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Abstract

In the 18th-century calculus the classical notion of quantity was understood as general quantity, which was
expressed analytically and was subject to formal manipulation. Number was understood as the measure of quantity;
however, only fractions and natural numbers were considered numbers in the true sense of term. The other types
of numbers were fictitious entities, namely ideal entities firmly founded in the real world which could be operated
upon as if they were numbers. In this context Eulerian infinitesimals should also be considered as fictitious numbers.
They were symbols that represented a primordial and intuitive idea of limit, although they were manipulated in the
same way as numbers. This conception allowed Euler to consider calculus as a calculus of functions (intended as
analytical expressions of quantities) and, at the same time, to handle differentials formally.
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Sommario

Nel diciottesimo secolo la classica nozione di quantita fu sviluppata fino ad essere intesa come quantita generale,
la quale, analiticamente espressa, era soggetta a manipolazioni formali. [l numero era inteso come una misura della
guantita; tuttavia solo le frazioni e i naturali erano considerati numeri nel vero senso del termine. Le altre specie di
numeri erano entita fittizie, cioé entita ideali ben fondate nel reale che potevano essere manipolate come numeri.
In tale contesto anche gli infinitesimi euleriani sono da intendersi come numeri fittizi. Essi erano simboli che
rappresentavano una primordiale e intuitiva idea di limite e che potevano essere trattati come veri numeri. Tale
concezione permetteva ad Euler di considerare il calcolo come un calcolo delle funzioni (intese come espressioni
analitiche della quantita) e, allo stesso tempo, di operare formalmente con i differenziali.
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1. Introduction

This article examines the Eulerian notions of the differential and the differential coefficient with the
aim of contributing to an understanding of the foundations of the calculus in the 18th century.

In the initial part of the paper | shall deal with the notions of quantity, fictitious numbers, and formal
manipulations, which are the basis of Euler's conception. Quantity was considered to be anything which
could be augmented or diminished; it was connected with the idea of number as measurement and with
the notion of the continuum, which was not reducible to points. However, quantity was considered in the
calculus as a general quantity which had a symbolic nature and included fictitious numbers. Fictitious
numbers were ideal entities which were useful for dealing with quantity and were handled as if they
were true numbers (integers and fractions). They were well founded in nature but lacked a theoretical
construction and differed ontologically from true numbers. Formal manipulations consisted in the fact
that general quantities, analytically expressed, were handled regardless of the conditions of validity of
the rules and the nature of their specific values.

In the central part of this paper, | shall show that the evanescent or infinitesimal quantity, to which
Euler unquestionably reduces the differentiad, to be included in such a context. It was based upon a
primordial idea of approaching a limit, which played the role of a basic intuition providing evanescent
quantities with well-foundedness and semantic meaning. This idea was expressed by symbols which were
operated upon by analogy with true numbers. For this reason evanescent quantities should be regarded as
fictitious entities.

Last, in the final section of the article, | shall illustrate how this conception allowed Euler, on the one
hand, to employ the differential coefficient as the ratio of differentials and, on the other hand, to state that
the true object of the calculus was not differentials but differential coefficients and that the algorithm of
the calculus did not transform differentials into differentials but functions into functions.

2. Quantitiesand fictions

Following the traditional approach, Euler conceived of mathematics as the science of quantity and
defined quantity as something that could be increased or diminfshés.clear that this definition of
quantity is unsatisfactory when itis compared to modern mathematical definitions. It is even tautological:
increasing means making the quantity larger while decreasing makes the quantity smaller. The definition
of quantity recalls certain definitions of Euclid®ementssuch as ‘A point is that which has no part’;

‘A line is breadthless length, which specify the sense of certain geometrical terms by referring to the pre-
mathematical notions of part, breadth, length, and linking the mathematical theory with objects outside

11 have dealt elsewhere with other aspects of the Eulerian foundations of the calculus, in particular the notions of the sum of
a series and of a function. See Ferraro [2000a, 2000b].

2 The differential was regarded as an infinitesimal obtained by making the incresnera variable quantity tend to zero
(see Euler [1755, 5-6, 84]). Euler often simply treats differentials and infinitesimals as the same thing (for instance, see Euler
[1755, 70)).

3 Erstlich wird alles dasjenige eine GroRe gennent, welches einer Vermehrung oder einer Verminderung fahig ist, oder
wozu sich noch etwas hizusetzen oder davon wegnehmen l&ffidlem die Mathematic Uberhaupt nichts anders ist als eine
Wissenschaft der Grofzen [Euler, 1770, 9].
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it (in other words, ultimately, with empirical reality). In effect, the objects described by this kind of
definition are understood by direct acquaintance (one could speak of an empirical intuition to use a
Kantian expression) and the definition only determines certain characteristics that are essential for their
use in mathematics.

It should be noted that in the writings of Euler and the other 18th-century mathematicians, the term
“guantity” was used not only to denote a variable entity capable of increasing or diminishing but also to
indicate specific determinations of this variable entity (the values of the quantity). To avoid confusion,
| shall hereafter use the term “quantity” (or, also, “indeterminate quantity” or “variable guantity”) to
refer to an entity in the sense of its capability to increase or diminish while | use the term “quantum” or
“determinate quantity” to denote a specific determination of quantity.

| stress the importance of the distinction between quantity and quantum in the Eulerian calculus:
the calculus referred to indeterminate quantities, subject to possible variations, whether increases or
decreases, rather than to specific determinations of quantities or determinate quantities. A quantity could
assume different values or determinations, although a quantity was not reduced to the enumeration of
these values (see Ferraro [2000a, 108]). Indeed a quantity possessed its own properties, which might be
false for certain of its determinations. Thus, given any property P of quathiée might exist exceptional
values at which the property failsnd a theorem involving certain quantitiesy, ..., was valid and
rigorous as long as the variablesy, ..., remained indeterminate; however, it might be invalid for certain
specific determinations of those quantities, which were regarded as exceptional values. (On the treatment
of exceptional values, see Engelsman [1984, 10-13], Fraser [1989, 321].)

The notion of quantity as intrinsically variable entity did not prevent quantities from being divided
into constants and variablésdowever, as Euler explained in thestitutiones calculi differentialisthis
distinction did not depend on the nature of quantities but on specific questions, quantities being variable
in themselves:

[TThis calculus deals with variable quantities, even though every quantity, by its very nature, can be increased or diminished
infinitum; however, as long as the calculus is addressed toward a certain goal, some quantities are designed to maintain the same
magnitude constantly while others are truly changed for each amount of increase and decréasdormer quantities are usually

termed constants, the latter variables, so that this difference is not expressed so much in terms of the nature of the thing as in the
character of the question to which the calculus refers.

As an example, Euler observed that the trajectory of a bullet was determined by four quantities: the
amount of gunpowder, the angle of fire, the range, and the time. Each of them was a quantity in the sense
that it could be increased or reduced. This property was never lost, though in certain calculations it was
utilized and not in others: in this sense, a quantity could be imagined as a variable or constant according
to the specific calculation.

4 In the Introductio in analysin infinitorumEuler defined: “A constant quantity is a determinate quantity which always
retains the same value. A variable quantity is an indeterminate or universal quantity, which comprises all determinate
values.” “Quantitas constans est quantitas determinata, perpetuo eudem valorem se@uastitas variabilis est quantitas
indeterminata seu universalis, quae omnes omnino valores determinatos in se complectitur.” [Euler, 1748, 17].

5 “[H]ic calculus circa quantitates variabilis versatur: etsi enim omnis quantitas sua natura in infinitum augeri et diminui
potest; tamen dum calculus ad certum quoddam institutum dirigitur, aliae quantitates costanter eandem magnitudinem retinere
concipiuntur, aliae vero per omnes gradus auctionis ac diminutionis variaiflae quantitates costantes, hae vero variabiles
vocari solent; ita ut hoc discrimen non tam in rei natura, quam in quaestionis, ad quam calculus refertur, indole sit positum.”
[Euler, 1755, 3].



G. Ferraro / Historia Mathematica 31 (2004) 34-61 37

Quantities were usually distinguished as being continuous or discrete. In the classic sense, discrete
guantity is made up of discontinuous parts, meaning there is no common boundary at which they join.
A continuous quantity consists of parts whose position is established by reference to each other, so that
the limit of the one is the limit of the next. The ancient Greeks considered there to be several types
of continuous quantities, such as time, movement, and various geometrical quantities (on geometrical
quantities in Euclid, see Grattan-Guinness [1996, 363]). After Descartes had showed how dimensional
homogeneity could be circumvented (see Bos [1974, 7]), it was assumed that any quantity could be
represented by lines. This idea was also shared by Euledr{sgtitiones calculi differentiali$1755,

65]): in his writings quantity was modeled on the segment of a straight line (or a piece of a curved line,
for certain properties of quantities, such as the way in which a quantity goes to zero).

Euler did not discuss the properties of continuous quantity explicitly; he tacitly assumed that
continuous quantity behaved as a segment of a straight line or a piece of a curved line. Thus, the Eulerian
continuum is a slightly modified version of the Leibnizian continuum, as described by Breger [1992a,
76-84], which, in turn, has many aspects in common with the classical Aristotelian concepgioimt
out some features of this conception.

First, a segment was divisible into parts, each of which was similar in kind to the original quantity, but
it could not be reduced to an aggregate of points. Thus, the continuum was given as a whole and was not
regarded as a set of points, even though it was possible to determine specific points in it.

Second, for the precise reason that a segment was not considered as a set of points it was impossible
to distinguish between an open and a closed segment: a segment is always thought of as including its
endpoints. Breger stated: “One cannot, e.g., consider the interval from 0 to 1 without the point zero.
Imagine a meter long thread without the left extremity of the thread. It is clearly an absurdity. Precisely
in the same way, the point zero is not a part of continuuniut its extremity on the left: the point cannot
be suppressed, not even in thought.”

Third, a curve or a relation between quantities was not defined pointwise. An equation, such as
y = x2, was viewed as a relation that assigned an interval onythgis to an interval on the-axis
in an appropriate way [Breger, 1992a, 77]. Curves were generated by motion; they were nofplotted.

It is possible to draw a distinction concerning the way continuous quantity was treated, a point which
is of crucial importance in Euler’s calculdsContinuous quantities could be referred to a concrete and
perceptible representation in a diagram and investigated, at least partially, by means of the diagram itself.
In this sense, one can speakggfometrical quantities or figural quantitie€ontinuous quantities could
also be investigated in abstract and general form by means of a symbolic notation. In the latter sense, one
can speak ofjeneral quantitier abstract quantitiesor analytical quantities or nonfigural quantities
(the different terms underline different features of the notion). Geometrical quantities were the main
subject-matter of Leibniz's and Newton'’s calculus. (This does not mean that they did not use analytical

6 On the Aristotelian notion of continuum, see Barreau [1992, 3—-15], Panza [1989, 39-80].

7« .. on ne peut par exemple pas considérer l'intervalle de 0 & 1 sans le point zéro. Imaginez un fil d’un métre de long sans
I'extrémité gauche du fil. Cela est visiblement une absurdité. Exactement de la méme facon, le point zéro n’est pas une partie
du continu. .. mais seulement son extrémité a gauche : le point zéro ne peut donc étre supprimé, méme en pensée.” [Breger,
1992b, 77].

8 This expression is derived from Mahoney’s description of the notion of curve in Fermat [Mahoney, 1994, 82]. See also
Ferraro [2000a, 121].

9 This distinction is treated in Ferraro [2001].
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expressions but simply that these expressions were embodied in a geometrical context.) In contrast, Euler
thought that the calculus was independent of geometry (see Fraser [1989, 328-331], Bos [1974, 4]) and
of its figural representation and that it only dealt with general quantity.

Unlike geometrical quantity, general quantity was not represented by a line in a diagram (in this sense
one can term it nonfigural quantity). It was, however, closely connected with geometrical quantity and
has to be imagined as an abstract entity made up of what all the geometrical quantities have in common
(one therefore can refer to it as an abstract quantity). For this reason, even if general quantity was not
represented in a diagram, it was assumed to have the properties of a “nice” or “well-behaved” curved line.
This implies that the basic notions of continuous geometrical quantities were immediately transferred to
the calculus. For instance, a variable quantitglways varied continuously and when it moved from a
valuex; to a valuex,, it was impossible to think of this variation without the initial and final values.

General quantity was investigated symbolically by analytical expressions (in this sense it can be termed
analytical quantity). | specify that the decisive aspect of analytical symbolism was not the use in itself of
certain signs but the fact that those signs were the objects of manipulation in their own right. For instance,
| can writea L b to indicate that the straight line is perpendicular t&. However, if in the proof of a
theorem of elementary geometry, for instance “Given a point A and a straight, lthere exists one and
only one straight liné perpendicular ta and passing through A,” | write_ in place of “perpendicular
to,” | do not really manipulate the symbadl by itself, but work with the concept of “perpendicular to.”

The sign_L is employed as a mere shorthand symbol, unless one establishes a calculus apdn
operates according to the rule of this calculus.

In symbolic expressions, such s+ b)2 = (a + b)(a + b) = a? + 2ab + b?, the lettersa, b, ...,
are used as the concrete objects of a calculation (see Panza [1992, 68-69]). According to Leibniz,
a calculation iscogitatio caecablind reasoning. It can be compared to moving pebbles in an abacus:
what is of importance is that the concrete objects of manipulation (pebbles or graphical signs) are handled
according to certain rules (syntactically, in modern terms), not their meaning. Of course, algebra and
analysis cannot be reduced to the mechanical or blind manipulation of letters. It is not only a matter
of the inventiveness necessary to derive formulas that are not reduced to a simple exercise, as in the
example; instead, the point is that doing mathematics does not merely consist of deriving formulas but of
deriving formulas that have an interest or a sense in a certain context.

This is also true for modern mathematics. A theorem T of a formal theory is the last proposition of
a sequence of propositions,R=1,...,n,where R=Tand R,i=1,...,n — 1, is an axiom or is
deduced by a rule of inference from the preceding propositions. While all derivable propositions in the
given theory are theorems in this sense, in mathematical praxis, only some propositions (significant for
whatever reason) are theorems. The decision thas B theorem, while P 1 is not, is not part of the
formal structure of theory. However, the goal of a formal theory is to yield theorems in this more restricted
sense (see Panza [1997, 366—367]).

| would argue that the nature of analytical or algebraic derivations is necessarily syntactical and,
as such, one handles signs associated with certain rules regardless of the meaning of the objects
of calculation; however, the syntactical rules that govern analytical signs must make sense for the
mathematician and must yield results that make sense or have some interest.

Eulerian general quantity surely has a symbolic nature in the above sense: it was reified into concrete
signs, which were dealt with according to certain fixed transformations. However, the way in which the
syntactical structure was constructed differed profoundly from the way it is conceived today. Today the
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rules® used in a theory are explicit axioms, which in principle are freely chosen, or, to use a widely
employed term, arbitrary. Within the limits of the given system of axioms, mathematical objects can
freely be created by arbitrary definitiok'sIn this way, the development of a theory is entirely syntactical
and it is possible to make a distinction between syntactical correctness and semantic truth.

This is not the case for Euler. The idea of the free creation of mathematical objects was lacking in
Eulerian analysis. Analytical objects were always connected with reality, directly or inditédilye
rules of manipulation were not arbitrary: they were derived from the notion of quantity and expressed
properties of quantities (or of numbers). For instance,b = b + a is not an arbitrary axiom associated
with the operationt- (which we may or may not choose, according to the objectives of our theory); it
was a mere consequence of the concept of joining two quantities.

A system of explicit axioms in the modern sense and an accurate construction of certain mathematical
objects (e.g., the construction of the different species of numbers) were lacking. In their place, Eulerian
mathematics admitted the reference to the intuitive knowledge of the mathematical notions drawn from
premathematical experiencs.

Moreover, even though signs were manipulated syntactically (blindly), analysis mirrored reality and
it was impossible to distinguish a syntactically correct theory from a semantically true theory: a theory
was acceptable only if it conformed to the realitySince reality isuniqug alternative theories based on
alternative definitions of certain notions (e.g., the sum of a series and limit of a sequence) could not exist.

Another fundamental aspect of the Eulerian conception, which has so far been left implicit in my
argument, is the relationship between quantity and numbers. Moligandige Anleitung zur Algebra
Euler stated that all the determinations or measures of any quantity are reduced to determining the relation
that a given quantity has with a certain quantity of the same kind taken as a measure or unity: “[this
relation] is always indicated by numbers, so that a number is nothing but the relation of a quantity to
another quantity, taken arbitrarily as a unity.According to Euler, numbers were taken into account in
analysis as they represented quantities considered in general without regard of the difference that existed
between the special types of quantities (other parts of mathematics, he says, concern the specific types of

10 1t is clear that by “rules of manipulation” | do not intend rules of inference, but rules of thedlypeba, which in modern
formal theory are axioms (or theorems derived from axioms).

11 Here freedom and arbitrariness do not mean that one chooses the system of axioms and gives definitions without reason;
rather, it means that axioms and definitions are fixed by an act of will determined by the targets that one wants to achieve, without
other restraint than the achievement of such targets. Axioms and definitions have no intrinsic necessity, nor do they consist
in a description of physical or geometrical reality; however, they must have the capability of representing certain concepts
adequately.

12 |f no intuitive interpretation of them was known—e.g., imaginary numbers—they were viewed as tools for improving the
analytical theory of quantity—which, as a whole, was a mirror of reality—in the same manner as the sign 0 improves the
notation of natural numbers that count objects even though it denotes no object.

13 An example is the definition of quantity discussed above. Another is thelsutey (x + dx) — y(x), the use of which we
shall see later. According to Euléy = y(x 4+ dx) — y(x) is not a definition of continuous function, but an intuitively obvious
property of continuous quantity.

14 As noted in Footnote 12, certain analytical objects did not represent reality in any obvious or straightforward way; however,
they were indirectly connected with reality in the sense that they were part of a theory that aimed to conform to reality.

15 «[verhaltnis] jederzeit durch Zahlen angezeigt wird, so dass eine Zahl nichts anders ist als das Verhéltnis, worinnen eine
andere, welche fur die Einheit angenommen wird, steht.” [Euler, 1770, 10].
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quantities) [1770, 10]. Quantity was considered as an entity that logically precedes number and number
was viewed as a tool for treating quantity.

The concept of number as the measure of quantity was a commonplace at least from the seventeenth
century*® It allowed mathematicians to go beyond the Greek concept of number as “number”of
multiplicity of unities, and made it possible to think of numbers as abstract and symbolic entities and
to introduce new species of numbers in addition to natural numbers (see Klein [1968]). Euler also
considered natural numbers as abstract and symbolic entities: a number, such as 7, was not considered as
the attribute of a group of material or ideal objects; instead it was an abstract entity that expressed what
all the things that are seven times the unity had in common. The number 7 was also a symbol that reified
an ideal entity into ciphers upon which one manipulates directly.

In his treatise, after having defined numbers as the measure of quantity, Euler observed that the
sequence of natural numbers is generated from repeatedly adding the unity starting from nothing [1770,
14].17 Euler did not give an (explicit or implicit) definition of natural numbers: the relationship between
a measurement of quantity and natural numbers was understood substantially intuitively.

Euler considered a fractiaryb to be the result of the division of two whole numberandb. Fractions
were introduced in a formal way, namely, without explaining what the divisiom lof » means when
a is not a multiple ofb, although they had an exact meaning. Euler stated that we can have a clear
idea of 7/3 by considering a segment 7 feet in length and by dividing it into 3 parts [1770, 30]. Unlike
fractions, irrational numbers did not represent a process of measurement in a precise sense (measuring
meant repeating the operation of comparing with unity or one of its parts successively and finitely). Euler
observed that the root of 12 is not a fraction. Nevertheless, it is a determinate quantity, which is greater
than 3;&%; 28; 22 ..., and smaller than 4%; 22; .... Therefore,s/12 is a new species of number. He
then added that a correct idea#li2 can be gathered by observing tkét2 is the number that, when
multiplied by itself, makes 12 and that the value\Gf2 can be approximated as desired [1770, 501%51].

Irrational numbers were significantly different from natural and fractional numbers. The latter had a
meaning in terms of unity of measure and consequently were numbers in the strict sense of the term, or
“true numbers.” In contrast, irrational numbers were not true numbers since they were thought to measure
guantity only in an approximate way.

This conception was a widely shared one during the 18th century. For instance, according to
d’Alembert (see [1773, 188]), the extension of the term “number” to incommensurable ratios was
considered incorrect because “number” presupposes an exact and precise denotation. Nevertheless,
incommensurable ratios could be viewed as numbers because they were similar to “numbers”; they could
be approached as closely as desired by “numbers” and could be represented geometrically.

The domain of true numbers was not sufficient to describe all the determinations of geometrical
gquantity and, moreover, other numbers apart from rational or irrational ones were necessary to investigate
quantity: apart from infinitesimals and infinite numbers, which | shall deal with in the next section, there

16 For instance, it can be recognized in Newton [1707, 2], Stevin [1585, 1], and Wallis [1657, 183]. On the notion of number
from Stevin to Wallis | refer to Klein [1968, 186—224].

17| note that Euler shared the idea that 1 is a number, which was finally accepted only in the 17th century (see, e.g., Klein
[1968, 194]).

18 |n Euler one may be able to grasp a distinction between irrational and transcendental numbers, where transcendental
numbers are those nonrational numbers that derived from the application of transcendent operations (such as a logarithm) to a
rational number. However, this distinction is not of importance for my purposes and | shall not take it into account.
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are negative numbers, zero, and imaginary numbers. Euler [1770, 12-15] introduced negative nhumbers
simply by stating that they were entities less than the nothing and that were represented by numbers with
the sign— (in opposition, positive numbers were numbers greater than nothing and had the sigike

the other species of numbers above mentioned, they also had an intuitive meaning. Euler stressed that
they could denote debts, or proceeding backward (e.g., the sequéne, —3, ..., proceeds backward

with respect to the sequence2l 3, ...). They can be represented by directed segments; however, they
did not correspond to a notion of measurement of a quantity in the strict sense of the term.

In[1770, 14] zero is introduced merely as the absence of quantity; it is the name given to the “nothing.”
Euler did not list zero as an integer (integers were the natural numiders2, +3, . .., which are greater
than nothing, and negative numbers werk —2, —3, ..., which are less than nothingJ.

According to Euler, expressions such @&-1, V-2, v/—3, v/—4 are impossible or imaginary
numbers: nevertheless they could be represented in our understanding and take a place in our imagination.
We can gain a sufficient idea (hinlanglichen Begriff) of them based on the fact that,/e-¢.meant a
number that multiplied by itself equals4 [1770, 56]. InVollstandige Anleitung zur Algebyrduler
emphasized the similarity in the introduction of imaginary and irrational numbers (as formal instruments
for obtaining the roots of certain numbers). However, imaginary numbers cannot be reduced to the
measurement of quantity, not even in an approximate sense. They differed from other numbers and were
generated by the symbolic mechanism of analysis; they had no meaning on their own but assumed a
meaning within the overall context of analysis and were useful for dealing with quantity.

At this point it is clear that even though all numbers were abstract and symbolic entities, only some
adequately reflected the concept of number as the exact result of a process of measurement and were
“true” numbers. Other types of numbers did not fit the notion of a number (although for different reasons).

In the strict sense of the term they were not true numbers. | shall term them “fictitious numbers” or
“fictions.”

The idea of false or fictitious numbers is an old one. For instance, many mathematicians, such as
Cardano and Descartés referred to negative numbers as false numbers. In various cases Leibniz
attempted to justify infinitesimal and infinite numbers as ficttdramilar to other fictions used in
mathematics (imaginary numbers, the power whose exponents are not true numbers, etc.) (see, e.g.,
Leibniz [GM 1V, 92-93]). In effect, the idea of false numbers is at the basis of much of mathematical
terminology regarding numbers, which we still partially retain today.

19 |n his [1770, 14], following Stevin and Wallis, Euler seems to consider nothing, zero, as the principle of natural numbers,
in the same sense as the point is the principle of the line.

20 See Cardano [1545], Descartes [1637]. This is what Descartes wrote when commenting upon the roots of an equation:
“But often it happens, that some of these roots are false, or less than anything, as if one supposemdicstes
also the defect of a quantity, which is 5, one hag- 5 = 0, which being multiplied byx® — 9xx + 26x — 24=0 is
x% — 4x3 — 19xx + 106¢ — 120= 0, for an equation in which there are four roots, namely three true ones, which are 2, 3, 4,
and a false one which is 5.” “Mais souvent il arrive que quelque une des ces racines sont fausse ou moindres que rien ; comme
si on suppose que désigne aussi le défaut d’une quantité qui soit 5 antab = 0 qui multiplié parx® — 9xx + 26x — 24=0
fait x4 — 4x3 — 19¢x + 106 — 120= 0, pour une équation en laquelle il y a quatre racines, & savoir trois vraies qui sont 2, 3,
4 et une fausse qui est 5.” [Descartes, 1637, 56].

21 On Leibniz’s conception, see Horvath [1982, 1986] and, above all, a very stimulating paper by Knobloch [1999].
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Unlike Leibniz, Euler did not use the term “fiction” explicitiy. Nevertheless, | shall employ this
expression because it expresses the nature of the Eulerian approach, in particular because it implies
an ontological difference between that which is fictitious and that which is true. Eulerian mathematics
effectively presentan ontological differencéetween natural and rational numbers (true numbers) and
the other species of numbers (which did not correspond to the idea of numbers and therefore were
fictitious numbers). To put it more clearly, nowadays-1 is an element of the set of complex numbers
C and exists in the same way as any other number in C, such as/2,tt. In Euler’s opinion,/—1
was a useful symbol for studying certain aspects of quantity; it did not have an existence in the same
sense as true numbers. Similarly, 0 was the symbol that represented the absence of quantity, the nothing,
the nonexistence; it was not a number because it did not measure quantity and did not denote anything,
however 0 could be treated as a numibéutatis mutandisthe same holds for irrational (unspeakable,
inexpressible) numbers and negative numbers. Fictions had the following characteristics.

(a) Fictions were a useful tool for shortening the path of thought and arriving at new results. It was
of no importance whether fictions appeared in nature or not, namely if they represented physical or
geometrical objects. Irrational numbers appeared in nature (they represented the length of a segment);
imaginary numbers did not appear.

(b) Fictions, however, were always connected with reality, directly or indirectly. They were not arbitrary
creations of the human mind but had to be well-founded in reality and were needed for investigating
reality (this is true even for imaginary numbers; see Euler [1770, 57]).

By the phrase “well-founded in reality or in natufé’l intend to emphasize the fact that certain
mathematical objects did not originate from arbitrary definitions given in a theory based upon an arbitrary
system of axioms; instead, they originated (1) from the need to express certain properties of quantities
and (2) from the need to manipulate objects that directly expressed quantities or properties of quantities
(an example would be theasus irreducibiluscase of the equation of third degree). In the first case,

a well-founded object had an intuitively obvious interpretation (e.g., irrational numbers but also, as we
shall see, infinitesimals). For this reason | would say that they were directly connected to’feality.

The second case was that of imaginary numbers, which did not have an intuitively obvious meaning
(see also Footnote 12). They were introduced in a merely formal way but they made up for rational and
irrational numbers when these did not suffice: they were always connected to reality, even though only
indirectly.

In any case, well-foundedness, used in this sense, excludes the possibility that mathematical objects
could originate from a free act of will and required them to be rooted in reality, directly or indirectly, as
elements of a theory that aimed to interpret the real.

22 Only in Institutionum calculi differentialis Sectio I{Euler had intended this work, which was published posthumously in
1862, to form the third part of the treatise on differential calculus, where he applied the calculus to geometry) is an appeal made
to thefictio animithat a segment does not so much represent itself, so to speak, but an infinitesimal part gki{sel§ Euler
[A]).

23 | derive this expression from Leibniz’s statement that imaginary quantities have their foundation in nature [Leibniz, 1849—
1850, 1V:93]; see also Leibniz [1875-1890, VII:263—-264].

24 However, this does not mean that there exists a geometrical or physical object corresponding to it; for example, Euler did
not assume the existence of physical or geometrical infinitesimals. See Section 3.
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It should also be emphasized that fictions were not of interest in themselves, but only insofar as they
allowed one to solve problems concerning quantities. They were auxiliary instruments for dealing with
gquantities.

(c) Fictionswere manipulated as if they were true numberhis means that a fiction was treated
by analogical extensions of rules valid for true numbers or geometrical quaftitiserefore,
a fictitious number was more than a méaeon de parleror a shorthand way of denoting a certain
operation upon true numbers: it was symbolic entity that formed part of the symbolic nature of true
numbers and quantities.

(d) An adequate theoretical constructidar moving from fictions as a sign for shortening the path
of thought to the analogical use of fictions as true numbeas completely lackingThus, well-
foundedness in the above sense was the only justification for fictions.

(e) Eventhough quantity is an entity abstracted from geometrical quantity and has the same properties as
lines, it could be determined by fictitious values; in other words, one could assign fictitious numbers
to a variablex.

Like other 18th-century mathematicians, Euler used the term “irrational quantities” to refer to
irrational numbers or irrational determinations of quantity. Similarly he referred to negative quantities,
imaginary quantities, etc. | shall maintain this terminology and, more generally, | use the term “fictitious
quantities” by referring to fictitious determinations of quantity or fictitious numbers.

A general quantity has some determinations that can be represented by a nondirected segment, whereas
others cannot. | shall use the term “real quantity” to denote a quantity which only assumes these
determinations and which corresponds to the mental image of the geometrical or physical quantity. | do
not therefore intend this term in opposition to fictitious quantity, since a real quantity can have both true
numbers and certain fictitious numbers as its determinatfons.

The above discussion allows a more precise characterization of general quantity. General quantity was
an abstract entity that had the same properties as geometrical quantities but was capable of assuming any
value, even fictitious values. It was represented by graphic signs which were manipulated according to
appropriate rules, which were the same rules that governed geometrical quantities or true numbers. The
principle of the generality of algebra held: the rules were applied in general, regardless of their conditions
of validity and the specific values of quantity. (I shall later use the term “formal manipulation” to refer to

25 This statement is to be understood as follows. The principle was assumed that if an operation (not only algebraic
operations—sum, product, etc.—but also transcendental operations—logarithm, etc.) had true numbers or geometrical quantities
as operands then it could have fictitious numbers as operands. Of course, some adjustments might be necessary. They took the
form of specific rules inherent to the peculiar nature of every distinct species of fictitious numbers. For instance, the rule of
signs was a specific rule for negative numbers. These specific rules were what distinguished a calculation involving a particular
species of fictitious numbers from a calculation involving true numbers or a different species of fictitious numbers.

26 |rrational numbers do not correspond to the idea of number and, therefore, are fictions; however, they have a very special
nature with respect to other fictitious numbers since they can be represented by means of a nondirected segment and answer the
guestion: What is the measure of a given (real) geometrical quantity? Rational numbers answer the same question (though in a
more precise way) and thus these rational and irrational numbers might be grouped together to form the class of (positive) real
numbers (and in effect rational and irrational numbers were often taken together, for instance as opposed to imaginary numbers;
see Euler [1748, 18]). By so doing one obtains a different classification, which considers the capacity of numbers to express the
determinations of geometrical quantities directly, but this is not relevant to my purposes in this paper.
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the fact that general quantity, expressed in an analytical form, was handled regardless of the nature of its
specific values and the condition of validity of the rules of manipulation.)

This concept was at the heart of the Eulerian notion of function. An Eulerian function was a
relationship between general quantities. Because of the symbolic nature of general quantity, this relation
was always understood to be symbolically represented. Symbolic representation, which was usually
known as an analytical expression, could assume any value: it was handled regardless of the nature of
these values and the condition of validity of the rules of manipulation. | have not dwelt upon the concept
of a function in the 18th century, since it has been investigated elsewhere in other works to which | refer
(see Ferraro [2000b], Fraser [1989], and Panza [1996]). | restrict myself to mentioning an example of
this concept: the extension of the rules of the functionxldg negative or complex values of Euler
never defined “log” for negative or complex numbers but merely assumed in an unproblematic way that
the properties of the analytical expression “idgasted beyond the initial interval of definition, even
whenx is negative or imaginary. Thus, Institutiones calculi differentialisonce he had established that
d(logx) = dx/x, Euler did not hesitate to apply this formula to the case where the variable was negative
or imaginary, without making any distinction between real and imaginary variable. For instance, in Euler
[1755, 124], he found that the differential of the function

y = \/%Iog(x«/—l—i—\/l—xz)
is
dx
dy = ———.
Y 1—x2

More explicitly, in [1749] Euler had stated: “For, as this calculus concerns variable quantities, that is
gquantities considered in general, if it were not generally truediil@igx) = dx/x, whatever value we

give tox, either positive, negative, or even imaginary, we would never able to make use of this rule, the
truth of the differential calculus being founded on the generality of the rules it contdins.”

To conclude this section, | wish to make some simple consequences of the above described notions of
quantity and numbers explicit. First, since a single number was a specific determination of quantity,
a single number expressed a quantum rather than a quantity. Second, even though each specific
determination of real quantity can be represented by means of numbers, the idea that quantity might
be reduced to a set of numbers was not taken into account. Third, more generally, numbers were not
conceived of as elements of a set, if by “set” one means an extensional entity, which is arbitrarily defined,
entirely characterized by the list of its elements, and having a certain cardinality. Instead, Euler classified
numbers into different classes or species, where a “species” of numbers is intended as an intensional
entity, which cannot be reduced to an enumeration of objects: it is given by a nonarbitrary and nontrivial
property and is not necessarily associated with cardinality.

27 «Car, comme ce calcul roule sur des quantités variables, c'est-a-dire sur des quantités considérées en général, s'il n’etoit pas
vrai généralement qu'il tid./x = dx/x, quelque quantité qu'on donnexasoit positive ou négative, ou méme imaginaire, on
ne pourrait jamais se servir de cette regle, la vérité du calcul différentiel étant fondée sur la généralité des regles qu'il renferme.”
[1749, 143-144].
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3. Infinitesimals asfictitious quantities

Eulerian notions of infinitesimals and infinities should be included within the conception described in
the previous section: infinitesimals and infinities were to be viewed as fictitious numbers, which were
well founded in real quantities—they symbolized the process of making quantities approach a limit—but
were formally manipulated in the context of the theory of functions as analytical expressions.

To justify this statement, | start by observing that Euler considered infinitesimals as evanescent
quantities, although he never offered a definition, not even a vague or imprecise one, of the notion
of “evanescent quantity.” In [1755, 69] he restricted himself to stating: “There is no doubt that every
quantity can be diminished until it vanishes completely and is reduced to noi§ifiyis basic principle
is the expression of a property of geometrical or physical quantities: one may associate it with the mental
image of a physical entity (such as the quantity of gunpowder, in the initial example bidfiteitiones
calculi differentialig which we can imagine as becoming increasingly smaller; otherwise, still remaining
within the field of mathematics, we may imagine an evanescent quantity as a segment which increasingly
diminishes until it becomes a single point and disappears as a segment.

Similarly, in [1755, 65] the idea that quantity can be infinitely increased is regarded simply as part of
the concept of quantity and has no need of further explanation or clarification. Euler restricted himself to
exemplifying this idea by observing that the sequenc® 3, ..., can always be increased or a straight
line can always be continuéd.

Euler repeatedly stated that an evanescent quantity is zero. For example, in ChaptestiButibnes
calculi differentialis he wrote: “an infinitely small quantity is simply an evanescent quantity and therefore
actually equal to zerc®® This statement, which seems strange to modern eyes, was rooted in the 18th-
century concept of number and quantity. Any number was a determination of quantity and was generated
from the flow of quantities; in particular, zero was generated from a quantity that became nothing. Thus,
when zero or another number was used in an analytical expression, it could be thought of as the value
of any variable. For instance, De progressionibus transcendentid§30-1731, 11-12], Euler sought
the value of

g

1— x7+s

for f =1 andg = 0, namely the value 011*0—"0 (see Ferraro [1998]). He interpreted 0 as a value of a

28 «“Nullium [...] est dubium, quin omnis eousque diminui queat, quoad penitus evanescat atque in nihilum abeat.” [Euler,
1755, 69].

29 |n Euler’s terms: “Sic nemo facile reperietur, qui statuerit seriem numerorum naturalium 1, 2, 3, 4, 5, 6 etc. ita usquam
esse determinatam, ut ulterius continuari non possit. Nullus enim datur numerus, ad quem non in super unitas addi sicque
numerus sequens maior exhiberi queat, hinc series numerorum naturalium sine fine progreditur neque unguam pervenitur ad
numerum maximum, quo maior prorsus non detur. Simili modo linea recta numquam eousque produci potest, ut in super ulterius
prolongari non posset. Quibus evincitur tam numerus in infinitum augeri quam lineas in infinitum produci posse. Quae cum sint
species quantitatum, simul intelligetur omni quantitati, quantumvis sit magna, adhuc dari maiorem hacque denuo maiorem
sicque augendo continuo ulterius sine fine, hoc est in infinitum, procedi posse” [Euler, 1755, 65].

30 “quantitas infinite parva nil aliud est nisi quantitas evanescens ideoque reveter[Euler, 1755, 69].
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variable quantity; and, by applying I'Hopital’s rule, found that the valuebf‘—z asz vanishes¢umz
evanescintwas

(l—x > _ (_(x |ng)dz) — _logx.
z z=0 dz z=0

Similarly, in order to calculate the value of

xa_anrmﬁ 7.[2 1 (Zx_l)(1+%+%++%)
—— and + —
1—x8 6x(x —1) x(x—1)02 x2(x —1)2
at the pointx = 1, Euler tookx = 1 — w, with  infinitesimal (see Euler [1732-1733, 44], Fuss [1843,
2:229-231)).
One may be struck by the similarity between this procedure for “finding” the vald(%i‘(gfand the
modern problem of extending the functié(z) = 1= in a continuous way by putting

Z

z

for z=0.

F(0) =Iim
z—0 d

Indeed there is a coincidence of results which might lead one to think that there was a substantial

identity between evanescent quantities and limits. Nevertheless, these results are drawn from different

assumptions and it is appropriate to clear the field of possible misinterpretations. From a modern

perspective, the problem of extending the functiofz) = 17‘1 in a continuous way means that:

(a) for every fixed value > 0, one considers the function (function in the modern sense of the term, not
as an analytical expression)z) = 1‘;“7 defined forz # 0;

(b) the domainD of f(z) has a point of accumulation at 0 so that we can attempt to calculate the limit
asz — 0, where by =Ilim__, . f(z) we mean:
given anye > 0 there exists & > 0 such that iz belongs toD and|z| < § then| f(z) — A| < &;

(c) the application of I'Hopital’s rule, under whose hypotheses our case falls, makes it possible to state
that such a limit exists and is equaltdogx;

(d) finally, one defines a new functidf(z), which will be continuous at the point 0, by setting

1—x*%
— ] 7 < 3’50,
Fla)= { —logx z=0.

This procedure is substantially meaningless for Euler for the reasons that have been seen in the
previous section. He did not consider a function as a pointwise correspondence between numerical sets
but as a rule that linked two variables quantities and was embodied in one single analytical expression.
He had no set of points or numbers, did not separate an interval of values (a segment) from its endpoints,
etc., nor could he formulate the notion of extension of a function, but instead consﬂe@?&d —logx

necessarily to be the value éf;‘— when the variable flows.

However, apart from these crucial differences, there is something in common between the Eulerian
procedure and the modern one based upon the notion of limit: evanescent quantities and endlessly
increasing quantities were based upon an intuitive and primordial idea of two quantities approaching
each other. | refer to this idea as “protolimit” to avoid any possibility of a modern interpretation.
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The protolimit, which derives from the observation of physical and geometrical quantities, was the
empirical intuition that guaranteed the well-foundedness of infinitesimals, namely the fact that they
were not mere creations of our mind but were rooted in reality. Starting from such an intuition, Euler
developed the notion of an infinitesimal merely by introducing a symbolism and assuming that one could
operate upon them as if they were numbers. Euler posed the question of using different symbols to denote
evanescent quantity, which ultimately all became equal to zero. In his own language: “[W]hy do we not
always characterize the infinitely small quantities by the same sign 0, instead of using particular symbols
to designate them? Since all zeros are equal among themselves, it seems superfluous to discriminate
among them by means of different sigris.”

Euler [1755, 70] justified the use of different signs by assuming that quantities vary and vanish in
different ways: there exists a diversity between zeros depending on their origin and théxsidms. . .,
denote how the variables y, ..., vanish.

Although infinitesimals seem to be introduced as shorthand symbfalspa de parlerthey were not
used exclusively in this way. If the latter were true, one could replace any occurrence of th&csign
by the expression “the variable goes to zero,” in the same manner as one can substitute the symbol
“ 1" for the expression “perpendicular to” in certain theorems of elementary geometry. This is effectively
possible in many cases (and Euler often replaced the infinitegimalith a variablex — 0 or merely
with 0, and vice versa), but in general it is not possible sificevas treated as a number.

From a modern standpoint, what appears to be critical isthady, ..., were neither signs governed
by axiomatic and arbitrary rules nor entities constructed from other mathematical entities, as, in contrast,
are hyperreal numbe?$ Euler merely moved from the consideration of variables that vanish or endlessly
increase to the consideration of infinitesimal and infinite numizeas immediate and natural wags if
there were no difference between finite quantities, small or large as desired, and infinitesimal or infinite
numbers Well-foundedness was all that the mathematics of the time required to transform an idea into
a symbol governed by the same rules as true numbers. According to the terminology of the previous
section, infinitesimals were fictitious numbers.

To found infinitesimals well Euler had to explain the principle of cancellation of differentials, namely
the rule according to which

dx" +dx" =dx" ifn<m. @

This was the specific rule characterizing infinitesimals (see Footnote 28hstitutiones calculi
differentialis he stated that, given two quantitiesand b, the equalitya = b can be understood in an
arithmetic sense (in other words= b, if a — b = 0) and in a geometric sense£ b, if a/b = 1) [1755,

70, 74]. The arithmetic equality coincides with the geometric one for finite quantities but the situation is

31 «[Clur quantitates infinite parvas non perpetuo eodem charactere 0 designemus, sed peculiares notas ad eas designandas
adhibeamus. Quia enim omnia nihila sunt inter se aequalia, superfluum videtur variis signis ea denotare.” [Euler, 1755, 70].

32 Modern hyperreals are the elements of a rich and well-organized algebraic strtRtureich encodes how a sequence
approaches a limit by a complex construction. Here is a possible constructféh oetm be a finitely additive measure on
the setN of the positive integers such that: for &llc N, m(A) is 0 or 1;m(A) =0 if A is finite, m(N) = 1. (For a proof
of the existence of this measure, see Lindstrgm [1988, 84-85].) Now, consider the equivalence +etatitine setS of the
sequence of numbergt,} ~ {b,} iff m{n: a, — b, = 0} = 1. The setR of the hyperreal numbers is definedt®= S/ ~. The
classes of equivalence of the sequen@s{1/n}, {1/n2} are elements dfR and are examples of infinitesimals; the classes of
equivalence of the sequencigs, {n2}, {n3} are three examples of infinite numbers.
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different for infinitesimals. For infinitesimals, the arithmetic equation, which is always verified, does not
imply a geometric one; namely, 0 does not imply 00 = 1.

Then Euler observes that+ ndx = a (n being an arbitrary number) is true since it is not only
verified in an arithmetical senséu(+ n dx) — a = ndx, wheren dx = 0) but also in a geometric sense.
Indeed,(a £n dx)/a is equal to 1 and this means that infinitesimals vanish before any finite quantity. The
situation is analogous for the powets?, dx3, dx*, .. .. Euler observes that “the infinitely small quantity
dx? vanishes befordx,” since the quantitiedx + dx? anddx (both evanescentix + dx? = dx = 0)
go to zero in the same waylx + dx?) :dx = 1+ dx = 1. More generally, ifn < n, thena dx™ + bdx"
was equal tar dx™, since

adx" +bdx" =dx" =0 and LLCTPDT g @ e g,
adx™ b
namely the arithmetical and geometrical equalities were verified.

We could briefly say: ifA = B + C, and if C goes to zero befor8 (in other wordsA/(B + C) = 1),
thenA = B. In modern termsA and B are asymptotically equal or have the same asymptotic behavior.

I do not use this anachronistic terminology to vindicate Euler by attributing to him modern asymptotic
notions. | merely wish to point out that the protolimit possessed many different facets and that it should
be considered as a basic notion from which later mathematics has derived various modern notions. The
crucial point, however, is that once he showed the principle of cancellation as well founded, Euler then
used it as a tool for formal manipulations; in other words, a calculation involving this principle is no
longer referred to the meaning of (1) in terms of approaching, but (1) is considered as a specific rule for
the formal manipulation of infinitesimafs.

In order to illustrate the above discussion more clearly, | now investigate one of Euler’'s proofs, the
derivation of the series expansion of the exponential function, recently investigated in Laugwitz [1989],
McKinzie and Tuckey [1997] from a different point of view (see below). In Chapter V ofritreductio
in analysin infinitorum[1748, 122] Euler stated that if is a number greater than one a@adand v
are infinitesimals, then® = 1+ . Then he assumed that the infinitesimalis equal tokw and that
a®” =1+ kw. In[1748, 123-124] he considered a finite numbgeseti = x/w, and observed that

a*=a" =1 +ko) = Z(i)(ka))r = Z(;)(?) .
r=0

r=0
Euler asserted thatt =1, =2 =1, =2 =1 .., for an infinitely large numbet. Thus he obtained
=1
at = X; (k)" (2)

There are some critical steps in this proof. First of all, Euler justified the relation
a® =1+ 3
by making a reference to what he had stated in the preceding Chapter IV:

33 Note that Euler's justification of (1) consists in explaining what is meant by the ¢ajobetween quantitieg: andé that
vanish or endlessly increase. In the calculus, however, he handles the infinitesimal and infinite quaatitiks as separate
entities.
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Let w be an infinitely small number, or such small fractions that they are almost equal to nothing, then

a®=1+vy,

wherey is a number infinitely small number, as well. Indeed, from the preceding chapter, it was established thatsifnot an
infinitely small number, then neither coudgbe an infinitely small numbé¥*

In reality, in Chapter IV, exponential and logarithmic functions had been introduced without making
any mention of infinitesimals [Euler, 1748, 1:103-105]. He suggested the idea that the difference between
a*t anda*2 of the exponential function® might be made equal to a tiny finite quantity, provided that
andz, are taken very close together (in other words, at a tiny finite distance). In the following chapter
this idea was expressed by (3), as if infinitesimals were only shorthand symbols.

Similarly Euler justified the relatiorfij—l =1, wherei is an infinite number, by an intuitive, direct
consideration of the process of growth of a finite variabledeed, he stated: “However much larger the
number that we substitute foy the more the value of the fractioil?—l comes closer to unity. Therefore,

if i is a larger number than any assignable one, the fraétjblequals unity3°

However, in proving (2), Euler usedas an infinite number and as an infinitesimal number, namely,
he assumed that one could operate upon symbols by expressing the fact that the finitei nnonbased
beyond all limits or that the finite quantity vanishes as if andw were numbers. In this wa!'y;—1 =1lis
transformed into a rule for formal manipulation, specific for the fictitious numbed analogous to (1):
it should not be intended ¥~ ~ 1 nor as the limit lim_, . =* = 1.

Laugwitz has repeatedly pointed out that in the proof of (2) there is a gap (for instance, see Laugwitz
[1989, 210-211]), which he argues consists in the implicit assumption that the sum of infinitely many
infinitesimals is an infinitesimal. It is evident that Laugwitz's remark arises from the interpretation of
ij—.l =1 asij—.l ~ 1. This interpretation contrasts with the Eulerian statementithat/x = a is an exact
equality and not an approximate one. According to Euler, “geometric rigor is averse to even the slightest
error’®” and the exactness of mathematics required that the differehtishould be precisely equal to 0
(even though the meaning of this expression is to be interpreted in the above sense, as a variable going to
zero). He also observed that, by ignoring infinitely small quantities but not naughts, it was still possible
to commit extremely serious erréf41755, 6].

34 “Quiaesta® =1, atque crescente exponente ipsius a simul valor potestatis augetur, si guddénmumerus unitate major;
sequitur si esponens infinite parum cyphram excedat, potestatem ipsam quoque infinite parum unitatem esse supetaturam. Sit
numerus infinite parvus, seu fractio tam exigua, ut tantum non nihilo sit aequalis; erit

a® =1+,

existenteyr quoque numero infinite parvo. Ex praecedente enim capite constat; eisset numerus infinite parvus, neque
talem esse posse.” [Euler, 1748, 1:122].

35 “Cum autemi sit numerus infinite magnus, eﬁ‘tlf—l = 1; pater enim, quo maior numerus lotsubstituatur, eo proprius
valorem fractionisfj—l ad unitatem esse accessurum; hint sit numerus omni assignabili maior, fractio quocbepl ipsam
unitatem adaequabit.” [Euler, 1748, 124].

36 By a ~ b, | mean that the difference— b is an infinitesimal hyperreal number.

37 «[R]igor geometricus etiam a tantillo errore abhorret” [Euler, 1755, 6]. These words echo Newton's and Berkeley's
statements. See Newton [1707, 334], Berkeley [1734, Sections 4 and 9].

38 This observation seems to be an implicit answer to Berkeley’s view on the calculus. In Berkeley’s opinion, the calculus
achieved correct results only thanks to a compensation of errors [Berkeley, 1734].
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Euler knew that the sum of infinitely many infinitesimals need not itself be an infiniteStrrwever,
he did not see gaps in the proof of (2), and this was due to the fact that he undeﬁc;&oedl as
a formal equality involving fictitious entities. The proof of (2) is not to be read as a sequence of
numerical equalities, but as a sequence of formal manipulations: the functioan be transformed
into >"°°,  (kx)" by formal manipulationé?

Euler did not hesitate to pursue this approach to its most extreme consequences. For instance, in the
Chapter VII ofInstitutiones calculi differentiali€uler derived

S(X):l"l_2n+3n_4n+.._+(_l)x+lxn

l 2m
— (_1)x+l<%xn + Z(_l)m+l<2’nn_ l) (2 2n/:lI')Bzmxn2m+l> +C, (4)

m=1

wheren >0, s = [(n + 1)/2] is the integral part ofn 4+ 1)/2, B, are the Bernoulli number8,and the
constantC is determined by the conditio$((0) = 0. This constraint implies that if is even, therC = 0;

if n =0, thenC = 1/2; if n is greater than 0 and is odd, thén= (—1)“2'1“”’%.42

Consequently 1— 2" + 3" — 4" + ... 4+ (—=1)**1x" can be expressed @+ (—1)* f(x), whereC
is a constant and ' (x) is an appropriate function of the index Euler thought that one could make
(=1)* f(x) equal to zero for = oo since “if x is an infinite number, which is neither even nor odd, this
consideration [he means the alternating sequence afd— in (—1)* f(x)] has to end and, therefore,
the sum of the ambiguous terms should be rejetiddence one derives that the sum of the series to
infinity is expressed by means of the only constant quaritit¥his implies that —1)> = 0 and that the
sums are

2/1+1_1B
1"—2"_|-3"_4"+---=C:(—1)["/2]¢ (5)
n+1

Equation (5), which can also be derived differently (see, e.g., Euler [1761]), is the consequence of the
conscious acceptance of formal manipulations and of the principle of generality in atgebra.

39 In this regard, the discussion about the use of infinitesimals for defining integrals in [1768-1770, 1:183-184] is very
interesting. Here Euler stated that it was possible to take into account non-null infinitesimals but they constituted only an
imprecise and approximate version of the notion of infinitesimal, which nevertheless has useful applications.

40 Of course, the result was also read as a numerical relation between the quaratitg the seried 22 r—l,(kx)’, but this
is an a posteriori interpretation of the formal derivation (see Ferraro and Panza [2003]).

41 There are several definitions of Bernoulli numb@s Here | refer to the definition’; =1+ Y02, (—lr/2+18r,

(Jz] < 2, [x] is the integral part ok), Bg = 1, which is closer to Eulerian use.

42 Eyler's derivation of this result is illustrated in Goldstine [1977, 131-135].

43 The most probable interpretation of this statement is the following. Giversthist equaloo + 1 (geometric equality), it
is impossible to distinguish the behavior at infinity of the variablaad: + 1 and it is impossible to distinguish even and odd
infinite numbers. Indeed singe-1)> = (—1)°°(®+1/00 = (_1y00+1 = _(_1)*° one hag—1)® =0.

44 “Quodsi se ergor fuerit numerus infinitus, quoniam is est neque par neque impa, haec consideratio cessare debet ac
propterea in summa termini ambigui sunt reiiciendi; unde sequitur huiusmodi serierum in infinitum continuatarum summam
exprimi per solam quantitatem constantem adiiciendam” [Euler, 1755, 384]. Euler’s approach recalls Leibniz's one in [Leibniz
GM, V, 396-387] (see Ferraro [2000c, 63-67]).

45 1t should be noted that not all 18th-century mathematicians accepted the idea of assigning a me&nih§°toFor
instance, Nikolaus Il Bernoulli stated that the partial sums ef3+5— 7+ --- are —n(—1)" and, therefore, the sum of
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At this juncture, | would like to observe explicitly that some recent papers, such as Laugwitz [1989,
1992], McKinzie and Tuckey [1997], interpret 17th- and 18th-century texts by translating them using
modern notions and thus approach the question of the nature of Eulerian infinitesimals in an essentially
different way from the present article. In particular, Laugwitz, McKinzie, and Tuckey believe that it is
possible to vindicate Euler on the basis of a modern version of infinitesimals. However, | think that there
is an irreducible difference between Eulerian infinitesimals and modern hyperreal ndfhbetseir
investigations, Laugwitz, McKinzie, and Tuckey do not use Robinson’s infinitesimals but make “more
naive” assumptions [McKinzie and Tuckey, 1997, 48]. Although these assumption are weaker than the
ones in Robinson’s theory, one can see in operation in their writings a conception of mathematics which
is quite extraneous to that of Euler.

For instance, the starting point of Laugwitz’s theory “is a generalization of field extension. A symbol
£2 ...is adjoined to the real numbers. If a formuldn) containing the variable (for natural numbers) is
true for all sufficiently large:, thenF (£2) is defined to be true in extended theory” Laugwitz [1987, 273].

Similarly McKinzie and Tuckey employ “the more or less axiomatic introduction of infinite and
infinitesimal numbers” [McKinzie and Tuckey, 1997, 48]. In a footnote, they explain: “In modern terms,
the Eulerian continuum is an ordered field; the natural numbers are a subset of the real numbers, which
contains 01, .... The fundamental equations or axioms are exactly what one would use to axiomatize
the mathematics necessary for basic algebra and trigonometry, with additional assumption that there is
an infinite natural number. By the field axioms, this implies the existence of infinitesimals.” [McKinzie
and Tuckey, 1997, 48].

These commentators use notions such as set, real numbers, continuum as a set of numbers or points,
functions as pointwise relations between numbers, axiomatic method, which are modern, not Eulerian.
Furthermore, they do not pay attention to the notion of formal manipulation, which plays a decisive role
in Euler's analysis.

Finally, it should be noted that the translation of Eulerian notions in the terminology of nonstandard
analysis eliminates aspects that were regarded as unitary. For instance, in Laugwitz’s theory, since
(—1)" = —1v (1" = 1 is true for a natural number, (—1)%? = —1v (—1)¥ = 1 is a true formula
for a hyperinteger? (see Laugwitz [1992, 147]). By contrast, Euler’s use of infinity also includes (5)
and(—21)* = 0: these formulas cannot be eliminated as fringe features or curiosities of Eulerian analysis.
Nor can one vindicate Euler by reformulating (5) using the theory of summability. Summability theory
is based upon the idea that arbitrary definitions of the sum of a series and the limit of a sequence can

the series is not 0, although-13 +5— 7 + -- . is generated from the expansion ﬁﬁ%ﬁ for x = 1. In his terms: “Seriei

1— 3+ 5— 7+ etc. summa exprimitur per ultimum terminum hujus seriei 2+ 3 — 4 4 etc. et quando nullus concipi potest
hujus seriei ultimus terminus, nulla etiam concipi poterit summa prioris seriei, aut se velis illa sumea-exit— 1°°, non
autem= 0, a quo valore series1 3+ 5 — 7 + etc. tanto magis recedit, quanto magis continuatur, quamvis illa formetur ex
quantitate% =0." [Fuss, 1843, 2:709].

46 |In his [1974] Bos has already discussed some differences between 17th- and 18th-century infinitesimals (especially
Leibnizian infinitesimals) and nonstandard analysis (see Bos [1974, 81-86]). In particular, he insisted that ‘the most essential
part of nonstandard analysis, namely the proof of the existence of the entities it deals with, was entirely absent in Leibnizian
infinitesimal analysis” [Bos, 1974, 83]. This is true not only for Leibniz but also for Euler (as was mentioned above). However,
it is worth noting that the absence of such a proof is the result of a conception of mathematics for which the term “existence”
had a meaning only if, in the final analysis, it referred to reality. For this reason, 18th-century mathematicians did not feel the
need to prove the existence of any species of numbers by providing a mathematical construction of them: the possibility of
grasping them intuitively and evaluating their well-foundedness was sufficient.
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be given: it presupposes a conception of mathematics as a set of theories which are syntactically derived
from arbitrary axioms and definitions. However, Euler never considered alternative theories based on
alternative definitions of the sum and limit. In conclusion, the attempt to specify Euler’s notions by
applying modern concepts is only possible if elements are used which are essentially alien to them, and
thus Eulerian mathematics is transformed into something wholly different. I am not claiming that 18th-
century mathematics should be investigated without considering modern theories. Modern concepts are
essential for understanding 18th-century notions and why these led to meaningful results, even when
certain procedures, puzzling from the present views, were used. However, 18th-century analysis had its
own principles, different from those of modern analysis: an unproblematic translation of certain chapters
in the history of mathematics into modern terms tacitly assumes that the same logical and conceptual
framework guiding work in modern mathematics also guided work in past mathematics. So it implicitly
assumes the point of view of modern mathematics to be the only possible point of view and the growth
of mathematical knowledge to be a linear proc¥ss.

4. Infinitesimalsin the presentation of the calculus

In this section we shall see how the notion of the infinitesimal described above enters into the
actual presentation of the algorithm of calculus. Euler claimed that functions were the subject-matter
of the calculus and that differentials were mere tools for dealing with functionBelosu functionum
discontinuarum in AnalysEuler stated: “Differential calculus . is not concerned with investigating the
magnitude of differentials, which is nothing, but with defining their mutual ratio, which has a determinate
guantity in any case. It certainly investigates not so much the differehtiaf the functiony as its ratio
with the differentialdx.”*8

He subsequently made it clear that the value of the fractipfilx gives rise, for any possible case,
to a determinate (variable) quantity which can be considered a new functiof®@imilar statements
can be found innstitutiones calculi differential®® and inInstitutiones calculi integrali§® According to

47 Seethe interesting remark of K.H. Parshall: “Traditionally, historians of mathematics have most often adopted a presentistic
approach to their subject. From the vantage point of the state of the discipline in their own times, they have tended to portray
the development of mathematics as fundamentally linear in nature. In other words, looking back into mathematical history, they
have picked and chosen from among the various contributions and constructed a logical, straight line progression from the past
to the present. This kind of history serves to anchor contemporary mathematics in the past by providing it with a clear sense
of direction, but at the same time it profoundly distorts the view of the mathematical climate at any given time in history. In
the search for predecessors of a particular type of equation, theorem, or idea, other concepts which may have been of prime
importance to the authors under scrutiny tend to be ignored or trivialized. Furthermore, competing approaches and underlying
philosophies often fall into total obscurity” [Parshall, 1988, 128].

48 “Neque. .. calculus differentialis in quantitate differentialum, quae nulla est, indaganda occupatur, sed in eorum ratione
mutua definienda, quae ratio utique certam obtinet quantitatem. Functionis sciioettam ipsum differentialéy quam eius
ratio ad differentiale/x investigatur” [1765, 80].

49 “[valor fractionis dy/dx] quovis casu determinatam quantitatem sortitur et ipse tanquam nova functio ipspestari
potest” [1765, 80].

50 “[CJalculus igitur differentialis non tam in his ipsis incrementis evanescentibus, quippe quae sunt nulla, exquirendis, quam
in eorum ratione ac proportione mutua scrutanda occupatur et cun hae rationes finitis quantitabus exprimantur, etiam hic calculus
circa quantitates finitas versari est censendus.” [Euler, 1755, 5].

51 «In calculo differentiali iam notavi questionem de differentialibus non absolute sed relative esse intelligendam, ita ut,
si y fuerit functio quaecunque ipsius differentiale quam eius ratio ad differentialéx sit definienda. Cum enum omnia



G. Ferraro / Historia Mathematica 31 (2004) 34-61 53

Euler, given the function, for example= x® whose differential is/y = 3x?dx, the genuine object of
the calculus was the study of the differential coefficient (in the exampfd,&hd not of the differential
3x2dx. The algorithm of the calculus transformed functions into functions and not differentials into
differentials: this viewpoint was part of the general rewriting of analysis as a theory of functions.

In the preface to thénstitutiones calculi differentialiand in theDe usy Euler provided examples
where the calculation of the differential coefficient seems to look forward to the modern definition of the
derivative. In [1755, 5], he considered the functipe: x? and observed that

yx4+w):o=(2x+w):1

(wherey(x + w) is the increment, 2» + »?, of x?). So the smallew is, the closer iS2xw + @?) : w
becomes to 2: 1, even though it actually reaches 21 only when the increment has completely
vanished? In [1765, 80], Euler considered the function= ax? + bx + ¢ and obtainedAy/Ax =
(2axw + aw? + bw)/w = 2ax + aw + b anddy/dx = 2ax + b, whenw is evanescent.

The similarity with the modern notion of derivative is striking, but it must not deceive us. Indeed, in
Chapter 4 ofinstitutiones calculi differentialiswhere the rules of the calculus are formulatéduler
tried to base the analysis of infinities on the method of finite differences, considering it as a special case
of this method “which occurs when the differences, which were previously assumed to be finite, are taken
to be infinitely small.®*

Even though the calculus dealt with finite quantities of the faimidx, Euler did not introduce
differential coefficients directly as the limits of certain ratios: first he introduced differeatialgy, . . .,
and then he consideret} /dx as the ratio of the fictitious quantitiely anddx. The idea of approaching
was incorporated into that of infinitely small numbers. Thus, in the calculation of the differentiél of
(which is illustrated below), there is no explicit reference to the limit process, in contrast to the examples
presented in the preface tostitutionesand in De usu This leads Bos to state in his [1974] that the
definition of the analysis of infinities in Chapter 4 of thestitutiones calculi differentialisis rather at
variance with” some of Euler’s remarks. Bos referred to two passages from the preface of the same work

differentialia per se sint nihilo aequalia, quaecunque fungtiverit ipsiusx, sempre esfy = 0 neque sic quicquam amplius
absolute quaeri posset. Verum quaestio rite proponi debet, utxdmerementum capit infinite parvum adeoque evanescens
dx, definiatur ratio incrementi functionig, quod inde capite, ad istudlx; etsi utrumque est 0, tamen ratio certa inter ea
intercedit, quae in calculo differentiali proprie investigatur. Ita si fuget xx, in calculo differentiali ostenditur es% =2
neque hanc incrementorum rationem esse veram, nisi incremehtueX quody nascitur, nihilo aequale statuatur. Verum
tamen hac vera differentialium notione observata locutiones communes, quibus differentialia quasi absolute enunciatur, tolerari
possunt, dummodo semper in mente saltem ad veritatem referantur. Recte ergo dicimas;asifore dy = 2x dx, tametsi
falsum non esset, si quis dicerst = 3x dx vel dy = 4x dx, quoniam ohix = 0 etdy = 0 hae aequalitates aeque subsisterent;
sed prima sola rationi vera%‘f = 2x est consentanea.” [Euler, 1768-1770, 1:6].

52 “|nterim tamen perspicitur, quo minus illud incrementanaccipiatur, eo [the ratio:2: 1] proprius ad hanc ratione accedi;
unde non solum licet, sed etiam naturae rei convenit haec incrementa cogitatione continuo minora fieri concipiantur, sicque
eorum ratio continuo magis ad certum quendam limitem appropinquare reperietur, quem autem tum demum attingant, cum
plane in nihilum abierint. Hic autedimes qui quasi rationem ultimam incrementorum illorum constituit, verum est obiectum
Calculi differentialis” [Euler, 1755, 7, my emphasis].

53 |n the De usy Euler briefly discusses the nature of calculus, restricting himself to the examples mentioned here. On the
preface tdnstitutiones calculi differentialissee below.

54 «Erit ... analysis infinitorum, quam hic tractare coepimus, nil aliud nisi casus particularis methodi differentiarum in capite
primo expositae, qui oritur, dum differentiae, quae ante finitae erant assumptae, statuantur infinite parvae” [Euler, 1755, 84].
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[1755]. In the first, quoted in Footnote 52, the Swiss mathematician explicitly used the term ®fimit.”
The second is the following:

Although the rules, as they are usually presented, seem to concern evanescent increments, which have to be defined; still conclusions
are never drawn from a consideration of increments separately, but always their r&id in order to comprise and represent these
reasonings in calculations more easily, the evanescent increments are denoted by symbols, although they are nothing; and since these
symbols are used, there is no reason why certain names should not be given # them.

According to Bos, there is “a contradiction which shows that his arguments about the infinitely small
did not really influence his presentation of calculus” [Bos, 1974, 68—69]. However, | would argue that
one may see a contradiction in thestitutionesonly if, in contrast to Euler, one distinguishes between
limits and infinitesimals and neglects the nature of evanescent quantities as fictions, the role of formal
manipulations and the absence of a separation between semantics and syntax in the Eulerian calculus. In
reality the idea of a limit (or, rather, protolimit) functioned as the basic intuition upon which infinitesimals
were founded: it provided the semantic meaning of the infinitesimals (quantities that vanish) and allowed
one to justify the principle of cancellation. However, infinitesimals were employed as fictitious entities
that were subject to formal manipulations.

In my opinion, the definition of the calculus in Chapter 4 differs from that of the preface only in its
emphasis. The latter highlights the intuitive and semantic aspect of calculus (the idea of approaching
a limit), while the former presents the formal and syntactic aspect of calculus (infinitesimal numbers).
This is due to the different contexts in which the two definitions are inserted. Indeed, the preface to
Institutiones calculi differentialigimed to give a preliminary explanation of the nature of the differential
calculus to readers who had no acquaintance with this discipline. For this reason, Euler introduced some
basic notions of calculus (variables, functions, infinitesimals and differential coefficients) and stressed
their intuitive aspects. Thus all the definitions of the preface are different from those that Euler gave
elsewhere in a more formal manner (in [1748]), for variables and functions, and in Chapters 3 and 4 of
the first part ofinstitutiones calculi differentialis-i.e., in the treatise in the strict sense of the word—for
infinitesimals and differential coefficients (on this, see also Ferraro [2000a, 113-114]).

To clarify the above discussion, | will illustrate how Euler derived the rules of differentiation in
Chapter 1 of thdnstitutiones Put y™ = y(x + nw), for a nonnegative integer, andy = y©, Euler
[1755, 16—20] defined

Ay = y(l) -y, Ay(n) — y(n+l) _ y(n), A"y = Amfly(l) _ Amfly,

A"y = Am=Lyeth _ Am=1y0 - for 4 > 1 andn > 0.

He set out the rules of the sum and the product of finite differences and, then, calculated the differences
of algebraic, exponential, logarithmic, trigonometric functions. For example, in [1755, 28-29] Euler used

55 Euler generally avoided the use of the term “limit,” in contrast to other 18th-century mathematicians (e.g., d’Alembert
[1754, 1765]). As far as | am aware, only in this passage did Euler use “limit” to mean “approaching to a limit.”

56 “Quamvis enim praecepta, uti vulgo tradi solent, ad ista incrementa evanescentia definienda videantur accomodota,
nunguam tamen ex iis absolute spectatis, sed potius semper ex eorum ratione conclusiones deduQuictautem facilius
hae rationes colligi atque in calculo repraesentari possint, haec ipsa incrementa evanescentia, etiamsi sint nulla tamen certis
denotari solent; quibus adhibitis nihil obstat, quominus iis certa nomina imponantur.” [Euler, 1755, 5].
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the expansion of the logarithm

XZ .X3 X4
|09(1+X)=X—?+§—Z+--- (6)
and obtained
Ay=y(l>—y=log(x+w)—logx=log<l+ 9) N 7)
X x  2x2  3x3  4x4

On the basis of the study of the elementary functions (these and their composition, however,
constituted the universe of Eulerian functions (see Fraser [1989, 325])), he stated that the difference
Ay, for every functiony, could be expressed in the form

Ay=Pw+ Quw?+ Rw®+ So* +---. (8)
Analogously he asserted that higher-order differences could be written in the form

A% = Po? + Q0+ Ro* + - -, ©)

A%y =P+ Qo* + Ro®+ -, (20)

etc. Differential calcului¥ originated by lettings = dx, wheredx is infinitesimal, in (8). Sincer and
y are continuous quantities, Euler [1755, 85] considered it obvious thaisifan infinitesimal Ay also
became an infinitesimal (see Footnote 13). By neglecting the powesgwhich vanish before) one
obtainedAy = Pw or, in a different notationdy = P dx, which could also be written a&y : dx =P : 1
(see Euler [1755, 86p¢

For instance, in order to determine the differentiayef x", Euler considered

nn—1

1.2 XA+

dy=yY —y=(x +dx)" —x" =nx""1dx +

By neglectingdx?, dx3, ..., he haddx" = nx""1dx.
Similarly, sincedy = log(x + dx) — logx = log(1+ %), he derived

dx dx?> dx® dx*
x  2x2 + 3x3 4x?
By applying (6) in formula (11), the terms&c” /nx", for n > 1, vanish in comparison witlix /x, and he
obtainedd (logx) = dy =dx/x [Euler, 1755, 122].
In the above calculation, Euler did not take specific values of the functibasd logx into accoune®
He derivedd (x") = nx"~*dx andd(logx) = dx/x by considerings” and logx as general quantities.

(11)

57 This modallity to introduce differentials allowed one to connect the differedtialith a sequenca™ = x + ndx of
values ofx, in the same manner as the first differente is connected with a sequeng& = x + nw (the differential is
the first difference of the sequeng&” = y(x + ndx). By so doing a strong link is established with the Leibnizian calculus;
however, some problems dependent on the choice of the sequence defining first differences are transferred to differentials. Euler
explicitly referred to the sequencest n dx at p. 88 of [1755] when he dealt with second differentials.

58 Note that if one takes the examples given in the preface anbehesuinto account, he could have defined the differential
coefficient as2) Pw+Qw2+Rw3+Sw4+ =P+ Qw+ Rw? + Swd + --- for w as an evanescent quantity. However, Euler
avoided a dlrect use of the approachlng idea and preferred to define flrst the diffeferatiad then the differential coefficient.

59 On the global nature of Eulerian functions, see Fraser [1989, 329], Truesdell [1956, p. XLI].
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Thus, even if the quantity is handled by assuming that it has the property of real quantity, the formulas of
differentiation were understood to be valid also for imaginary values(ste the example at the end of
Section 2).

This situation does not differ significantly from that regarding functions with more than one variable.
Euler systematically used the equivalent of the modern partial derivative, which he denoted by the
symbols of the typg77), (57), (%), whereF (x, y, z) is a function of the variables, y, z. Similarly to
differential coefficients of functions of one variable, the symk(%l;s), (‘fi—f) (‘fi—f) were defined as ratios
of formally manipulated differential8 F, dx, dy, dz.

In [1755] the differential of the functiof¥ (x, y, z) was introduced by Euler by letting

dV =V(x+dx,y+dy,z+dz)—V(x,y,2).

By analyzing two examples, he observed #i&t can be expressed @8 = pdx + g dy + r dz where
p,q,r are functions ofx, y, z,.... He also noted that if andz were taken as constants thén = 0,
dz =0, anddV = pdx. Similarly, if x andy were constants thed#ix = 0,dy =0, anddV =rdz; if x
andz were constants, thefx =0,dz =0, anddV = g dy. ConsequentlyfV is obtained by calculating
the differentials ofV supposing, on each occasion, that two of the variables are constant [Euler, 1755,
144-146).
Euler then demonstrated the theorem on mixed differentials which, in the case of functions with two
variables, could be formulated as follows:

if dV = P dx + Qdy then the differential ofP for variabley and constant and the differential oD for variablex and constany
are equal [Euler, 1755, 153-15%.

Subsequently [1755, 156-157], Euler g8t = r dy (constantx) andd Q = g dx (constanty), and
observed thatl P dx = rdxdy anddQ dx = gdx dy. Since the mixed differentials are equal, he had
r = ¢. Only at this point did Euler decide to introduce a symbolism to indicate the functicarsd
g in a convenient and unambiguous way. He denotdty means of the symbc(l‘;’l—f), which meant
the differential of P for variable y and constantx (that is, considering? as a function of the single
variable y) divided bydy. Similarly (fi—g) indicatedthe differential ofQ for variable x and constant
y divided bydx.%! Therefore the condition that linked the finite quantitisand Q in the differential
dV = Pdx + Qdy could be expressed as

(%)= (%)

Finally, 1 would like to mention the subject of higher-order differentials. In the preface to
Institutiones calculi differentialisEuler observed that, since infinitesimals were equal to zero, higher-
order differentials were never considered per se, but only in relation to each other. More precisely,

60 Euler first published it in [1734—1735]. A hand-written version was published in Engelsman [1984, 205-213]. This proof
is well known, it is therefore not illustrated here (for instance, see Engelsman [1984, 128-130], Fraser [1989, 319-321]).

61 “Brevitas, gratia autem hoc autem capite quantitatet g ita commode denotari solent, ntindicetur per(”fj—i), qua
scriptura designatup ita differentiari, ut solay tanquam variabilis tractetur atque differentiale istudgpedividatur; sic enim
prodibit quantitas finita. Simili modo significabh‘(%) guantitatem finitany, quia hac ratione indicatur functione sola
x posita variabili differentiari tumque differentiale p&t dividi habere.” [Euler, 1755, 157].
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given a functiony = f(x), whose differential coefficient is a certain functign second differentials
were obtained by considering the ratio of the increment of the fungiiovith other increments. He
also asserted that the symbols of differentials serve only to give a convenient representation of certain
finite quantities [Euler, 1755, 8]. However, this presentation was not developed in the chapters of
Institutionesdevoted to this topic, where Euler avoids giving a direct definition to the second differential
asd(gdx), whereq = dy/dx. Similarly to the first-order differentials, he preferred to present higher-
order differentials as a special case of higher-order finite differences, even though, as discussed below,
some complications arose as a consequence.

Indeed, in Chapter 3 of thastitutiones Euler [1755, 84 and 88] stated that higher-order differentials
derived from higher-order finite differences’y = Po" + Qw"*! + Rw"*2 + - - - with @ = dx in the
same way in which first differentials derived fromy = Pw + Qw? + Rw® + --- with » = dx. For
example, as regards the second differential, the tap@$, Rw?, ..., of (9) vanished befor»? and,
therefore,d?y = P dx?, wheredx? was the square afx. According to Eulerd?y was equal to 0 while
the ratio betweed?y anddx? was finite and equal t® : 1 [Euler, 1755, 88].

Given a functiony = y(x), whose first and second differentials ate = pdx and d?y = g dx?,
the problem arose of establishing the connection betweandq. Having used (9) to introduce second
differentials, there is no a priori guarantee that there exists a simple relationship betasegdp. In order
to determine such a relationship (namely, the second differential coefficient is obtained by differentiating
the first coefficient), Euler observed that one could&et g dx (since all the differentials of functions
possessed this form) and thatlp = nq dx, wheren represented a constant quantiyf one then let
n = dx (thereforedx is constarff), one obtainedip dx = ¢ dx?>. Remembering thaiy = pdx and
dp = g dx, one obtained

d’y =d(pdx) =dpdx = q dx?,

namely the second differential of had a finite relationship with/x2, which coincided with the
differential coefficient ofp [Euler, 1755, 89]. Naturally, the reasoning can be repeatedy i r dx,
thend®y = d(q dx?) =rdx®, if dr =tdx, thend*y = d(r dx®) =t dx*, .... Therefore the higher-order
differentials ofy can be calculated one after another by differentiapng, r, ¢, etc.

Although higher-order differentials could be viewed as fictitious entities and be subjected to formal
manipulations in the same way as first-order differentials, Euler thought that they “were utterly unsuitable
for analysis” (“prorsus ad Analysin esse inepta” [Euler, 1755, 174]). This judgment expressed the fact
that formulas involving higher-order differentials were not univocally determined. For instance, consider
the formula

yd?x + x d?y
dxdy

in which the differentialsi>x andd?y occur. The meaning of this formula varies according to which
differential is taken as constant and which variable is chosen as independent. If one cahsidsra

62 Euler justifies this step by appealing to finite differences; however, its extension to differentials is not a source of further
difficulties.

63 Euler justified this assertion by stating that the variable quantigceived equal increments, or rather that the sequence of
valuesx, xM = x +dx, x@ =x +2dx, ..., x = x+ndx, was assigned to the variablgsee Footnote 57). Consequently,
d?x was everywhere equal to zero.
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constant (namely is the independent variable) then
yd?x + x d?y . x d?y
dxdy ~dxdy’
if dy is taken to be a constant (s the independent variable), then one obtains a different result:

yd?x +xd?y . yd®x
dxdy “dxdy’
In the special case whese= x?, one has

yd?x + x d?y _1
dxdy
for dx constant and
yd?x +xd?y 1

dxdy 2
for dy constant (see Euler [1755, 170]).

The indeterminacy of higher-order differentials was an intrinsic aspect of the Leibnizian calculus,
which was not based on functions but on curves analytically expressed by an equation = 0. This
equation ‘was considered as one entity, not a combination of two mutually inverse mappifgsgx)
andy — x(y)’ [Bos, 1974, 6]. The independent variable was not chosen a priori and therefore it was not
established a priori thatx was a constant: thus the formulas containing higher-order differentials did
not possess a meaning per se.

By contrast, the Eulerian calculus dealt with functions which had a directional character based on a
clear distinction between dependent and independent variable. However, the indeterminacy of higher-
order differentials resulted from the way of presenting calculus as a special case of the theory of finite
differences. Already in Chapter 1 dfistitutiones calculi differentialisEulef* had noted that the first
difference Ay = y(x1) — y(x) = y(x + w) — y(x) was not influenced by the sequence while the
second differences changed according to the nature, ¢see Euler [1755, 18 In Chapter 4, he
stated: “For the same reason nothing can be said with certainty about the second differentials, unless
the first differentials, with which the variable quantityis conceived to increase continually, proceed
according to a given lawf®

Euler felt this ambiguity (vagueness, in his terms) made higher-order differentials different from
first-order differentials and unsuitable for analysis. He therefore tried to eliminate them by a technique
already known to Johann Bernofilliwhich, in his opinion, showed that higher-order differentials did
not have an effective use in analysis [Euler, 1755, 174]. This technique consisted in replacing them by

64 The question of choice of the progression of variables and of the indeterminacy of higher-order differentials in the 18th-
century calculus is treated in detail by Bos (see, in particular Bos [1974, 25-31, 66—77]).

65 Indeed, in general it isn2y = ALy — Ay = y(x2) — 2y(x1) + y(x), and, forx, = x + nw, A%y = ADy — Ay =
Y& +20) —y(x + ) — y(x + @) + y(x) = y(x + 20) — 2y(x + w) + y(x).

66 «Ob eandem ergo rationem de differentiabus secundis nihil certi statui poterit, nisi differentialia prima, quibus quantitas
variabilisx continuo crescere concipitur, secundum datam legem progrediantur” [Euler, 1755, 89].

67 See Johann Bernoulli [1742, 77-79]. For Bernoulli, however, this technique was not a tool which could—once and for
all—eliminate higher-order differentials from calculus.
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differential coefficients. For instance, given a formula in which the interdependent varialled y

occur, if one assuméx to be a constant and introduces the differential coefficignts, r, ..., by the
relationsdy = pdx, dp = gdx, dg = rdx, .... By putting d®y = g dx?, d®y =dq =rdx®, ..., the
differentials ofy could be eliminated. Similarly one has to operate in more complex cases. Thus, if one
considers,/dx2 + dy? as a constant (a case, Euler says, that is often found in the applications of the
calculus), then one sety = pdx anddp = g dx. In this way one obtains

dx? dx®
P _—0 and d?x=-212

V1+ p? 1+p?

The second differential of is derived by considering

dxy/1+ p?=constant d2x/1+ p2+

p2q dx? B q dx?
1+p2 - 1+p2
Analogously one could derivé®x, d*x, ..., d%y, d*y, ... [Euler, 1755, 178].

d’y=qdx =qdx*+ pd*x =qd*x —

5. Conclusion

This article has attempted to emphasize some aspects of the Eulerian foundations of the calculus.
The Eulerian calculus was not based on the notion of set nor on that of real number but on that of
quantity. Euler’'s concept of quantity was a modified version of the classical one and was connected with
the idea of the continuum, which was not reducible to points. Quantities were investigated in abstract
and general form, without referring to concrete and specific representations in a diagram. They had a
symbolic nature; namely, they were reified in concrete signs which were dealt with according to certain
fixed transformations.

Numbers were understood as the measure of quantity; however, only natural numbers and rational
numbers were considered numbers in their own right. Irrational, negative, and imaginary numbers and
zero were viewed as fictions. They were ideal entities useful for dealing with quantities, firmly founded
in the real world (directly or indirectly), and subject to manipulation as if they were numbers.

Eulerian infinitesimals should be placed in this context. They, when interpreted using the conceptual
instruments available to modern mathematics, seem to be an ambiguous mixture of different elements,
a continuous leap from a vague idea of limit to a confused notion of infinitesimal. In reality, Euler
does not confuse the modern notion of limit and the modern concept of infinitesimal: he simply did
not possess such notions, but merely a primordial idea (directly derived from the physical world) of
two variable quantities approaching each other. This intuitive idea was transformed into a fiction by
expressing evanescent quantities by symbols which were operated upon in analogy with true numbers,
without a theoretical construction.

This conception allowed Euler to conceive the calculus as a calculus of finite quantities, having as
an object not the differentialgy, dx, ..., but the differential coefficientgy/dx. Nevertheless, the first-
order differentials not only served to introduce differential coefficients but, as fictions, could be used per
se and played an important role in the calculus.

There are many other aspects connected with the Eulerian foundations of the calculus that are
worthy of investigation. The consideration given to Eulerian concepts in the 18th century, their various
interpretations, and their influence on the developments of calculus is of particular interest. However,
these are topics for another paper.
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