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This paper discusses the role of the series expansion of (1 — g cos w)™# in the works of
Leonhard Euler. Two of his papers are considered in detail, his 1748 prize-winning essay
on Saturn and Jupiter to the Paris Academy, and his 1756 prize-winning essay, also to the
Paris Academy, on planetary perturbations. A close examination of these works indicates
that Euler was more concerned with convergence issues than he traditionally has been
credited with being. © 1993 Academic Press, Inc.

Cet article discute le role des développements en série de (1 — g cos w)~* dans les oeuvres
de Leonhard Euler. Deux de ses articles sont analysés en détail, la piece au sujet de Saturne
et Jupiter qui a remporté le prix de ’académie de Paris en 1748 et celle au sujet des
perturbations planétaires qui a remporté le prix de I’académie de Paris en 1756. Un examen
attentif de ses oeuvres montre que Euler était plus interessé aux questions concernant la
convergence qu’on a cru.  © 1993 Academic Press, Inc.

Der Aufsatz behandelt die Rolle der Reihenentwicklung (1 — g cos w)™# in den Arbeiten
Leonhard Eulers. Es werden zwei seiner Werke genau erdrtert, sein von der Pariser Akade-
mie preisgekronter Aufsatz von 1748 iiber Saturn und Jupiter und sein ebenfalls von der
Pariser Akademie preisgekronter Aufsatz von 1756 liber Planetenstérungen. Eine sorgfiltige
Untersuchung dieser Werke zeigt, da3 sich Euler mehr mit Konvergenzfragen befasst hat
als man von ihm gewohnlich geglaubt hat.  © 1993 Academic Press. Inc.
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I. INTRODUCTION

Although it took until the 19th century for a rigorous theory of convergence to
become established, it is well known that infinite series were used by 17th and
18th century mathematicians. Many believed that the earlier mathematicians did
not bother with questions of convergence but simply manipulated them formally.
This last point was presented by Knopp in his famous work on infinite series:
“‘Practically the whole of the 19" century was required to establish the convergence
tests set forth in the preceding sections and to elucidate their meanings. . . .
How great a distance had to be traversed before this point could be reached is
clear if we reflect that Euler never troubled himself at all about questions of
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convergence; when a series occurred, he would attribute to it, without any hesita-
tion, the value of the expression which gave rise to the series’” [Knopp 1928, 298].

The same view is echoed by Carl Boyer in his work on the history of calculus
as: “'If (x + 0)"is to be expanded by the binomial theorem, the number of terms
will be infinite for values of n which are not positive integers. No conclusion
can in general be drawn from an application of the theorem unless the series
is convergent, but neither Newton nor his successors for a century later fully
appreciated the need for investigations into the question of convergence’’ [Boyer
1949, 207].

Contrary to Knopp’s statement Leonhard Euler (1707-1783) did indeed ‘‘trouble
himself with questions of convergence,”’ though he may not have “‘fully appreci-
ated’’ them according to our present understanding. If we use the distance analogy
of Knopp, Euler stood near the beginning of a long road which led to our present
understanding of convergence, but he was very aware of and did anticipate many
questions of convergence associated with trigonometric series expansions.

Euler made major contributions to the field we now call celestial mechanics
[1], and was one of the first investigators into the three-body problem. In a
prize-winning essay to the Paris Academy on the inequalities of Saturn and
Jupiter [Euler 1749b], Euler needed to determine the integral of the term (1 — g
cos w)~ Y2, where g is a constant near 4. He succeeded in determining this integral
by expanding the term into a trigonometric series and integrating it term by term.
This was well before Fourier and his analysis.

II. BACKGROUND—THE INEQUALITIES OF SATURN AND JUPITER

Euler addressed the Berlin Academy of Sciences in June 1747 concerning New-
ton’s universal law of gravitation. He noted the differences between recent obser-
vations and those which were computed according to the planetary theory of
Newton and Kepler. Quoting directly from his main argument:

The theory of Astronomy is therefore still much more removed from the degree of perfection
to which it has been thought to be already carried. Because if the forces, by which the Sun
acts upon the Planets, and the latter upon each other, were exactly in the inverse ratio of
the squares of the distances, they would be known, and consequently the perfection of the
theory would depend on the solution of this problem: That the forces by which a Planet
is moved being known, the motion of this Planet is determined. [Euler 1749a, 6; Waff
1975, 59]

This 1747 paper formed the basis for Euler’s later work on the three-body
problem. The problem of a body orbiting around a fixed center is treated in a very
general manner, including several modifications to Newton’s inverse square law
of gravitational attraction. In problems 5 and 6 of the paper Euler derives the
equations of motion of a body orbiting about a fixed center by means of an arbitrary
attractive force.

There were two serious problems left unresolved by Newton. The first was the
motion of the lunar apsides of about 3°3' per revolution and the second the action
of Jupiter on Saturn. The question was whether the Newtonian law of gravitation
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could successfully explain these two anomalies or should other forces, or other
force laws be considered. In 1747 Euler definitely believed the latter; however,
his further investigations into both of these three-body problems led him to con-
sider only the inverse square law.

Euler wrote first on the inequalities of Saturn and Jupiter in response to the
prize offered by the Royal Academy of Science of Paris for the year 1748. He
states in his introduction to the work:

The Royal Academy of Sciences of Paris, proposed as a subject for the prize of the year
1748, a theory of Saturn and Jupiter, by which one could explain the inequalities of the two
planets which is provided by their mutual cause, principally about their conjunction.

We know, first of all, that there is no doubt, that the Royal Academy is of the view that
the theory of Newton, founded on universal gravitation, which is found to be quite admirably
well in accord with all of the celestial motions, that those which are the inequalities which
are discovered in the motions of the planets, one is boldly able to maintain, that the mutual
attraction of the planets is the cause. Therefore as the Astronomers had perceived the various
inequalities in the motion of Saturn, one concludes, very likely, that they are caused by the
force with which this planet is attracted toward Jupiter which not only is closest to Saturn,
but also exceeds it in mass, and by consequence in attractive force all of the other planets
together, such that their effects are indefinitely small compared to that of Jupiter. For the
same reason, the force of Saturn on Jupiter so exceeds that of all of the other planets, that
to determine the disturbances to which the motion of Saturn and Jupiter are subjected, one
can without error, neglect the forces of the other planets.

Now following this theory, the cause of the inequalities which the Astronomers have
observed in the motions of Saturn and Jupiter, is made known, and in order to answer the
proposed question, one will have only to determine the motions of three bodies which are
mutually attracted in ratios composed of their masses, and by the inverse square ratio of
their distances, and then put in place of one of the three bodies the Sun, and the bodies
Saturn and Jupiter in lieu of the other two. By this, one sees the question proposed is reduced
to the solution of a problem purely of mechanics: but it is necessary to admit that this problem
is one of the most difficult ones of mechanics and hence one must not seek a perfect solution,
until much more progress is made in analysis. [Euler 1749b, 45]

The four differential equations which described the motion of Jupiter and Saturn
were determined by Euler, by applying the results of his 1747 paper, to be
I.  ddz — zd¢® = —a*d[(1 + v) cos ¥*/z2 + nz/v?
+ n cos w/y* — ny cos w/v?]

II.  2dzde + zdde = —na’d{® sin w(1/y? — y/v?)
I11. dm = [(na*d® sin(e — m) sin(d — 7))/ (zde)][1/y* ~ y/v3]
V. dlog tan G = [(na*d{® cos(p — =) sin(® — 7))/ (zde)l[1/y? — y/v?],

where z is the shortened distance from Saturn to the Sun, ¢ is the longitude of
Saturn, 7 is the longitude of the ascending node, G is the inclination of the orbital
planes, ¥ is the longitude of Jupiter, ¢ is the latitude of Saturn, v is the mass of
Saturn divided by the mass of the Sun with a value of 1/3021, a is the mean
distance of Jupiter to the Sun, » is the mass of Jupiter divided by the mass of the
Sun and equal to 1/1067, { is the mean anomaly of Jupiter, y is the distance of
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Jupiter to the Sun, w is the elongation of Saturn and Jupiter, and v, which is the
distance between Saturn and Jupiter, is equal to (y* + z%/cos®y — 2yz cos w)"?
[Euler 1749b, 58] [2].

In Section III of the essay Euler begins to solve these equations by reducing
the problem with simplifying assumptions. First assume that the motion of both
planets occur in the same plane. This reduces the number of equations from four
to just the first two. It also implies that ¢ = 0 and that cos = 1, which simplifies
the first equation and reduces v to (y?> + z> — 2yz cos w)"2. Next assume that
the orbit of Jupiter is a circle; then y can be replaced by its mean distance a. Now
we have the following equations:

I ddz — zd¢* = —a*d( + v)/Z2 + nz/v?
+ (n cos w)/a’ — na cos w/v?).

1.’ 2dzde + zdde = —na’d{* sin w(1/a® — alvd).

Euler next assumes that if Jupiter were not present, then the (unperturbed) orbit
of Saturn would be a circle; i.e., its eccentricity would be zero. He states that
the rate of change of Saturn’s longitude is approximately proportional to the rate
of change of Jupiter’s longitude. The difference is represented by a term, n dx,
which accounts for the effect of Jupiter on Saturn; i.e., dp = m d{ + n dx,
where m represents the constant of proportionality and the term n dx is small in
comparison to the term m d{. Next Euler considers z, the shortened distance of
Saturn to the Sun. He notes that without the effect of Jupiter z would be equal
to f, the mean Saturn—-Sun distance, but with Jupiter’s effect, z = f(1 + nr),
where the term #r is small. Euler further states that the terms nr and n dx depend
uniquely on the angle w, the Saturn-Jupiter elongation. Since n dx is small, he
uses the relation dg = m d{, and it follows that the rate of change of the elongation
is do = (1 — m) d{. He then defines f = Aa, g = 2\/(1 + A?),and h = A1 +
A%)*2, The term g can be seen to be equal to 2af/(a> + f?), v is now equal to
(@®> + f* — 2af cos w)'?, and (1 + nr)~"? is approximately equal to (1 — 2nr).
These relations permit Euler to rewrite the equations as

L. m*d{ + 2mndx + mPnr d{ — n ddrldl
= (1 + v) dU/N — 2nrdt/N
+ nd{ cos w/X + nd{(A — cos w)/(h(1 — g cos w)*?)

I.” 2mdr + ddx/d{ = — d{ sin w/\ + d{ sin w/(h(1 — g cos w)*?).
[Euler 1749b, 59-60]
In order to integrate the two equations Euler notes that one must deal with the
integral of the term (1 — g cos w)~*2. A closed form expression for this integral

is not possible, and so he makes a significant mathematical aside on how to obtain
this in a series expansion.

II1. THE FIRST APPEARANCE OF THE TRIGONOMETRIC SERIES

The main impedement to finding the solution of these differential equations (I",
I1") of motion was given by Euler as:
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To take advantage of these equations, the greatest difficulty is found with the irrational
formula (1 — g cos w)™* which is not possible to resolve into a convergent series, seeing
that g is near to 2 [laquelle ne se peut résoudre dans une suite convergente, vii que la valeur
de g est environ = %]. [Euler 1749b, 60]

The series he refers to arises by expanding the term (1 — g cos w)™* using
the binomial expzasion. Since Euler does not give us a definition of the word
‘‘convergence, ’ we will examine how he actually uses these series, rather than
impose later meanings onto his words. The rate of convergence of the above series
is dependent on the value g, which is defined in terms of the mean distances from
the sun of the two planets. Indeed to obtain an approximate error of less than
0.001, without making any assumption about the value of cos w other than that
it is less than 1 in absolute value, when g is set to 0.8 one would need to compute
at least 30 terms of the series. Thus, the series is for practical purposes not
convergent. Euler continues:

This circumstance at first led me to believe that retaining this irrational formula in the

calculations would render the solution almost impractical, seeing that one must discover the

integral values by the measurement of the area of curved lines; which gives a very laborious
approximation, and certainly many steps. [Euler 1749b, 60]

Euler has rejected the approximation method ‘‘area under curved lines,”” which
is a numerical technique to obtain an approximate value for the integral, in favor
of developing a mathematical approach of solving the problem.

It is true that the last equation . . . could be integrated were it not that one has to resolve
the irrational formula (1 — g cos w)~¥% but this integration hardly helps in the first equation,
unless one wishes to resort to calculating the area under curved lines, a method which,
although it is practical in the present hypothesis, is not of any use, when one will have to
consider the eccentricity of one or the other of the orbits. This circumstance obliges me to
make a digression about the formula (1 — g cos w)~*?, which I consider in a more general
form as follows, (1 — g cos w)™* . . . whose resolution, following ordinary rules is:

(1—-—gcosw)™ =1+ pu/l-gcosw
+ e+ D/ -2 g¥cos’w + ulp + D + 2)/(1 -2+ 3)
-gicosPw + . . . etc.

but this series is not suitable for my purpose, in as much as it is not sufficiently convergent
(tant parce qu’elle n’est pas assez convergente), since it contains powers of cos w. As for
the last inconvenience, one can remedy it by reducing the powers of the cosine of the angle
w, to the cosines of multiples of the angle, by means of the following rules, founded on those
of the Trigonometry:

COs @ = COS w

2cos’w =cos2w + 1/2-2/1

4 cos’w = cos3w + 3/l cos @

8costw = cosdw + 4/1cos2w + 1/2-4/1-3/2
etc.

where the law of the progression is evident, with the remark that the absolute or constant
terms are all multiplied by 1/2.
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Having made these substitutions, as much as the expression becomes very complicated,
we can assume that it becomes:

(1 -gcosw)™=A+ Bcosw + Ccos 2w + Dcos 3w + E cos 4w
+ Fcos Sw + G cos 6w + H cos 7w + etc. [Euler 1749b, 61]

The coefficients of this cosine series are again infinite series themselves which
must all be evaluated. To simplify this evaluation he proceeds to derive a method
of determining all the coefficients once the values of A and B are known.

For let

s =A+ Bcosw + Ccos 2w + etc.
= (1 — gcosw)™“

He then derives the term ds/s by differentiating

logs = —u - log(l — g cos w)
to get
ds/s = —u g sin w do/(1 — g cos w),
which gives
(1 — gcosw)ds/do + pug ssinw = 0. (A)

Noting that
ds/de = —B sin @ — 2C sin 2w — 3D sin 3w . . .
and using the relations
sin nw - cos w = (1/2) sin(n + Dw + (1/2) sin(n — De
and
cosnw:-sinw = (1/2) sin(n + Nw — (1/2) sin(n — DNw,
Eq. (A) reduces to a sine series as follows:
(=B + gC + ugA — ugC/l2)sinw + (—2C + gB/2 + 3gD/2 + ugB/2
— ugD/2)sin2w + . .. =0.
This sine series can be identically zero only if all of the coefficients vanish, hence
C = (2B - 2pgA)I2 - pel, D = (4C — (u + DgB)/[3 - pkgl,
etc.

In order to determine the values of A and B Euler states: *“. . . I have discovered
a special method, to determine these sums sequentially: it is founded on the
division of a right angle into as many parts as one wants because the sine of these
parts provides a property which has a good agreement with the series, which then
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gives the values of A and (1/2) B. Let g designate a right angle, then I say that
the following expressions approach more and more these values’ [3].

I

II.

IIL.

A
(1/2)B

A

(1/2)B

(1/2)B

+(1/2)(1 — gsin g/2)™* + (1/2)(1 + g sin g/2)7%.

+(1/2) sin (g/2)(1 — g sin q/2)™*
— (1/2) sin(g/2)(1 + g sin q/2)7*.

+(1/4)(1 — g sin g/4)~* + (1/4)(1 — g sin 3g/4)™*
+ (1/4)(1 + gsing/4)~*#
+ (1/4)(1 + g sin 3g/4)~*.

+(1/4) sin (g/4)(1 — g sin g/4)™*

+ (1/4) sin(3qg/4)(1 — g sin 3g/4)™*

— (1/4) sin(g/4)(1 + g sin g/4)™*

— (1/4) sin(3g/4)(1 + g sin 3g/4)~*.

+(1/6)[(1 — g sin g/6)™* + (1 — g sin 3q/6)™*

+ (1 — g sin 5g/6)~#

+ (1 + gsing/6)™* + (1 + g sin 3g/6)™*

+ (1 + g sin 5¢/6)7#]

+(1/6)[sin(g/6)(1 — g sin g/6)™* + sin(3g/6)(1 — g sin 3q/6)~*
+ sin(5¢/6)(1 — g sin 5q/6)~* — sin(q/6)(1 + g sin q/6)™*
— sin(3g/6)(1 + g sin 3¢/6)™*

— sin 5¢/6(1 + g sin 5g/6)*] [Euler 1749b, 65].

We can reconstruct the method by which Euler derived the sequence for approxi-
mating the coefficients A and B. We use radian measure for clarity in this recon-
struction, although it should be understood that Euler used the older degree
notation. We present the argument for the coefficient A; the case for B is similar.
The argument is dependent upon the coefficients A, B, C, D, E, etc. eventually
becoming small.

Euler begins with the equation

(1 —gcosw)™ =A+ Bcosw + Ccos 2w + D cos 3w + E cos 4w

+ Fcos 5w + Gcos 6w + Hcos Tw + etc.

If we replace the argument o with  + 7 and use the identities

and

cos(w + ) = COSwCOST — sinwsin7T = —cos w

cos(n(w + ) = cos nw cos(nm) — sin nw sin(rw) = (—1)" cos nw,



HM 20 EULER’S TROUBLESOME SERIES 61

we then get the equation

(1 +gcosw)y™ =A—Bcosw + Ccos2w — D cos 3w + E cos 4w
— Fcos 5w + Gcos 6w — H cos Tw + etc.

If we now add the two equations and divide by 2 we get

(/21 — gcosw)™™ + (1 + g cos w)#]
=A+ Ccos2w + Ecos 4w + G cos 6w + I¢cos 8w. . . .

Now replacing o with @ — 7/2 and using the identities
cos(w — w/2) = cos w cos #/2 + sin w sin 7/2

= sin w,

cos2n(w — m/2) = cos 2nw cos 2n - w/2 + sin 2nw sin 2n - /2
= (—1)" cos 2nw,
we get the following, which we will refer to as (*):
(1/D[(1 — gsinw)™ + (1 + g sin w)™#]
=A-Ccos2w + Ecosd4o — Gcosbw + Icos 8w — . . . .

If we evaluate this equation at = 7/4 we get:
(1/2D[(1 — g sin 7w/4)™* + (1 + g sin 7w/4)~#]
=A—Ccosm/2+ Ecosw —Gcecos3m/2 + Icos2m + . ...
=A-E~+1...
Hence
A=0/2)I1 —gsinm/d)y™ + (1 + gsinw/d) “]+ E—-I1+ M. ..etc.

This expression approximates A with an error approximately equal to E. This
gives us Euler’s approximation I to A.

The technique is now to divide 7/2 into four parts, i.e., w/8, #/4, 3m/8. First
evaluate (*) at 7/8,

(/2)[(1 — gsinw/8)* + (1 + g sin 7/8)7#]
=A—-Ccosmw/4 + Ecosw/2 — Geos3m/d + Icosm + . . .
and evaluate (*) at 37/8,
(1/2[(1 — g sin 37/8) * + (1 + g sin 37/8)~*
=A - Ccos3n/4 + Ecos3m/2 — Gcos9m/4 + . . . .

We add these terms together and divide by 2 to get
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/DA - gsina/8)* + (1 + g sinw/8)*

+ (1 — gsin37/8)~* + (1 + g sin 37/8)7#]

A ~ C(cos w/4 + cos 3w/4) + E(cos w/2 + cos 37/2)

— G(cos 3w/4 + cos 9m/4) + I(cos m + cos m)

— K(cos 57/4 + cos 7ma/4) + M(cos 3mw/2 + cos w/2). .
=A~-C-0+E-0-G-0+1-0-K-0+M- 0+O 0-0.

i

Hence
=1/ — gsin7w/8)* + (1 + gsinn/8 * + (1 — g sin 37/8)
+ (1 + gsin3n/8* — Q + .. .ctc.

Therefore we can approximate A with an error less than Q. This gives us Euler’s
approximation II to A. Continuing in this manner we can get a more and more
accurate determination of A [4] [Golland 1991, 35-37].

Euler uses the value 0.8405 for g and he calculates a value of 3.21789 for A by
dividing the right angle into 10 parts. For comparison the following table was
calculated, using this same value for g, as in Eqgs. I, II, III:

Division of right angle into n parts A

2 parts 2.18346
4 parts 3.08396
6 parts 3.20336
8 parts 3.21616
10 parts 3.21746
12 parts 3.21758
14 parts 3.21759
16 parts 3.21759

The correct value for A is calculated as

A

I

(1/2)w j (1 — g cos w) ? dw

3.217598.

The difference between our calculated value for n = 10 and that of Euler is most
probably due to the number of significant digits carried in the calculations, and
to the number of digits used in calculating the cosine function [Euler 1749b, 62-72].

Euler then proceeds to substitute the series expansion into Egs. I’ and II' and,
by means of term by term integration, obtains the final results. He states that the
integrations result in a series which converges faster than the original [Euler 1749b,
67].

1

IV. EULER’S LATER USE OF THE SERIES

Euler uses this same trigonometric series in a later paper on planetary perturba-
tions which won the Paris prize in 1756 {Euler 1769, 50-51]. In this paper he has
generalized the problem from Saturn and Jupiter to that of any two planets, one
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to be called the perturbed planet and the other the perturbing planet. He is aware
that in order to consider all planetary perturbations he would be doing the n-body
problem. But he argues there is no loss in generality if one considers the problem
to be a sequence of three-body problems, one for each of the remaining planets.
The true motion of a given planet would become a sequence of corrections to the
results obtained for the previous three body problem.

He has two possible methods for obtaining the actual planetary orbits. Both
begin by transforming the four fundamental differential equations (I-I1V) into
expressions for the differentials of the following six orbital elements; the perturbing
planet’s longitude; the perturbed planet’s semiparameter; the perturbed planet’s
eccentricity; the perturbed planet’s apsidal line; the longitude of the ascending
node of the perturbed planet; and the perturbed planet’s inclination. At this point
either he can solve for the elements by integration as he did in the Saturn and
Jupiter paper, or he can use an alternative method which he developed in a
paper of 1752 [Euler 1758]. This latter method would require first establishing the
elements which describe the initial orbit of the perturbed planet at some point in
time and then after a small increment of time modifying the elements using the
differential changes as given by the equations. Euler argues that this method will
be very laborious since one must constantly apply the differential corrections as
often as once an hour or once a day and more importantly, the accuracy of the
method is dependent upon the accuracy with which one can determine the initial
ellipse. He is concerned that any errors in determining this initial ellipse will tend
to grow with each incremental correction. For these reasons, he decides to do
the integrations, and he again employs the method of expanding the disturbing
terms in the differentials into trigonometric series and integrating term by term
[Euler 1769, 45-46].

The differentials of the orbital elements are given by Euler as

do = adw/x? - (ap)'?;
dp = —2nMaxdw(ap)'?;
dg = nade(2M cosv + Nsinv — (Mq(sinv)?)/(1 — g cos v)) - (ap)'’?;
de — dv = (nadw/q)2M sinv — N cos v
+ (Mg sin v cos v)/(1 — q cos v))(ap)'?.
dm = —naxyde sin(e — ) sin(@ — 7)(1/z23 — 1/¥3)(alp)'?;
dlogtan G

—naxydw cos(e — m) sin(@ — m)(1/z> — 1/y*)(alp)'*?
[Euler 1769, 41-44],

where the perturbing planet moves along an ellipse defined by y =
c/(1 — e cos u), with

¢ its semiparameter,
e its eccentricity,

u its true anomaly,
9 its longitude;



64 GOLLAND AND GOLLAND HM 20

the projection of the orbit of the perturbed planet moves along an ellipse x =
p/(1 — g cos v), with

p its semiparameter,
g its eccentricity,

v its true anomaly,
¢ its longitude;

a is the mean distance from the sun to the perturbed planet;

o is the mean anomaly of the perturbed planet;

n is the ratio of the mass of the perturbing planet to that of the sun;

zis the distance between the perturbing planet and the projection of the perturbed
planet (the curtate). and is equal to (x? + y> — 2xy cos(e — 8))'/%

M is an expression equal to y(1/z° — 1/y?) sin(p ~ 8);

N is an expression equal to x/z° — y(1/z> ~ 1/y®) cos(¢ — 6).

[}

He notes that the expression for 1/z% is very ‘‘troublesome,’”” and wishes to
transform it into a convergent series which can be integrated term by term [Euler
1769, 49-50]. He definesn = ¢ — 6, x> + y* = r’, and s = 2xy/(x* + y?), then
z = r(1 — scosmn)'*and hence 1/z* = (1 — s cos m)~*?/r’. Thus the expression
(1 — 5 cos n)~3? expanded in an infinite series will converge since s is less than
1, although the convergence will be ‘‘excessively slow’’ unless s cos 7 is very small
[Euler 1769, 49-50]. After making the same standard trigonometric substitution for
the product of the cosines of two angles as he did in the earlier paper, he finds

(1 — scosm) 3 =P + Qs cosnp + Rs? cos2n
+ Ss® cos3n + Ts* cosdn + etc.

This allows him to give the following expression:
1/23 = 1/r¥(P + Qs cosm + Rs?cos 2n + Ss cos 3y + Ts* cos 4n + etc).

It should be noted that this cosine series expansion for (1 — s cos ) ~¥?is different
from that used in the earlier Saturn and Jupiter paper. By explicitly having the
powers of s appear in the expansion, Euler is able to show that the coefficients
P, (1/2)Q, (1/2)R, (1/2)S, . . .etc., which are series expansions in s, are dominated
by the geometric series 1 + s> + s* + s® + . . . . Since this geometric series
has sum equal to 1/(1 — s?), he reasons that multiplying each term of the original
series by (1 — s?) would result in an expansion which would have a sum near 1,
and would be easier to compute. Thus he works with the series for P(1 - s?),
(1/2)Q(1 — s?), (1/2)R(1 — s5%), etc. Once the value for s is known for the particular
three body problem, it becomes very easy to recover the values for P, Q, R, . . .
etc. and hence the series expansion for (1 — s cos n) %2

V. CONCLUSION

Euler expands various algebraic expressions resulting from transformations of
the equations into infinite series, which can be integrated term by term to obtain
approximate solutions. The series (1 — s cos 1) ¥ plays a key role in this method.
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Euler’s treatment of perturbation theory from 1747 onward is fundamentally con-
cerned with the expansion of (I — s cos )~ ? as a specific case of (1 — s cos
n)~*, which is of interest mathematically as part of his contribution to the theory
of convergence. He enters into a significant mathematical discussion of the series
(1 — g cos ) "*in the Saturn and Jupiter paper. The major attempts to cope with
planetary perturbations during the remainder of the eighteenth century by Clairaut,
D’Alembert, Lagrange, and Laplace all use this series [Wilson 1985, 18]. However,
Euler was the first to investigate it mathematically and use it in perturbation
theory.

In the case of Saturn and Jupiter the value of g is approximately %, which
prompts Euler to comment on the convergence of the series: ‘‘it is not possible
to resolve this into a convergent series, seeing that g is near to ¢’ (laquelle ne se
peut résoudre dans une suite convergente, vii que la valeur de g est environ =
%) [Euler 1749, 60]. He seems here to be saying that the series does not converge,
but he proceeds as if it did. A more reasonable interpretation of the statement is
that he is worried about the rate of convergence of the series.

In the span between these two papers, Euler continued the use of expanding
the disturbing functions in terms of trigonometric series. Euler is vague on the
question of convergence of the series expansion in his 1748 paper resulting in a
very mechanical method, but the 1756 paper demonstrates a more sophisticated
understanding of the use and convergence of the series expansion. In the latter
paper he directly states that convergence of the series depends on the term s cos
vbeing less than 1 in magnitude; he reformulates the calculations of the coefficients,
P,O,R,. . .,etc. of the series noting that they are comparable with the geometric
series 1 + s2 + s* + . . ., thus enabling easier computations; and he states that
the magnitude of the term s cos v determines the rate of convergence of the series
approximation in actual calculations.

In neither of these two papers does Euler define what he means by convergence.
This is not all that unusual since they were papers on astronomy, and not mathemat-
ics. However, Euler published a famous paper on divergent series in 1760, in
which he defined convergence and divergence and clearly expressed his ideas on
these issues [Euler 1760]. From it we can infer that a convergent series must
exhibit three related characteristics. It must be possible to obtain a number which
is the ‘‘sum’’; the existence of a limit without knowing this value would be a
useless concept to Euler, a view that remains valid for applications. We must also
be able to find this value, which can be by the process of term by term addition.
Last, of course, the terms must go to zero. This last condition is necessary but
not sufficient for convergence by modern standards.

Euler abandoned his use of trigonometric series after the 1756 paper. Wilson
has suggested that his age and loss of eyesight made alternative methods more
attractive to him [Wilson 1980]. This cannot be denied, but even this is bound to
the rate of convergence of the series. The series, however, became the standard
tool of all of the theoreticians who followed, and the problems of convergence
which were apparent to Euler remained problems into this century as we can see
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from Brown’s 1896 comment that there was ‘‘lack of any certain knowledge on
the subject [the convergence of the series]”” [Brown 1896, v—vi].

It may have taken until the 19th century for a rigorous theory of convergence
to become established, and until the early 20th century for a convergence theory
of trigonometric series to be developed. But before such theories could be devel-
oped the need for them had to be appreciated. Euler worked in a period when
these questions were just becoming apparent. Although he did have difficulties
with convergence questions it is apparent that Knopp’s criticism was overly harsh.
Euler was the first to use the trigonometric series in celestial mechanics, and as
his work matured he began to clarify his ideas on convergence. All necessary
steps have to be taken before a rigorous theory can be developed. In this regard
Euler and his ‘‘troublesome’’ series left a legacy both to celestial mechanics and
to analysis.

NOTES

1. This term is due to Laplace; other terms are gravitational astronomy and physical astronomy.

2. More complete discussions of the astronomy and the associated models may be found in [Golland
1991} and [Wilson 1980 and 1985].

3. This translation is intentionally literal since the temptation is to say the expressions ‘‘converge”
to the values, but Euler does not use the word ‘‘converge’’ in this passage.

4. Problem 34 of [Euler 1768] provided helpful information in this reconstruction.
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