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Abstract

In the 18th-century calculus the classical notion of quantity was understood as general quantity, wh
expressed analytically and was subject to formal manipulation. Number was understood as the measure of
however, only fractions and natural numbers were considered numbers in the true sense of term. The ot
of numbers were fictitious entities, namely ideal entities firmly founded in the real world which could be op
upon as if they were numbers. In this context Eulerian infinitesimals should also be considered as fictitious n
They were symbols that represented a primordial and intuitive idea of limit, although they were manipulate
same way as numbers. This conception allowed Euler to consider calculus as a calculus of functions (int
analytical expressions of quantities) and, at the same time, to handle differentials formally.
 2003 Elsevier Inc. All rights reserved.

Sommario

Nel diciottesimo secolo la classica nozione di quantità fu sviluppata fino ad essere intesa come quantità
la quale, analiticamente espressa, era soggetta a manipolazioni formali. Il numero era inteso come una mi
quantità; tuttavia solo le frazioni e i naturali erano considerati numeri nel vero senso del termine. Le altre s
numeri erano entità fittizie, cioè entità ideali ben fondate nel reale che potevano essere manipolate come
In tale contesto anche gli infinitesimi euleriani sono da intendersi come numeri fittizi. Essi erano simb
rappresentavano una primordiale e intuitiva idea di limite e che potevano essere trattati come veri num
concezione permetteva ad Euler di considerare il calcolo come un calcolo delle funzioni (intese come esp
analitiche della quantità) e, allo stesso tempo, di operare formalmente con i differenziali.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

This article examines the Eulerian notions of the differential and the differential coefficient wi
aim of contributing to an understanding of the foundations of the calculus in the 18th century.1

In the initial part of the paper I shall deal with the notions of quantity, fictitious numbers, and fo
manipulations, which are the basis of Euler’s conception. Quantity was considered to be anything
could be augmented or diminished; it was connected with the idea of number as measurement
the notion of the continuum, which was not reducible to points. However, quantity was considered
calculus as a general quantity which had a symbolic nature and included fictitious numbers. Fi
numbers were ideal entities which were useful for dealing with quantity and were handled as
were true numbers (integers and fractions). They were well founded in nature but lacked a the
construction and differed ontologically from true numbers. Formal manipulations consisted in th
that general quantities, analytically expressed, were handled regardless of the conditions of va
the rules and the nature of their specific values.

In the central part of this paper, I shall show that the evanescent or infinitesimal quantity, to
Euler unquestionably reduces the differential,2 is to be included in such a context. It was based upo
primordial idea of approaching a limit, which played the role of a basic intuition providing evane
quantities with well-foundedness and semantic meaning. This idea was expressed by symbols wh
operated upon by analogy with true numbers. For this reason evanescent quantities should be re
fictitious entities.

Last, in the final section of the article, I shall illustrate how this conception allowed Euler, on th
hand, to employ the differential coefficient as the ratio of differentials and, on the other hand, to st
the true object of the calculus was not differentials but differential coefficients and that the algori
the calculus did not transform differentials into differentials but functions into functions.

2. Quantities and fictions

Following the traditional approach, Euler conceived of mathematics as the science of quant
defined quantity as something that could be increased or diminished.3 It is clear that this definition o
quantity is unsatisfactory when it is compared to modern mathematical definitions. It is even tauto
increasing means making the quantity larger while decreasing makes the quantity smaller. The d
of quantity recalls certain definitions of Euclid’sElements, such as ‘A point is that which has no par
‘A line is breadthless length,’ which specify the sense of certain geometrical terms by referring to t
mathematical notions of part, breadth, length, and linking the mathematical theory with objects

1 I have dealt elsewhere with other aspects of the Eulerian foundations of the calculus, in particular the notions of th
a series and of a function. See Ferraro [2000a, 2000b].

2 The differential was regarded as an infinitesimal obtained by making the incrementω of a variable quantity tend to zer
(see Euler [1755, 5–6, 84]). Euler often simply treats differentials and infinitesimals as the same thing (for instance, s
[1755, 70]).

3 Erstlich wird alles dasjenige eine Größe gennent, welches einer Vermehrung oder einer Verminderung fähig
wozu sich noch etwas hizusetzen oder davon wegnehmen läßt. . . indem die Mathematic überhaupt nichts anders ist als
Wissenschaft der Größen [Euler, 1770, 9].
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it (in other words, ultimately, with empirical reality). In effect, the objects described by this kin
definition are understood by direct acquaintance (one could speak of an empirical intuition to
Kantian expression) and the definition only determines certain characteristics that are essential
use in mathematics.

It should be noted that in the writings of Euler and the other 18th-century mathematicians, th
“quantity” was used not only to denote a variable entity capable of increasing or diminishing but
indicate specific determinations of this variable entity (the values of the quantity). To avoid conf
I shall hereafter use the term “quantity” (or, also, “indeterminate quantity” or “variable quantity
refer to an entity in the sense of its capability to increase or diminish while I use the term “quantu
“determinate quantity” to denote a specific determination of quantity.

I stress the importance of the distinction between quantity and quantum in the Eulerian ca
the calculus referred to indeterminate quantities, subject to possible variations, whether incre
decreases, rather than to specific determinations of quantities or determinate quantities. A quant
assume different values or determinations, although a quantity was not reduced to the enume
these values (see Ferraro [2000a, 108]). Indeed a quantity possessed its own properties, which
false for certain of its determinations. Thus, given any property P of quantity,there might exist exceptiona
values at which the property failsand a theorem involving certain quantitiesx, y, . . . , was valid and
rigorous as long as the variablesx, y, . . . , remained indeterminate; however, it might be invalid for cer
specific determinations of those quantities, which were regarded as exceptional values. (On the t
of exceptional values, see Engelsman [1984, 10–13], Fraser [1989, 321].)

The notion of quantity as intrinsically variable entity did not prevent quantities from being div
into constants and variables.4 However, as Euler explained in theInstitutiones calculi differentialis, this
distinction did not depend on the nature of quantities but on specific questions, quantities being
in themselves:

[T]his calculus deals with variable quantities, even though every quantity, by its very nature, can be increased or diminishein
infinitum; however, as long as the calculus is addressed toward a certain goal, some quantities are designed to maintain the
magnitude constantly while others are truly changed for each amount of increase and decrease:. . . the former quantities are usually
termed constants, the latter variables, so that this difference is not expressed so much in terms of the nature of the thing as
character of the question to which the calculus refers.5

As an example, Euler observed that the trajectory of a bullet was determined by four quantiti
amount of gunpowder, the angle of fire, the range, and the time. Each of them was a quantity in th
that it could be increased or reduced. This property was never lost, though in certain calculation
utilized and not in others: in this sense, a quantity could be imagined as a variable or constant ac
to the specific calculation.

4 In the Introductio in analysin infinitorum, Euler defined: “A constant quantity is a determinate quantity which alw
retains the same value. . . A variable quantity is an indeterminate or universal quantity, which comprises all determ
values.” “Quantitas constans est quantitas determinata, perpetuo eudem valorem servans. . . Quantitas variabilis est quantita
indeterminata seu universalis, quae omnes omnino valores determinatos in se complectitur.” [Euler, 1748, 17].

5 “[H]ic calculus circa quantitates variabilis versatur: etsi enim omnis quantitas sua natura in infinitum augeri et
potest; tamen dum calculus ad certum quoddam institutum dirigitur, aliae quantitates costanter eandem magnitudine
concipiuntur, aliae vero per omnes gradus auctionis ac diminutionis variari:. . . illae quantitates costantes, hae vero variab
vocari solent; ita ut hoc discrimen non tam in rei natura, quam in quaestionis, ad quam calculus refertur, indole sit p
[Euler, 1755, 3].
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Quantities were usually distinguished as being continuous or discrete. In the classic sense,
quantity is made up of discontinuous parts, meaning there is no common boundary at which th
A continuous quantity consists of parts whose position is established by reference to each other
the limit of the one is the limit of the next. The ancient Greeks considered there to be severa
of continuous quantities, such as time, movement, and various geometrical quantities (on geo
quantities in Euclid, see Grattan-Guinness [1996, 363]). After Descartes had showed how dime
homogeneity could be circumvented (see Bos [1974, 7]), it was assumed that any quantity c
represented by lines. This idea was also shared by Euler (seeInstitutiones calculi differentialis[1755,
65]): in his writings quantity was modeled on the segment of a straight line (or a piece of a curve
for certain properties of quantities, such as the way in which a quantity goes to zero).

Euler did not discuss the properties of continuous quantity explicitly; he tacitly assume
continuous quantity behaved as a segment of a straight line or a piece of a curved line. Thus, the
continuum is a slightly modified version of the Leibnizian continuum, as described by Breger [1
76–84], which, in turn, has many aspects in common with the classical Aristotelian conception.6 I point
out some features of this conception.

First, a segment was divisible into parts, each of which was similar in kind to the original quanti
it could not be reduced to an aggregate of points. Thus, the continuum was given as a whole and
regarded as a set of points, even though it was possible to determine specific points in it.

Second, for the precise reason that a segment was not considered as a set of points it was im
to distinguish between an open and a closed segment: a segment is always thought of as incl
endpoints. Breger stated: “One cannot, e.g., consider the interval from 0 to 1 without the poin
Imagine a meter long thread without the left extremity of the thread. It is clearly an absurdity. Pre
in the same way, the point zero is not a part of continuum. . . but its extremity on the left: the point cann
be suppressed, not even in thought.”7

Third, a curve or a relation between quantities was not defined pointwise. An equation, s
y = x2, was viewed as a relation that assigned an interval on they-axis to an interval on thex-axis
in an appropriate way [Breger, 1992a, 77]. Curves were generated by motion; they were not plott8

It is possible to draw a distinction concerning the way continuous quantity was treated, a point
is of crucial importance in Euler’s calculus.9 Continuous quantities could be referred to a concrete
perceptible representation in a diagram and investigated, at least partially, by means of the diagra
In this sense, one can speak ofgeometrical quantities or figural quantities. Continuous quantities coul
also be investigated in abstract and general form by means of a symbolic notation. In the latter se
can speak ofgeneral quantitiesor abstract quantitiesor analytical quantities or nonfigural quantitie
(the different terms underline different features of the notion). Geometrical quantities were the
subject-matter of Leibniz’s and Newton’s calculus. (This does not mean that they did not use an

6 On the Aristotelian notion of continuum, see Barreau [1992, 3–15], Panza [1989, 39–80].
7 “ . . . on ne peut par exemple pas considérer l’intervalle de 0 à 1 sans le point zéro. Imaginez un fil d’un mètre de l

l’extrémité gauche du fil. Cela est visiblement une absurdité. Exactement de la même façon, le point zéro n’est pas u
du continu. . . mais seulement son extrémité à gauche : le point zéro ne peut donc être supprimé, même en pensée
1992b, 77].

8 This expression is derived from Mahoney’s description of the notion of curve in Fermat [Mahoney, 1994, 82]. S
Ferraro [2000a, 121].

9 This distinction is treated in Ferraro [2001].
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expressions but simply that these expressions were embodied in a geometrical context.) In contra
thought that the calculus was independent of geometry (see Fraser [1989, 328–331], Bos [1974
of its figural representation and that it only dealt with general quantity.

Unlike geometrical quantity, general quantity was not represented by a line in a diagram (in thi
one can term it nonfigural quantity). It was, however, closely connected with geometrical quant
has to be imagined as an abstract entity made up of what all the geometrical quantities have in c
(one therefore can refer to it as an abstract quantity). For this reason, even if general quantity
represented in a diagram, it was assumed to have the properties of a “nice” or “well-behaved” curv
This implies that the basic notions of continuous geometrical quantities were immediately transfe
the calculus. For instance, a variable quantityx always varied continuously and when it moved from
valuex1 to a valuex2, it was impossible to think of this variation without the initial and final values.

General quantity was investigated symbolically by analytical expressions (in this sense it can be
analytical quantity). I specify that the decisive aspect of analytical symbolism was not the use in i
certain signs but the fact that those signs were the objects of manipulation in their own right. For in
I can writea⊥b to indicate that the straight linea is perpendicular tob. However, if in the proof of a
theorem of elementary geometry, for instance “Given a point A and a straight linea, there exists one an
only one straight lineb perpendicular toa and passing through A,” I write⊥ in place of “perpendicula
to,” I do not really manipulate the symbol⊥ by itself, but work with the concept of “perpendicular to
The sign⊥ is employed as a mere shorthand symbol, unless one establishes a calculus upon⊥ and
operates according to the rule of this calculus.

In symbolic expressions, such as(a + b)2 = (a + b)(a + b) = a2 + 2ab + b2, the lettersa, b, . . . ,
are used as the concrete objects of a calculation (see Panza [1992, 68–69]). According to
a calculation iscogitatio caeca, blind reasoning. It can be compared to moving pebbles in an ab
what is of importance is that the concrete objects of manipulation (pebbles or graphical signs) are
according to certain rules (syntactically, in modern terms), not their meaning. Of course, algeb
analysis cannot be reduced to the mechanical or blind manipulation of letters. It is not only a
of the inventiveness necessary to derive formulas that are not reduced to a simple exercise, a
example; instead, the point is that doing mathematics does not merely consist of deriving formula
deriving formulas that have an interest or a sense in a certain context.

This is also true for modern mathematics. A theorem T of a formal theory is the last proposit
a sequence of propositions Pi , i = 1, . . . , n, where Pn = T and Pi, i = 1, . . . , n − 1, is an axiom or is
deduced by a rule of inference from the preceding propositions. While all derivable propositions
given theory are theorems in this sense, in mathematical praxis, only some propositions (signifi
whatever reason) are theorems. The decision that Pn is a theorem, while Pn−1 is not, is not part of the
formal structure of theory. However, the goal of a formal theory is to yield theorems in this more res
sense (see Panza [1997, 366–367]).

I would argue that the nature of analytical or algebraic derivations is necessarily syntactica
as such, one handles signs associated with certain rules regardless of the meaning of the
of calculation; however, the syntactical rules that govern analytical signs must make sense
mathematician and must yield results that make sense or have some interest.

Eulerian general quantity surely has a symbolic nature in the above sense: it was reified into c
signs, which were dealt with according to certain fixed transformations. However, the way in whi
syntactical structure was constructed differed profoundly from the way it is conceived today. Tod
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rules10 used in a theory are explicit axioms, which in principle are freely chosen, or, to use a w
employed term, arbitrary. Within the limits of the given system of axioms, mathematical objec
freely be created by arbitrary definitions.11 In this way, the development of a theory is entirely syntact
and it is possible to make a distinction between syntactical correctness and semantic truth.

This is not the case for Euler. The idea of the free creation of mathematical objects was lac
Eulerian analysis. Analytical objects were always connected with reality, directly or indirectly.12 The
rules of manipulation were not arbitrary: they were derived from the notion of quantity and exp
properties of quantities (or of numbers). For instance,a+ b= b+ a is not an arbitrary axiom associate
with the operation+ (which we may or may not choose, according to the objectives of our theor
was a mere consequence of the concept of joining two quantities.

A system of explicit axioms in the modern sense and an accurate construction of certain mathe
objects (e.g., the construction of the different species of numbers) were lacking. In their place, E
mathematics admitted the reference to the intuitive knowledge of the mathematical notions draw
premathematical experiences.13

Moreover, even though signs were manipulated syntactically (blindly), analysis mirrored reali
it was impossible to distinguish a syntactically correct theory from a semantically true theory: a
was acceptable only if it conformed to the reality.14 Since reality isunique, alternative theories based o
alternative definitions of certain notions (e.g., the sum of a series and limit of a sequence) could n

Another fundamental aspect of the Eulerian conception, which has so far been left implicit
argument, is the relationship between quantity and numbers. In hisVollständige Anleitung zur Algebra,
Euler stated that all the determinations or measures of any quantity are reduced to determining the
that a given quantity has with a certain quantity of the same kind taken as a measure or unity
relation] is always indicated by numbers, so that a number is nothing but the relation of a qua
another quantity, taken arbitrarily as a unity.”15 According to Euler, numbers were taken into accoun
analysis as they represented quantities considered in general without regard of the difference tha
between the special types of quantities (other parts of mathematics, he says, concern the specific

10 It is clear that by “rules of manipulation” I do not intend rules of inference, but rules of the typeab = ba, which in modern
formal theory are axioms (or theorems derived from axioms).

11 Here freedom and arbitrariness do not mean that one chooses the system of axioms and gives definitions witho
rather, it means that axioms and definitions are fixed by an act of will determined by the targets that one wants to achiev
other restraint than the achievement of such targets. Axioms and definitions have no intrinsic necessity, nor do the
in a description of physical or geometrical reality; however, they must have the capability of representing certain c
adequately.

12 If no intuitive interpretation of them was known—e.g., imaginary numbers—they were viewed as tools for improv
analytical theory of quantity—which, as a whole, was a mirror of reality—in the same manner as the sign 0 impro
notation of natural numbers that count objects even though it denotes no object.

13 An example is the definition of quantity discussed above. Another is the ruledy = y(x + dx)− y(x), the use of which we
shall see later. According to Eulerdy = y(x + dx)− y(x) is not a definition of continuous function, but an intuitively obvio
property of continuous quantity.

14 As noted in Footnote 12, certain analytical objects did not represent reality in any obvious or straightforward way; h
they were indirectly connected with reality in the sense that they were part of a theory that aimed to conform to reality.

15 “[Verhältnis] jederzeit durch Zahlen angezeigt wird, so dass eine Zahl nichts anders ist als das Verhältnis, worin
andere, welche für die Einheit angenommen wird, steht.” [Euler, 1770, 10].
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quantities) [1770, 10]. Quantity was considered as an entity that logically precedes number and
was viewed as a tool for treating quantity.

The concept of number as the measure of quantity was a commonplace at least from the sev
century.16 It allowed mathematicians to go beyond the Greek concept of number as “number o. . . ,”
multiplicity of unities, and made it possible to think of numbers as abstract and symbolic entitie
to introduce new species of numbers in addition to natural numbers (see Klein [1968]). Eule
considered natural numbers as abstract and symbolic entities: a number, such as 7, was not cons
the attribute of a group of material or ideal objects; instead it was an abstract entity that express
all the things that are seven times the unity had in common. The number 7 was also a symbol tha
an ideal entity into ciphers upon which one manipulates directly.

In his treatise, after having defined numbers as the measure of quantity, Euler observed
sequence of natural numbers is generated from repeatedly adding the unity starting from nothing
14].17 Euler did not give an (explicit or implicit) definition of natural numbers: the relationship betw
a measurement of quantity and natural numbers was understood substantially intuitively.

Euler considered a fractiona/b to be the result of the division of two whole numbersa andb. Fractions
were introduced in a formal way, namely, without explaining what the division ofa by b means when
a is not a multiple ofb, although they had an exact meaning. Euler stated that we can have a
idea of 7/3 by considering a segment 7 feet in length and by dividing it into 3 parts [1770, 30]. U
fractions, irrational numbers did not represent a process of measurement in a precise sense (m
meant repeating the operation of comparing with unity or one of its parts successively and finitely)
observed that the root of 12 is not a fraction. Nevertheless, it is a determinate quantity, which is
than 3; 24

7 ; 38
11; 45

13, . . . , and smaller than 4;72; 52
15; . . . . Therefore,

√
12 is a new species of number. H

then added that a correct idea of
√

12 can be gathered by observing that
√

12 is the number that, whe
multiplied by itself, makes 12 and that the value of

√
12 can be approximated as desired [1770, 50–5118

Irrational numbers were significantly different from natural and fractional numbers. The latter
meaning in terms of unity of measure and consequently were numbers in the strict sense of the
“true numbers.” In contrast, irrational numbers were not true numbers since they were thought to m
quantity only in an approximate way.

This conception was a widely shared one during the 18th century. For instance, accord
d’Alembert (see [1773, 188]), the extension of the term “number” to incommensurable ratio
considered incorrect because “number” presupposes an exact and precise denotation. Nev
incommensurable ratios could be viewed as numbers because they were similar to “numbers”; th
be approached as closely as desired by “numbers” and could be represented geometrically.

The domain of true numbers was not sufficient to describe all the determinations of geom
quantity and, moreover, other numbers apart from rational or irrational ones were necessary to inv
quantity: apart from infinitesimals and infinite numbers, which I shall deal with in the next section,

16 For instance, it can be recognized in Newton [1707, 2], Stevin [1585, 1], and Wallis [1657, 183]. On the notion of n
from Stevin to Wallis I refer to Klein [1968, 186–224].

17 I note that Euler shared the idea that 1 is a number, which was finally accepted only in the 17th century (see, e
[1968, 194]).

18 In Euler one may be able to grasp a distinction between irrational and transcendental numbers, where trans
numbers are those nonrational numbers that derived from the application of transcendent operations (such as a loga
rational number. However, this distinction is not of importance for my purposes and I shall not take it into account.
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are negative numbers, zero, and imaginary numbers. Euler [1770, 12–15] introduced negative n
simply by stating that they were entities less than the nothing and that were represented by numb
the sign− (in opposition, positive numbers were numbers greater than nothing and had the sign+). Like
the other species of numbers above mentioned, they also had an intuitive meaning. Euler stres
they could denote debts, or proceeding backward (e.g., the sequence−1,−2,−3, . . . , proceeds backwar
with respect to the sequence 1,2,3, . . .). They can be represented by directed segments; however
did not correspond to a notion of measurement of a quantity in the strict sense of the term.

In [1770, 14] zero is introduced merely as the absence of quantity; it is the name given to the “no
Euler did not list zero as an integer (integers were the natural numbers+1,+2,+3, . . . , which are greate
than nothing, and negative numbers were−1,−2,−3, . . . , which are less than nothing).19

According to Euler, expressions such as
√−1,

√−2,
√−3,

√−4 are impossible or imaginar
numbers: nevertheless they could be represented in our understanding and take a place in our ima
We can gain a sufficient idea (hinlänglichen Begriff) of them based on the fact that, e.g.,

√−4 meant a
number that multiplied by itself equals−4 [1770, 56]. InVollständige Anleitung zur Algebra, Euler
emphasized the similarity in the introduction of imaginary and irrational numbers (as formal instru
for obtaining the roots of certain numbers). However, imaginary numbers cannot be reduced
measurement of quantity, not even in an approximate sense. They differed from other numbers a
generated by the symbolic mechanism of analysis; they had no meaning on their own but ass
meaning within the overall context of analysis and were useful for dealing with quantity.

At this point it is clear that even though all numbers were abstract and symbolic entities, only
adequately reflected the concept of number as the exact result of a process of measurement
“true” numbers. Other types of numbers did not fit the notion of a number (although for different rea
In the strict sense of the term they were not true numbers. I shall term them “fictitious numbe
“fictions.”

The idea of false or fictitious numbers is an old one. For instance, many mathematicians, s
Cardano and Descartes,20 referred to negative numbers as false numbers. In various cases L
attempted to justify infinitesimal and infinite numbers as fictions21 similar to other fictions used i
mathematics (imaginary numbers, the power whose exponents are not true numbers, etc.) (s
Leibniz [GM IV, 92–93]). In effect, the idea of false numbers is at the basis of much of mathem
terminology regarding numbers, which we still partially retain today.

19 In his [1770, 14], following Stevin and Wallis, Euler seems to consider nothing, zero, as the principle of natural nu
in the same sense as the point is the principle of the line.

20 See Cardano [1545], Descartes [1637]. This is what Descartes wrote when commenting upon the roots of an
“But often it happens, that some of these roots are false, or less than anything, as if one supposes thatx indicates
also the defect of a quantity, which is 5, one hasx + 5 = 0, which being multiplied byx3 − 9xx + 26x − 24 = 0 is
x4 − 4x3 − 19xx + 106x − 120= 0, for an equation in which there are four roots, namely three true ones, which are 2
and a false one which is 5.” “Mais souvent il arrive que quelque une des ces racines sont fausse ou moindres que rie
si on suppose quex désigne aussi le défaut d’une quantité qui soit 5 on ax + 5 = 0 qui multiplié parx3 − 9xx + 26x − 24= 0
fait x4 − 4x3 − 19xx + 106x − 120= 0, pour une équation en laquelle il y a quatre racines, à savoir trois vraies qui son
4 et une fausse qui est 5.” [Descartes, 1637, 56].

21 On Leibniz’s conception, see Horvàth [1982, 1986] and, above all, a very stimulating paper by Knobloch [1999].
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Euler did
Unlike Leibniz, Euler did not use the term “fiction” explicitly.22 Nevertheless, I shall employ th
expression because it expresses the nature of the Eulerian approach, in particular because
an ontological difference between that which is fictitious and that which is true. Eulerian mathe
effectively presentsan ontological differencebetween natural and rational numbers (true numbers)
the other species of numbers (which did not correspond to the idea of numbers and therefo
fictitious numbers). To put it more clearly, nowadays

√−1 is an element of the set of complex numb
C and exists in the same way as any other number in C, such as 1, 2, 1/2, etc. In Euler’s opinion,

√−1
was a useful symbol for studying certain aspects of quantity; it did not have an existence in th
sense as true numbers. Similarly, 0 was the symbol that represented the absence of quantity, the
the nonexistence; it was not a number because it did not measure quantity and did not denote a
however 0 could be treated as a number.Mutatis mutandis, the same holds for irrational (unspeakab
inexpressible) numbers and negative numbers. Fictions had the following characteristics.

(a) Fictions were a useful tool for shortening the path of thought and arriving at new results.
of no importance whether fictions appeared in nature or not, namely if they represented phy
geometrical objects. Irrational numbers appeared in nature (they represented the length of a s
imaginary numbers did not appear.

(b) Fictions, however, were always connected with reality, directly or indirectly. They were not arb
creations of the human mind but had to be well-founded in reality and were needed for invest
reality (this is true even for imaginary numbers; see Euler [1770, 57]).

By the phrase “well-founded in reality or in nature”23 I intend to emphasize the fact that certa
mathematical objects did not originate from arbitrary definitions given in a theory based upon an a
system of axioms; instead, they originated (1) from the need to express certain properties of qu
and (2) from the need to manipulate objects that directly expressed quantities or properties of qu
(an example would be thecasus irreducibiluscase of the equation of third degree). In the first ca
a well-founded object had an intuitively obvious interpretation (e.g., irrational numbers but also,
shall see, infinitesimals). For this reason I would say that they were directly connected to reality.24

The second case was that of imaginary numbers, which did not have an intuitively obvious m
(see also Footnote 12). They were introduced in a merely formal way but they made up for ratio
irrational numbers when these did not suffice: they were always connected to reality, even thou
indirectly.

In any case, well-foundedness, used in this sense, excludes the possibility that mathematica
could originate from a free act of will and required them to be rooted in reality, directly or indirect
elements of a theory that aimed to interpret the real.

22 Only in Institutionum calculi differentialis Sectio III(Euler had intended this work, which was published posthumous
1862, to form the third part of the treatise on differential calculus, where he applied the calculus to geometry) is an app
to thefictio animithat a segment does not so much represent itself, so to speak, but an infinitesimal part of itself,dx (see Euler
[A]).

23 I derive this expression from Leibniz’s statement that imaginary quantities have their foundation in nature [Leibniz
1850, IV:93]; see also Leibniz [1875–1890, VII:263–264].

24 However, this does not mean that there exists a geometrical or physical object corresponding to it; for example,
not assume the existence of physical or geometrical infinitesimals. See Section 3.
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It should also be emphasized that fictions were not of interest in themselves, but only insofar
allowed one to solve problems concerning quantities. They were auxiliary instruments for dealin
quantities.

(c) Fictions were manipulated as if they were true numbers. This means that a fiction was treat
by analogical extensions of rules valid for true numbers or geometrical quantities.25 Therefore,
a fictitious number was more than a merefaçon de parleror a shorthand way of denoting a certa
operation upon true numbers: it was symbolic entity that formed part of the symbolic nature
numbers and quantities.

(d) An adequate theoretical constructionfor moving from fictions as a sign for shortening the p
of thought to the analogical use of fictions as true numberswas completely lacking. Thus, well-
foundedness in the above sense was the only justification for fictions.

(e) Even though quantity is an entity abstracted from geometrical quantity and has the same prop
lines, it could be determined by fictitious values; in other words, one could assign fictitious nu
to a variablex.

Like other 18th-century mathematicians, Euler used the term “irrational quantities” to re
irrational numbers or irrational determinations of quantity. Similarly he referred to negative quan
imaginary quantities, etc. I shall maintain this terminology and, more generally, I use the term “fic
quantities” by referring to fictitious determinations of quantity or fictitious numbers.

A general quantity has some determinations that can be represented by a nondirected segment
others cannot. I shall use the term “real quantity” to denote a quantity which only assumes
determinations and which corresponds to the mental image of the geometrical or physical quant
not therefore intend this term in opposition to fictitious quantity, since a real quantity can have bo
numbers and certain fictitious numbers as its determinations.26

The above discussion allows a more precise characterization of general quantity. General quan
an abstract entity that had the same properties as geometrical quantities but was capable of assu
value, even fictitious values. It was represented by graphic signs which were manipulated acco
appropriate rules, which were the same rules that governed geometrical quantities or true numb
principle of the generality of algebra held: the rules were applied in general, regardless of their con
of validity and the specific values of quantity. (I shall later use the term “formal manipulation” to re

25 This statement is to be understood as follows. The principle was assumed that if an operation (not only a
operations—sum, product, etc.—but also transcendental operations—logarithm, etc.) had true numbers or geometrica
as operands then it could have fictitious numbers as operands. Of course, some adjustments might be necessary. Th
form of specific rules inherent to the peculiar nature of every distinct species of fictitious numbers. For instance, th
signs was a specific rule for negative numbers. These specific rules were what distinguished a calculation involving a
species of fictitious numbers from a calculation involving true numbers or a different species of fictitious numbers.

26 Irrational numbers do not correspond to the idea of number and, therefore, are fictions; however, they have a ve
nature with respect to other fictitious numbers since they can be represented by means of a nondirected segment and
question: What is the measure of a given (real) geometrical quantity? Rational numbers answer the same question (t
more precise way) and thus these rational and irrational numbers might be grouped together to form the class of (pos
numbers (and in effect rational and irrational numbers were often taken together, for instance as opposed to imaginary
see Euler [1748, 18]). By so doing one obtains a different classification, which considers the capacity of numbers to ex
determinations of geometrical quantities directly, but this is not relevant to my purposes in this paper.
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the fact that general quantity, expressed in an analytical form, was handled regardless of the nat
specific values and the condition of validity of the rules of manipulation.)

This concept was at the heart of the Eulerian notion of function. An Eulerian function w
relationship between general quantities. Because of the symbolic nature of general quantity, this
was always understood to be symbolically represented. Symbolic representation, which was
known as an analytical expression, could assume any value: it was handled regardless of the n
these values and the condition of validity of the rules of manipulation. I have not dwelt upon the c
of a function in the 18th century, since it has been investigated elsewhere in other works to which
(see Ferraro [2000b], Fraser [1989], and Panza [1996]). I restrict myself to mentioning an exam
this concept: the extension of the rules of the function logx to negative or complex values ofx. Euler
never defined “logx” for negative or complex numbers but merely assumed in an unproblematic wa
the properties of the analytical expression “logx” lasted beyond the initial interval of definition, eve
whenx is negative or imaginary. Thus, inInstitutiones calculi differentialis, once he had established th
d(logx)= dx/x, Euler did not hesitate to apply this formula to the case where the variable was ne
or imaginary, without making any distinction between real and imaginary variable. For instance, in
[1755, 124], he found that the differential of the function

y = 1√−1
log
(
x
√−1+

√
1− x2

)
is

dy = dx√
1− x2

.

More explicitly, in [1749] Euler had stated: “For, as this calculus concerns variable quantities,
quantities considered in general, if it were not generally true thatd(logx) = dx/x, whatever value we
give tox, either positive, negative, or even imaginary, we would never able to make use of this ru
truth of the differential calculus being founded on the generality of the rules it contains.”27

To conclude this section, I wish to make some simple consequences of the above described n
quantity and numbers explicit. First, since a single number was a specific determination of qu
a single number expressed a quantum rather than a quantity. Second, even though each
determination of real quantity can be represented by means of numbers, the idea that quantit
be reduced to a set of numbers was not taken into account. Third, more generally, numbers w
conceived of as elements of a set, if by “set” one means an extensional entity, which is arbitrarily d
entirely characterized by the list of its elements, and having a certain cardinality. Instead, Euler cl
numbers into different classes or species, where a “species” of numbers is intended as an int
entity, which cannot be reduced to an enumeration of objects: it is given by a nonarbitrary and no
property and is not necessarily associated with cardinality.

27 “Car, comme ce calcul roule sur des quantités variables, c’est-à-dire sur des quantités considérées en général, s’il
vrai généralement qu’il tûtd.lx = dx/x, quelque quantité qu’on donne àx, soit positive ou négative, ou même imaginaire,
ne pourrait jamais se servir de cette règle, la vérité du calcul différentiel étant fondée sur la généralité des règles qu’il re
[1749, 143–144].
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3. Infinitesimals as fictitious quantities

Eulerian notions of infinitesimals and infinities should be included within the conception descri
the previous section: infinitesimals and infinities were to be viewed as fictitious numbers, which
well founded in real quantities—they symbolized the process of making quantities approach a lim
were formally manipulated in the context of the theory of functions as analytical expressions.

To justify this statement, I start by observing that Euler considered infinitesimals as evan
quantities, although he never offered a definition, not even a vague or imprecise one, of the
of “evanescent quantity.” In [1755, 69] he restricted himself to stating: “There is no doubt that
quantity can be diminished until it vanishes completely and is reduced to nothing.”28 This basic principle
is the expression of a property of geometrical or physical quantities: one may associate it with the
image of a physical entity (such as the quantity of gunpowder, in the initial example of theInstitutiones
calculi differentialis) which we can imagine as becoming increasingly smaller; otherwise, still rema
within the field of mathematics, we may imagine an evanescent quantity as a segment which incre
diminishes until it becomes a single point and disappears as a segment.

Similarly, in [1755, 65] the idea that quantity can be infinitely increased is regarded simply as
the concept of quantity and has no need of further explanation or clarification. Euler restricted him
exemplifying this idea by observing that the sequence 1,2,3, . . . , can always be increased or a straig
line can always be continued.29

Euler repeatedly stated that an evanescent quantity is zero. For example, in Chapter 3 ofInstitutiones
calculi differentialis, he wrote: “an infinitely small quantity is simply an evanescent quantity and ther
actually equal to zero.”30 This statement, which seems strange to modern eyes, was rooted in the
century concept of number and quantity. Any number was a determination of quantity and was ge
from the flow of quantities; in particular, zero was generated from a quantity that became nothing
when zero or another number was used in an analytical expression, it could be thought of as th
of any variable. For instance, inDe progressionibus transcendentibus[1730–1731, 11–12], Euler soug
the value of

1− x g
f+g

g

for f = 1 andg = 0, namely the value of1−x0

0 (see Ferraro [1998]). He interpreted 0 as a value

28 “Nullium [ . . .] est dubium, quin omnis eousque diminui queat, quoad penitus evanescat atque in nihilum abeat.
1755, 69].

29 In Euler’s terms: “Sic nemo facile reperietur, qui statuerit seriem numerorum naturalium 1, 2, 3, 4, 5, 6 etc. ita
esse determinatam, ut ulterius continuari non possit. Nullus enim datur numerus, ad quem non in super unitas ad
numerus sequens maior exhiberi queat, hinc series numerorum naturalium sine fine progreditur neque unquam per
numerum maximum, quo maior prorsus non detur. Simili modo linea recta numquam eousque produci potest, ut in supe
prolongari non posset. Quibus evincitur tam numerus in infinitum augeri quam lineas in infinitum produci posse. Quae
species quantitatum, simul intelligetur omni quantitati, quantumvis sit magna, adhuc dari maiorem hacque denuo
sicque augendo continuo ulterius sine fine, hoc est in infinitum, procedi posse” [Euler, 1755, 65].

30 “quantitas infinite parva nil aliud est nisi quantitas evanescens ideoque revera erit= 0.” [Euler, 1755, 69].
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z

asz vanishes (cumz
evanescint) was(

1− xz
z

)
z=0

=
(

−(x
z logx) dz

dz

)
z=0

= − logx.

Similarly, in order to calculate the value of

xα − xα+mβ

1− xβ and
π2

6x(x − 1)
+ 1

x(x − 1)2
− (2x − 1)

(
1+ 1

2 + 1
3 + · · · + 1

x

)
x2(x − 1)2

at the pointx = 1, Euler tookx = 1 − ω, with ω infinitesimal (see Euler [1732–1733, 44], Fuss [18
2:229–231]).

One may be struck by the similarity between this procedure for “finding” the value of1−x0

0 and the
modern problem of extending the functionF(z)= 1−xz

z
in a continuous way by putting

F(0)= lim
z→0

1− xz
z

for z= 0.

Indeed there is a coincidence of results which might lead one to think that there was a sub
identity between evanescent quantities and limits. Nevertheless, these results are drawn from
assumptions and it is appropriate to clear the field of possible misinterpretations. From a m
perspective, the problem of extending the functionF(z)= 1−xz

z
in a continuous way means that:

(a) for every fixed valuex > 0, one considers the function (function in the modern sense of the term
as an analytical expression)f (z)= 1−xz

z
defined forz �= 0;

(b) the domainD of f (z) has a point of accumulation at 0 so that we can attempt to calculate the
asz→ 0, where byλ= limz→c f (z) we mean:
given anyε > 0 there exists aδ > 0 such that ifz belongs toD and|z|< δ then|f (z)− λ|< ε;

(c) the application of l’Hôpital’s rule, under whose hypotheses our case falls, makes it possible
that such a limit exists and is equal to− logx;

(d) finally, one defines a new functionF(z), which will be continuous at the point 0, by setting

F(z)=
{

1−xz
z

z �= 0,
− logx z= 0.

This procedure is substantially meaningless for Euler for the reasons that have been see
previous section. He did not consider a function as a pointwise correspondence between nume
but as a rule that linked two variables quantities and was embodied in one single analytical exp
He had no set of points or numbers, did not separate an interval of values (a segment) from its en
etc., nor could he formulate the notion of extension of a function, but instead considered1−x0

0 = − logx
necessarily to be the value of1−xz

z
when the variablez flows.

However, apart from these crucial differences, there is something in common between the E
procedure and the modern one based upon the notion of limit: evanescent quantities and e
increasing quantities were based upon an intuitive and primordial idea of two quantities appro
each other. I refer to this idea as “protolimit” to avoid any possibility of a modern interpretation.
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The protolimit, which derives from the observation of physical and geometrical quantities, w
empirical intuition that guaranteed the well-foundedness of infinitesimals, namely the fact tha
were not mere creations of our mind but were rooted in reality. Starting from such an intuition,
developed the notion of an infinitesimal merely by introducing a symbolism and assuming that on
operate upon them as if they were numbers. Euler posed the question of using different symbols t
evanescent quantity, which ultimately all became equal to zero. In his own language: “[W]hy do
always characterize the infinitely small quantities by the same sign 0, instead of using particular s
to designate them? Since all zeros are equal among themselves, it seems superfluous to dis
among them by means of different signs.”31

Euler [1755, 70] justified the use of different signs by assuming that quantities vary and van
different ways: there exists a diversity between zeros depending on their origin and the signsdx, dy, . . . ,
denote how the variablesx, y, . . . , vanish.

Although infinitesimals seem to be introduced as shorthand symbols, afaçon de parler, they were not
used exclusively in this way. If the latter were true, one could replace any occurrence of the sdx

by the expression “the variablex goes to zero,” in the same manner as one can substitute the s
“⊥” for the expression “perpendicular to” in certain theorems of elementary geometry. This is effe
possible in many cases (and Euler often replaced the infinitesimaldx with a variablex → 0 or merely
with 0, and vice versa), but in general it is not possible sincedx was treated as a number.

From a modern standpoint, what appears to be critical is thatdx, dy, . . . , were neither signs governe
by axiomatic and arbitrary rules nor entities constructed from other mathematical entities, as, in c
are hyperreal numbers.32 Euler merely moved from the consideration of variables that vanish or endl
increase to the consideration of infinitesimal and infinite numbersin an immediate and natural wayas if
there were no difference between finite quantities, small or large as desired, and infinitesimal or
numbers. Well-foundedness was all that the mathematics of the time required to transform an id
a symbol governed by the same rules as true numbers. According to the terminology of the p
section, infinitesimals were fictitious numbers.

To found infinitesimals well Euler had to explain the principle of cancellation of differentials, na
the rule according to which

(1)dxn + dxm = dxn if n <m.

This was the specific rule characterizing infinitesimals (see Footnote 25). InInstitutiones calculi
differentialis, he stated that, given two quantitiesa andb, the equalitya = b can be understood in a
arithmetic sense (in other words,a = b, if a− b= 0) and in a geometric sense (a = b, if a/b = 1) [1755,
70, 74]. The arithmetic equality coincides with the geometric one for finite quantities but the situa

31 “[C]ur quantitates infinite parvas non perpetuo eodem charactere 0 designemus, sed peculiares notas ad eas d
adhibeamus. Quia enim omnia nihila sunt inter se aequalia, superfluum videtur variis signis ea denotare.” [Euler, 1755

32 Modern hyperreals are the elements of a rich and well-organized algebraic structure�R which encodes how a sequen
approaches a limit by a complex construction. Here is a possible construction of�R. Letm be a finitely additive measure o
the setN of the positive integers such that: for allA ⊂ N , m(A) is 0 or 1;m(A) = 0 if A is finite,m(N) = 1. (For a proof
of the existence of this measure, see Lindstrøm [1988, 84–85].) Now, consider the equivalence relation∼ on the setS of the
sequence of numbers:{an} ∼ {bn} iff m{n: an−bn = 0} = 1. The set�R of the hyperreal numbers is defined by�R = S/∼. The
classes of equivalence of the sequences{0}, {1/n}, {1/n2} are elements of�R and are examples of infinitesimals; the classe
equivalence of the sequences{n}, {n2}, {n3} are three examples of infinite numbers.
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different for infinitesimals. For infinitesimals, the arithmetic equation, which is always verified, doe
imply a geometric one; namely, 0= 0 does not imply 0/0 = 1.

Then Euler observes thata ± ndx = a (n being an arbitrary number) is true since it is not o
verified in an arithmetical sense ((a ± ndx)− a = ndx, wherendx = 0) but also in a geometric sens
Indeed,(a±ndx)/a is equal to 1 and this means that infinitesimals vanish before any finite quantity
situation is analogous for the powersdx2, dx3, dx4, . . . . Euler observes that “the infinitely small quant
dx2 vanishes beforedx,” since the quantitiesdx + dx2 anddx (both evanescent:dx + dx2 = dx = 0)
go to zero in the same way(dx + dx2) :dx = 1+ dx = 1. More generally, ifm< n, thena dxm + bdxn
was equal toa dxm, since

a dxm + bdxn = dxm = 0 and
a dxm + bdxn

a dxm
= 1+ a

b
dxn−m = 1,

namely the arithmetical and geometrical equalities were verified.
We could briefly say: ifA= B +C, and ifC goes to zero beforeB (in other words,A/(B +C)= 1),

thenA= B. In modern terms,A andB are asymptotically equal or have the same asymptotic beha
I do not use this anachronistic terminology to vindicate Euler by attributing to him modern asym

notions. I merely wish to point out that the protolimit possessed many different facets and that it
be considered as a basic notion from which later mathematics has derived various modern notio
crucial point, however, is that once he showed the principle of cancellation as well founded, Eul
used it as a tool for formal manipulations; in other words, a calculation involving this principle
longer referred to the meaning of (1) in terms of approaching, but (1) is considered as a specific
the formal manipulation of infinitesimals.33

In order to illustrate the above discussion more clearly, I now investigate one of Euler’s proo
derivation of the series expansion of the exponential function, recently investigated in Laugwitz [
McKinzie and Tuckey [1997] from a different point of view (see below). In Chapter V of theIntroductio
in analysin infinitorum[1748, 122] Euler stated that ifa is a number greater than one andω andψ
are infinitesimals, thenaω = 1 + ψ . Then he assumed that the infinitesimalψ is equal tokω and that
aω = 1+ kω. In [1748, 123–124] he considered a finite numberx, seti = x/ω, and observed that

ax = aiω = (1+ kω)i =
∞∑
r=0

(
i

r

)
(kω)r =

∞∑
r=0

(
i

r

)(
kx

i

)r
.

Euler asserted thati−1
i

= 1, i−2
i

= 1, i−3
i

= 1, . . . , for an infinitely large numberi. Thus he obtained

(2)ax =
∞∑
r=0

1

r!(kx)
r .

There are some critical steps in this proof. First of all, Euler justified the relation

(3)aω = 1+ψ
by making a reference to what he had stated in the preceding Chapter IV:

33 Note that Euler’s justification of (1) consists in explaining what is meant by the ratioψ/ξ between quantitiesψ andξ that
vanish or endlessly increase. In the calculus, however, he handles the infinitesimal and infinite quantitiesψ andξ as separate
entities.
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Let ω be an infinitely small number, or such small fractions that they are almost equal to nothing, then

aω = 1+ψ,
whereψ is a number infinitely small number, as well. Indeed, from the preceding chapter, it was established that ifψ was not an
infinitely small number, then neither couldω be an infinitely small number.34

In reality, in Chapter IV, exponential and logarithmic functions had been introduced without m
any mention of infinitesimals [Euler, 1748, 1:103–105]. He suggested the idea that the difference b
az1 andaz2 of the exponential functionaz might be made equal to a tiny finite quantity, provided thaz1

andz2 are taken very close together (in other words, at a tiny finite distance). In the following ch
this idea was expressed by (3), as if infinitesimals were only shorthand symbols.

Similarly Euler justified the relationi−1
i

= 1, wherei is an infinite number, by an intuitive, dire
consideration of the process of growth of a finite variablei. Indeed, he stated: “However much larger
number that we substitute fori, the more the value of the fractioni−1

i
comes closer to unity. Therefor

if i is a larger number than any assignable one, the fractioni−1
i

equals unity.”35

However, in proving (2), Euler usedi as an infinite number andω as an infinitesimal number, name
he assumed that one could operate upon symbols by expressing the fact that the finite numberi increased
beyond all limits or that the finite quantityω vanishes as ifi andω were numbers. In this wayi−1

i
= 1 is

transformed into a rule for formal manipulation, specific for the fictitious numberi and analogous to (1)
it should not be intended as36 i−1

i
≈ 1 nor as the limit limi→∞ i−1

i
= 1.

Laugwitz has repeatedly pointed out that in the proof of (2) there is a gap (for instance, see La
[1989, 210–211]), which he argues consists in the implicit assumption that the sum of infinitely
infinitesimals is an infinitesimal. It is evident that Laugwitz’s remark arises from the interpretati
i−1
i

= 1 as i−1
i

≈ 1. This interpretation contrasts with the Eulerian statement thata + dx = a is an exact
equality and not an approximate one. According to Euler, “geometric rigor is averse to even the s
error”37 and the exactness of mathematics required that the differentialdx should be precisely equal to
(even though the meaning of this expression is to be interpreted in the above sense, as a variable
zero). He also observed that, by ignoring infinitely small quantities but not naughts, it was still po
to commit extremely serious errors38 [1755, 6].

34 “Quia esta0 = 1, atque crescente exponente ipsius a simul valor potestatis augetur, si quidema est numerus unitate majo
sequitur si esponens infinite parum cyphram excedat, potestatem ipsam quoque infinite parum unitatem esse superatω
numerus infinite parvus, seu fractio tam exigua, ut tantum non nihilo sit aequalis; erit

aω = 1+ψ,
existenteψ quoque numero infinite parvo. Ex praecedente enim capite constat, nisiψ esset numerus infinite parvus, nequeω
talem esse posse.” [Euler, 1748, 1:122].

35 “Cum autemi sit numerus infinite magnus, eriti−1
i

= 1; pater enim, quo maior numerus locoi substituatur, eo propriu

valorem fractionisi−1
i

ad unitatem esse accessurum; hinc sii sit numerus omni assignabili maior, fractio quoquei−1
i

ipsam
unitatem adaequabit.” [Euler, 1748, 124].

36 By a ≈ b, I mean that the differencea − b is an infinitesimal hyperreal number.
37 “[R]igor geometricus etiam a tantillo errore abhorret” [Euler, 1755, 6]. These words echo Newton’s and Ber

statements. See Newton [1707, 334], Berkeley [1734, Sections 4 and 9].
38 This observation seems to be an implicit answer to Berkeley’s view on the calculus. In Berkeley’s opinion, the c

achieved correct results only thanks to a compensation of errors [Berkeley, 1734].
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Euler knew that the sum of infinitely many infinitesimals need not itself be an infinitesimal.39 However,
he did not see gaps in the proof of (2), and this was due to the fact that he understoodi−1

i
= 1 as

a formal equality involving fictitious entities. The proof of (2) is not to be read as a sequen
numerical equalities, but as a sequence of formal manipulations: the functionax can be transforme
into

∑∞
r=0

1
r !(kx)

r by formal manipulations.40

Euler did not hesitate to pursue this approach to its most extreme consequences. For instanc
Chapter VII ofInstitutiones calculi differentialisEuler derived

S(x)= 1n − 2n + 3n − 4n + · · · + (−1)x+1xn

(4)= (−1)x+1

(
1

2
xn +

s∑
m=1

(−1)m+1

(
n

2m− 1

)
(22m − 1)B2m

2m
xn−2m+1

)
+C,

wheren � 0, s = [(n+ 1)/2] is the integral part of(n+ 1)/2, Bn are the Bernoulli numbers,41 and the
constantC is determined by the conditionS(0)= 0. This constraint implies that ifn is even, thenC = 0;

if n= 0, thenC = 1/2; if n is greater than 0 and is odd, thenC = (−1)s (2
n+1−1)Bn+1
n+1 .42

Consequently 1n − 2n + 3n − 4n + · · · + (−1)x+1xn can be expressed asC + (−1)xf (x), whereC
is a constant andf (x) is an appropriate function of the indexx. Euler thought that one could mak
(−1)xf (x) equal to zero forx = ∞ since “if x is an infinite number, which is neither even nor odd, t
consideration [he means the alternating sequence of+ and− in (−1)xf (x)] has to end and, therefor
the sum of the ambiguous terms should be rejected.43 Hence one derives that the sum of the serie
infinity is expressed by means of the only constant quantity.”44 This implies that(−1)∞ = 0 and that the
sums are

(5)1n − 2n + 3n − 4n + · · · = C = (−1)[n/2] (2
n+1 − 1)Bn+1

n+ 1
.

Equation (5), which can also be derived differently (see, e.g., Euler [1761]), is the consequence
conscious acceptance of formal manipulations and of the principle of generality in algebra.45

39 In this regard, the discussion about the use of infinitesimals for defining integrals in [1768–1770, 1:183–184]
interesting. Here Euler stated that it was possible to take into account non-null infinitesimals but they constituted
imprecise and approximate version of the notion of infinitesimal, which nevertheless has useful applications.

40 Of course, the result was also read as a numerical relation between the quantityax and the series
∑∞
r=0

1
r ! (kx)r , but this

is an a posteriori interpretation of the formal derivation (see Ferraro and Panza [2003]).
41 There are several definitions of Bernoulli numbersBr . Here I refer to the definition t

et−1 = 1 +∑∞
r=1(−1)[r/2]+1Br

r ! t r ,
(|t |< 2π , [x] is the integral part ofx), B0 = 1, which is closer to Eulerian use.

42 Euler’s derivation of this result is illustrated in Goldstine [1977, 131–135].
43 The most probable interpretation of this statement is the following. Given that∞ is equal∞ + 1 (geometric equality), i

is impossible to distinguish the behavior at infinity of the variablesi andi + 1 and it is impossible to distinguish even and o
infinite numbers. Indeed since(−1)∞ = (−1)∞(∞+1)/∞ = (−1)∞+1 = −(−1)∞, one has(−1)∞ = 0.

44 “Quodsi se ergox fuerit numerus infinitus, quoniam is est neque par neque impa, haec consideratio cessare
propterea in summa termini ambigui sunt reiiciendi; unde sequitur huiusmodi serierum in infinitum continuatarum s
exprimi per solam quantitatem constantem adiiciendam” [Euler, 1755, 384]. Euler’s approach recalls Leibniz’s one in
GM, V, 396–387] (see Ferraro [2000c, 63–67]).

45 It should be noted that not all 18th-century mathematicians accepted the idea of assigning a meaning to(−1)∞. For
instance, Nikolaus II Bernoulli stated that the partial sums of 1− 3 + 5 − 7 + · · · are−n(−1)n and, therefore, the sum o
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At this juncture, I would like to observe explicitly that some recent papers, such as Laugwitz
1992], McKinzie and Tuckey [1997], interpret 17th- and 18th-century texts by translating them
modern notions and thus approach the question of the nature of Eulerian infinitesimals in an ess
different way from the present article. In particular, Laugwitz, McKinzie, and Tuckey believe tha
possible to vindicate Euler on the basis of a modern version of infinitesimals. However, I think tha
is an irreducible difference between Eulerian infinitesimals and modern hyperreal numbers.46 In their
investigations, Laugwitz, McKinzie, and Tuckey do not use Robinson’s infinitesimals but make
naïve” assumptions [McKinzie and Tuckey, 1997, 48]. Although these assumption are weaker t
ones in Robinson’s theory, one can see in operation in their writings a conception of mathematic
is quite extraneous to that of Euler.

For instance, the starting point of Laugwitz’s theory “is a generalization of field extension. A sy
Ω . . . is adjoined to the real numbers. If a formulaF(n) containing the variablen (for natural numbers) is
true for all sufficiently largen, thenF(Ω) is defined to be true in extended theory” Laugwitz [1987, 27

Similarly McKinzie and Tuckey employ “the more or less axiomatic introduction of infinite
infinitesimal numbers” [McKinzie and Tuckey, 1997, 48]. In a footnote, they explain: “In modern te
the Eulerian continuum is an ordered field; the natural numbers are a subset of the real number
contains 0,1, . . . . The fundamental equations or axioms are exactly what one would use to axiom
the mathematics necessary for basic algebra and trigonometry, with additional assumption that
an infinite natural number. By the field axioms, this implies the existence of infinitesimals.” [McK
and Tuckey, 1997, 48].

These commentators use notions such as set, real numbers, continuum as a set of numbers
functions as pointwise relations between numbers, axiomatic method, which are modern, not E
Furthermore, they do not pay attention to the notion of formal manipulation, which plays a decisiv
in Euler’s analysis.

Finally, it should be noted that the translation of Eulerian notions in the terminology of nonsta
analysis eliminates aspects that were regarded as unitary. For instance, in Laugwitz’s theor
(−1)n = −1 ∨ (−1)n = 1 is true for a natural numbern, (−1)Ω = −1 ∨ (−1)Ω = 1 is a true formula
for a hyperintegerΩ (see Laugwitz [1992, 147]). By contrast, Euler’s use of infinity also includes
and(−1)∞ = 0: these formulas cannot be eliminated as fringe features or curiosities of Eulerian an
Nor can one vindicate Euler by reformulating (5) using the theory of summability. Summability t
is based upon the idea that arbitrary definitions of the sum of a series and the limit of a seque

the series is not 0, although 1− 3 + 5 − 7 + · · · is generated from the expansion of1−x
(1+x)2 for x = 1. In his terms: “Serie

1− 3+ 5− 7+ etc. summa exprimitur per ultimum terminum hujus seriei 1− 2+ 3− 4+ etc. et quando nullus concipi pote
hujus seriei ultimus terminus, nulla etiam concipi poterit summa prioris seriei, aut se velis illa summa erit= −∞ − 1∞, non
autem= 0, a quo valore series 1− 3 + 5 − 7 + etc. tanto magis recedit, quanto magis continuatur, quamvis illa formet
quantitate 1−1

1+2+1 = 0.” [Fuss, 1843, 2:709].
46 In his [1974] Bos has already discussed some differences between 17th- and 18th-century infinitesimals (e

Leibnizian infinitesimals) and nonstandard analysis (see Bos [1974, 81–86]). In particular, he insisted that ‘the most
part of nonstandard analysis, namely the proof of the existence of the entities it deals with, was entirely absent in L
infinitesimal analysis” [Bos, 1974, 83]. This is true not only for Leibniz but also for Euler (as was mentioned above). Ho
it is worth noting that the absence of such a proof is the result of a conception of mathematics for which the term “ex
had a meaning only if, in the final analysis, it referred to reality. For this reason, 18th-century mathematicians did not
need to prove the existence of any species of numbers by providing a mathematical construction of them: the pos
grasping them intuitively and evaluating their well-foundedness was sufficient.
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be given: it presupposes a conception of mathematics as a set of theories which are syntactically
from arbitrary axioms and definitions. However, Euler never considered alternative theories ba
alternative definitions of the sum and limit. In conclusion, the attempt to specify Euler’s notio
applying modern concepts is only possible if elements are used which are essentially alien to th
thus Eulerian mathematics is transformed into something wholly different. I am not claiming that
century mathematics should be investigated without considering modern theories. Modern conc
essential for understanding 18th-century notions and why these led to meaningful results, eve
certain procedures, puzzling from the present views, were used. However, 18th-century analysis
own principles, different from those of modern analysis: an unproblematic translation of certain ch
in the history of mathematics into modern terms tacitly assumes that the same logical and con
framework guiding work in modern mathematics also guided work in past mathematics. So it imp
assumes the point of view of modern mathematics to be the only possible point of view and the
of mathematical knowledge to be a linear process.47

4. Infinitesimals in the presentation of the calculus

In this section we shall see how the notion of the infinitesimal described above enters in
actual presentation of the algorithm of calculus. Euler claimed that functions were the subject
of the calculus and that differentials were mere tools for dealing with functions. InDe usu functionum
discontinuarum in Analysi, Euler stated: “Differential calculus. . . is not concerned with investigating th
magnitude of differentials, which is nothing, but with defining their mutual ratio, which has a determ
quantity in any case. It certainly investigates not so much the differentialdy of the functiony as its ratio
with the differentialdx.”48

He subsequently made it clear that the value of the fractiondy/dx gives rise, for any possible cas
to a determinate (variable) quantity which can be considered a new function ofx.49 Similar statements
can be found inInstitutiones calculi differentialis50 and inInstitutiones calculi integralis.51 According to

47 See the interesting remark of K.H. Parshall: “Traditionally, historians of mathematics have most often adopted a pre
approach to their subject. From the vantage point of the state of the discipline in their own times, they have tended t
the development of mathematics as fundamentally linear in nature. In other words, looking back into mathematical hist
have picked and chosen from among the various contributions and constructed a logical, straight line progression from
to the present. This kind of history serves to anchor contemporary mathematics in the past by providing it with a cle
of direction, but at the same time it profoundly distorts the view of the mathematical climate at any given time in his
the search for predecessors of a particular type of equation, theorem, or idea, other concepts which may have bee
importance to the authors under scrutiny tend to be ignored or trivialized. Furthermore, competing approaches and u
philosophies often fall into total obscurity” [Parshall, 1988, 128].

48 “Neque . . . calculus differentialis in quantitate differentialum, quae nulla est, indaganda occupatur, sed in eorum
mutua definienda, quae ratio utique certam obtinet quantitatem. Functionis scilicety non tam ipsum differentialedy quam eius
ratio ad differentialedx investigatur” [1765, 80].

49 “[Valor fractionis dy/dx] quovis casu determinatam quantitatem sortitur et ipse tanquam nova functio ipsiusx spectari
potest” [1765, 80].

50 “[C]alculus igitur differentialis non tam in his ipsis incrementis evanescentibus, quippe quae sunt nulla, exquirendi
in eorum ratione ac proportione mutua scrutanda occupatur et cun hae rationes finitis quantitabus exprimantur, etiam h
circa quantitates finitas versari est censendus.” [Euler, 1755, 5].

51 “In calculo differentiali iam notavi questionem de differentialibus non absolute sed relative esse intelligendam
si y fuerit functio quaecunque ipsius differentialedy quam eius ratio ad differentialedx sit definienda. Cum enum omn
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Euler, given the function, for exampley = x3 whose differential isdy = 3x2 dx, the genuine object o
the calculus was the study of the differential coefficient (in the example, 3x2) and not of the differentia
3x2 dx. The algorithm of the calculus transformed functions into functions and not differentials
differentials: this viewpoint was part of the general rewriting of analysis as a theory of functions.

In the preface to theInstitutiones calculi differentialisand in theDe usu, Euler provided example
where the calculation of the differential coefficient seems to look forward to the modern definition
derivative. In [1755, 5], he considered the functiony = x2 and observed that

y(x + ω) : ω= (2x +ω) : 1

(wherey(x + ω) is the increment, 2xω + ω2, of x2). So the smallerω is, the closer is(2xω + ω2) : ω
becomes to 2x : 1, even though it actually reaches 2x : 1 only when the increment has complete
vanished.52 In [1765, 80], Euler considered the functiony = ax2 + bx + c and obtained,y/,x =
(2axω + aω2 + bω)/ω= 2ax + aω+ b anddy/dx = 2ax + b, whenω is evanescent.

The similarity with the modern notion of derivative is striking, but it must not deceive us. Indee
Chapter 4 ofInstitutiones calculi differentialis, where the rules of the calculus are formulated,53 Euler
tried to base the analysis of infinities on the method of finite differences, considering it as a spec
of this method “which occurs when the differences, which were previously assumed to be finite, ar
to be infinitely small.”54

Even though the calculus dealt with finite quantities of the formdy/dx, Euler did not introduce
differential coefficients directly as the limits of certain ratios: first he introduced differentialsdx, dy, . . . ,
and then he considereddy/dx as the ratio of the fictitious quantitiesdy anddx. The idea of approachin
was incorporated into that of infinitely small numbers. Thus, in the calculation of the differentialxn

(which is illustrated below), there is no explicit reference to the limit process, in contrast to the exa
presented in the preface toInstitutionesand in De usu. This leads Bos to state in his [1974] that t
definition of the analysis of infinities in Chapter 4 of theInstitutiones calculi differentialis“is rather at
variance with” some of Euler’s remarks. Bos referred to two passages from the preface of the sam

differentialia per se sint nihilo aequalia, quaecunque functioy fuerit ipsiusx, sempre estdy = 0 neque sic quicquam ampliu
absolute quaeri posset. Verum quaestio rite proponi debet, ut, dumx incrementum capit infinite parvum adeoque evanesc
dx, definiatur ratio incrementi functionisy, quod inde capite, ad istuddx; etsi utrumque est= 0, tamen ratio certa inter e
intercedit, quae in calculo differentiali proprie investigatur. Ita si fuerity = xx, in calculo differentiali ostenditur essedy

dx
= 2x

neque hanc incrementorum rationem esse veram, nisi incrementumdx, ex quody nascitur, nihilo aequale statuatur. Veru
tamen hac vera differentialium notione observata locutiones communes, quibus differentialia quasi absolute enunciatu
possunt, dummodo semper in mente saltem ad veritatem referantur. Recte ergo dicimus, siy = xx, fore dy = 2x dx, tametsi
falsum non esset, si quis diceretdy = 3x dx vel dy = 4x dx, quoniam obdx = 0 etdy = 0 hae aequalitates aeque subsister
sed prima sola rationi veraedy

dx
= 2x est consentanea.” [Euler, 1768–1770, 1:6].

52 “Interim tamen perspicitur, quo minus illud incrementumω accipiatur, eo [the ratio 2x : 1] proprius ad hanc ratione acced
unde non solum licet, sed etiam naturae rei convenit haec incrementa cogitatione continuo minora fieri concipiantu
eorum ratio continuo magis ad certum quendam limitem appropinquare reperietur, quem autem tum demum atting
plane in nihilum abierint. Hic autemlimes, qui quasi rationem ultimam incrementorum illorum constituit, verum est obiec
Calculi differentialis” [Euler, 1755, 7, my emphasis].

53 In the De usu, Euler briefly discusses the nature of calculus, restricting himself to the examples mentioned here
preface toInstitutiones calculi differentialis, see below.

54 “Erit . . . analysis infinitorum, quam hic tractare coepimus, nil aliud nisi casus particularis methodi differentiarum in
primo expositae, qui oritur, dum differentiae, quae ante finitae erant assumptae, statuantur infinite parvae” [Euler, 175
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[1755]. In the first, quoted in Footnote 52, the Swiss mathematician explicitly used the term “lim55

The second is the following:

Although the rules, as they are usually presented, seem to concern evanescent increments, which have to be defined; still conc
are never drawn from a consideration of increments separately, but always their ratio. . . But in order to comprise and represent these
reasonings in calculations more easily, the evanescent increments are denoted by symbols, although they are nothing; and sinc
symbols are used, there is no reason why certain names should not be given to them.56

According to Bos, there is “a contradiction which shows that his arguments about the infinitely
did not really influence his presentation of calculus” [Bos, 1974, 68–69]. However, I would argu
one may see a contradiction in theInstitutionesonly if, in contrast to Euler, one distinguishes betwe
limits and infinitesimals and neglects the nature of evanescent quantities as fictions, the role o
manipulations and the absence of a separation between semantics and syntax in the Eulerian ca
reality the idea of a limit (or, rather, protolimit) functioned as the basic intuition upon which infinites
were founded: it provided the semantic meaning of the infinitesimals (quantities that vanish) and a
one to justify the principle of cancellation. However, infinitesimals were employed as fictitious e
that were subject to formal manipulations.

In my opinion, the definition of the calculus in Chapter 4 differs from that of the preface only
emphasis. The latter highlights the intuitive and semantic aspect of calculus (the idea of appro
a limit), while the former presents the formal and syntactic aspect of calculus (infinitesimal num
This is due to the different contexts in which the two definitions are inserted. Indeed, the pre
Institutiones calculi differentialisaimed to give a preliminary explanation of the nature of the differen
calculus to readers who had no acquaintance with this discipline. For this reason, Euler introduce
basic notions of calculus (variables, functions, infinitesimals and differential coefficients) and st
their intuitive aspects. Thus all the definitions of the preface are different from those that Eule
elsewhere in a more formal manner (in [1748]), for variables and functions, and in Chapters 3 a
the first part ofInstitutiones calculi differentialis—i.e., in the treatise in the strict sense of the word—
infinitesimals and differential coefficients (on this, see also Ferraro [2000a, 113–114]).

To clarify the above discussion, I will illustrate how Euler derived the rules of differentiatio
Chapter 1 of theInstitutiones. Put y(n) = y(x + nω), for a nonnegative integern, andy = y(0), Euler
[1755, 16–20] defined

,y = y(1) − y, ,y(n) = y(n+1) − y(n), ,my =,m−1y(1) −,m−1y,

,my(n) =,m−1y(n+1) −,m−1y(n) for m> 1 andn > 0.

He set out the rules of the sum and the product of finite differences and, then, calculated the diff
of algebraic, exponential, logarithmic, trigonometric functions. For example, in [1755, 28–29] Eule

55 Euler generally avoided the use of the term “limit,” in contrast to other 18th-century mathematicians (e.g., d’Al
[1754, 1765]). As far as I am aware, only in this passage did Euler use “limit” to mean “approaching to a limit.”

56 “Quamvis enim praecepta, uti vulgo tradi solent, ad ista incrementa evanescentia definienda videantur acc
nunquam tamen ex iis absolute spectatis, sed potius semper ex eorum ratione conclusiones deducuntur. . . Quo autem facilius
hae rationes colligi atque in calculo repraesentari possint, haec ipsa incrementa evanescentia, etiamsi sint nulla ta
denotari solent; quibus adhibitis nihil obstat, quominus iis certa nomina imponantur.” [Euler, 1755, 5].
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the expansion of the logarithm

(6)log(1+ x)= x − x2

2
+ x3

3
− x4

4
+ · · ·

and obtained

(7),y = y(1) − y = log(x + ω)− logx = log

(
1+ ω

x

)
= ω

x
− ω2

2x2
+ ω3

3x3
− ω4

4x4
+ · · · .

On the basis of the study of the elementary functions (these and their composition, ho
constituted the universe of Eulerian functions (see Fraser [1989, 325])), he stated that the dif
,y, for every functiony, could be expressed in the form

(8),y = Pω+Qω2 +Rω3 + Sω4 + · · · .
Analogously he asserted that higher-order differences could be written in the form

(9),2y = Pω2 +Qω3 +Rω4 + · · · ,
(10),3y = Pω3 +Qω4 +Rω5 + · · · ,

etc. Differential calculus57 originated by lettingω = dx, wheredx is infinitesimal, in (8). Sincex and
y are continuous quantities, Euler [1755, 85] considered it obvious that ifω is an infinitesimal,,y also
became an infinitesimal (see Footnote 13). By neglecting the powers ofω (which vanish beforeω) one
obtained,y = Pω or, in a different notation,dy = P dx, which could also be written asdy : dx = P : 1
(see Euler [1755, 86]).58

For instance, in order to determine the differential ofy = xn, Euler considered

dy = y(1) − y = (x + dx)n − xn = nxn−1 dx + n(n− 1)

1 · 2
xn−2 dx2 + · · · .

By neglectingdx2, dx3, . . . , he haddxn = nxn−1 dx.
Similarly, sincedy = log(x + dx)− logx = log

(
1+ dx

x

)
, he derived

(11)dy = dx

x
− dx2

2x2
+ dx3

3x3
− dx4

4x4
+ · · · .

By applying (6) in formula (11), the termsdxn/nxn, for n > 1, vanish in comparison withdx/x, and he
obtainedd(logx)= dy = dx/x [Euler, 1755, 122].

In the above calculation, Euler did not take specific values of the functionsxn and logx into account.59

He derivedd(xn) = nxn−1 dx andd(logx) = dx/x by consideringxn and logx as general quantities

57 This modality to introduce differentials allowed one to connect the differentialdy with a sequencex(n) = x + ndx of
values ofx, in the same manner as the first difference,y is connected with a sequencex(n) = x + nω (the differential is
the first difference of the sequencey(n) = y(x + ndx). By so doing a strong link is established with the Leibnizian calcu
however, some problems dependent on the choice of the sequence defining first differences are transferred to differen
explicitly referred to the sequencesx + ndx at p. 88 of [1755] when he dealt with second differentials.

58 Note that if one takes the examples given in the preface and theDe usuinto account, he could have defined the differen

coefficient as,yω = Pω+Qω2+Rω3+Sω4+···
ω = P +Qω+ Rω2 + Sω3 + · · · for ω as an evanescent quantity. However, Eu

avoided a direct use of the approaching idea and preferred to define first the differentialdy and then the differential coefficien
59 On the global nature of Eulerian functions, see Fraser [1989, 329], Truesdell [1956, p. XLI].
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Thus, even if the quantity is handled by assuming that it has the property of real quantity, the form
differentiation were understood to be valid also for imaginary values ofx (see the example at the end
Section 2).

This situation does not differ significantly from that regarding functions with more than one var
Euler systematically used the equivalent of the modern partial derivative, which he denoted
symbols of the type

(
dF
dx

)
,
(
dF
dy

)
,
(
dF
dz

)
, whereF(x, y, z) is a function of the variablesx, y, z. Similarly to

differential coefficients of functions of one variable, the symbols
(
dF
dx

)
,
(
dF
dy

)
,
(
dF
dz

)
were defined as ratio

of formally manipulated differentialsdF , dx, dy, dz.
In [1755] the differential of the functionV (x, y, z) was introduced by Euler by letting

dV = V (x + dx, y + dy, z+ dz)− V (x, y, z).
By analyzing two examples, he observed thatdV can be expressed asdV = pdx + q dy + r dz where
p,q, r are functions ofx, y, z, . . . . He also noted that ify andz were taken as constants thendy = 0,
dz = 0, anddV = p dx. Similarly, if x andy were constants thendx = 0, dy = 0, anddV = r dz; if x
andz were constants, thendx = 0, dz= 0, anddV = q dy. Consequently,dV is obtained by calculating
the differentials ofV supposing, on each occasion, that two of the variables are constant [Euler,
144–146].

Euler then demonstrated the theorem on mixed differentials which, in the case of functions w
variables, could be formulated as follows:

if dV = P dx +Qdy then the differential ofP for variabley and constantx and the differential ofQ for variablex and constanty
are equal [Euler, 1755, 153–154].60

Subsequently [1755, 156–157], Euler setdP = r dy (constantx) anddQ = q dx (constanty), and
observed thatdP dx = r dx dy anddQdx = q dx dy. Since the mixed differentials are equal, he h
r = q. Only at this point did Euler decide to introduce a symbolism to indicate the functionsr and
q in a convenient and unambiguous way. He denotedr by means of the symbol

(
dP
dy

)
, which meant

the differential ofP for variable y and constantx (that is, consideringP as a function of the singl
variabley) divided bydy. Similarly

(
dQ

dx

)
indicatedthe differential ofQ for variable x and constan

y divided bydx.61 Therefore the condition that linked the finite quantitiesP andQ in the differential
dV = P dx +Qdy could be expressed as(

dP

dy

)
=
(
dQ

dx

)
.

Finally, I would like to mention the subject of higher-order differentials. In the prefac
Institutiones calculi differentialis, Euler observed that, since infinitesimals were equal to zero, hig
order differentials were never considered per se, but only in relation to each other. More pre

60 Euler first published it in [1734–1735]. A hand-written version was published in Engelsman [1984, 205–213]. Thi
is well known, it is therefore not illustrated here (for instance, see Engelsman [1984, 128–130], Fraser [1989, 319–32

61 “Brevitas, gratia autem hoc autem capite quantitatesr et q ita commode denotari solent, utr indicetur per
(
dP
dy

)
, qua

scriptura designaturP ita differentiari, ut solay tanquam variabilis tractetur atque differentiale istud perdy dividatur; sic enim
prodibit quantitas finitar . Simili modo significabit

( dQ
dx

)
quantitatem finitamq, quia hac ratione indicatur functionemQ sola

x posita variabili differentiari tumque differentiale perdx dividi habere.” [Euler, 1755, 157].
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given a functiony = f (x), whose differential coefficient is a certain functionp, second differentials
were obtained by considering the ratio of the increment of the functionp with other increments. H
also asserted that the symbols of differentials serve only to give a convenient representation o
finite quantities [Euler, 1755, 8]. However, this presentation was not developed in the chap
Institutionesdevoted to this topic, where Euler avoids giving a direct definition to the second differ
asd(q dx), whereq = dy/dx. Similarly to the first-order differentials, he preferred to present hig
order differentials as a special case of higher-order finite differences, even though, as discusse
some complications arose as a consequence.

Indeed, in Chapter 3 of theInstitutiones, Euler [1755, 84 and 88] stated that higher-order different
derived from higher-order finite differences,ny = Pωn +Qωn+1 + Rωn+2 + · · · with ω = dx in the
same way in which first differentials derived from,y = Pω + Qω2 + Rω3 + · · · with ω = dx. For
example, as regards the second differential, the termsQω3,Rω4, . . . , of (9) vanished beforePω2 and,
therefore,d2y = P dx2, wheredx2 was the square ofdx. According to Euler,d2y was equal to 0 while
the ratio betweend2y anddx2 was finite and equal toP : 1 [Euler, 1755, 88].

Given a functiony = y(x), whose first and second differentials aredy = pdx and d2y = q dx2,
the problem arose of establishing the connection betweenp andq. Having used (9) to introduce seco
differentials, there is no a priori guarantee that there exists a simple relationship betweenp andq. In order
to determine such a relationship (namely, the second differential coefficient is obtained by differen
the first coefficient), Euler observed that one could setdp = q dx (since all the differentials of function
possessed this form) and thatndp = nq dx, wheren represented a constant quantity.62 If one then let
n = dx (thereforedx is constant63), one obtaineddp dx = q dx2. Remembering thatdy = pdx and
dp = q dx, one obtained

d2y = d(p dx)= dp dx = q dx2,

namely the second differential ofy had a finite relationship withdx2, which coincided with the
differential coefficient ofp [Euler, 1755, 89]. Naturally, the reasoning can be repeated; ifdq = r dx,
thend3y = d(q dx2)= r dx3, if dr = t dx, thend4y = d(r dx3)= t dx4, . . . . Therefore the higher-orde
differentials ofy can be calculated one after another by differentiatingp, q, r , t , etc.

Although higher-order differentials could be viewed as fictitious entities and be subjected to
manipulations in the same way as first-order differentials, Euler thought that they “were utterly uns
for analysis” (“prorsus ad Analysin esse inepta” [Euler, 1755, 174]). This judgment expressed t
that formulas involving higher-order differentials were not univocally determined. For instance, co
the formula

y d2x + x d2y

dx dy

in which the differentialsd2x andd2y occur. The meaning of this formula varies according to wh
differential is taken as constant and which variable is chosen as independent. If one considersdx as a

62 Euler justifies this step by appealing to finite differences; however, its extension to differentials is not a source o
difficulties.

63 Euler justified this assertion by stating that the variable quantityx received equal increments, or rather that the sequen
valuesx, x(1) = x+dx, x(2) = x+2dx, . . . , x(n) = x+ndx, was assigned to the variablex (see Footnote 57). Consequent
d2x was everywhere equal to zero.
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constant (namely,x is the independent variable) then

y d2x + x d2y

dx dy
= x d2y

dx dy
,

if dy is taken to be a constant (y is the independent variable), then one obtains a different result:

y d2x + x d2y

dx dy
= y d2x

dx dy
.

In the special case wherey = x2, one has

y d2x + x d2y

dx dy
= 1

for dx constant and

y d2x + x d2y

dx dy
= −1

2

for dy constant (see Euler [1755, 170]).
The indeterminacy of higher-order differentials was an intrinsic aspect of the Leibnizian cal

which was not based on functions but on curves analytically expressed by an equationf (x, y)= 0. This
equation ‘was considered as one entity, not a combination of two mutually inverse mappingsx → y(x)

andy → x(y)’ [Bos, 1974, 6]. The independent variable was not chosen a priori and therefore it w
established a priori thatdx was a constant: thus the formulas containing higher-order differential
not possess a meaning per se.

By contrast, the Eulerian calculus dealt with functions which had a directional character base
clear distinction between dependent and independent variable. However, the indeterminacy of
order differentials resulted from the way of presenting calculus as a special case of the theory
differences. Already in Chapter 1 ofInstitutiones calculi differentialis, Euler64 had noted that the firs
difference,y = y(x1) − y(x) = y(x + ω) − y(x) was not influenced by the sequencexi , while the
second differences changed according to the nature ofxn (see Euler [1755, 18]).65 In Chapter 4, he
stated: “For the same reason nothing can be said with certainty about the second differentials
the first differentials, with which the variable quantityx is conceived to increase continually, proce
according to a given law.”66

Euler felt this ambiguity (vagueness, in his terms) made higher-order differentials different
first-order differentials and unsuitable for analysis. He therefore tried to eliminate them by a tec
already known to Johann Bernoulli67 which, in his opinion, showed that higher-order differentials
not have an effective use in analysis [Euler, 1755, 174]. This technique consisted in replacing t

64 The question of choice of the progression of variables and of the indeterminacy of higher-order differentials in th
century calculus is treated in detail by Bos (see, in particular Bos [1974, 25–31, 66–77]).

65 Indeed, in general it is,2y = ,(1)y − ,y = y(x2) − 2y(x1) + y(x), and, forxn = x + nω, ,2y = ,(1)y − ,y =
y(x + 2ω)− y(x + ω)− y(x + ω)+ y(x)= y(x + 2ω)− 2y(x +ω)+ y(x).

66 “Ob eandem ergo rationem de differentiabus secundis nihil certi statui poterit, nisi differentialia prima, quibus q
variabilisx continuo crescere concipitur, secundum datam legem progrediantur” [Euler, 1755, 89].

67 See Johann Bernoulli [1742, 77–79]. For Bernoulli, however, this technique was not a tool which could—once
all—eliminate higher-order differentials from calculus.
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differential coefficients. For instance, given a formula in which the interdependent variablesx and y
occur, if one assumedx to be a constant and introduces the differential coefficientsp,q, r, . . . , by the
relationsdy = pdx, dp = q dx, dq = r dx, . . . . By putting d2y = q dx2, d3y = dq = r dx3, . . . , the
differentials ofy could be eliminated. Similarly one has to operate in more complex cases. Thus,
considers

√
dx2 + dy2 as a constant (a case, Euler says, that is often found in the applications

calculus), then one setsdy = pdx anddp = q dx. In this way one obtains

dx
√

1+ p2 = constant, d2x
√

1+ p2 + pq dx2√
1+ p2

= 0 and d2x = −pq dx
2

1+ p2
.

The second differential ofy is derived by considering

d2y = q dx = q dx2 + p d2x = q d2x − p2q dx2

1+ p2
= q dx2

1+ p2
.

Analogously one could derived3x, d4x, . . . , d3y, d4y, . . . [Euler, 1755, 178].

5. Conclusion

This article has attempted to emphasize some aspects of the Eulerian foundations of the c
The Eulerian calculus was not based on the notion of set nor on that of real number but on
quantity. Euler’s concept of quantity was a modified version of the classical one and was connect
the idea of the continuum, which was not reducible to points. Quantities were investigated in a
and general form, without referring to concrete and specific representations in a diagram. The
symbolic nature; namely, they were reified in concrete signs which were dealt with according to
fixed transformations.

Numbers were understood as the measure of quantity; however, only natural numbers and
numbers were considered numbers in their own right. Irrational, negative, and imaginary numb
zero were viewed as fictions. They were ideal entities useful for dealing with quantities, firmly fo
in the real world (directly or indirectly), and subject to manipulation as if they were numbers.

Eulerian infinitesimals should be placed in this context. They, when interpreted using the con
instruments available to modern mathematics, seem to be an ambiguous mixture of different el
a continuous leap from a vague idea of limit to a confused notion of infinitesimal. In reality,
does not confuse the modern notion of limit and the modern concept of infinitesimal: he simp
not possess such notions, but merely a primordial idea (directly derived from the physical wo
two variable quantities approaching each other. This intuitive idea was transformed into a fict
expressing evanescent quantities by symbols which were operated upon in analogy with true n
without a theoretical construction.

This conception allowed Euler to conceive the calculus as a calculus of finite quantities, hav
an object not the differentialsdy, dx, . . . , but the differential coefficientsdy/dx. Nevertheless, the firs
order differentials not only served to introduce differential coefficients but, as fictions, could be us
se and played an important role in the calculus.

There are many other aspects connected with the Eulerian foundations of the calculus t
worthy of investigation. The consideration given to Eulerian concepts in the 18th century, their v
interpretations, and their influence on the developments of calculus is of particular interest. Ho
these are topics for another paper.
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