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Kepler’s area law in thePrincipia: filling in some details
in Newton’s proof of Proposition 1
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Abstract

During the past 30 years there has been controversy regarding the adequacy of Newton’s proof of P
Book 1 of thePrincipia. This proposition is of central importance because its proof of Kepler’s area law all
Newton to introduce a geometric measure for time to solve problems in orbital dynamics in thePrincipia. It is
shown here that the critics of Prop. 1 have misunderstood Newton’s continuum limit argument by negle
consider the justification for this limit which he gave in Lemma 3. We clarify the proof of Prop. 1 by filling in s
details left out by Newton which show that his proof of this proposition was adequate and well-grounded.
 2003 Elsevier Inc. All rights reserved.

Résumé

Au cours des 30 dernières années, il y a eu une controverse au sujet de la preuve de la Propositio
qu’elle est formulée par Newton dans le premier livre de sesPrincipia. Cette proposition est d’une importan
majeure puisque la preuve qu’elle donne de la loi des aires de Kepler permit à Newton d’introduire une ex
géometrique du temps, lui permettant ainsi de résoudre des problèmes dans la domaine de la dynamiqu
Nous démontrons ici que les critiques de la Proposition 1 ont mal compris l’argument de Newton relatif aux
continues et qu’ils ont négligé de considérer la justification pour ces limites donnée par Newton dans son L
Nous clarifions la preuve de la Proposition 1 en ajoutant des détails omis par Newton, détails qui montren
preuve de cette proposition est adequate et bien fondée.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In Prop. 1 of thePrincipia Newton gave a proof that Kepler’s empirical area law for planetary o
and the confinement of these orbits to a plane are consequences of his laws of motion for the spe
of central forces. In his words,

The areas which bodies made to move in orbits described by radii drawn to an unmoving center of force lie in unmoving planes
are proportional to the times.

This proposition is justifiably regarded as a cornerstone of thePrincipia, because the proportionalit
between the area swept out by the radius vector of the orbit and the elapsed time enabled Newton
dynamical problems by purely geometrical methods supplemented by continuum limit arguments
he had developed. Although the validity of Newton’s proof was not questioned by his contempora
alternative analytic proof of the area law was given later by Jacob Hermann based on the analy
of the calculus which had been developed by Newton and by Leibniz [Guicciardini, 1999]. Howeve
influential historians of science, D.T. Whiteside and A.J. Aiton, have criticized Newton’s proof, cla
that it was inadequate and that it applied only to aninfinitesimalarc of the orbit [Whiteside, 1974; Aiton
1989]. Whiteside remarked that there were underlying subtleties in the proof that Newton did no
appreciated, and that Newton continued “to believe in its superficial simplicities” although, Whi
admitted, not even “Johann Bernoulli, his arch critic. . . saw fit to impugn the adequacy of Newton
demonstration” [Whiteside, 1991]. The basis for the Aiton–Whiteside criticism is that Newton had t
incorrectly the continuum limit of a discrete polygonal orbit due to a sequence of central force imp
Subsequently, this criticism has been accepted by many Newtonian scholars although some ar
have been presented that it is not valid [Erlichson, 1992; Nauenberg, 1998a].1 For example, in his new
translation and guide to Newton’sPrincipia, I.B. Cohen warmly endorsed Whiteside’s analysis [Coh
1999], while N. Guicciardini in his new bookReading the Principiaquestioned whether Newton
limit arguments in Prop. 1 are well grounded, although acknowledging dissenting views [Guicci
1999]. Other authors discussing thePrincipia either neglected to examine the validity of Newto
limit arguments in Prop. 1 [Brackenridge, 1995; Chandrasekhar, 1995], or failed to understan
[Densmore, 1995].2 More recently, Pourciau has argued that if one takes a “traditional view what Ne
means by orbital motion,” Prop. 1 contains in addition to mathematical inadequacies also logica
[Pourciau, 2003]. This is by far the most serious criticism, but it is also not valid. As will be shown
in 1679 Newton discovered Prop. 1 precisely because at this time he turned to anontraditionalview of
orbital motion which had been suggested to him by Robert Hooke [Nauenberg, 1994b, 1998b].

In this paper I review the historical circumstances which led Newton to his momentous discove
central forces account for Kepler’s area law, and I present arguments to refute the criticisms of h
of this law in Prop. 1. In order to understand this fundamental proposition, and to avoid misconce
voiced by recent commentators, it is helpful to keep in mind the historical context and the man

1 Some of the criticism of Whiteside’s analysis of Prop. 1 in Erlichson [1992] is not valid, because Whiteside did i
correctly the deflections due to force impulses as “second order infinitesimal magnitudes. . . .”

2 On p. 99 Densmore claims that “the bases of triangles in the proposition (Prop. 1). . .do not circumscribe and are n
inscribed in, this ultimate curve, nor do they connect to it or follow it in any other way as a kind of ‘ghost curve,’ ” an
claims that “Newton has not offered an argument that the limiting procedure in the proposition is a unique curve. . . .” But
Densmore ignores the fact that Newton invoked Cor. 4, Lemma 3 to justify his limiting procedure.
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Fig. 1. This diagram corresponds to Newton’s diagram in Prop. 1, but with the linesSc, Sd, Se, andSf deleted, and with an
additional curve through pointsABCDEF.

which Newton discovered Prop. 1, outlined in Section 3. In Section 4, I discuss in detail New
mathematical procedure to obtain a continuous orbit as the limit of a discrete polygonal orbit,
is the subject of recent controversies discussed in Section 2. In particular, I show also how in th
a sequence of discrete impulses leads to a continuous force with a measure which Newton d
subsequently in Prop. 6. In this proposition, Newton started with a continuous orbit that satisfi
area law, and then obtained a measure for the central force by a limit argument somewhat differe
the one which he had presented previously in Prop. 1. In Prop. 6 this measure is the acceler
units of time which according to Prop. 1, are proportional to the area swept by the radius vector
following discussions the reader should consult Props. 1 and 6, which are not reproduced here, e
some quotations and the diagrams shown in Figs. 1 and 4. These quotations come from a new
translation of the original Latin version of thePrincipia by I.B. Cohen and Ann Whitman [Cohen, 1999

Before discussing the controversy regarding the validity of Newton’s proof Prop. 1, it may be h
to outline below some of the main points emphasized in this paper. After a lengthy corresponden
Robert Hooke in 1679 [Nauenberg, 1994b, 1998b], Newton considered the mathematical conseq
thinking of a continuous force as the limit of a series of impulses which give rise to changes of v
over a vanishingly small interval of time. For impulsive forces, the orbit consists of the sides of a po
which is the discrete version of an orbit such as Hooke had indicated in a letter to him,

. . .of a direct motion by the tangent and an attractive motion towards the central body. . . .

Newton’s polygonal construction in Prop. 1 (see Fig. 1), which is discussed in Sections 3
implements mathematically Hooke’s idea for orbital motion, provided the force impulses are di
toward a common centerS. In this case the resulting polygon is in a plane with its orientation determ
by the direction of the initial velocity and the initial position with respect to the centerS (when these two
initial directions are the same, the orbit degenerates into a line). Newton must have regarded the
planarity for impulsive forces as fairly obvious, because all he said about this subject in Prop. 1 is
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The proof of the area law is also simple, but requires the application of Euclidean geometry,
Newton provided in Prop. 1.

The main difficulty with the proof of Prop. 1 arises in connection with thecontinuum limit, when
the number of impulses increases indefinitely while the time between them becomes vanishingly
According to Newton, this limit gives rise to a continuous force, but Newton does not spell ou
continuum limit in any detail, referring instead the reader to Cor. 4, Lemma 3. When one looks u
lemma one finds a polygonal construction very similar to that in Prop. 1, except that instead of tr
it consists of parallelograms. In this lemma, as in the previous one, Newton describes his met
obtaining the area and perimeter of a curve by considering the continuum limit

. . .as the maximum width [of the parallelograms] is diminished indefinitely.

This is the same language that Newton used in describing the corresponding limit which app
Prop. 1. In Lemma 3, a curve isgiven, which according to the accompanying figure and argum
decreases monotonically. In this lemma it is clear from the geometry how to construct the ass
parallelograms with specified widths. But in the figure associated with Prop. 1 Newton does not s
orbital curve associated with his polygonal construction. One of the main points, which will be elab
in Section 3, is that by referring to Lemma 3, Newton had in mind the existence of such a curve
fixes the location of the vertices of the polygons in Prop. 1, much in the same way that the cu
Lemma 3 determines the location of the upper corners of the parallelograms in this lemma. In th
Newton’s reference to Lemma 3 in support of the continuum limit can be justified, apart from
problems concerning convergence. These problems are outside the scope of the mathemati
Principia, and will be discussed in Appendix A. In Appendix B the theorem and proof of Prop.
presented in modern notation. Our summary and conclusions are presented in Section 5, which h
will help resolve the current controversy over the validity of Newton’s proof of Prop. 1.

2. The controversy regarding Prop. 1

The current controversy with Prop. 1 arises mainly because Newton’s only statement describ
continuum limit argument in thePrincipia is very succinct:

Now let the number of triangles be increased and their widths decreased indefinitely, and their ultimate perimeterADF will (by
Lemma 3, Corol. 4) be a curved line. . .

Apparently left unexplained is how thisindefinite increase in the number of triangles and
corresponding reduction of their widths would have to be tailored to lead to a well defined and
continuum limit. But to understand Newton’s procedure one has to consult Lemma 3 which was
by him as justification for his limit arguments. Remarkably, neither Whiteside (MP 6: footnote
[Whiteside, 1991] nor Aiton [1989] commented on this important lemma, which was also neglec
one of their critics [Erlichson, 1992], and by other recent commentators on thePrincipia [Brackenridge,
1995; Chandrasekhar, 1995; Cohen, 1999; Densmore, 1995]. In Lemmas 2 and 3, and its cor
Newton described how the area bounded by a given curve and a line and the length of the cu
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be approximated by a sequence of rectangles (parallelograms). In Lemma 2, he proved rigoro
existence of a limit for this area by obtaining lower and upper bounds given by the area of the in
and circumscribed rectangles of equal width, showing that for a monotonic curve the difference b
these two bounds is the area of the first rectangle. Consequently, as the number of these re
increases indefinitely while their widths approach zero this difference vanishes, and the sum of t
of these rectangles approaches the same limiting value. By definition, this continuum limit is th
under the curve. Indeed, modern calculus books reproduce Newton’s proof for the area under
but attribute it to later mathematicians. In Lemma 3 Newtonextendedhis proof in Lemma 2 to the cas
of rectangles of unequal width:

The same ultimate ratios are also ratios of equality when the widthsAB, BC, CD, . . . of the parallelograms areunequal[my italics]
and are all diminished indefinitely.

It is interesting to speculate that this extension was included in thePrincipia primarily to make
this Lemma applicable to Prop. 1, because the parallelograms associated with the vertices
corresponding diagram, taking the initial radial positionASas the horizontal axis (see Fig. 1), wou
have to have unequal widths. In Cor. 2 of this lemma Newton asserted that

. . . the rectilinear figure that is comprehended by the chords of the vanishing arcs. . . coincides ultimately with the curvilinear figure,

and in Cor. 4, Lemma 3 he concluded,

And therefore these ultimate figures (with respect to their perimeteracE) are not rectilinear, but curvilinear limits of rectilinear figures.

Hence, Newton’s reference to Lemma 3 suggests that in Prop. 1 Newton envisioned that the
of the polygon in his diagram, Fig. 1, were located on a geometrical curve which remained fixed
number of vertices in this polygon increased indefinitely. Newton’s construction of this polygon re
that these vertices all lie on a plane, and consequently this curve must lie in thesameplane. This plane
is fixed byinitial conditions, e.g., the initial position of radiusSAand the direction of the initial velocit
AB shown in Fig. 1, which do not change as the continuum limit is approached, although this w
explicitly mentioned by Newton. The limit curve, however, is not shown in the diagram associate
Prop. 1, which has misled most commentators of this proposition who did not consult Lemma 3. Re
to Fig. 1, it can be seen that with this interpretation Newton’s entire polygonal construction is dete
by fixing the length of the first chordAB. This construction proceeds as follows: the extensionBcof this
chord is set equal in length toAB, and the first deflectionCc is determined by the condition that it is
line parallel toBS starting atc which intersects the given curve at the pointC. This procedure is iterate
with the next chordBC which is now determined, by setting its extensionCd equal in magnitude toBC
and the deflectionDd parallel toCS, starting atd, and ending at the intersectionD with the given curve
This iterative process continues until the last pointF on the curve is reached. The extensionBc of the
chordABand the deflectionCcmust lie on the plane of the initial triangleSABand therefore the vertexC
is also on the same plane. Similarly, this property holds also for all subsequent vertices of this p
or as Newton stated in his proposition,

. . .making the body. . . describe the individual linesCD, DE, EF, . . . , all these lines will lie in the same plane.
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For these lines to intersect a given curve, this curve must also lie in this plane. The orientation of th
in space is determined by the initial radial positionASand by the initial chordABwhich is in the direction
of the initial velocity for the polygonal orbit. Furthermore, in the continuum limit the length of the c
ABvanishes, while the plane’s orientation remains unchanged, because the direction ofABmust approach
that of the initial velocity which is directed along the tangent of the curve at the initial position atA.

In Prop. 1 Newton did not specify directly how the magnitudes of the deflectionsCc, Dd, . . . are
obtained, nor how the magnitude must vary with the numbern of vertices. We have seen, however, t
these deflections can be determined by the assumption that the polygon vertices are attached
planar curve. An alternative possibility, which in fact was considered by Hooke [Nauenberg, 1
1998b], is that these deflections depend on the radial distance of the vertices of the polygon.
obtain the continuum limit a rule has to be given for how these deflections scale with the num
vertices. In this case Newton could have invoked his curvature lemma, Lemma 11, which implies
deflections scale as the square of the length of the adjacent sides of the polygon, or Lemma 10
deflections scale as the square of the time between pulses. But instead, in Prop. 1 Newton cited L
which is relevant to the continuum limit when a fixed curve is given.

Newton’s discrete construction in Prop. 1 refers to a sequence of triangles rather than recta
in Lemma 3, but it is easy to see that this lemma remains valid in this case also. If the rectan
Lemma 3 are replaced by trapezoids obtained by connecting the intersections with straight lin
the area of these trapezoids is greater than the area of the inscribed rectangles, but smaller than
of the circumscribed rectangles. Therefore, in the limit that the width of the rectangles is dimin
indefinitely, the area of these trapezoids also coincides with the area under the curve. But the to
of the trapezoids is the same as the area of the triangles associated with Prop. 1. There is an i
detail, however, regarding this application which needs some clarification. As will be shown below
a curve of finite length Newton’s polygonal construction does not in general cover the entire cu
a finite number of triangles. This problem, however, disappears in the limit that the number of tri
increases indefinitely, and a proof is given in Appendix A.

Newton’s description of the continuum limit quoted above continues as follows:

. . .and thus the centripetal force by which the body is continually drawn back from the tangent of this curve will act uninte
ruptedly. . . .

In Cors. 3 and 4 to Prop. 1 Newton stated that the ratio of forces at two distinct points on the cur
given by the limit of the ratio of the displacements caused by central force impulses at these poi
he did not show that in the continuum limit the measure of this force is proportional to the meas
force which he gave in Prop. 6. This is another detail that will be discussed after the next section

3. The historical context of Prop. 1

To understand Newton’s proof of Prop. 1 is necessary to know what Newton’s meant by th
orbit in the statement of this proposition (see Introduction). In thePrincipia the termorbit is not defined
explicitly, but it has been generally understood to mean a geometrical curve which describes the
of a moving body in space. Mathematically an orbit is a continuous curve which is parameteriz
the time variable. In Prop. 1, however, Newton had to have a more restrictive definition, because
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Fig. 2. This diagram in Newton’sWaste Bookshows an octagon inscribed in a circle. Here the deflectionsgc, hd, . . . are shown
from the respective tangentsbg, ch, . . . rather than from the extensions of the corresponding chordsab, bc, . . . as shown in Fig. 1

dealing there with the special case of the motion of a body under the action of a central force, o
words,

. . .bodies made to move in orbits. . .by . . . an unmoving center of force.

To elucidate this point we turn now to the historical circumstances which led Newton to discov
crucial proposition.

One of Newton’s early ideas about orbital motion was to consider the action of a continuous fo
the limiting case of a sequence of force impulses. As can be seen from his earliest surviving d
orbital motion in theWaste Book[Herivel, 1965; Whiteside, 1991], Newton approximated circular mo
by a regular polygon with its vertices located on a circle (see Fig. 2). He also obtained an expres
the continuous force as the limit of force impulses [Brackenridge, 1995]. But apparently he d
generalize this idea to noncircular motion until shortly after his correspondence in 1679 with R
Hooke [Nauenberg, 1994b], who suggested to him a somewhat similar conceptual scheme to un
the orbital motion of planets moving around the sun. On November 24, 1679 Hooke had wri
Newton

And particularly if you will let me know your thoughts of that compounding the celestial motions of the planets of a direct motion
the tangent and an attractive motion towards the central body. . .

Indeed, years later Newton recalled that

In the year 1679 in answer to a letter from Dr. Hooke. . . I found now [my italics] that whatsoever was the law of the forces which
kept the Planets in their Orbs, the area described by the Radius drawn from them to the Sun would be proportional to the tim
which they were described. . .

Prop. 1 appeared for the first time as Theorem 1 in a short manuscript,De Motu, that Newton had sen
in 1684 to Halley containing the beginning draft of what became later hisPrincipia. In this manuscript
Newton described the continuum limit in words similar to those he used later,
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Fig. 3. This diagram is a blowup of the upper part of Hooke’s September 1685 diagram (see Nauenberg [1994b, 199
some auxiliary lines deleted to show more clearly its correspondence with Newton’s diagram in Prop. 1 (see Fig. 1).

Now let these triangles be infinite in number and infinitely small, so that each individual triangle corresponds to the individual mom
of time, the centripetal force acting without diminishing and the proposition will be established.

Apart from the mathematical language, which is far less precise than the language in Prop. 1
in Section 1, it is noteworthy that Newton gave no reference here to any lemmas which would
his limit argument. InDe Motu he did not give even a hint on how to establish a continuum li
Nevertheless, Hooke, who was one of the first members of the Royal Society to see this ma
[Nauenberg, 1994b, 1998b] recognized that for a finite number of impulses Newton’s poly
construction gave an approximate solution for orbital motion along the lines which he had sug
to Newton in his November 24, 1679 letter quoted above. The best evidence for this supposition
shortly after the appearance ofDe Motu, Hooke implemented Newton’s construction as analgorithm to
construct the orbit when the magnitude of the force impulses is proportional to the distance fr
center. In a manuscript dated September 1685, almost two years before thePrincipia was published
Hooke presented a remarkably accurate graphical drawing of an elliptical orbit [Nauenberg,
1998b] with its center located at the center of force by setting the deflections proportional to the d
from the center. An enlarged version of the upper part of his diagram, excluding some auxiliary
is shown in Fig. 3. This enlargement reveals quite clearly the relation of Hooke’s diagram to Ne
diagram in Prop. 1, which is shown in Fig. 1. The main difference is that in Hooke’s figure the
position is located above the center of force and the initial velocity points to the right, leading to cloc
motion, while in Newton’s figure the initial position is to the right of the center of force and the in
velocity is directed upward, leading to counterclockwise motion. Indeed, Hooke had also conjectu
the force of gravity consisted of discrete pulses. In one of his Cutlerian lectures, entitledA Discourse on
the Nature of Comets, read at a meeting of the Royal Society soon after Michaelmas 1682, but pub
only after his death, Hooke speculated that bodies emitted periodic gravitational pulse in analo
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his theory of sound and light, and deduced that the intensity decreased with the inverse square
from the source:

This propagated Pulse I take to be the Cause of the Descent of Bodies towards the Earth. . . Suppose for Instance there should be a
1000 of these pulses in a Second of Time, then must the Grave body receive all those thousand impressions within the space
Second, and a thousand more the next. . . [Hooke, 1971].

But the important question of how the magnitude of the deflection caused by the force impulses
with the size of the triangles, which is an essential ingredient to establish the existence of a con
limit in this application of Newton’s polygonal construction, was not—and could not—have been
by Hooke. Later, in Lemma 11 on curvature which appears in Section 1 of thePrincipia, Newton showed
that these deflections scale with the size of the adjacent chord or arc length as the square
quantities.

From the foregoing it is therefore reasonable to conclude that in Prop. 1 Newton had in mind th
orbit under the action of central forces is the continuum limit of a polygonal orbitcausedby the action
of a sequence of force impulses. In this case the body moves along straight lines between imp
by “direct motion” as envisioned by Hooke, where this motion is along the sides of a polygon,
the force impulse give rise to a linear deflection or an “attractive motion” towards the center. Sin
the impulses are directed to this common center the resulting polygonal orbit is in a plane as N
demonstrated in Prop. 1. The orientation of this plane is determined by the direction of the veloc
the position of the body relative to the center of force at some initial time. That Newton was well
of the important role of initial conditions to fix the orbit is demonstrated by Prop. 17 where he disc
these conditions for the case of elliptical motion under the action of inverse square forces:

Suppose that the centripetal force is inversely proportional to the square of the distance of places from the center. . . it is required to
find the line which a body describes when going forth from a given place with a given velocity along a given straight line.

Setting the sequence of central force impulses atequaltime intervals, Newton gave a proof in Prop
that the areas of the triangles associated with the resulting polygonal orbit are equal. Since plan
well as this area law are properties of any polygonal orbit due to central force impulses, it is reason
expect that these properties remain also valid in aproperlydefined continuum limit, but Newton did no
give any details about how this limit is obtained apart from the brief sentence quoted in our Introd
and his reference to Cor. 4, Lemma 3. In the next section we will attempt to fill in some of the deta
out in Newton’s discussion.

In the corollaries to Prop. 1 Newton referred to linesAB, BC, etc. as chords of arcs. Therefore, it
tempting to argue that this gives further evidence that in order to describe a continuum limit, N
considered that the vertices of his polygonal construction were attached to a fixed curve as the
the polygon decreased indefinitely. But there are problems with this interpretation, because for a
polygon the discrete times associated with the vertices of this polygon is different from the corresp
times defined by the continuous orbit. The reason is that the area of a finite triangle formed by th
of an arc of the curve and the centerS, which is proportional to the time interval along the chord, diff
by a small amount from the area of the “pie” bounded by this arc, which is proportional to the
interval along the arc. But in the corollaries to Prop. 1 Newton was not clear in making this distin
For example, he began Cor. 2 of Prop. 1 with the definition
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. . . chordsABandBC of two arcs successively described by the same body in equal times. . .

and concluded, without proof, that the diagonalBV of the parallelogramABCV formed from this chords
is directed towards the centerS in the limit that “those arcs are decreased indefinitely.” It appears
“equal times” refers here to the time interval along the continuous orbit, and in this case, for finit
the chordBC does not correspond to the sideBC obtained from the polygon construction in Prop. 1, a
the diagonalBV is not directed towardS. But this does not correspond to what is illustrated in the fig
associated with Prop. 1 which showsBV as a segment ofBS. Moreover, starting with the same definitio
as in Cor. 2, in the next corollary Newton argued thatBV is equal toCc, the deflection “generated by th
impulse of the centripetal force at B,” whichis parallel toBSby construction. But this is true only if th
equal time intervals are those associated with the polygonal construction in Prop. 1, and the chAB
andBC are also sides of the polygon.

4. Filling in some details of Newton’s proof of Prop. 1

Referring to the diagram in Prop. 1 (see Fig. 1), we assume that the verticesA, B, C, D, E, and
F of Newton’s polygon are located on a given curve. Since this polygon is planar we expect th
curve should also lie on the same plane. We will show that in the continuum limit, Newton’s poly
construction determines a parameterization of this curve as a function of time, describing orbital
under the action of a central force centered at the pointS, and that in this limit the magnitude of th
central force obtained from Prop. 1 is equivalent to that defined in Prop. 6. There are some restric
the possible planar curves which can support Newton’s polygonal construction. For example, the
vector�r with origin atS cannot become tangential to the curve, because in the neighborhood of an
point Newton’s polygonal approximation cannot be constructed. This construction also fails wh
curve crosses this origin, which corresponds to orbital motion when the central force diverges as/r3 or
faster, and when the curvature approaches infinity. Therefore, our discussion will be confined to
of space where the central force and the curvature of the orbit remain finite.

As shown in the Introduction, given the length of the initial chordAB it is evident that Newton’s
polygonal construction is uniquely specified by the condition that the vertices of the polygon lie
fixedplanar curve. That Newton had such a given curve in mind, although it did not appear in the d
in Prop. 1, is clear from his reference to Cor. 4, Lemma 3 for the continuum limit, as we argued in
previously. While in this lemma the approximation to a continuous curve is discussed for a subd
into rectangles, the extension to triangles is quite straightforward, but there is a detail which nee
worked out: ifA is the initial point of the curve then unless the length of the initial chordAB is suitably
chosen the last pointF of the polygon will in general not lie at the endpoint of the given curve. But in
continuum limit this is not a problem. Suppose that the last vertexF occurs before the endpoint of th
curve. Apply Newton’s construction by extending chordEF to g, and draw a line fromg parallel toFS.
Then either (a) this line intersects the curve at a new vertexG or (b) it does not intersect the curve at all.
case (a) repeat Newton’s construction until case (b) is reached. WhenF is the last vertex, and deflection
due to the central force impulse are small, it is expected that the distance ofF from the endpoint of the
curve decreases as the length of the initial chordAB is decreased. Then in the continuum limit all t
chord lengths becomes vanishingly small, and the last pointF converges to the end point of the curv
A rigorous proof for this assertion is given in Appendix A, which is based on a suggestion by Po
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Fig. 4. Newton’s diagram for Prop. 6.

(private communication). These considerations are valid provided that the curvature of the orbit i
in which case the difference between the chord and the arc length is second order in the chord le

In Prop. 1, the deflection at each vertex due to the central force impulse is equivalent to the de
that Newton described in Prop. 6. The main difference is that in Prop. 1 the extension of a chord r
the tangent line to the curve in Prop. 6. For example, referring to Fig. 1, at vertexB the extensionBc of
the chordAB in Prop. 1 corresponds to the tangent linePR in Prop. 6 (see Fig. 4), withP equivalent to
B, and the deflectionCc parallel toBS in Prop. 1 corresponding to the deflectionRQparallel toPS in
Prop. 6. In the limit that the chord length approaches zero, the difference between the tangent
the chord becomes vanishingly small, and consequently these two constructions become simila
that the magnitude of the deflection at a vertex in Prop. 1 is twice as large as that in Prop. 6.
in the continuum limit one obtains a measure for central force in Prop. 1 equivalent to that in P
by dividing the deflection at a vertex, which depends quadratically on the adjacent chord length,
square of the area of the triangles. For example, the measure of the force atB, the continuum limit of
Cc/(�SBC)2, where(1/2)�SBCis the area of the triangleSBC, is twice the measure of the force atP

given in Prop. 6, which is the limit ofQR/(�SPR)2, where(1/2)�SPR= SP× QT is the area of the
triangleSPR(the deviationQR in Prop. 6 is equal to 1/2 the deviationCc in Prop. 1).

In Cor. 3 of Prop. 1 Newton indicated that

. . . the forces atB andE are to each other in the ultimate ratio of the diagonalsBV andEZ . . . ,

whereBV is equal to the deflectionCcwhile EZ is equal to the deflectionFf in Fig. 1. In Cor. 4 of Prop. 1
Newton clarified further the relation between impulses and continuum forces, by announcing tha

The forces. . . are to one another as those sagittas of arcs described in equal times. . .when the arc are decreased indefinitely. For these
sagittas are halves of the diagonals with which we dealt in Cor. 3.

Hence, in Prop. 1 Newton evaluated the ratio of forces at two different points on the orbit in th
tinuum limit, but he did not determined the absolute magnitude of the force. It is interesting tha
corollaries did not appear in the first edition of thePrincipia, suggesting that afterwards Newton felt t
need to explain how continuous forces are obtained as the limit of discrete impulses.

5. Summary and conclusions

We have shown that apart from some mathematical details which have been discussed here, N
polygonal construction for an orbit in Prop. 1 (see Fig. 1), due to the action of discrete impulse
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a well defined continuum limit which is justified by Lemma 3 in Section 1 of thePrincipia. This limit
is a continuous planar curve as a function of time describing orbital motion under the action of
forces with origin atS. It satisfies Kepler’s area law, which states that the time interval between
two points on the orbit is proportional to the area swept out by the radius vector between these
This property of an orbit for central forces was applied by Newton in Prop. 6 to obtain an expr
for the magnitude of the force when the orbital curve is known. The planarity property of the o
a straightforward consequence of the requirement that this orbit is the continuum limit of a poly
trajectory due to force impulses, because the vertices of this polygon all lie in the same plan
the impulses are directed to a common center. The orientation of this plane is determined by
conditions, i.e., the position and velocity vectors of the moving body at some given time. We als
shown that it is straightforward to prove that in the continuum limit these impulses lead to a centra
which is proportional to the force measure defined in Prop. 6, but in Prop. 1 Newton established o
ratio of these forces at two different points on the orbit.

Historically, Hooke played an important role in prompting Newton in 1679 to take a new appro
orbital dynamics. This led him to prove the area law for central forces [Nauenberg, 1994b] which
had found empirically by fitting the orbit of the planet Mars to the observations of Tycho Brahe.
is evidence that until 1679 Newton had been pursuing a different approach to orbital dynamics b
his development of curvature [Nauenberg, 1994a; Brackenridge and Nauenberg, 2002]. This a
corresponds to alocal description of central forces in which the area law is not apparent, and evid
Newton was unaware that this law was a consequence of such forces until his correspondence wit
Starting with any such local definition of orbital motion leads also to difficulties with the argum
presented in Prop. 1, particularly with the proof of planarity, as was argued recently by [Pourciau,
But in order to interpret correctly the logic of Prop. 1, it is important to understand the historical c
in which Newton discovered this crucial proposition. While in Prop. 6 Newton described the act
central forces by alocal condition which he then applied to Props. 9–17, there is also evidence th
considered orbital motion by aglobal condition, the continuum limit of discrete impulsive forces, wh
he used to develop a sophisticated three-body perturbation theory. This theory is outlined in P
Cors. 3 and 4, and is described in full detail in the Portsmouth manuscripts [Nauenberg, 2000]
remained unpublished until recently [Whiteside, 1974]. We conclude that apart from some mathe
details left out by Newton, which have been discussed here, Prop. 1 is well grounded, and pro
valid proof that for central forces the orbits are planar and satisfy Kepler’s area law.
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Appendix A

Following a suggestion by Pourciau (private communication), I give here a rigorous proof in m
notation that for a segment of an orbit with finite curvature all the chord lengths in Newton’s poly
construction in Prop. 1 vanish in a mathematically well defined continuum limit. Moreover, for o
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satisfying certain conditions, this construction covers a finite segment of the orbit, which justifi
application of Lemma 3, Cor. 4 which Newton invoked for the existence of this limit in Prop. 1.
proof also demonstrates that the Whiteside–Aiton criticism, that Prop. 1 applies only to aninfinitesimal
arc, is incorrect.

Referring to Fig. 5 for the segment of an orbit, lets(j) be the chord length associated with thej th and
(j + 1)th vertices of Newton’s polygon (see Fig. 1), ande(j) = s(j + 1)− s(j) the difference in length
between adjacent chords. Thene(j) ≈ d(j)cos[θ(j)] to first order in the ratiod(j)/s(j), whered(j) is
the magnitude of the deflection at thej th vertex which is parallel to the radius vector at this vertex,
θ(j) is the angle between this deflection and the chords(j). For an orbit with finite curvature, it follow
that

(A.1)d(j) ≈ c(j)s(j)2/sin
(
θ(j)

)
,

wherec(j) is equal to half the curvature of the orbit at the intersection with thej th vertex. The length
of the first chords(1) determines the length of all the other chords in Newton’s polygonal construc
because

(A.2)s(j) = s(1) + e(1)+ e(2)+ · · · + e(j − 1)

for j = 2,3, . . . , n. Let s(1) = L/n whereL is some fixed length. Then

(A.3)e(1) = c′(1)(L/n)2,

and forj = 2,3, . . . , n,

(A.4)e(j) = c′(j)(L/n)2 + o(L/n)3,

wherec′(j) = c(j)cot(θ(j)) and o(L/n)3 refers to all terms proportional to(L/n)3 and higher powers
of (L/n). Hence, the sum

(A.5)e(1)+ e(2) + · · · + e(j) = (L/n)2(c′(1)+ c′(2)+ · · · + c′(j)
) + o(L/n)3.

Now suppose thatc is the maximum curvature of the given segment of the orbit. Then

(A.6)
∣
∣e(1)+ e(2)+ · · · + e(j)

∣
∣ < (L/n)2(j − 1)|c′| + o(L/n)3
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(A.7)
∣
∣e(1)+ e(2)+ · · · + e(n)

∣
∣< (L/n)2(n− 1)|c′| + o(L/n)2,

where|c′| = cmax(|cot[θ(j)]|). The existence of an upper bound for the magnitude of cot[θ(j)] follows
from the constraint discussed previously that an orbit cannot become tangent to the radius vecto
implies thatθ(j) cannot be either 0◦ or 180◦. Hence, asn goes to infinity both of these two sums go
zero, and therefore, according to Eq. (A.2), all the chordss(j) also vanish in this limit. Therefore in th
limit Newton’s polygonal construction in Prop. 1 covers a segment of the orbit with a length given
limit of the sums(1) + s(2)+ s(3) + · · · + s(n) asn approaches infinity.

The length of this segment is a function of the parameterL. For the special case where the curvat
is a constant, i.e., for a circular orbit with the center of force at the center of the circle, the paramL
is the length of the segment. In this case the angleθ(j) is equal to 90◦, and the quantitiese(j), which
are of order(L/n)3, do not contribute to the length of the curve. If the curvature decreases al
segment of the orbit and the center of force is located at the initial center of curvature, the angθ(j)

becomes smaller than 90◦ and the corresponding length of the segment is larger thanL. This is the case
for example, for a segment of an elliptic orbit if the initial position is at an apsis of the ellipse whe
curvature is a maximum, and the center of force is at one of the two foci. Another example is a
curve along the direction where the curvature is decreasing, with the center of force at the cente
spiral. Hence, we have shown that segments of the fundamental orbits which are discussed in S
and 3 of thePrincipia can be regarded as the continuum limit of Newton’s polygonal construction.

Appendix B

To help clarify the main points emphasized in this paper, I describe in this appendix the con
Prop. 1 in modern vector notation. I start with a formulation of the main assumptions, which we
spelled out by Newton, and the theorem associated with this proposition.

(a) For central forces, orbital motion is the continuum limit of motion along the sides of a polygo
to the action of impulses directed towards a common center.

(b) The continuum limit is constructed (see Cor. 2, Lemma 3) by attaching the vertices of the poly
a given curve which remains fixed as the number of these vertices increases indefinitely.

Theorem. For a discrete sequence of central force impulses atequal timeintervals, the orbital motion
is along the sides of a planar polygon. The triangles defined by these sides and the center of for
equal areas.

For a central force which is the continuum limit of force impulses, the orbital motion is along a p
curve with radius vector, having origin at the center of force, sweeping equal areas in equal times

Assuming that there aren impulses andn + 1 vertices in the polygon shown in the figure associa
with Prop. 1 (see Figs. 1 and 5), let�rj be the position vector and�vj the velocity vector at thej th vertex
wherej = 1,2, . . . , n. Then Newton’s construction takes the form

(B.1)�rj+1 = �rj + �vj�t
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(B.2)�vj+1 = �vj + ��vj+1,

where�t is the equal time interval between impulses, and��vj is the instantaneous velocity chan
��vj = �dj /�t , where �dj is the deflection at thej th vertex. The crossed product of Eqs. (B.1) and (B
is,

(B.3)�rj+1 × �vj+1 = �rj × �vj + �rj+1 ×��vj+1,

where(1/2)|�rj × �vj | is the area of the triangle associated with thej th vertex. Since the deflection�dj
and corresponding velocity change��vj are parallel to�rj , which is Newton’sdefinitionof central force
impulses in Prop. 1, the last term in Eq. (B.3) vanishes, and consequently (a) the areas of the t
are equal and (b) the vertices of the polygon lie on a plane. This constitutes Newton’s proof of Pro
the language of vector calculus for discrete impulses.

The problem of the continuum limit is to describe how the time interval�t and the deflections�dj
should vary asn approaches infinity. Newton’s statement

Let the time be divided in equal times. . .

corresponds to setting�t = T /n, whereT is some finite time interval, and his reference to Cor
Lemma 3 implies that the deflections�dj are determined by the condition that the vertices of the poly
are located on agiven curve. Since the polygon is on a plane with orientation determined by in
conditions which are independent ofn, this curve must also be on the same plane. It can be describ
a vector �R(u) whereu is a scalar parameter which can be chosen arbitrarily. For example,u can be the
arc length, or the angular variable in polar coordinates. Then the condition that thej th vertex is located
on this curve is given by

(B.4)�rj = �R(uj ),
whereuj is the value ofu at the position of this vertex. Associated with thej th vertex is the time
tj = jT /n, and therefore in the continuum limitu becomes a function oft , and �R(u) describes orbita
motion. Sincetj is proportional to the sum of the (equal) areas of the firstj triangles of the polygon, in
the continuum limitt is proportional to the area swept by the radius vector�R(u). The deflection due to
the force impulses is given by

(B.5)�dj = �R(uj+1)+ �R(uj−1)− 2 �Rj,

and as�t vanishes the ratio

(B.6)
dj

(vj�t)2

is proportional to the curvature of the orbit atu, wheredj = | �dj | andvj = |�vj |. For finite curvature, this
ratio has a well-defined limit, as was demonstrated by Newton in Lemma 11 and discussed furthe
subsequent Scholium of thePrincipia. Consequently,

(B.7)
��vj = �dj

2
�t (�t)
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has a continuum limit corresponding to the standard definition in calculus of the acceleration or for
mass,

(B.8)�a = lim
�t→0

��vj

�t
= d2 �R

dt2
.

The existence of this limit follows also from Lemma 10, which implies that when�t becomes
vanishingly small the magnitude|dj | of the deflections are proportional to(�t)2. But it is evident that
in Prop. 1 Newton did not have this condition in mind, because in the proof of this proposition he
Lemma 3 instead of Lemma 10.
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