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This paper discusses the role of the series expansion of (1 - g cos to)-. in the works of 
Leonhard Euler. Two of his papers are considered in detail, his 1748 prize-winning essay 
on Saturn and Jupiter to the Paris Academy, and his 1756 prize-winning essay, also to the 
Paris Academy, on planetary perturbations. A close examination of these works indicates 
that Euler was more concerned with convergence issues than he traditionally has been 
credited with being. © 1993 Academic Press, Inc. 

Cet article discute le rfle des d6veloppements en s6rie de (1 - g cos oj)-, dans les oeuvres 
de Leonhard Euler. Deux de ses articles sont analys6s en d6tail, la piece au sujet de Saturne 
et Jupiter qui a remport6 le prix de l'acad6mie de Paris en 1748 et celle au sujet des 
perturbations plan6taires qui a remport6 le prix de l'acad6mie de Paris en 1756. Un examen 
attentif de ses oeuvres montre que Euler 6tait plus interess6 aux questions concernant la 
convergence qu'on a cru. © 1993 Academic Press, Inc. 

Der Aufsatz behandelt die Rolle der Reihenentwicklung (1 - g cos to)-. in den Arbeiten 
Leonhard Eulers. Es werden zwei seiner Werke genau er6rtert, sein von der Pariser Akade- 
mie preisgekr6nter Aufsatz von 1748 fiber Saturn und Jupiter und sein ebenfalls yon der 
Pariser Akademie preisgekr6nter Aufsatz yon 1756 fiber Planetenst6rungen. Eine sorgf~iltige 
Untersuchung dieser Werke zeigt, dab sich Euler mehr mit Konvergenzfragen befasst hat 
als man von ihm gew6hnlich geglaubt hat. © 1993 Academic Press, Inc. 
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I. I N T R O D U C T I O N  

A l t h o u g h  it t o o k  unt i l  t h e  19th c e n t u r y  fo r  a r i g o r o u s  t h e o r y  o f  c o n v e r g e n c e  to  

b e c o m e  e s t a b l i s h e d ,  it is w e l l  k n o w n  tha t  inf in i te  s e r i e s  w e r e  u s e d  by  17th a n d  

18th c e n t u r y  m a t h e m a t i c i a n s .  M a n y  b e l i e v e d  t h a t  t h e  e a r l i e r  m a t h e m a t i c i a n s  d id  

n o t  b o t h e r  w i t h  q u e s t i o n s  o f  c o n v e r g e n c e  bu t  s i m p l y  m a n i p u l a t e d  t h e m  f o r m a l l y .  

T h i s  las t  p o i n t  w a s  p r e s e n t e d  by  K n o p p  in his  f a m o u s  w o r k  o n  inf in i te  s e r i e s :  

" P r a c t i c a l l y  t h e  w h o l e  o f  t he  19 th c e n t u r y  w a s  r e q u i r e d  to  e s t a b l i s h  t h e  c o n v e r g e n c e  

t e s t s  se t  f o r t h  in t h e  p r e c e d i n g  s e c t i o n s  a n d  to  e l u c i d a t e  t h e i r  m e a n i n g s  . . . .  

H o w  g r e a t  a d i s t a n c e  had  to  be  t r a v e r s e d  b e f o r e  th is  p o i n t  c o u l d  be  r e a c h e d  is 

c l e a r  i f  w e  r e f l e c t  t ha t  E u l e r  n e v e r  t r o u b l e d  h i m s e l f  at all  a b o u t  q u e s t i o n s  o f  
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convergence; when a series occurred, he would attribute to it, without any hesita- 
tion, the value of the expression which gave rise to the series" [Knopp 1928, 298]. 

The same view is echoed by Carl Boyer in his work on the history of calculus 
as: " I f  (x + o) n is to be expanded by the binomial theorem, the number of terms 
will be infinite for values of n which are not positive integers. No conclusion 
can in general be drawn from an application of the theorem unless the series 
is convergent, but neither Newton nor his successors for a century later fully 
appreciated the need for investigations into the question of convergence" [Boyer 
1949, 207]. 

Contrary to Knopp's statement Leonhard Euler (1707-1783) did indeed "trouble 
himself with questions of convergence," though he may not have "fully appreci- 
ated" them according to our present understanding. If we use the distance analogy 
of Knopp, Euler stood near the beginning of a long road which led to our present 
understanding of convergence, but he was very aware of and did anticipate many 
questions of convergence associated with trigonometric series expansions. 

Euler made major contributions to the field we now call celestial mechanics 
[1], and was one of the first investigators into the three-body problem. In a 
prize-winning essay to the Paris Academy on the inequalities of Saturn and 
Jupiter [Euler 1749b], Euler needed to determine the integral of the term (1 - g 
cos oJ) -3/2, where g is a constant near ~. He succeeded in determining this integral 
by expanding the term into a trigonometric series and integrating it term by term. 
This was well before Fourier and his analysis. 

II. BACKGROUND--THE INEQUALITIES OF SATURN AND JUPITER 

Euler addressed the Berlin Academy of Sciences in June 1747 concerning New- 
ton's universal law of gravitation. He noted the differences between recent obser- 
vations and those which were computed according to the planetary theory of 
Newton and Kepler. Quoting directly from his main argument: 

The theory of Astronomy is therefore still much more removed from the degree of perfection 
to which it has been thought to be already carried. Because if the forces, by which the Sun 
acts upon the Planets, and the latter upon each other, were exactly in the inverse ratio of 
the squares of the distances, they would be known, and consequently the perfection of the 
theory would depend on the solution of this problem: That the forces by which a Planet 
is moved being known, the motion of  this Planet is determined. [Euler 1749a, 6; Waft 
1975, 59] 

This 1747 paper formed the basis for Euler's later work on the three-body 
problem. The problem of a body orbiting around a fixed center is treated in a very 
general manner, including several modifications to Newton's inverse square law 
of gravitational attraction. In problems 5 and 6 of the paper Euler derives the 
equations of motion of a body orbiting about a fixed center by means of an arbitrary 
attractive force. 

There were two serious problems left unresolved by Newton. The first was the 
motion of the lunar apsides of about 3o3 ' per revolution and the second the action 
of Jupiter on Saturn. The question was whether the Newtonian law of gravitation 
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could  successfu l ly  expla in  these  two anomal ies  or should o ther  forces ,  or  o ther  
force laws be cons idered .  In  1747 Eule r  defini tely be l ieved the lat ter ;  however ,  
his fur ther  inves t iga t ions  into bo th  of  these  th ree -body  p rob lems  led him to con-  
s ider  on ly  the inverse  square  law. 

Eu le r  wro te  first on the inequal i t ies  of  Sa tu rn  and  Jupi ter  in r e sponse  to the 
prize offered by  the Royal  A c a d e m y  of Sc ience  of Paris for the yea r  1748. He  
s tates  in his i n t roduc t ion  to the work:  

The Royal Academy of Sciences of Paris, proposed as a subject for the prize of the year 
1748, a theory of Saturn and Jupiter, by which one could explain the inequalities of the two 
planets which is provided by their mutual cause, principally about their conjunction. 

We know, first of all, that there is no doubt, that the Royal Academy is of the view that 
the theory of Newton, founded on universal gravitation, which is found to be quite admirably 
well in accord with all of the celestial motions, that those which are the inequalities which 
are discovered in the motions of the planets, one is boldly able to maintain, that the mutual 
attraction of the planets is the cause. Therefore as the Astronomers had perceived the various 
inequalities in the motion of Saturn, one concludes, very likely, that they are caused by the 
force with which this planet is attracted toward Jupiter which not only is closest to Saturn, 
but also exceeds it in mass, and by consequence in attractive force all of the other planets 
together, such that their effects are indefinitely small compared to that of Jupiter. For the 
same reason, the force of Saturn on Jupiter so exceeds that of all of the other planets, that 
to determine the disturbances to which the motion of Saturn and Jupiter are subjected, one 
can without error, neglect the forces of the other planets. 

Now following this theory, the cause of the inequalities which the Astronomers have 
observed in the motions of Saturn and Jupiter, is made known, and in order to answer the 
proposed question, one will have only to determine the motions of three bodies which are 
mutually attracted in ratios composed of their masses, and by the inverse square ratio of 
their distances, and then put in place of one of the three bodies the Sun, and the bodies 
Saturn and Jupiter in lieu of the other two. By this, one sees the question proposed is reduced 
to the solution of a problem purely of mechanics: but it is necessary to admit that this problem 
is one of the most difficult ones of mechanics and hence one must not seek a perfect solution, 
until much more progress is made in analysis. [Euler 1749b, 45] 

The  four  differential  equa t ions  which  descr ibed  the mot ion  of  Jupi te r  and  Sa tu rn  
were  d e t e r m i n e d  by Euler ,  by  apply ing  the resul ts  of  his 1747 paper ,  to be  

I. dd z  - zd~o 2 = -a3d~2[(1 + v ) c o s  to3/z2 + nzh)  3 

+ n cos to/y 2 - ny  cos to/v 3] 

II.  2dzd~p + zd&p = - n a 3 d ~  2 sin to(l /y 2 - y / v  3) 

III .  dTr = [(na2d~ 2 sin(~p - l r ) s i n ( O  - Ir))/(z&p)][1/y 2 - y / v  3] 

IV. d log tan  G = [(naadg 2 cos(~ - 7r) sin(O - 7r))/(zd¢)][1/y 2 - y/v3], 

where  z is the shor tened  d i s tance  f rom Sa tu rn  to the Sun ,  ~ is the longi tude  of 

Sa tu rn ,  rr is the longi tude  of the a scend ing  node ,  G is the inc l ina t ion  of  the orbi ta l  

p lanes ,  O is the longi tude  of  Jupi ter ,  tO is the la t i tude of Sa turn ,  v is the mass  of  
Sa tu rn  d iv ided  by the mass  of  the Sun  with a value of  1/3021, a is the m e a n  

d i s t ance  of  Jupi te r  to the Sun ,  n is the mass  of  Jupi te r  d ivided by  the mass  of  the 
Sun  and  equal  to 1/1067, g is the m e a n  anoma l y  of Jupi ter ,  y is the d i s tance  of  
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Jupiter to the Sun, to is the elongation of Saturn and Jupiter, and v, which is the 
distance between Saturn and Jupiter, is equal to (y2 + z2/cos2~ _ 2yz  cos to)~/2 
[Euler 1749b, 58] [2]. 

In Section III of  the essay Euler  begins to solve these equations by reducing 
the problem with simplifying assumptions. First assume that the motion of  both 
planets occur  in the same plane. This reduces the number of  equations from four 
to just  the first two. It also implies that qJ = 0 and that cos qJ -- l, which simplifies 
the first equation and reduces v t o  (y2  + z 2 _ 2yz  cos to)l/2. Next  assume that 
the orbit of  Jupiter is a circle; then y can be replaced by its mean distance a. Now 
we have the following equations: 

I . '  ddz  - z d ~  2 = -a3d~2[(1 + v) / z  2 + n z / v  3 

+ (n cos to)/a 2 - na  c o s  to~u3]. 

II. '  2dzd~p + zd&p = - n a 3 d ~  2 sin to ( I /a  2 - a/v3).  

Euler next assumes that if Jupiter were not present,  then the (unperturbed) orbit 
of Saturn would be a circle; i.e., its eccentricity would be zero. He states that 
the rate of change of  Saturn 's  longitude is approximately proportional to the rate 
of change of  Jupiter 's  longitude. The difference is represented by a term, n dx,  

which accounts for the effect of  Jupiter on Saturn; i.e., d~o = m d~ + n dx,  

where m represents the constant of  proportionality and the term n dx  is small in 
comparison to the term m d~. Next  Euler considers z, the shortened distance of  
Saturn to the Sun. He notes that without the effect of  Jupiter z would be equal 
to f ,  the mean Sa turn-Sun  distance, but with Jupiter 's  effect, z = f ( l  + nr) ,  

where the term nr  is small. Euler  further states that the terms nr  and n dx  depend 
uniquely on the angle to, the Saturn-Jupi ter  elongation. Since n dx  is small, he 
uses the relation d~o --- m de, and it follows that the rate of change of  the elongation 
is d t o =  (1 - m) d~. He then d e f i n e s f  = ha, g = 2M(1 + h2), and h = h(l + 
h2) 3/2. The term g can be seen to be equal to 2af / (a  2 + f2), v is now equal to 
(a 2 + f2 _ 2 a f c o s  to)J/z, and (1 + nr)  -1/2 is approximately equal to (1 - 2nr).  

These relations permit Euler  to rewrite the equations as 

I." m 2 d~ + 2 m n  dx  + m2nr  d~ - n ddr /d~ 

= (1 + v ) d ~ / ~  3 - 2nrd~/?~ 3 

+ nd~ cos to/X + nd~(h - cos oJ)/(h(1 - g cos to)3/2) 

II." 2 m d r  + d d x / d ~  = - d~ sin to/?, + d~ sin to/(h(1 - g cos to)3/2). 

[Euler 1749b, 59-60] 

In order  to integrate the two equations Euler notes that one must deal with the 
integral of  the term (1 - g cos to)-3/2. A closed form expression for this integral 
is not possible, and so he makes a significant mathematical aside on how to obtain 
this in a series expansion. 

III. T H E  FIRST APPEARANCE OF T H E  TRIGONOMETRIC SERIES 

The main impedement  to finding the solution of  these differential equations (I", 
II") of  motion was given by Euler as: 
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To take advantage of these equations, the greatest difficulty is found with the irrational 
formula (1 - g cos to)-u which is not possible to resolve into a convergent series, seeing 
that g is near to ] [laquelle ne se peut  r~soudre dans une suite convergente,  vfi que la valeur 
de g est environ = ]]. [Euler 1749b, 60] 

The series he refers to arises by expanding the term (1 - g cos to)-~' using 
the binomial expansion. Since Euler does not give us a definition of  the word 
"convergence ,"  we will examine how he actually uses these series, rather than 
impose later meanings onto his words. The rate of convergence of  the above series 
is dependent on the value g, which is defined in terms of the mean distances from 
the sun of  the two planets. Indeed to obtain an approximate error of  less than 
0.001, without making any assumption about the value of cos to other than that 
it is less than 1 in absolute value, when g is set to 0.8 one would need to compute 
at least 30 terms of the series. Thus,  the series is for practical purposes n o t  

convergent. Euler continues: 

This circumstance at first led me to believe that retaining this irrational formula in the 
calculations would render the solution almost impractical, seeing that one must discover the 
integral values by the measurement of the area of curved lines; which gives a very laborious 
approximation, and certainly many steps. [Euler 1749b, 60] 

Euler has rejected the approximation method "area under curved lines," which 
is a numerical technique to obtain an approximate value for the integral, in favor 
of developing a mathematical approach of solving the problem. 

It is true that the last e q u a t i o n . . ,  could be integrated were it not that one has to resolve 
the irrational formula (1 - g cos to)-3n; but this integration hardly helps in the first equation, 
unless one wishes to resort to calculating the area under curved lines, a method which, 
although it is practical in the present hypothesis, is not of any use, when one will have to 
consider the eccentricity of one or the other of the orbits. This circumstance obliges me to 
make a digression about the formula (1 - g cos to)-3n, which I consider in a more general 
form as follows, (1 - g cos to)-u . . . whose resolution, following ordinary rules is: 

(1 - g c o s c o ) - / '  = 1 + p./l . g c o s t o  

+ p.(p. + 1)/(1 • 2) • g2 cos-' to + p.(/~ + l)p.(/~ + 2)/(1 - 2 • 3) 

• g 3  c o s  3 t o  + . . . etc. 

but this series is not suitable for my purpose,  in as much as it is not sufficiently convergent  
(tant parce  qu'elle n 'est  pas assez  convergente) ,  since it contains powers of cos to. As for 
the last inconvenience, one can remedy it by reducing the powers of the cosine of the angle 
to, to the cosines of multiples of the angle, by means of the following rules, founded on those 
of the Trigonometry: 

C O S  t o  = C O S  t o  

2 c o s  2to = c o s 2 t o  + 1/2.2/1 

4 cos3to = cos 3 to + 3/1 cos to 

8 cos 4 to = cos 4to + 4/1 cos 2 to + 1/2 • 4/1 • 3/2 

etc. 

where the law of the progression is evident, with the remark that the absolute or constant 
terms are all multiplied by 1/2. 
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Having made these substitutions, as much as the expression becomes very complicated, 
we can assume that it becomes: 

(1 - g cos to)-~' = A + B cos to + C cos 2(o + D cos 3to + E cos 4(o 

+ F cos 5to + G cos 6(o + H cos 7(o + etc. [Euler 1749b,61] 

T h e  c o e f f i c i e n t s  o f  th is  c o s i n e  s e r i e s  a r e  aga in  inf in i te  s e r i e s  t h e m s e l v e s  w h i c h  

m u s t  all  b e  e v a l u a t e d .  T o  s i m p l i f y  th is  e v a l u a t i o n  he  p r o c e e d s  to  d e r i v e  a m e t h o d  

o f  d e t e r m i n i n g  al l  t h e  c o e f f i c i e n t s  o n c e  the  v a l u e s  o f  A a n d  B a r e  k n o w n .  

F o r  le t  

s = A + B c o s t o  + C c o s 2 ( o  + e tc .  

= (1 - g c o s  to)-~' 

H e  t h e n  d e r i v e s  t h e  t e r m  d s / s  by  d i f f e r e n t i a t i n g  

log  s = - i x ' l o g ( 1  - g c o s t o )  

to  ge t  

w h i c h  g i v e s  

N o t i n g  tha t  

d s / s  = - I x  g sin tod to / (1  - g c o s  to), 

(1 - g c o s  to) d s / d t o  + Ixg s sin to = 0. 

d s / d t o  = - B  sin to - 2C  sin 2to - 3D sin 3(o . . . 

and  u s i n g  the  r e l a t i o n s  

s in  nto • c o s  to = ( I / 2 )  s in(n + 1)to + ( I / 2 )  s in(n - l)to 

and  

(A) 

c o s n t o ,  sin to = (1/2) s in(n  + l)to - (1/2) s in(n - l)to, 

E q .  (A)  r e d u c e s  to  a s ine  s e r i e s  as f o l l o w s :  

( - B  + g C  + IXgA - I X g C / 2 ) s i n  to + ( - 2 C  + g B / 2  + 3 g D / 2  + IXgB/2 

- I X g D / 2 ) s i n  2(0 + . . . = 0. 

T h i s  s ine  s e r i e s  c a n  be  i d e n t i c a l l y  z e r o  o n l y  i f  all  o f  t he  c o e f f i c i e n t s  v a n i s h ,  h e n c e  

C = (2B - 2IXgA) / [ (2  - Ix)g], D = (4C - (IX + 1)gB) / [ (3  - Ix)g], 

e t c .  

I n  o r d e r  to  d e t e r m i n e  t h e  v a l u e s  o f  A a n d  B E u l e r  s t a t e s :  " . . .  I h a v e  d i s c o v e r e d  

a s p e c i a l  m e t h o d ,  to  d e t e r m i n e  t h e s e  s u m s  s e q u e n t i a l l y :  it is f o u n d e d  o n  t h e  

d i v i s i o n  o f  a r igh t  a n g l e  in to  as  m a n y  pa r t s  as  o n e  w a n t s  b e c a u s e  the  s ine  o f  t h e s e  

pa r t s  p r o v i d e s  a p r o p e r t y  w h i c h  has  a g o o d  a g r e e m e n t  w i t h  t he  s e r i e s ,  w h i c h  t h e n  
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g ives  the  va lue s  o f  A and  (1/2) B. L e t  q de s igna t e  a r ight  angle ,  t hen  I say  tha t  

the  fo l lowing  e x p r e s s i o n s  a p p r o a c h  m o r e  and  m o r e  these  v a l u e s "  [3]. 

I. A = +(1/2)(1  - g sin q/2)  - ~  + (1/2)(1 + g sin q/2)  -~ .  

(1/2)B = +(1 /2 )  sin (q/2)(1 - g sin q/2)  - ~  

- (1/2) sin(q/2)(1 + g sin q/2)  -~ .  

I I .  A = +(1/4)(1  - g sin q/4)  - ~  + (1/4)(1 - g sin 3q/4) -~  

+ (1/4)(1 + g sin q/4)  - ~  

+ (1/4)(1 + g sin 3q/4) -~  

(1/2)B = +(1 /4 )  sin (q/4)(1 - g sin q/4)  -~  

+ (1/4) sin(3q/4)(1 - g sin 3q/4) -~  

- (1/4) sin(q/4)(1 + g sin q/4)  - ~  

- (1/4) sin(3q/4)(1 + g sin 3q/4) - " .  

I I I .  A = +(1/6)[(1 - g sin q/6)  -~  + (1 - g sin 3q/6) - "  

+ (1 - g sin 5q/6) -~  

+ (1 + g sin q/6)  -~  + (1 + g sin 3q/6) -~  

+ (1 + g sin 5q/6) - " ]  

( I /2 )B  = + (1~6)[sin(q~6)(1 - g sin q/6)  -~  + sin(3q/6)(1 - g sin 3q/6) - "  

+ sin(5q/6)(1 - g sin 5q/6) -~  - sin(q/6)(1 + g sin q/6)  - ~  

- sin(3q/6)(1 + g sin 3q/6) -~  

- sin 5q/6(1 + g sin 5q/6) - " ]  [Eu le r  1749b, 65]. 

W e  can  r e c o n s t r u c t  the  m e t h o d  by  wh ich  E u l e r  d e r i v e d  the s e q u e n c e  for  a p p r o x i -  

ma t ing  the  coef f ic ien t s  A and  B. W e  use  r ad i an  m e a s u r e  for  c l a r i ty  in th is  r e c o n -  

s t ruc t i on ,  a l t hough  it shou ld  be  u n d e r s t o o d  tha t  E u l e r  u sed  the  o l d e r  d e g r e e  

no ta t i on .  W e  p r e s e n t  the  a r g u m e n t  for  the  coeff ic ient  A;  the  case  for  B is s imi lar .  

T h e  a r g u m e n t  is d e p e n d e n t  u p o n  the coef f ic ien t s  A,  B, C, D, E, e tc .  e v e n t u a l l y  

b e c o m i n g  smal l .  
E u l e r  beg ins  wi th  the  e q u a t i o n  

(1 - g c o s c o ) - "  = A + B c o s c o  + C c o s 2 c o  + D c o s 3 c o  + E c o s 4 c o  

+ F cos  5co + G cos  6co + H cos  7co + e tc .  

I f  w e  r e p l a c e  the  a r g u m e n t  co wi th  co + 7r and  use  the  iden t i t i es  

cos(co + 7r) = cos  co cos  7r - sin co sin Tr = --COS co 

and  

cos(n(co + rr)) = cos  nco cos (mr )  - sin nco s in(mr)  = ( -  1) n cos  nco, 
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w e  t h e n  ge t  t h e  e q u a t i o n  

(1 + g c o s o J )  - "  = A - B c o s c o  + C c o s 2 o J  - D c o s 3 o ~  + E c o s 4 c o  

- F c o s  5oJ + G c o s  6oJ - H c o s  7¢o + e t c .  

I f  w e  n o w  a d d  t h e  t w o  e q u a t i o n s  a n d  d i v i d e  by  2 w e  ge t  

(1/2)[(1 - g c o s  co) -~  + (1 + g c o s  co)-~] 

= A + C c o s 2 c o  + E c o s 4 o J  + G c o s 6 o J  + I c o s 8 ~ o  . . . .  

N o w  r e p l a c i n g  ~ w i t h  oJ - 7r/2 a n d  u s i n g  the  i den t i t i e s  

cos(oJ - 7r/2) = c o s  o~ c o s  ~' /2 + sin o~ sin ~-/2 

= sin co, 

cos(2n(oJ  - rr /2) = c o s  2noJ c o s  2n • rr/2 + sin 2no~ sin 2n • 7r/2 

= ( -  1)" c o s  2nco, 

w e  ge t  t he  f o l l o w i n g ,  w h i c h  w e  wil l  r e f e r  to  as  (*): 

(1/2)[(1 - g sin co)-~' + (1 + g sin o j ) -u]  

= A - C c o s 2 w  + E c o s 4 o ~  - G c o s 6 o J  + I c o s 8 ~ o  - . . . . 

I f  w e  e v a l u a t e  th is  e q u a t i o n  at oJ = 7r/4 w e  get :  

(1/2)[(I  - g sin r r /4)-~ '  + (1 + g sin 7r/4)-~'] 

= A - C c o s T r / 2  + E c o s T r  - G c o s 3 7 r / 2  + I c o s 2 ~ r  + . . . .  

= A  - E + I . . .  

H e n c e  

A = (1/2)[(1 - g s in  7r/4)-~'  + (1 + g sin 7r/4)-~'] + E - I + M . . . e t c .  

T h i s  e x p r e s s i o n  a p p r o x i m a t e s  A w i t h  an  e r r o r  a p p r o x i m a t e l y  e q u a l  to  E .  T h i s  
g i v e s  us  E u l e r ' s  a p p r o x i m a t i o n  I to  A.  

T h e  t e c h n i q u e  is n o w  to  d i v i d e  7r/2 in to  f o u r  pa r t s ,  i . e . ,  7r/8, rr /4,  3~' /8.  F i r s t  
e v a l u a t e  (*) at  7r/8, 

(1/2)[(1 - g sin rr/8)-~" + (1 + g sin Ir/8) -u]  

= A - C c o s T r / 4  + E c o s r r / 2  - G c o s 3 ~ / 4  + I c o s T r  + . . . .  

a n d  e v a l u a t e  (*) a t  37r/8, 

(1/2)[(1 - g sin 37r/8)-~'  + (1 + g s in  37r/8)-~" 

= A - C c o s  3~r/4 + E c o s  37r/2 - G c o s  97r/4 + . . . .  

W e  a d d  t h e s e  t e r m s  t o g e t h e r  a n d  d i v i d e  by  2 to  ge t  
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(1/4)[(1 - g sin ~/8) -~' + (1 + g sin rr/8) -~' 

+ (1 - g sin 37r/8) -~' + (1 + g sin 37r/8) -~'] 

= A - C(cos 7r/4 + cos 37r/4) + E(cos  rr/2 + cos 37r/2) 
- G(cos  37r/4 + cos 97r/4) + / (cos  7r + cos rr) 
- K(cos  57r/4 + cos 77r/4) + M(cos  37r/2 + cos 7 r / 2 ) . . .  

= A -  C . O +  E ' O -  G . O  + I ' O - K . O +  M . O + O . O -  Q .  . . 

Hence  

A = (1/4)[(1 - g sin ~-/8)-~ + (I + g sin 7r/8) -~ + (1 - g sin 37r/8) -~ 

+ (1 + gs in37r /8 )  -~'] - Q + . . . e t c .  

Therefore  we can approximate  A with an error  less than Q. This gives us Eule r ' s  
approximat ion  II  to A. Continuing in this manner  we can get a more  and more  
accurate  determinat ion of A [4] [Golland 1991, 35-37]. 

Euler  uses the value 0.8405 for g and he calculates a value of  3.21789 for A by 
dividing the right angle into 10 parts.  For  compar ison the following table was 
calculated,  using this same value for g, as in Eqs. I, II,  III:  

Division 

2 ~arts 
4 ~arts 
6 ~arts 
8 ~arts 

10 )arts 
12 ~arts 
14 )arts 
16 ~arts 

The correc t  value for A is 

of right angle into n parts A 

calculated as 

2.18346 
3.08396 
3.20336 
3.21616 
3.21746 
3.21758 
3.21759 
3.21759 

5 
A = (1/2)7r J (1 - g c o s  ~)-3/2 d¢o 

= 3.217598. 

The difference be tween our calculated value for n = 10 and that of  Euler  is most  
p robably  due to the number  of  significant digits carried in the calculations, and 
to the number  of  digits used in calculating the cosine function [Euler 1749b, 62-72]. 

Euler  then proceeds  to substitute the series expansion into Eqs. I '  and I I '  and, 
by means of  te rm by term integration, obtains the final results. He  states that the 
integrations result in a series which converges  faster  than the original [Euler 1749b, 
67]. 

IV. E U L E R ' S  L A T E R  USE OF T H E  SERIES  

Euler  uses this same tr igonometric series in a later paper  on planetary per turba-  
tions which won the Paris prize in 1756 [Euler 1769, 50-51]. In this paper  he has 
general ized the problem f rom Saturn and Jupiter  to that of  any two planets,  one 



HM 20 EULER'S TROUBLESOME SERIES 63 

to be called the perturbed planet and the other the perturbing planet. He is aware 
that in order  to consider all planetary perturbations he would be doing the n-body 
problem. But he argues there is no loss in generality if one considers the problem 
to be a sequence of  three-body problems, one for each of  the remaining planets. 
The true motion of  a given planet would become a sequence of corrections to the 
results obtained for the previous three body problem. 

He has two possible methods for obtaining the actual planetary orbits. Both 
begin by transforming the four fundamental differential equations (I-IV) into 
expressions for the differentials of  the following six orbital elements; the perturbing 
planet 's longitude; the perturbed planet 's semiparameter;  the perturbed planet 's  
eccentricity;  the perturbed planet 's  apsidal line; the longitude of  the ascending 
node of  the perturbed planet; and the perturbed planet 's inclination. At this point 
either he can solve for the elements by integration as he did in the Saturn and 
Jupiter paper, or he can use an alternative method which he developed in a 
paper of  1752 [Euler 1758]. This latter method would require first establishing the 
elements which describe the initial orbit of  the perturbed planet at some point in 
time and then after a small increment of  time modifying the elements using the 
differential changes as given by the equations. Euler argues that this method will 
be very laborious since one must constantly apply the differential corrections as 
often as once an hour or once a day and more importantly, the accuracy of  the 
method is dependent  upon the accuracy with which one can determine the initial 
ellipse. He is concerned that any errors in determining this initial ellipse will tend 
to grow with each incremental correction. For  these reasons, he decides to do 
the integrations, and he again employs the method of  expanding the disturbing 
terms in the differentials into trigonometric series and integrating term by term 
[Euler 1769, 45-46]. 

The differentials of  the orbital elements are given by Euler as 

dO = adto /x  2 .  (ap)lJ2; 

dp = - 2 n M a x d w ( a p ) l / 2 ;  

dq  = n a d o J ( 2 M c o s  v + N s i n  v - (Mq(sin v)Z)/(1 - q c o s  v)) • (ap)l/2; 

d~  - dv  = (nado~/q) (2M sin v - N cos v 

+ ( M q  sin v cos v)/(1 - q cos v))(ap)  1/2. 

dlr = - n a x y d w  sin(~ - 7r) sin(0 - ~r)(l/z 3 - 1/y3)(a/p)l/2; 

d log tan G = - n a x y d w  cos(~ - It) sin(0 - ~-)(l/z 3 - I /y3) (a /p)  I/2 

[Euler 1769, 41-44], 

where the perturbing planet moves along an ellipse defined by y = 
c/(1 - e cos u), with 

c its semiparameter,  
e its eccentrici ty,  
u its true anomaly,  
0 its longitude; 
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the projection of the orbit of  the per turbed planet moves  along an ellipse x = 
p/ (1  - q cos v), with 

p its semiparameter ,  
q its eccentrici ty,  
v its true anomaly,  

its longitude; 

a is the mean distance f rom the sun to the per turbed planet; 
o~ is the mean anomaly of the per turbed planet; 
n is the ratio of  the mass  of  the perturbing planet to that of  the sun; 
z is the distance between the perturbing planet and the projection of  the per turbed 

planet (the cu r t a t e ) and  is equal to (x 2 + y2 _ 2xy  cos(~ - 0))1/2; 

M is an express ion equal t o  y ( l / z  3 - l / y  3) sin(¢ - 0); 
N is an express ion equal to x / z  3 - y ( 1 / z  3 - 1 /y  3) cos(~p - 0) .  

He notes that the express ion for 1/Z 3 i s  very " t r o u b l e s o m e , "  and wishes to 
t ransform it into a convergent  series which can be integrated term by te rm [Euler 
1769, 49-50]. He  defines '0 = ¢ - 0, x 2 + y2 = r 2, and s = 2 x y / ( x  2 + y2), then 
z = r (1 - s cos '0)1/2 and hence 1/• 3 = (1 - s COS "0)-3/2/r3 .  Thus the express ion 
(1 - s cos "0)-3/2 expanded in an infinite series will converge since s is less than 
1, al though the convergence  will be "excess ive ly  s low"  unless s cos '0 is very small 
[Euler 1769, 49-50]. After making the same standard tr igonometric substitution for 
the product  of  the cosines of  two angles as he did in the earlier paper ,  he finds 

(1 - s cosrt) -3/2 = P + Qs  cos'0 + R s  2 cos2~ 

+ SS 3 cos3'0 + Zs 4 cos4"0 + etc. 

This allows him to give the following expression:  

l / z  3 = 1/r3(p + Qs  cos r/ + R s  2 cos 2"0 + Ss  3 cos 3"0 + TS 4 COS 4"0 + etc). 

It should be noted that this cosine series expansion for (1 - s cos "0)-3/2 is different 
f rom that used in the earlier Saturn and Jupiter  paper.  By explicitly having the 
powers  of  s appear  in the expansion,  Euler  is able to show that the coefficients 
P, (1/2)Q, (1/2)R, (1/2)S . . . .  etc. ,  which are series expansions in s, are dominated 
by the geometr ic  series 1 + s 2 + s 4 + s 6 + . . . .  Since this geometr ic  series 
has sum equal to 1/(1 - s2), he reasons that multiplying each term of the original 
series by (1 - s 2) would result in an expansion which would have a sum near  1, 
and would be easier to compute .  Thus he works with the series for P(1 - s 2 ) ,  
(1/2)Q(1 - s2), (1/2)R(1 - s2), etc. Once the value for s is known for the particular 
three body  problem,  it becomes  very easy to recover  the values for P, Q, R . . . .  
etc. and hence the series expansion for (I - s cos .0)-3/2. 

V. C O N C L U S I O N  

Euler  expands  various algebraic expressions resulting f rom transformat ions  of  
the equations into infinite series, which can be integrated term by term to obtain 
approx imate  solutions. The series (1 - s cos v/) -3/2 plays a key role in this method.  
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Euler 's  t reatment of  perturbation theory from 1747 onward is fundamentally con- 
cerned with the expansion of  (1 - s cos rl) -3/2 as a specific case of  (1 - s cos 
~)-~', which is of interest mathematically as part of his contribution to the theory 
of convergence.  He enters into a significant mathematical discussion of the series 
(1 - g cos -0) -u in the Saturn and Jupiter paper. The major attempts to cope with 
planetary perturbations during the remainder of  the eighteenth century by Clairaut, 
D'Alembert ,  Lagrange, and Laplace all use this series [Wilson 1985, 18]. However ,  
Euler  was the first to investigate it mathematically and use it in perturbation 
theory.  

In the case of  Saturn and Jupiter the value of  g is approximately k, which 
prompts Euler  to comment  on the convergence of  the series: "i t  is not possible 

4,, (laquelle ne se to resolve this into a convergent  series, seeing that g is near to 
p e u t  rdsoudre dans une suite convergente ,  v~ que la valeur de g est  environ = 

k) [Euler 1749, 60]. He seems here to be saying that the series does not converge,  
but he proceeds as if it did. A more reasonable interpretation of  the statement is 
that he is worried about the rate of  convergence of  the series. 

In the span between these two papers, Euler continued the use of  expanding 
the disturbing functions in terms of  trigonometric series. Euler  is vague on the 
question of  convergence of  the series expansion in his 1748 paper resulting in a 
very mechanical method,  but the 1756 paper demonstrates a more sophisticated 
understanding of  the use and convergence of  the series expansion. In the latter 
paper he directly states that convergence of  the series depends on the term s cos 
v being less than 1 in magnitude; he reformulates the calculations of the coefficients, 
P, Q, R . . . . .  etc. of  the series noting that they are comparable with the geometric 
series 1 + s 2 + s 4 + . . . .  thus enabling easier computations; and he states that 
the magnitude of the term s cos v determines the rate of convergence of  the series 
approximation in actual calculations. 

In neither of  these two papers does Euler  define what he means by convergence.  
This is not all that unusual since they were papers on astronomy, and not mathemat- 
ics. However ,  Euler  published a famous paper on divergent series in 1760, in 
which he defined convergence and divergence and clearly expressed his ideas on 
these issues [Euler 1760]. From it we can infer that a convergent  series must 
exhibit three related characteristics.  It must be possible to obtain a number which 
is the " s u m " ;  the existence of  a limit without knowing this value would be a 
useless concept  to Euler,  a view that remains valid for applications. We must also 
be able to find this value, which can be by the process of  term by term addition. 
Last ,  of  course,  the terms must go to zero. This last condition is necessary but 
not sufficient for convergence by modern standards. 

Euler  abandoned his use of  trigonometric series after the 1756 paper. Wilson 
has suggested that his age and loss of  eyesight made alternative methods more 
attractive to him [Wilson 1980]. This cannot be denied, but even this is bound to 
the rate of  convergence of  the series. The series, however,  became the standard 
tool of  all of  the theoreticians who followed, and the problems of  convergence 
which were apparent  to Euler  remained problems into this century as we can see 
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f rom B r o w n ' s  1896 c o m m e n t  tha t  t he re  was  " l a c k  o f  any  ce r t a in  k n o w l e d g e  on  
the  sub j ec t  [ the c o n v e r g e n c e  o f  the  s e r i e s ] "  [Brown  1896, v - v i ] .  

I t  m a y  h a v e  t a k e n  unt i l  the  19th c e n t u r y  for  a r i go rous  t h e o r y  o f  c o n v e r g e n c e  
to  b e c o m e  e s t a b l i s h e d ,  and  unti l  the  ea r ly  20th c e n t u r y  for  a c o n v e r g e n c e  t h e o r y  
o f  t r i g o n o m e t r i c  se r ies  to  be  d e v e l o p e d .  But  be fo re  such  theo r i e s  c o u l d  be  deve l -  
o p e d  the  need  for  t h e m  had  to be  a p p r e c i a t e d .  E u l e r  w o r k e d  in a p e r i o d  w h e n  
these  q u e s t i o n s  we re  j u s t  b e c o m i n g  a p p a r e n t .  A l t h o u g h  he d id  have  di f f icul t ies  
wi th  c o n v e r g e n c e  ques t i ons  it is a p p a r e n t  tha t  K n o p p ' s  c r i t i c i sm w a s  o v e r l y  ha r sh .  
E u l e r  was  the  first  to  use  the  t r i g o n o m e t r i c  se r ies  in ce les t i a l  m e c h a n i c s ,  and  as  
his w o r k  m a t u r e d  he b e g a n  to c la r i fy  his ideas  on  c o n v e r g e n c e .  Al l  n e c e s s a r y  
s t eps  h a v e  to  be  t a k e n  b e f o r e  a r i go rous  t h e o r y  can  be  d e v e l o p e d .  In  th is  r e g a r d  
E u l e r  and  his " t r o u b l e s o m e "  se r ies  left  a l egacy  bo th  to  ce les t i a l  m e c h a n i c s  and  
to  ana lys i s .  

N O T E S  

1. This term is due to Laplace; other terms are gravitational astronomy and physical astronomy. 

2. More complete discussions of the astronomy and the associated models may be found in [Golland 
1991] and [Wilson 1980 and 1985]. 

3. This translation is intentionally literal since the temptation is to say the expressions "converge" 
to the values, but Euler does not use the word "converge" in this passage. 

4. Problem 34 of [Euler 1768] provided helpful information in this reconstruction. 
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