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Abstract

During the past 30 years there has been controversy regarding the adequacy of Newton’s proof of Prop. 1 in
Book 1 of thePrincipia. This proposition is of central importance because its proof of Kepler's area law allowed
Newton to introduce a geometric measure for time to solve problems in orbital dynamicsPnitiegoia. It is
shown here that the critics of Prop. 1 have misunderstood Newton’s continuum limit argument by neglecting to
consider the justification for this limit which he gave in Lemma 3. We clarify the proof of Prop. 1 by filling in some
details left out by Newton which show that his proof of this proposition was adequate and well-grounded.
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Résumé

Au cours des 30 dernieres années, il y a eu une controverse au sujet de la preuve de la Proposition 1 telle
gu’elle est formulée par Newton dans le premier livre deRescipia. Cette proposition est d’une importance
majeure puisque la preuve gqu’elle donne de la loi des aires de Kepler permit a Newton d’introduire une expression
géometrique du temps, lui permettant ainsi de résoudre des problémes dans la domaine de la dynamique orbitale.
Nous démontronsici que les critiques de la Proposition 1 ont mal compris I'argument de Newton relatif aux limites
continues et qu’ils ont négligé de considérer la justification pour ces limites donnée par Newton dans son Lemme 3.
Nous clarifions la preuve de la Proposition 1 en ajoutant des détails omis par Newton, détails qui montrent que sa
preuve de cette proposition est adequate et bien fondée.
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1. Introduction

In Prop. 1 of thePrincipia Newton gave a proof that Kepler's empirical area law for planetary orbits
and the confinement of these orbits to a plane are consequences of his laws of motion for the special case
of central forces. In his words,

The areas which bodies made to move in orbits described by radii drawn to an unmoving center of force lie in unmoving planes and
are proportional to the times.

This proposition is justifiably regarded as a cornerstone ofPthiecipia, because the proportionality
between the area swept out by the radius vector of the orbit and the elapsed time enabled Newton to solve
dynamical problems by purely geometrical methods supplemented by continuum limit arguments which
he had developed. Although the validity of Newton’s proof was not questioned by his contemporaries, an
alternative analytic proof of the area law was given later by Jacob Hermann based on the analytic form
of the calculus which had been developed by Newton and by Leibniz [Guicciardini, 1999]. However, two
influential historians of science, D.T. Whiteside and A.J. Aiton, have criticized Newton’s proof, claiming
that it was inadequate and that it applied only tardimitesimalarc of the orbit [Whiteside, 1974; Aiton,
1989]. Whiteside remarked that there were underlying subtleties in the proof that Newton did not fully
appreciated, and that Newton continued “to believe in its superficial simplicities” although, Whiteside
admitted, not even “Johann Bernoulli, his arch criticsaw fit to impugn the adequacy of Newton’s
demonstration” [Whiteside, 1991]. The basis for the Aiton—Whiteside criticism is that Newton had treated
incorrectly the continuum limit of a discrete polygonal orbit due to a sequence of central force impulses.
Subsequently, this criticism has been accepted by many Newtonian scholars although some arguments
have been presented that it is not valid [Erlichson, 1992; Nauenberg, 19B8aexample, in his new
translation and guide to Newtor®rincipia, I.B. Cohen warmly endorsed Whiteside’s analysis [Cohen,
1999], while N. Guicciardini in his new booReading the Principiaguestioned whether Newton’s

limit arguments in Prop. 1 are well grounded, although acknowledging dissenting views [Guicciardini,
1999]. Other authors discussing tReincipia either neglected to examine the validity of Newton’s
limit arguments in Prop. 1 [Brackenridge, 1995; Chandrasekhar, 1995], or failed to understand them
[Densmore, 1995].More recently, Pourciau has argued that if one takes a “traditional view what Newton
means by orbital motion,” Prop. 1 contains in addition to mathematical inadequacies also logical flaws
[Pourciau, 2003]. This is by far the most serious criticism, but it is also not valid. As will be shown here,
in 1679 Newton discovered Prop. 1 precisely because at this time he turnewbmraditional view of

orbital motion which had been suggested to him by Robert Hooke [Nauenberg, 1994b, 1998b].

In this paper | review the historical circumstances which led Newton to his momentous discovery that
central forces account for Kepler's area law, and | present arguments to refute the criticisms of his proof
of this law in Prop. 1. In order to understand this fundamental proposition, and to avoid misconceptions
voiced by recent commentators, it is helpful to keep in mind the historical context and the manner in

1 Some of the criticism of Whiteside’s analysis of Prop. 1 in Erlichson [1992] is not valid, because Whiteside did identify
correctly the deflections due to force impulses as “second order infinitesimal magnituties

2.0n p. 99 Densmore claims that “the bases of triangles in the proposition (Propda)not circumscribe and are not
inscribed in, this ultimate curve, nor do they connect to it or follow it in any other way as a kind of ‘ghost curve,” and she
claims that “Newton has not offered an argument that the limiting procedure in the proposition is a unique.cuBuat
Densmore ignores the fact that Newton invoked Cor. 4, Lemma 3 to justify his limiting procedure.
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Fig. 1. This diagram corresponds to Newton’s diagram in Prop. 1, but with the3igedd Se and Sf deleted, and with an
additional curve through poinsSBCDEF

which Newton discovered Prop. 1, outlined in Section 3. In Section 4, | discuss in detail Newton's
mathematical procedure to obtain a continuous orbit as the limit of a discrete polygonal orbit, which
is the subject of recent controversies discussed in Section 2. In particular, |1 show also how in this limit
a sequence of discrete impulses leads to a continuous force with a measure which Newton described
subsequently in Prop. 6. In this proposition, Newton started with a continuous orbit that satisfies the
area law, and then obtained a measure for the central force by a limit argument somewhat different from
the one which he had presented previously in Prop. 1. In Prop. 6 this measure is the acceleration in
units of time which according to Prop. 1, are proportional to the area swept by the radius vector. In the
following discussions the reader should consult Props. 1 and 6, which are not reproduced here, except for
some quotations and the diagrams shown in Figs. 1 and 4. These quotations come from a hew English
translation of the original Latin version of tliincipia by I.B. Cohen and Ann Whitman [Cohen, 1999].

Before discussing the controversy regarding the validity of Newton’s proof Prop. 1, it may be helpful
to outline below some of the main points emphasized in this paper. After a lengthy correspondence with
Robert Hooke in 1679 [Nauenberg, 1994b, 1998b], Newton considered the mathematical consequence of
thinking of a continuous force as the limit of a series of impulses which give rise to changes of velocity
over a vanishingly small interval of time. For impulsive forces, the orbit consists of the sides of a polygon,
which is the discrete version of an orbit such as Hooke had indicated in a letter to him,

... of a direct motion by the tangent and an attractive motion towards the central.body

Newton’s polygonal construction in Prop. 1 (see Fig. 1), which is discussed in Sections 3 and 4,
implements mathematically Hooke’s idea for orbital motion, provided the force impulses are directed
toward a common centes. In this case the resulting polygon is in a plane with its orientation determined

by the direction of the initial velocity and the initial position with respect to the cefiferhen these two

initial directions are the same, the orbit degenerates into a line). Newton must have regarded the proof of
planarity for impulsive forces as fairly obvious, because all he said about this subject in Prop. 1 is that
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... all these lines [the sides of his polygon] lie in the same plane.

The proof of the area law is also simple, but requires the application of Euclidean geometry, which
Newton provided in Prop. 1.

The main difficulty with the proof of Prop. 1 arises in connection with toatinuum limit when
the number of impulses increases indefinitely while the time between them becomes vanishingly small.
According to Newton, this limit gives rise to a continuous force, but Newton does not spell out this
continuum limit in any detail, referring instead the reader to Cor. 4, Lemma 3. When one looks up this
lemma one finds a polygonal construction very similar to that in Prop. 1, except that instead of triangles
it consists of parallelograms. In this lemma, as in the previous one, Newton describes his method for
obtaining the area and perimeter of a curve by considering the continuum limit

... as the maximum width [of the parallelograms] is diminished indefinitely.

This is the same language that Newton used in describing the corresponding limit which appears in
Prop. 1. In Lemma 3, a curve given which according to the accompanying figure and arguments
decreases monotonically. In this lemma it is clear from the geometry how to construct the associated
parallelograms with specified widths. But in the figure associated with Prop. 1 Newton does not show an
orbital curve associated with his polygonal construction. One of the main points, which will be elaborated
in Section 3, is that by referring to Lemma 3, Newton had in mind the existence of such a curve which
fixes the location of the vertices of the polygons in Prop. 1, much in the same way that the curve in
Lemma 3 determines the location of the upper corners of the parallelograms in this lemma. In this way,
Newton’s reference to Lemma 3 in support of the continuum limit can be justified, apart from some
problems concerning convergence. These problems are outside the scope of the mathematics of the
Principia, and will be discussed in Appendix A. In Appendix B the theorem and proof of Prop. 1 are
presented in modern notation. Our summary and conclusions are presented in Section 5, which hopefully
will help resolve the current controversy over the validity of Newton’s proof of Prop. 1.

2. Thecontroversy regarding Prop. 1

The current controversy with Prop. 1 arises mainly because Newton’s only statement describing his
continuum limit argument in thBrincipia is very succinct:

Now let the number of triangles be increased and their widths decreased indefinitely, and their ultimate pADfent (by
Lemma 3, Corol. 4) be a curved line

Apparently left unexplained is how thimdefinite increase in the number of triangles and the
corresponding reduction of their widths would have to be tailored to lead to a well defined and unique
continuum limit. But to understand Newton’s procedure one has to consult Lemma 3 which was given
by him as justification for his limit arguments. Remarkably, neither Whiteside (MP 6: footnote 19)
[Whiteside, 1991] nor Aiton [1989] commented on this important lemma, which was also neglected by
one of their critics [Erlichson, 1992], and by other recent commentators dpriheipia [Brackenridge,

1995; Chandrasekhar, 1995; Cohen, 1999; Densmore, 1995]. In Lemmas 2 and 3, and its corollaries,
Newton described how the area bounded by a given curve and a line and the length of the curve can
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be approximated by a sequence of rectangles (parallelograms). In Lemma 2, he proved rigorously the
existence of a limit for this area by obtaining lower and upper bounds given by the area of the inscribed
and circumscribed rectangles of equal width, showing that for a monotonic curve the difference between
these two bounds is the area of the first rectangle. Consequently, as the number of these rectangles
increases indefinitely while their widths approach zero this difference vanishes, and the sum of the area
of these rectangles approaches the same limiting value. By definition, this continuum limit is the area
under the curve. Indeed, modern calculus books reproduce Newton’s proof for the area under a curve,
but attribute it to later mathematicians. In Lemma 3 Newdwtendedhis proof in Lemma 2 to the case

of rectangles of unequal width:

The same ultimate ratios are also ratios of equality when the wAEWS8C, CD,... of the parallelograms angnequal[my italics]
and are all diminished indefinitely.

It is interesting to speculate that this extension was included inPitvecipia primarily to make

this Lemma applicable to Prop. 1, because the parallelograms associated with the vertices in the
corresponding diagram, taking the initial radial positia8 as the horizontal axis (see Fig. 1), would
have to have unequal widths. In Cor. 2 of this lemma Newton asserted that

...the rectilinear figure that is comprehended by the chords of the vanishing aromcides ultimately with the curvilinear figure,

and in Cor. 4, Lemma 3 he concluded,

And therefore these ultimate figures (with respect to their perinaetrare not rectilinear, but curvilinear limits of rectilinear figures.

Hence, Newton's reference to Lemma 3 suggests that in Prop. 1 Newton envisioned that the vertices
of the polygon in his diagram, Fig. 1, were located on a geometrical curve which remained fixed as the
number of vertices in this polygon increased indefinitely. Newton’s construction of this polygon requires
that these vertices all lie on a plane, and consequently this curve must liesarti@plane. This plane
is fixed byinitial conditions e.g., the initial position of radiuSAand the direction of the initial velocity
AB shown in Fig. 1, which do not change as the continuum limit is approached, although this was not
explicitly mentioned by Newton. The limit curve, however, is not shown in the diagram associated with
Prop. 1, which has misled most commentators of this proposition who did not consult Lemma 3. Referring
to Fig. 1, it can be seen that with this interpretation Newton’s entire polygonal construction is determined
by fixing the length of the first chordB. This construction proceeds as follows: the exten&iownf this
chord is set equal in length #B, and the first deflectio@c is determined by the condition that it is a
line parallel toB S starting atc which intersects the given curve at the pdihtThis procedure is iterated
with the next chordBC which is now determined, by setting its extensi@d equal in magnitude t8C
and the deflectiobd parallel toCS starting atZ, and ending at the intersectidn with the given curve.

This iterative process continues until the last pdihon the curve is reached. The extensBmof the
chordAB and the deflectio@c must lie on the plane of the initial triang®@ABand therefore the vertex

is also on the same plane. Similarly, this property holds also for all subsequent vertices of this polygon,
or as Newton stated in his proposition,

... making the body. . describe the individual line€D, DE, EF, ..., all these lines will lie in the same plane.
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For these lines to intersect a given curve, this curve must also lie in this plane. The orientation of this plane
in space is determined by the initial radial posit@8and by the initial chord\Bwhich is in the direction

of the initial velocity for the polygonal orbit. Furthermore, in the continuum limit the length of the chord
ABvanishes, while the plane’s orientation remains unchanged, because the diregfRmuast approach

that of the initial velocity which is directed along the tangent of the curve at the initial positian at

In Prop. 1 Newton did not specify directly how the magnitudes of the deflec@m®d,... are
obtained, nor how the magnitude must vary with the nunabef vertices. We have seen, however, that
these deflections can be determined by the assumption that the polygon vertices are attached to a fixed
planar curve. An alternative possibility, which in fact was considered by Hooke [Nauenberg, 1994b,
1998b], is that these deflections depend on the radial distance of the vertices of the polygon. Then to
obtain the continuum limit a rule has to be given for how these deflections scale with the number of
vertices. In this case Newton could have invoked his curvature lemma, Lemma 11, which implies that the
deflections scale as the square of the length of the adjacent sides of the polygon, or Lemma 10 that the
deflections scale as the square of the time between pulses. But instead, in Prop. 1 Newton cited Lemma 3
which is relevant to the continuum limit when a fixed curve is given.

Newton’s discrete construction in Prop. 1 refers to a sequence of triangles rather than rectangles as
in Lemma 3, but it is easy to see that this lemma remains valid in this case also. If the rectangles in
Lemma 3 are replaced by trapezoids obtained by connecting the intersections with straight lines then
the area of these trapezoids is greater than the area of the inscribed rectangles, but smaller than the area
of the circumscribed rectangles. Therefore, in the limit that the width of the rectangles is diminished
indefinitely, the area of these trapezoids also coincides with the area under the curve. But the total area
of the trapezoids is the same as the area of the triangles associated with Prop. 1. There is an important
detail, however, regarding this application which needs some clarification. As will be shown below, given
a curve of finite length Newton’s polygonal construction does not in general cover the entire curve for
a finite number of triangles. This problem, however, disappears in the limit that the number of triangles
increases indefinitely, and a proof is given in Appendix A.

Newton’s description of the continuum limit quoted above continues as follows:

...and thus the centripetal force by which the body is continually drawn back from the tangent of this curve will act uninter-
ruptedly... .

In Cors. 3 and 4 to Prop. 1 Newton stated that the ratio of forces at two distinct points on the curve was
given by the limit of the ratio of the displacements caused by central force impulses at these points, but
he did not show that in the continuum limit the measure of this force is proportional to the measure for

force which he gave in Prop. 6. This is another detail that will be discussed after the next section.

3. Thehistorical context of Prop. 1

To understand Newton’s proof of Prop. 1 is necessary to know what Newton’s meant by the term
orbit in the statement of this proposition (see Introduction). InRKacipia the termorbit is not defined
explicitly, but it has been generally understood to mean a geometrical curve which describes the position
of a moving body in space. Mathematically an orbit is a continuous curve which is parameterized by
the time variable. In Prop. 1, however, Newton had to have a more restrictive definition, because he was
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Fig. 2. This diagram in Newton¥/aste Boolshows an octagon inscribed in a circle. Here the deflectionisd, . . . are shown
from the respective tangerttsg, ch, .. . rather than from the extensions of the corresponding chadidsc, . . . as shown in Fig. 1.

dealing there with the special case of the motion of a body under the action of a central force, or in his
words,

... bodies made to move in orbitsby. .. an unmoving center of force.

To elucidate this point we turn now to the historical circumstances which led Newton to discover this
crucial proposition.

One of Newton’s early ideas about orbital motion was to consider the action of a continuous force as
the limiting case of a sequence of force impulses. As can be seen from his earliest surviving drafts on
orbital motion in theVaste BookHerivel, 1965; Whiteside, 1991], Newton approximated circular motion
by a regular polygon with its vertices located on a circle (see Fig. 2). He also obtained an expression for
the continuous force as the limit of force impulses [Brackenridge, 1995]. But apparently he did not
generalize this idea to noncircular motion until shortly after his correspondence in 1679 with Robert
Hooke [Nauenberg, 1994b], who suggested to him a somewhat similar conceptual scheme to understand
the orbital motion of planets moving around the sun. On November 24, 1679 Hooke had written to
Newton

And particularly if you will let me know your thoughts of that compounding the celestial motions of the planets of a direct motion by
the tangent and an attractive motion towards the central hody

Indeed, years later Newton recalled that

In the year 1679 in answer to a letter from Dr. Hookel found now [my italics] that whatsoever was the law of the forces which
kept the Planets in their Orbs, the area described by the Radius drawn from them to the Sun would be proportional to the times in
which they were described.

Prop. 1 appeared for the first time as Theorem 1 in a short manudedp¥loty that Newton had sent
in 1684 to Halley containing the beginning draft of what became latePthigipia. In this manuscript
Newton described the continuum limit in words similar to those he used later,
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Fig. 3. This diagram is a blowup of the upper part of Hooke’s September 1685 diagram (see Nauenberg [1994b, 1998b]) with
some auxiliary lines deleted to show more clearly its correspondence with Newton’s diagram in Prop. 1 (see Fig. 1).

Now let these triangles be infinite in number and infinitely small, so that each individual triangle corresponds to the individual moment
of time, the centripetal force acting without diminishing and the proposition will be established.

Apart from the mathematical language, which is far less precise than the language in Prop. 1 quoted
in Section 1, it is noteworthy that Newton gave no reference here to any lemmas which would justify
his limit argument. InDe Motu he did not give even a hint on how to establish a continuum limit.
Nevertheless, Hooke, who was one of the first members of the Royal Society to see this manuscript
[Nauenberg, 1994b, 1998b] recognized that for a finite number of impulses Newton’s polygonal
construction gave an approximate solution for orbital motion along the lines which he had suggested
to Newton in his November 24, 1679 letter quoted above. The best evidence for this supposition is that
shortly after the appearance D& Moty Hooke implemented Newton’s construction asadgorithmto
construct the orbit when the magnitude of the force impulses is proportional to the distance from the
center. In a manuscript dated September 1685, almost two years befdpeinhipia was published,
Hooke presented a remarkably accurate graphical drawing of an elliptical orbit [Nauenberg, 1994b,
1998b] with its center located at the center of force by setting the deflections proportional to the distance
from the center. An enlarged version of the upper part of his diagram, excluding some auxiliary lines,
is shown in Fig. 3. This enlargement reveals quite clearly the relation of Hooke’s diagram to Newton’s
diagram in Prop. 1, which is shown in Fig. 1. The main difference is that in Hooke’s figure the initial
position is located above the center of force and the initial velocity points to the right, leading to clockwise
motion, while in Newton'’s figure the initial position is to the right of the center of force and the initial
velocity is directed upward, leading to counterclockwise motion. Indeed, Hooke had also conjectured that
the force of gravity consisted of discrete pulses. In one of his Cutlerian lectures, eAtiestourse on

the Nature of Cometsead at a meeting of the Royal Society soon after Michaelmas 1682, but published
only after his death, Hooke speculated that bodies emitted periodic gravitational pulse in analogy with
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his theory of sound and light, and deduced that the intensity decreased with the inverse square distance
from the source:

This propagated Pulse | take to be the Cause of the Descent of Bodies towards the. Bartipose for Instance there should be a
1000 of these pulses in a Second of Time, then must the Grave body receive all those thousand impressions within the space of that
Second, and a thousand more the nexfHooke, 1971].

But the important question of how the magnitude of the deflection caused by the force impulses scales
with the size of the triangles, which is an essential ingredient to establish the existence of a continuum
limit in this application of Newton’s polygonal construction, was not—and could not—have been raised
by Hooke. Later, in Lemma 11 on curvature which appears in Section 1 &frtheipia, Newton showed
that these deflections scale with the size of the adjacent chord or arc length as the square of these
gquantities.

From the foregoing it is therefore reasonable to conclude that in Prop. 1 Newton had in mind that any
orbit under the action of central forces is the continuum limit of a polygonal oehisedby the action
of a sequence of force impulses. In this case the body moves along straight lines between impulses, or
by “direct motion” as envisioned by Hooke, where this motion is along the sides of a polygon, while
the force impulse give rise to a linear deflection or an “attractive motion” towards the center. Since all
the impulses are directed to this common center the resulting polygonal orbit is in a plane as Newton
demonstrated in Prop. 1. The orientation of this plane is determined by the direction of the velocity and
the position of the body relative to the center of force at some initial time. That Newton was well aware
of the important role of initial conditions to fix the orbit is demonstrated by Prop. 17 where he discussed
these conditions for the case of elliptical motion under the action of inverse square forces:

Suppose that the centripetal force is inversely proportional to the square of the distance of places from the iténtequired to
find the line which a body describes when going forth from a given place with a given velocity along a given straight line.

Setting the sequence of central force impulsesgataltime intervals, Newton gave a proof in Prop. 1
that the areas of the triangles associated with the resulting polygonal orbit are equal. Since planarity as
well as this area law are properties of any polygonal orbit due to central force impulses, it is reasonable to
expect that these properties remain also valid jimagoerly defined continuum limit, but Newton did not
give any details about how this limit is obtained apart from the brief sentence quoted in our Introduction,
and his reference to Cor. 4, Lemma 3. In the next section we will attempt to fill in some of the details left
out in Newton'’s discussion.

In the corollaries to Prop. 1 Newton referred to lireB, BC, etc. as chords of arcs. Therefore, it is
tempting to argue that this gives further evidence that in order to describe a continuum limit, Newton
considered that the vertices of his polygonal construction were attached to a fixed curve as the sides of
the polygon decreased indefinitely. But there are problems with this interpretation, because for any finite
polygon the discrete times associated with the vertices of this polygon is different from the corresponding
times defined by the continuous orbit. The reason is that the area of a finite triangle formed by the chord
of an arc of the curve and the centgrwhich is proportional to the time interval along the chord, differs
by a small amount from the area of the “pie” bounded by this arc, which is proportional to the time
interval along the arc. But in the corollaries to Prop. 1 Newton was not clear in making this distinction.
For example, he began Cor. 2 of Prop. 1 with the definition
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...chordsAB andBC of two arcs successively described by the same body in equal times

and concluded, without proof, that the diagoB& of the parallelogranABCV formed from this chords

is directed towards the centérin the limit that “those arcs are decreased indefinitely.” It appears that
“equal times” refers here to the time interval along the continuous orbit, and in this case, for finite arcs,
the chordBC does not correspond to the siBBE€ obtained from the polygon construction in Prop. 1, and
the diagonaBV is not directed toward. But this does not correspond to what is illustrated in the figure
associated with Prop. 1 which shoBY as a segment &S Moreover, starting with the same definition

as in Cor. 2, in the next corollary Newton argued tB&tis equal toCc, the deflection “generated by the
impulse of the centripetal force at B,” whiéghparallel toBSby construction. But this is true only if the
equal time intervals are those associated with the polygonal construction in Prop. 1, and theA&hords
andBC are also sides of the polygon.

4. Filling in some details of Newton’s proof of Prop. 1

Referring to the diagram in Prop. 1 (see Fig. 1), we assume that the ve#tices C, D, E, and
F of Newton’s polygon are located on a given curve. Since this polygon is planar we expect that this
curve should also lie on the same plane. We will show that in the continuum limit, Newton’s polygonal
construction determines a parameterization of this curve as a function of time, describing orbital motion
under the action of a central force centered at the p®jrand that in this limit the magnitude of the
central force obtained from Prop. 1 is equivalent to that defined in Prop. 6. There are some restrictions on
the possible planar curves which can support Newton'’s polygonal construction. For example, the radius
vectorr with origin atS cannot become tangential to the curve, because in the neighborhood of any such
point Newton’s polygonal approximation cannot be constructed. This construction also fails when the
curve crosses this origin, which corresponds to orbital motion when the central force diverged as 1
faster, and when the curvature approaches infinity. Therefore, our discussion will be confined to regions
of space where the central force and the curvature of the orbit remain finite.

As shown in the Introduction, given the length of the initial ché it is evident that Newton’s
polygonal construction is uniquely specified by the condition that the vertices of the polygon lie on a
fixedplanar curve. That Newton had such a given curve in mind, although it did not appear in the diagram
in Prop. 1, is clear from his reference to Cor. 4, Lemma 3 for the continuum limit, as we argued in detalil
previously. While in this lemma the approximation to a continuous curve is discussed for a subdivision
into rectangles, the extension to triangles is quite straightforward, but there is a detail which needs to be
worked out: ifA is the initial point of the curve then unless the length of the initial chBds suitably
chosen the last poirft of the polygon will in general not lie at the endpoint of the given curve. But in the
continuum limit this is not a problem. Suppose that the last vefteccurs before the endpoint of the
curve. Apply Newton'’s construction by extending ch&# to g, and draw a line frong parallel toFS.

Then either (a) this line intersects the curve at a new vestex (b) it does not intersect the curve at all. In
case (a) repeat Newton’s construction until case (b) is reached. Wiwethe last vertex, and deflections
due to the central force impulse are small, it is expected that the distarfcdroim the endpoint of the
curve decreases as the length of the initial chéRlis decreased. Then in the continuum limit all the
chord lengths becomes vanishingly small, and the last goiabnverges to the end point of the curve.

A rigorous proof for this assertion is given in Appendix A, which is based on a suggestion by Pourciau
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Fig. 4. Newton'’s diagram for Prop. 6.

(private communication). These considerations are valid provided that the curvature of the orbit is finite,
in which case the difference between the chord and the arc length is second order in the chord length.

In Prop. 1, the deflection at each vertex due to the central force impulse is equivalent to the deflection
that Newton described in Prop. 6. The main difference is that in Prop. 1 the extension of a chord replaces
the tangent line to the curve in Prop. 6. For example, referring to Fig. 1, at verte& extensiorBc of
the chordAB in Prop. 1 corresponds to the tangent IiPRin Prop. 6 (see Fig. 4), wit® equivalent to
B, and the deflectioi©c parallel toBSin Prop. 1 corresponding to the deflectiB@ parallel toPSin
Prop. 6. In the limit that the chord length approaches zero, the difference between the tangent line and
the chord becomes vanishingly small, and consequently these two constructions become similar, except
that the magnitude of the deflection at a vertex in Prop. 1 is twice as large as that in Prop. 6. Hence,
in the continuum limit one obtains a measure for central force in Prop. 1 equivalent to that in Prop. 6,
by dividing the deflection at a vertex, which depends quadratically on the adjacent chord length, by the
square of the area of the triangles. For example, the measure of the f@¢ehat continuum limit of
Cc/(A SBQ?, where(1/2) A SBCis the area of the triangIBBG is twice the measure of the force At
given in Prop. 6, which is the limit oQR/(A SPR?, where(1/2) A SPR= SP x QT is the area of the
triangle SPR(the deviationQRin Prop. 6 is equal to /2 the deviationCcin Prop. 1).

In Cor. 3 of Prop. 1 Newton indicated that

...the forces a8 and E are to each other in the ultimate ratio of the diagosandEZ.. .,

whereBV is equal to the deflectioBcwhile EZ is equal to the deflectioff in Fig. 1. In Cor. 4 of Prop. 1,
Newton clarified further the relation between impulses and continuum forces, by announcing that

The forces.. are to one another as those sagittas of arcs described in equal.tinveen the arc are decreased indefinitely. For these
sagittas are halves of the diagonals with which we dealt in Cor. 3.

Hence, in Prop. 1 Newton evaluated the ratio of forces at two different points on the orbit in the con-
tinuum limit, but he did not determined the absolute magnitude of the force. It is interesting that these
corollaries did not appear in the first edition of tRgncipia, suggesting that afterwards Newton felt the
need to explain how continuous forces are obtained as the limit of discrete impulses.

5. Summary and conclusions

We have shown that apart from some mathematical details which have been discussed here, Newton’s
polygonal construction for an orbit in Prop. 1 (see Fig. 1), due to the action of discrete impulses, has
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a well defined continuum limit which is justified by Lemma 3 in Section 1 ofBhimcipia. This limit

is a continuous planar curve as a function of time describing orbital motion under the action of central
forces with origin atS. It satisfies Kepler's area law, which states that the time interval between any
two points on the orbit is proportional to the area swept out by the radius vector between these points.
This property of an orbit for central forces was applied by Newton in Prop. 6 to obtain an expression
for the magnitude of the force when the orbital curve is known. The planarity property of the orbit is
a straightforward consequence of the requirement that this orbit is the continuum limit of a polygonal
trajectory due to force impulses, because the vertices of this polygon all lie in the same plane when
the impulses are directed to a common center. The orientation of this plane is determined by initial
conditions, i.e., the position and velocity vectors of the moving body at some given time. We also have
shown that it is straightforward to prove that in the continuum limit these impulses lead to a central force
which is proportional to the force measure defined in Prop. 6, but in Prop. 1 Newton established only the
ratio of these forces at two different points on the orbit.

Historically, Hooke played an important role in prompting Newton in 1679 to take a new approach to
orbital dynamics. This led him to prove the area law for central forces [Nauenberg, 1994b] which Kepler
had found empirically by fitting the orbit of the planet Mars to the observations of Tycho Brahe. There
is evidence that until 1679 Newton had been pursuing a different approach to orbital dynamics based on
his development of curvature [Nauenberg, 1994a; Brackenridge and Nauenberg, 2002]. This approach
corresponds to Bbcal description of central forces in which the area law is not apparent, and evidently
Newton was unaware that this law was a consequence of such forces until his correspondence with Hooke.
Starting with any such local definition of orbital motion leads also to difficulties with the arguments
presented in Prop. 1, particularly with the proof of planarity, as was argued recently by [Pourciau, 2003].
But in order to interpret correctly the logic of Prop. 1, it is important to understand the historical context
in which Newton discovered this crucial proposition. While in Prop. 6 Newton described the action of
central forces by ¢ocal condition which he then applied to Props. 9-17, there is also evidence that he
considered orbital motion byglobal condition, the continuum limit of discrete impulsive forces, which
he used to develop a sophisticated three-body perturbation theory. This theory is outlined in Prop. 17,
Cors. 3 and 4, and is described in full detail in the Portsmouth manuscripts [Nauenberg, 2000], which
remained unpublished until recently [Whiteside, 1974]. We conclude that apart from some mathematical
details left out by Newton, which have been discussed here, Prop. 1 is well grounded, and provides a
valid proof that for central forces the orbits are planar and satisfy Kepler's area law.

Acknowledgments

| thank Niccold Guicciardini and Bruce Pourciau for many stimulating exchanges, suggestions, and
critical comments on the subject of this paper.

Appendix A

Following a suggestion by Pourciau (private communication), | give here a rigorous proof in modern
notation that for a segment of an orbit with finite curvature all the chord lengths in Newton’s polygonal
construction in Prop. 1 vanish in a mathematically well defined continuum limit. Moreover, for orbits
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satisfying certain conditions, this construction covers a finite segment of the orbit, which justifies the
application of Lemma 3, Cor. 4 which Newton invoked for the existence of this limit in Prop. 1. This
proof also demonstrates that the Whiteside—Aiton criticism, that Prop. 1 applies onlyrtfingtesimal
arc, is incorrect.

Referring to Fig. 5 for the segment of an orbit, 4€§) be the chord length associated with ttte and
(j + Dth vertices of Newton’s polygon (see Fig. 1), aa@) = s(j + 1) — s(j) the difference in length
between adjacent chords. Thety) ~ d(j) cod6(j)] to first order in the ratial(j)/s(j), whered(j) is
the magnitude of the deflection at thith vertex which is parallel to the radius vector at this vertex, and
0(j) is the angle between this deflection and the chqyd. For an orbit with finite curvature, it follows
that

d(j) ~ c(j)s(j)?/sin(6(j)), (A.1)

wherec(j) is equal to half the curvature of the orbit at the intersection with;thevertex. The length
of the first chords (1) determines the length of all the other chords in Newton’s polygonal construction,
because

s()=s(D)+eD)+e(2+---+e(j—1 (A.2)
for j=2,3,...,n. Lets(1) = L/n whereL is some fixed length. Then

e(l) = (1) (L/n)?, (A.3)
andforj=2,3,...,n,
e(j) = (j)(L/n)*+o(L/n)?, (A.9)

wherec’(j) = c(j) cot(@(j)) and qL/n)® refers to all terms proportional td./»)3 and higher powers
of (L/n). Hence, the sum

e +e@) + - +e(j) =L/ D+ @+ +()) +0o(L/n). (A.5)
Now suppose that is the maximum curvature of the given segment of the orbit. Then

le(D) +e(2) +---+e(j)| < (L/n)?( — DIc'| +0(L/n)° (A.6)
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and

le(D) +e(@) + -+ e(m)| < (L/n)*(n — 1)|c'| + (L /n)?, (A.7)

where|c’'| = ¢ max(|coff(j)]]). The existence of an upper bound for the magnitude gb¢py] follows
from the constraint discussed previously that an orbit cannot become tangent to the radius vector, which
implies thatd (j) cannot be either<Oor 18C. Hence, as goes to infinity both of these two sums go to
zero, and therefore, according to Eq. (A.2), all the cherd$ also vanish in this limit. Therefore in this
limit Newton’s polygonal construction in Prop. 1 covers a segment of the orbit with a length given by the
limit of the sums(1) + 5(2) + s(3) + - - - + s(n) asn approaches infinity.

The length of this segment is a function of the paramétefor the special case where the curvature
is a constant, i.e., for a circular orbit with the center of force at the center of the circle, the parameter
is the length of the segment. In this case the afgle is equal to 99, and the quantities(;), which
are of order(L/n)3, do not contribute to the length of the curve. If the curvature decreases along a
segment of the orbit and the center of force is located at the initial center of curvature, thé @ngle
becomes smaller than 9@nd the corresponding length of the segment is larger Ehdrhis is the case,
for example, for a segment of an elliptic orbit if the initial position is at an apsis of the ellipse where the
curvature is a maximum, and the center of force is at one of the two foci. Another example is a spiral
curve along the direction where the curvature is decreasing, with the center of force at the center of the
spiral. Hence, we have shown that segments of the fundamental orbits which are discussed in Sections 2
and 3 of thePrincipia can be regarded as the continuum limit of Newton’s polygonal construction.

Appendix B

To help clarify the main points emphasized in this paper, | describe in this appendix the content of
Prop. 1 in modern vector notation. | start with a formulation of the main assumptions, which were not
spelled out by Newton, and the theorem associated with this proposition.

(a) For central forces, orbital motion is the continuum limit of motion along the sides of a polygon due
to the action of impulses directed towards a common center.

(b) The continuum limit is constructed (see Cor. 2, Lemma 3) by attaching the vertices of the polygon to
a given curve which remains fixed as the number of these vertices increases indefinitely.

Theorem. For a discrete sequence of central force impulsesaial timeintervals, the orbital motion
is along the sides of a planar polygon. The triangles defined by these sides and the center of force have
equal areas

For a central force which is the continuum limit of force impulses, the orbital motion is along a planar
curve with radius vector, having origin at the center of force, sweeping equal areas in equal times.

Assuming that there aneimpulses and: + 1 vertices in the polygon shown in the figure associated
with Prop. 1 (see Figs. 1 and 5), i&tbe the position vector ang} the velocity vector at thgth vertex
wherej =1, 2,...,n. Then Newton’s construction takes the form

Fii=T;+ ;A (B.1)
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and
l_jj+1=l_5j —i—ﬁle, (BZ)

where Az is the equaltime interval between impulses, am; is the instantaneous velocity change

AV; = [Z}/At, wherec_ij is the deflection at thgth vertex. The crossed product of Egs. (B.1) and (B.2)
is,

Figl X Vjp1 =7 XV +Fjp1 X Av.,-+1, (B.3)

where(1/2)|F; x v;| is the area of the triangle associated with jtle vertex. Since the deflectiaﬁ,
and corresponding velocity change); are parallel to’;, which is Newton’sdefinition of central force
impulses in Prop. 1, the last term in Eq. (B.3) vanishes, and consequently (a) the areas of the triangles
are equal and (b) the vertices of the polygon lie on a plane. This constitutes Newton’s proof of Prop. 1 in
the language of vector calculus for discrete impulses. _

The problem of the continuum limit is to describe how the time intervaland the deflectiond)
should vary as approaches infinity. Newton’s statement

Let the time be divided in equal times

corresponds to settingt = T/n, wgereT is some finite time interval, and his reference to Cor. 4,
Lemma 3 implies that the deflectiods are determined by the condition that the vertices of the polygon
are located on @iven curve. Since the polygon is on a plane with orientation determined by initial
conditions which are independentafthis curve must also be on the same plane. It can be described by
a vectorR(u«) whereu is a scalar parameter which can be chosen arbitrarily. For exampbm be the

arc length, or the angular variable in polar coordinates. Then the condition thathtlertex is located

on this curve is given by

?j=§(uj), (B4)

whereu; is the value ofu at the position of this vertex. Associated with tiith vertex is the time
tj = jT/n, and therefore in the continuum limitbecomes a function of andR () describes orbital
motion. Since; is proportional to the sum of the (equal) areas of the firstangles of the polygon, in

the continuum limit: is proportional to the area swept by the radius vedtar). The deflection due to
the force impulses is given by

d; = R(uj1) + R(uj_1) — 2R, (B.5)
and asAt vanishes the ratio
d;
B.6
(UjAl)z ( )

is proportional to the curvature of the orbitigtwhered; = |c7j| andv; = |v;|. For finite curvature, this
ratio has a well-defined limit, as was demonstrated by Newton in Lemma 11 and discussed further in the
subsequent Scholium of ti&incipia. Consequently,

AUJ' . C?j
At (Ar)2

(B.7)
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has a continuum limit corresponding to the standard definition in calculus of the acceleration or force/unit
mass,
Av; d?R
i= lim —L =— B.8
¢ At—=0 At dt? ( )

The existence of this limit follows also from Lemma 10, which implies that whenbecomes
vanishingly small the magnitudé;| of the deflections are proportional ta¢)2. But it is evident that
in Prop. 1 Newton did not have this condition in mind, because in the proof of this proposition he cited
Lemma 3 instead of Lemma 10.
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