of 3/37; this follows the precedent to be seen with the 24- and 
48-gons (lower bounds) in Table 1. 

From the 640-gons, one deduces (1) ~<640x339/6905 ~9~2~=211875/67441<377/120 and 
(2) n > 640 x 3092/629909 > 197888/62991 > 333/106. 

by means of the EUCLIDEAN division yields 333/106 as a lower bound. The upper 
bound is formed as nA/B = 640 x 339/6905 ~9~z35 . Here, the fraction may be simplified 
without any loss of accuracy by adjusting each term by the factor 125/128 ( = 53/2~), 
yielding 211875/67441. This upper bound may be relaxed to establish 377/120 
as an upper bound, In this way, we have detailed an ARCHIMEDEAN procedure 
leading exactly to the bounds cited by HERO as we have emended them. 

It is possible to present a sketch of the preliminary planning of this formal 
computation, as we did for the Dimensio Circuli. ARCHIMEDES required first an 
awareness of the degree of accuracy to be established. Later computers were to 
prearrange this by the selection of a denominator of form 10", the choice of n 
being arbitrary. But ARCHIMEDES was concerned with finding optimal bounding 
fractions, not decimal approximations. The EUCLIDEAN division would of necessity 
guide his thinking. In the Dimensio Circuli he has already established that the 
first two quotients in the algorithm for ~ are 3 and 7; he has also found that the 
third quotient is at least 10. A closer approximation for rc will be needed to deter- 
mine that quotient exactly. If the quotient is in fact 10, then 223/71 will remain as 
the best lower bound attainable at this stage of the division procedure. If the quo- 
tient is 11, then (223 +22)/(71 +7) will be the optimal lower bound; if the quotient 
is 10+n, then (223+22n)/(71+7n) will be the optimum. For argument's sake, 
suppose the quotient is in fact 20; then ~ o  will be a lower bound and ~ will 
be an upper bound. Their difference is 1/141 x 148, or a bit less than 1/20,000; 
this entails a fractional error of no more than 1 part in 60,000 associable with either 
bound. As we have seen, this is the order of accuracy verifiable by the text-fractions. 
Now, the limits established by means of the 96-gons each entail a fractional error 
of about 1 part in 2500. Thus, the hypothesized refined computation requires that 
the accuracy be increased by at least a factor of 24. As 42 < 24 < 43, it will be expected 
that two steps beyond the 96-gons (i.e., the 384-gons) will not suffice, but that three 
steps (the 768-gons) will more than do. This estimate also suggests the idea of 
directing attention to one of the intermediate constructible polygons, such as the 



130 W.R. KYORR 

640-gon. Such a re formula t ion  of the p rob lem star t ing from the decagon intro-  
duces a new theoretical feature, the man ipu l a t i on  of the extreme and  mean  ratio. 

If the computa t ion  implied by the HERONL~N figures did indeed have the object 
of de te rmin ing  the third quot ien t  of ~z under  the EUCLIDEAN division, it could no t  
be fully successful, however. The fractions associated with the quot ients  15, 16 and  

17 are, respectively, 333/106, 355/113 and 377/120. The compu ta t i on  verifies 
that  the first of these is a lower b o u n d  for ~ and the third an upper  bound.  But to 
determine the quotient ,  we mus t  know also whether the second fraction is an upper  
or a lower bound.  It is in fact an upper bound,  bu t  entails a fract ional  error of less 
than 1 part  in 11,800,000. This is almost  200 times closer than  we have p lanned  
for in the above sketch. I th ink  it unl ikely that ARCHIMEDES would  have expected 
this ou tcome - at least, the text-figures give no evidence that  he did so. It thus again 
becomes clear what difficulties are implicit  in TANNERY'S hypothesis regarding 
this passage. 

Table 3. Approximations to z~ 

1. Source 2. Value 3. Decimal 4. Difference 5. Fractional error 
equivalent ( x 10-5) 

H E R O  197888/62351  3.17377427 3218 1/97 (638.71/62351) 
ARCHIrCmDES 3-~ 3.14285714 126.45 1/2484 
ARCHIMEDES 1 4 6 8 8 / 4 6 7 ~  3.14282657 123.40 1/2546 (1.836/4673½) 
PTOLEMY 377/120 3.14166666 7.402 1/42446 
HERO 211875 /67441  3.14163491 4.226 1/74344 (0.91/67441) 
HOPPE 195883/62351 3.14161761 2.50 1/125,855 
TANNERY 195882/62351 3.14160157 0.893 1/352,038 

355/113 3.14159292 0 . 0 2 7  1/11,810,498 
211891/67447 3.141592658 0 .0004  1/785,398,163 
~t 3.141592654 0 

TANNERY 211872/6744 1 3.14159042 -- 0.223 -- 1/1,410,683 
HOPPE 211871/67441 3.14157559 -- 1.706 -- 1/184,203 
HERo-emended 197888/62991 3.14152815 -6.450 --1/48707(--1.3/62991) 

333/106 3.14150943 -- 8.323 - 1/37750 
ARCHIMEDES 6336/2017¼ 3.14090965 --68.30 -- 1/4599 ( -- 0.44/2017¼) 
ARCHIMEDES 3~t ° 3.14084507 -- 74.76 -- 1/4202 

197888/62988 3.14167778 8.513 1/36905 
197888/62989 3.14162790 3.525 1/89125 

3.14159265 
197888/62990 3.14157802 -- 1.463 -- 1/214,795 
197888/62991 3.14152815 -- 6.450 -- 1/48707 
333/106 3.14150943 -- 8.323 -- 1/37750 
197888/62992 3.14147828 -- 11.44 -- 1/27468 

In this table, the decimal equivalents (3) have been simply truncated. Designating the value in (2) or 
(3) as p, one obtains the number in (4) as p - n ;  the number is understood to be multiplied by 10-5. 
The fractional error in (5) is formed as (p-n)/~z; this has been put into unit-reciprocal form and the 
denominator simply truncated. The values in (4) and (5) are upper bounds of the respective differences 
and fractional errors. 

The reconstructed compu ta t i on  conforms closely to the pa t te rn  given by 
ARCHIMEDES in the Dimensio Circuli. To be sure, the extract ion of so m a n y  square 
roots to the requisite degree of accuracy amoun t s  to a labor ious  comput ing  
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effort, even if facilitated by special arithmetic techniques. But this project would not 
overreach the abilities of a competent Greek arithmetician. 33 No such recon- 
struction can presume to be perfect, digit for digit. But the scheme provided above 
serves to show that an ARCHIMEDEAN computation can be devised which results 
in the text-ratios as I have emended them; it also answers an implicit challenge 
posed by such other interpreters of the HERO-passage, as BRUINS, who have 
included the details of computation in their argument. In view of other components 
in my restoration-the retention of one of the text-ratios unaltered, the small 
modification of the other strictly in accordance with possible transcriptional 
error, and accounting for the significance of the factors 773 and 113 - I  feel confident 
that my argument, certainly in its broader outline, is substantially correct. 

Is there any documentation, other than the passage from HERO'S Metrica, 
which might confirm that ARCHIMEDES carried through an investigation of this 
type? Let me point to three possible items of supporting evidence. 

First, we have the report of EUTOCIUS that in a work called the Ocytocium 
('" Easy Delivery") APOLLON1US derived bounds for 7: better than the ARCHIMEDEAN 
limits and that the computation involved ~" myriads " (multiples of 10,000). The 
fragments of that work which have survived have nothing to do with the geometry 
of the circle per se, but merely illustrate techniques for the ready manipulation of 
large numbers. 3. Now, the ARCHIMEDEAN limits cited by HERO are also of the order 
of myriads. It would thus appear that ARCrtIMEDES' younger contemporary 
APOLLONIUS achieved at best but a small improvement in accuracy over the re- 
fined ARCHIMEDEAN values. Without denying this view, I may suggest that an 
alternative explanation is possible. Given the largely arithmetic content of 
APOLLONIUS' book, we may surmise that APOLLONIUS used the ARCHIMEDEAN 
computation as a vehicle for explaining and facilitating the arithmetical operations, 
in particular the computation of squares and square roots of large numbers. This 

33 I did computations, like those given in Table 2, with the assistance of a miniature electronic 
calculator. With practice, I came'to require between five and ten minutes to complete the computation 
of a bound associated with the 640-gon. As an experiment, I worked out long-hand the step in the 160- 
gon which verifies that (30922 + 1574562) ~" < 157482; it took 20 minutes. Now, as far as the long-hand 
methods are concerned, the Greek numeral system is no more or less efficient than our own. I thus 
estimate that a Greek computist using these methods would require about the same time as I did. 
As each bound requires six root-extractions, at least two hours of continuous computing would be 
necessary. Assuming that the computation would be done twice, perhaps even three times, as a check 
against error, we may estimate that a Greek computer would need at least 12 hours of uninterrupted 
and tedious effort to effect the computation of Table 2. Of course, the effort would be spaced over a 
longer interval, or distributed among a number of computers. But granted the use of such techniques 
as HERO'S rule for roots (see note 51), ARCmM~DES or a skilled Greek computer could reduce this time 
considerably. 

34 EUTOCtUS in Archimedis Opera, ed. J.L. HEIBERG, III, p. 258. HEm~RG takes parts of PAPPUS' 
Collectio to be fragments of the Ocytocium (Apollonii Opera, II, pp. 124-132). This material develops 
techniques for the ready manipulation of large numbers. While explicitly citing APOLLONIUS, PAPPUS 
does not name the Ocytocium. As G. HUXLEY argues ('" Okytokion', pp. 2030, the connection can be 
drawn via the aphorism cited by PAVPUS, the letters of which are interpreted as numerals and then 
multiplied together; for the aphorism cites ARTEMIS the goddess specifically renowned as guardian over 
childbirth (Okytokos). But I consider HUXLEY pushes the argument too far in using ARTEMIS' association 
with the moon as justifying the ascription of APOLLONIUS' lunar theory to the Ocytocium. An interesting 
speculation by HULXSCH, linking this work to ARCmMEDES' Sand-Reckoner and Cattle-Problem is 
mentioned by HEATH, Archimedes, p. xxxv. 
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being so, by the time of EUTOCIUS (VI. century), long after ARCHIMEDES' original 
tract had been 10st, the appearance of these computations in the APOLLONIAN 
work might have led him to infer that APOLLONItJS--and not ARCHIMEDES--was 
their originator. In this way, the testimonia of EUTOCIUS and of HERO become 
compatible. 

Second, the upper bound 377/120 which we derived by rounding off the upper 
ARCHIMEDEAN limit coincides with the value used by PTOLEMY in his Syntaxis 
(VI, 7). PTOLEMY remarks that his own value 3; 8, 30 (expressed in sexagesimal 
notation) lies between ARCHIMEDES' values N and 3~7~ °. This comment does not 
of course indicate ARCHIMEDES as the source of PTOLEMY'S value, and it is generally 
accepted that the value was in fact derived from the table of chords in Book I. 35 
In brief, PTOLEMY computes the chords of 60 ° and 36 ° , and from these the chord 
of their difference 24 ° . By successive bisections of the angle, he at last obtains 
chd 1½°= 1; 34,15 and chd ¼° --0; 47,8. He next introduces a critical inequality: 
chd a/chd b<a/b. Using this, he argues that chd 1°= 1; 2,50 very nearly. 36 Now, 
as PTOLEMY assumes that the diameter (D) of the circle is 120 units, and since 

a 
chd a = D sin ~ so that chd 1 ° is the side of the inscribed 360-gon, we may deduce 

that rc is very nearly 360 x chd 1°/120= 3; 8,30. Such is the argument linking the 
table of chords with PTOLEMY'S explicit value for ~t in Book VI. As a derivation, 
this accords with the ARCHIMEDEAN in utilizing the successive bisection of an 
initial vertex angle. But unlike ARCHIMEDES, who had to round off always in the 
same sense, PTOLEMY could round off in either direction, as convenience recom- 
mended. He could thus hope to benefit from a favorable cancellation of errors. 
Only in this way could he have obtained so accurate a value as 3; 8,30 via 
polygons of so few sides, or have ended with an upper bound via inscribed poly- 
gons. By ARCHIMEDEAN standards, such a method as this lacks rigor. In parti- 
cular, one could not have an adequate estimate of the degree of accuracy of the 
value computed. It seems to me that the central importance of the values of rc 
and chd 1 ° for PTOLEMY'S astronomy would advise him not to leave such a matter 
to chance. If, however, PTOLEMY and his predecessors in trigonometry, knew of 
the ARCmMEDEAN study proving 377/120 to be a good upper bound for re, the 
obvious convenience of the value within the sexagesimal notation would encourage 
its adoptiorL In constructing the table of chords, this value could guide the com- 
putations for small angles, rather than be derived from them. Indeed, there is 
evidence of just such manipulation in PTOLEMY'S table. Although PTOLEMY 
usually rounds off to the nearest three-place sexagesimal value, he departs from 
this practice in taking 0; 47,8 for chd 3°, as the four-place value is 0; 47,7,25. By 
this he brings it into consistency with chd 1½°. 37 But he thereby also ensures that 
the resultant value of chd I ° is compatible with his value for re. 

as Cf. T.L. HEATI% Greek Mathematics, I, p. 233. 
36 PTOLEMY, Syntaxis, I, 10; cf. the editions by J. L. HEIBERG, I, pp. 45f and by R, C.TAL1AFERRO, 

p. 20. The argument is summarized by B. L. VAN DER WAEROEN, Op. cir., pp. 206f. 
37 PTOLEMY'S value for chd ¼° is thus subordinate to that for chd 1½ °. This means in effect that his 

ultimate value for chd 1 °, the basis for his value for ~, is founded on the inscribed 240-gon. PTOLEMY'S 
rather flexible manipulation of these inequalities troubled THEON, who worked out the chords to four 
sexagesimal places so as to indicate their consistency (Commentaires, ed. A. ROME, I, pp. 492-495). 
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Third, it is generally recognized that the extant Dimensio CircuIi is a post- 
ARCHIMEDEAN revision of a portion of ARCHIMEDES' original and far more com- 
prehensive treatment of the circle. 38 Notably, in Metrica I, 37 HERO draws from 
the Dimensio Circuli a theorem on the area of circular sectors: the area equals 
half the product of the radius and the arc of the sector. The same theorem is 
discussed at considerable length by PAPPtrS, also relying explicitly on an ARCHI- 
MEDEAN work. 39 This theorem is not contained in the extant Dimensio Circuli, 
although, as an extension of the first proposition of that tract, its relevance to it 
is clear. Hence, an ARCIqlMEDEAN tract more extensive than the extant Dimensio 
Circuli circulated in antiquity and was still accessible to PAPPtrS (late III. century), 
although not to Et:TocItJs (VI. century). Is it unreasonable to suppose that 
ARCHIMEDES' refined computation was contained in the lost portion of this work? 
The fact that HERO draws the ratios of the large numbers from another work "On 
Plinthides and Cylinders" is not incompatible with this view. 4° Of the latter tract 
we know nothing more, but the title suggests it might have been akin to Metrica II, 
devoted to the measurement of solids. In the preface to such a work, ARCHIMEDES 
might well have mentioned his bounds to re, for these have an obvious pertinence 
to a study of cylindriform solids. By HERO'S time, the portions of the Dimensio 
Circuli containing the refined computation might already have been lost; or 
HERO might have found it as convenient to refer to the "Plinthides" as to consult 
the full text of the Dimensio. 

It is becoming more widely appreciated that Greek mathematics was founded 
on a strong tradition of practical arithmetical competence, and the present study 
of the technique implicit in ARCFIIMEDES' work on the circle ought to contribute 
to this understanding. 41 An older conventional view, that the Greeks devoted 
themselves to theoretical geometry to the detriment of practical mathematics, is 
thus to be seen as a distortion occasioned by the selective survival of documents. 
But it is true that from the theoretical standpoint, little of what we have attributed 
to ARCHIMEDES here is of real mathematical profundity. There may be a certain 
fascination with computing square roots with ease to great orders of accuracy 
or with other feats of calculation, but no notable insight is required or gained by 
it. 4z Is it possible that ARCHIMEDES' computation was produced toward a more 
theoretically interesting end? We have mentioned that HERO presents an in- 
equality relating to the area of circular segments: that the segment exceeds four- 
thirds of the greatest inscribable triangle (Metrica I, 32). While HERO names no 
source here, ARCHIMEDES is cited in the same chapter for the analogous result on 
parabolic segments, and HERO'S proof for circular segments follows the same 
pattern used by ARCHIMEDES for the parabola in Quadratura Parabolae, prop. 24. 
I am led to conclude that ARCHIMEDES was likewise the source for HERO'S in- 

38 E.J.DIJICSTERI-IUIS, Archimedes, p. 222; T. L. HEATH, Greek Mathematics, II, p. 50. 
39 PAPPUS, Commentaires, ed. A. ROME, pp. 253-260. 
,*0 j .L.  HEIBERG admits  the possibility that the ~" Plinthides" and the tract "" On the Measurement  of 

the Circle" are one and the same (Archimedis Opera, II, p. 542). For an alternative view on the relation 
of these works, see note 22 above. 

4~ The depth of the arithmetical technique implicit in PTOLEMY'S work has been emphasized by 
O. PrDERSEY, "" Logistics and the theory of functions", pp. 29-50. 

42 C. BOYER calls attention to this important  consideration in his remarks on the comput ing  
feats of early circle-squarers; cf History of Mathematics, pp. 224I'. 
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equality on the circular segments. Now, this inequality may readily be modified 
to provide an estimate of the rate of convergence of the inscribed polygons to the 
bounding circle, as we have already mentioned. But it can also provide the means 
of improving the approximation to ~z derived by the polygonal method. Specifi- 
cally, if p, is the perimeter of the inscribed n-gon, c the circumference of the circle, 
then ~(4pz,-p,)<c. Many such inequalities associated with the sequences of 
inscribed and circumscribed polygons were discovered by I-{UYGENS and GREGORY 
in the seventeenth century for the purpose of increasing the rate of convergence. 43 
In doing such a study, SNELL made much of the advantage of his own method in 
comparison with the standard ARCHIMEDEAN technique. But ARCHIMEDES himself 
had results suited for the same type of inquiry. 

Denoting as 7z2n the ratio of the perimeter of the inscribed 2n-gon to the 
4, 1 - 4 4  diameter of the circle, we obtain from the above inequality -~n2,,--jTcn<Tz. By 

means of this formula, ARCmMEDES' values for the dodecagons suffice for estab- 
lishing the bounds which were verified via 96-gons by the standard method 
(Table 4a -1 ) .  The stronger result we established via 640-gons can be obtained 
via 24-gons, if the formula is used (Table 4 a-2) .  From the geometry of the cir- 

Table 4a. Improved Conve rgence -  Lower Bounds 

(1) (2) 

n6 6 x 153/306 3.0 ~zl 2 12 x 153/5914 3.10584823 
~ 2  12 × 780/301~ 3.10576524 ~24 24 x 240/1838~ 3.13262372 
P12 3~hz --$z~ 6 3.14102032 P24 3.14154889 
R96 6336/2017¼ 3.14090965 7Z64o 197888/62991 3.14152815 
f~ (nj 2 - n)/~z - 1/87 f l  - 1/350 
fz (P~ 2 - ~)/r~ - 1/5489 -/'2 - 1/71786 

f~/f2 62 f~/f2 204 
5 (12/1r) z 72 5 (24/~) 2 291 
3~1 <~96 <Pt2 <7~ 3~3 106 <'1~64-0 <P24- < 

Remarks :  In (I), ~6 and n12 are calculated from values of ARCHIMEDES, found in Table 1; as ~6 
must  here be an upper bound  for the ratio of the perimeter of the inscribed hexagon to the diameter of 
the circle, values of A and C from the left-hand table are used. All values have been simply truncated. 
The fractional errors f l  and f2 are thus upper bounds of the accuracy, while the numbers  fl/f2 and 
5(t2/~z) 2 are lower bounds  of, respectively, the actual and the theoretical factors of improvement  of 
the rate of convergence. Discrepancies between these two numbers  indicate the significance of errors 
due to rounding off. In (2), zhz and ~24 stem from a recomputat ion of the ARCHIMEDEAN values (cf. 
Table 1), where an accuracy equivalent to three correct places beyond the decimal-point has been 
maintained. 

,3 On the convergence-improvement formulae of GREGORY and HUYGENS, see J.E. HOFMANN, 
" Gregorys N~iherungen", pp. 24-37. SNELL'S lower-bound formula, differing from the HEROmAN, was 
published in the Cyclometricus (1621). On this and related studies by NmOLAES of CUSA and VIETA, 
see HOFMANN, Geschichte, I, pp. 127, 152, 163, and TROPFK~ Geschichte, II, pp. 213, 217-220. 

44 Using the power-series expression for sin x, one may verify the inequality x > 61(8 sin x - sin 2x) > 
sin x. The  r ightmost  member  correlates with the procedure of approximation via inscribed polygons; 
the central member  is equivalent to the HERONIAN improvement-formula.  The angle x is half the central 
angle subtended by a side of the inscribed n-gon, i.e., n/n. The inequality also shows that  use of the 
formula improves the accuracy of  an approximation associable with an n-gon by a factor of  
5 

i where x=n/n. 
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Table 4 b. Improved Convergence- Upper Bounds 
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(3) (4) 

~12 12 x 153/591~ 
~12 12 x 153/571 
P12 i , 2 ~ 1 2 ~ 1 2  
n~6 14688/4673½ 

f~ 1/42 
fz 1/3743 
A/A 87 
~(12/~z) 2 97 
3~>rC;6 > p i 2  > 7C 

3.10594206 ~24 24 × 153/1172~ 3.13265140 
3.21541155 ~ 4  24 × 153/11624 3.15968039 
3.14243189 P~4 3.14166106 
3.14282657 ~4o 211875 /67441  3.14163491 

377/120 3.14166666 
fl 1/173 
f2 1/45919 

L/f2 264 
~(24/z) 2 389 
377 t ~ 4 0 ~  ~ T~6>P24 

Table 4b.(Continued) 

(5) (6) 

~8o 80 x 339/8634.7827 3.14078546 ~16o 160 × 339/17266.2366 3.14139098 
~ o  80 x 339/8628.1256 3.14320876 ~60 160 x 339/17262.9084 3.14199662 
Pso 3.14159323 P16O 3.14159286 

355/113 3.14159292 355/i13 3.14159292 
1/1943 f~ 1/7776 

f2 1/5435281 f2 1/14,749,261 
~/f2 2796 fx/f2 1896 
~(80/=) 2 4323 ~-Q(160/=) 2 17292 
PSO>Ti~3S5 3 5 5 > p ] 6  ° a 1 3  > ~  

Remarks: In (3), n~2 and n12 are computed from ARCHIMEDEAN values (Table 1); as both are to be 
upper bounds, they employ data from the left-hand table. Computations in (4) are based on 
ARCH1MEDEAN values, recomputed to an accuracy of three places beyond the decimal-point. Values 
in (5) and (6) stem from numbers as in Table 2, but recomputed to an accuracy of lbur places beyond the 
decimal-point. 

The comparisons in (1) and (3) show that results slightly stronger than those obtained via 96-gons 
under the standard polygonal approximation can be established via dodecagons and the convergence- 
improving formulas. Similarly, (2) and (4) show that the formulas educe from 24-gons bounds of equi- 
valent accuracy to those obtained from 640-gons by the standard method. The computations in (5) 
and (6) show that the upper-bound formula can establish 355/113 as an upper bound for n via 160-gons, 
the 80-gons being just barely insufficient; the equivalent result by the standard polygonal method 
would require polygons of no fewer than 6144( = 6 × 21°) sides. 

c u m s c r i b e d  po lygons ,  a s imi l a r  f o r m u l a  for  u p p e r  b o u n d s  m a y  be o b t a i n e d :  
1 ~ 2 ~zc ,+3 rc ,>zc .  Here ,  re, d e n o t e s  the  r a t i o  of  the  p e r i m e t e r  of  the  c i r c u m s c r i b e d  

n -gon  to the  d i a m e t e r  o f  the  circle.  45 As  before ,  the  b o u n d s  ver i f ied  by the  96-gons  

a n d  640-gons  unde r  the  s t a n d a r d  m e t h o d  requ i re ,  respec t ive ly ,  on ly  12-gons  a n d  

24-gons  if t he  f o r m u l a  is appl ied .  M o r e o v e r ,  this f o r m u l a  pe rmi t s  one  to ver i fy  

355/113 as an  u p p e r  b o u n d  v ia  160-gons  if the  va lues  in ou r  ref ined  c o m p u t a t i o n  

,~5 This formula may be verified by means of the power-series for 

/=X xZ 2x5 272x7 \ 
tan x +T+qT+--ST-,  +--.). 

One uses the inequality tan x >~(tan x + 2 sin x) > x, where as above x = x/n. The approximation result- 
ing from the formula is closer by a factor of 20/3 x 2 + 22 than that derived from the circumscribed n-gons 
by the standard method. 
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(Table 2) are determined to a higher degree of accuracy (Table 4 b - 6 ) .  46 In this 
way, a result requiring under the standard method no fewer than ten square-root 
computations, each to an accuracy of 1 part in 109 o r  better, can be obtained via 
the extraction of four square roots to an accuracy of 1 part in 108. We do not 
know to what extent ARCHIMEDES investigated the refinement of the bounds for re. 
It seems to me probable that if he succeeded in verifying bounds as accurate as 
355/113, he did so with assistance from convergence-improving inequalities 
derived from geometric theory, rather than by laborious extension of the standard 
polygonal method. Unfortunately, such theoretical aspects, if part of ARCm- 
MEDES' study of the circle, proved too subtle for the uses of later commentators 
like HERO and EUTOCIUS. 

We have argued that the numbers cited by HERO require but a few emenda- 
tions, each readily defensible by manuscript considerations, to yield relatively 
good bounds for re: namely, 197888/62991 <re <211875/67441. We have also seen 
how the standard ARCmMEDEAN method of inscribed and circumscribed poly- 
gons, initiated by suitable approximations to the extreme and mean ratio in the 
context of the decagons and carried through to the 640-gons, can yield these 
ratios. But the Dimensio Circuli and HERO'S comment indicate that these ratios 
were intended as "rough" results. In singling them out for preservation, HERO 
betrays his naive awe at the large numbers, as well as an appreciation of the 
computational effort required for deriving them. By contrast, ARCHIMEDES' reduc- 
tion of the ratios by means of the EUCLIDEAN division results in ostensibly less 
impressive inequalities: 333/106<re<377/120; yet these in fact entail virtually 
the same degree of accuracy as the former, despite the much smaller terms. Ex- 
plaining such reduction as effected for mere computational convenience, HERO 
and EUTOClUS so miss ARCmMEDES' subtler recognition of the power of small 
numbers. 

Appendix: Archimedes' Method of Approximating Roots 

In the Dimensio Circuli ARCHIMEDES introduces without explanation the 
approximation 265/I53 <V~ and later the second approximation 1351/780 > l/~. 
These values have stimulated a massive scholarly commentary. 47 Since both 
values are convergents within the continued-fraction expansion of the root, it 
has been presumed that some equivalent procedure, based on the EUCLIDEAN 
division, was used in their derivation. From the mathematical point of view, this 
is certainly correct; for it is hardly by mere accident that ARCHIMEDES chose 

46 In theory, the formula can establish 355/113 as an upper bound via the 80-gons. Using the 
standard method, one requires 10240-gons; cf note 8. 

47 For surveys, see T.L.HEATH, Archimedes, pp. Ixxx-iv, xc-xcix and E.J.DuKSTERHUIS, Archi- 
medes, pp. 234-8. HOFMANN explains the values via a formula for 1/ '~---1 (" Quadratwurzel ~, pp. 204 f); 
but I show in my study of HERO'S rule that this formula is not needed to account for the cases which 
troubled HOF~.NN, and thus his overall argument is weakened. Methods based on recursive sequences 
have been proposed by TANNERY, DE LAGNY and HEILERMANN (cf HEATH, loc. cir.). VOGEL, HULTSCH 
and HUNRATH introduce equivalent principles, related to continued-fraction manipulations; but their 
methods have an ad hoc character and they do not specify either the amount or the direction of error 
entailed by the derived approximations. These latter features were certainly critical considerations for 
ARCHIMEDES. 
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values falling within the convergent-sequence. But the manner of derivation I 
shall now propose develops from the principle of the "side and diameter" numbers. 

The "side and diameter" numbers, attributable to the fifth- and fourth- 
century PYTHAGOREANS, are a means of approximating t/~. .8 One sets d 1 = 1 and 
st = 1 and defines d. + 1 = d. + 2 s., s. +1 = d. + s.. The fractions d,]s. form an alter- 
nating sequence converging to 1/~. In fact, these same fractions are precisely the 
convergents derived from the continued-fraction expansion o f l / ~  and the formula 
of the algorithm can readily be derived by applying the EUCLIDEAN division to 
the side and diameter of the square. 49 PROCLUS remarks that the difference 
d. 2 - 2 s .  z equals + 1 or - 1  in alternation and that this property is verifiable by 
means of the identity proved in Elements II, 10: namely, (a+2b)Z+aZ=2b~+ 
2(a+b)2. 5° Although no discussion of the convergence has survived from anti- 
quity, the rate of convergence is easily obtained from PROCLUS' theorem. The 
difference of consecutive fractions in the sequence is 

d.+ l/S.+ 1 - d . / s .  =(2s  2 -d2.)/s.(s. + d.) = + 1/s.(s. + d.). 

As each side and diameter is greater than double the preceding side and diameter, 
respectively, the magnitude of the difference of the fractions 1/s(s +d) will be 
diminished to less than one-fourth by each passage to a new side and diameter. 
We may presume that ARCHIMEDES had knowledge of such sequences and their 
properties. 

An analogous sequence, converging to 1/~, may be generated according to 
the formula d,+ 1 = d , + 3 s . ,  S,+l = d , + s , ,  and the initial conditions dl = 2  and 
sl =1. The first terms are these: 12-, 5, ~,, 1 9 2 6 7 1 9 7  265 362 9 8 9 1 3 5 1 3 6 9 1  "11", 15, 41~ " ~ ,  153,  209 ,  571 ,  7 8 0 ,  2 1 3 1 ,  etc. 
ARCHIMEDES' values appear as the eighth and eleventh terms of the sequence. 
But I doubt that ARCHIMEDES used this particular sequence to obtain them. In 
choosing 265/153 as the lower bound, he has judged that the associated fractional 
error (i.e., less than 1 part in 70225) will suffice for establishing ~ as an upper 
bound for rc (fractional error: 1 in 2484). Now, either of the adjacent fractions 
97/56 or 362/209 is of sufficiently small fractional error (respectively, 1 in 18816 
and 1 in 262114) to verify 73~1 ° as a lower bound for rc (fractional error: 1 in 4202). 
Moreover, each has a factorable denominator (e.g., 209=11 x 19) and ARCHI- 
M~D~ sometimes manipulates such factors to facilitate computation (see Table 1). 
Why, then, did he choose the unnecessarily accurate bound 1351/780 (fractional 
error: 1 in 3,654,115)? The answer, I believe, lies not in any intrinsic advantage 
to this value, but rather in the computing rule he used. 

By means of a different formula, one may obtain the sequence containing 
every third convergent in the expansion of l/~. If we start from the inequality 
l / ~ > ] ,  the I-IERoNIAN rule for roots leads to the formation of 9 as the associated 
upper bound. 51 Given any integers d, s, we may form an intermediate fraction 

,~s HEATH cites a n d  d iscusses  t he  sou rce s  o n  the  " s i d e  a n d  d i a m e t e r "  n u m b e r s  in Greek Mathe- 
matics, I, pp.  91-93 .  

49 A derivation of the formula via the EUCLIDEAN division is given by HEATH, Mathematics in 
Aristotle, pp. 30-33. 

so PROCLUS, In Rein Publicam, II, pp. 27-29. 
5t Under the HEROYtAN rule (Metrica I, 8), to approximate 1/~, one forms from an initial estimate 

b the value N/b and then computes a closer estimate b' =½(b + N/b). The procedure is recursive, 
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via (9s + 5 c0/(5 s + 3 d). This averaging principle is readily verified by theorems in 
the EUCLIDEAN proportion theory and arises often in the course of the use of the 
EUCLIDEAN division. 52 If, now, we set d =  5, s=  3, the resultant ratio is (27 +25)/ 
(15 + 15)=~5. Assuming next d=26,  s =  15, we obtain (135 + 130)/(75 +78)=  ~2-~as. 
From d=265, s =  153, we have next (1377+ 1325)/(765+795)=2702/1560= 1351 780 • 
One sees that the values employed by ARCHIMEDES are obtained in immediate 
succession. Moreover, the first approximation ~26 is a value frequently used by 
HERO, but attributable also to ARCHIMEDES. 53 Hence, we have a derivation which, 
in contrast with others proposed, is direct in application and yields only those 
values actually used by ARCHIMEDES. 

As for the "side and diameter" numbers, the convergence of this sequence 
may easily be estimated. By means of the geometric techniques of Elements II, 

d 
one verifies (9s+5d)Z-3(5s+3d)2=2(3s2-d2). Since the initial value o f -  

s 
is 3, a lower bound, the left-hand side is initially 4. Hence, 522 - 3  x 302=4, or 
262--3 x 152=1; hence, the difference d 2 - 3 s  2 takes on the values 1 or - 2  in 

alternation. Applied to the difference d _  9 s + 5 d s 58 + 3 d and the fact that each side and 

diameter is at least ten times larger than the preceding side and diameter, respec- 
tively, this establishes that each fraction in the sequence is at least 50(=½ x 102) 
times more accurate than its predecessor. In the knowledge of such properties, 
ARCHIMEDES could choose values from the sequence suitably accurate for the 
purposes of his computation. 

We have argued that ARCHIMEDES computed more accurate bounds for 72 by 

. . . .  6765 1+1/5 75025 
means of the initial xnequalmes ~ < ~ <46--6-~8" Both fractions have been 

taken from the sequence of convergents to the "extreme and mean ratio", defined 
by the familiar "FIBONACCI" rule: d. + 1 = d, + s,, s. + 1 = d., where d~ = 1 and s~ = 1. 
But as before, the choice of an unnecessarily accurate upper bound has to be 

1094,6 17711 28657 46368 75025 explained. For after ~6765 follow the terms 6765, ~o946, ~v-~r, 28657, 46368, etc., of 
which the first, third and fifth are upper bounds, each entailing a smaller fractional 
error than does 6765 ,-r~- Moreover, the factorizations 6765=15 x451 and 17711= 
89 x 199 serve to discount reasons based on computational convenience. We shall 
thus seek an alternative sequence. 

In the above sequence, the fourth term is the upper bound 5 and the fifth the 
lower bound-~. For any integers d, s, the fraction (8 d + 5 s)/(5 d + 3 s) will lie between 
those fractions. From d = 5, s = 3, we obtain (40 + 15)/(25 + 9") =a~- From d = 55, 

~2 From EUCLID, Elements VII, 12 one has that if a : b = c : d ,  then ( a + c ) : ( b + d )  is in the same 
a c a a + c  c a n a + m c  c 

ratio. It follows easily that if ~ < ~ ,  then ~ < ~ - - ~ < ~ ,  and generally, ~<nb~-~md<~, for arbitrary 
integers m, n. 

53 A scholiast to DIOPHANTUS asserts that "" Archimedes has proved that 30 equilateral triangles 
equal 13 squares" (Archimedis Opera, ed. HEmERG, IIo p. 542). Another scholiast, commenting on 
HERO, cites AP, CnI~I)ES for the proof that 13 times the square of the side of the hexagon equals five 
times the hexagon (Heronis Opera, ed. J.L. HEIBERG, IV, p. xxiv). Both claims are equivalent to the 
approximation o f l / 3  by ~ .  This value is used by HERO, as in his measurement of the equilateral triangle, 
Metr ica  I, 17. 
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s=34, we obtain (440+ 170)/(275+ 102) -61° - ~ .  From these terms we derive 6765 41817 
and from these in turn we derive 75o25 4---~x~- Thus, the two bounds we seek are pro- 
duced in succession. The decision to choose 6765 4-rgr must be made on the issue of 
accuracy; for the prior lower bound ~ entails too large a fractional error (i.e., i part 
in 4181) to suit a computation planned for an accuracy of 1 part in 60,000. ARCHI- 
MEDES could then choose the next term in the sequence as upper bound, namely, 
v5025 (fractional error: less than 1 part in 7½ × 109), and then for convenience 4-6368 

75045__ 5003 (fractional error: 1 in 128,588), a value still accurate reduce this to 463so-3o92 
enough for the computation. 54 Such estimates of accuracy are easily made. By 
means of the geometry of Elements II one can establish that d2-s(d+s)  equals 

d 9d+5s  +_5 
+ 1 or - 1  in alternation. From the difference = s 5d+3s  s(5d+3s) andthe 
fact that each diameter and side is at least 11 times larger than the preceding, one 
deduces that any fraction in the sequence is at least 121 times more accurate 
than its predecessor. The choice of a value suitably close for the purposes of a 
given computation is thus straightforward. 

By such refinements of the PYTHAGOREAN studies of the "side and diameter" 
numbers, ARCHIMEDES could select the approximations for t /3 and for the extreme 
and mean ratio required for his computations of upper and lower limits for ~. 
One cannot expect to specify in precise detail the form of ARCHIMEDES' investiga- 
tion of such recursive sequences. But the view that he employed them for the 
present purposes is supported not only by the precedent of the PYTHAGOREAN 
studies, but also by the appearance of related techniques in DIOPHANTUS' Arith- 
metica. There, we may see both a familiarity with the problem of finding integral 
solutions for relations of form A ; - n B 2 =  m and also a technique of examination 
based on linear substitutions of the unknowns. 55 Inasmuch as ARCHIMEDES' 
famed "cattle-problem" requires the solution of a relation of this same form, we 
may be assured that the knowledge of these parts of arithmetic theory had already 
been sufficiently advanced by his time. 

Thus, our explanation of how ARCHIMEDES could obtain appropriate bounds 
for the extreme and mean ratio for computing refined estimates for zc supports a 
new resolution of the much-discussed question of how he derived the bounds for 
If3 employed in the Dimensio Circuli. 
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