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Functions, Functional Relations, and the Laws of Continuity in Euler
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ALLA MEMORIA DI MIO PADRE
IN THE MEMORY OF MY FATHER

La nozione euleriana di funzione presenta un duplice aspetto: essa era, a un tempo, relazione fun-
zionale tra quantità e formula composta da simboli operazionali, da costanti, e da variabili. Queste
ultime erano concepite come universali e pertanto godenti di particolari proprietà. Anche se il calcolo
di Euler era basato sulla manipolazione delle formule, egli non esitò a ricorrere alle relazioni funzion-
ali se necessario. Inoltre le relazioni funzionali erano essenziali per la costruzione o definizione delle
formule analitiche e per le applicazioni dei risultati. Ovviamente un tale modo di intendere le funzioni
provocò ambiguità tra l’aspetto intuitivo, geometrico, o empirico dei concetti e la loro rappresentazione
simbolica in analisi. C© 2000 Academic Press

Eulerian functions had two aspects: they were both functional relations between quantities and
formulas composed of constants, variables, and operational symbols. The latter were regarded as uni-
versal and possessed extremely special properties. Even though Eulerian calculus was based upon
the manipulation of formulas, mathematicians did not hesitate to use functional relations when it was
necessary. Besides, functional relations were essential to the construction or definition of analytic
formulas and application of the results of calculus. This concept of function led to ambiguity be-
tween the intuitive, geometrical, or empirical nature of concepts and their symbolic representation in
analysis. C© 2000 Academic Press
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1. INTRODUCTION

If one were to adopt a presentistic approach and look back at 18th-century calculus, one
would observe a nonrigorous corpus of manipulative techniques, which succeeded in antici-
pating certain modern results thanks to a series of lucky circumstances and fortuitous cases.
Effectively, the predecessors of certain equations or theorems were accurately selected in
a sea of “errors” and “meaningless” assertions. However, such a puzzling image disre-
gards the conceptual background and the reasons and philosophy underlying 18th-century
mathematics and reduces the complexity of historical progress to a mere cataloguing of
new conquests which develop according to an unproblematic and purely linear scheme (see
[37]). This state of things is further aggravated by the fact that 18th-century and modern
terminology are seemingly similar but, in reality, differ profoundly. An exemplary and im-
portant case is Euler’s concept of function, which I investigate in this paper with the aim of
achieving a better knowledge of the fabric of 18th-century analysis.

In particular, I discuss the notion of a variable and analytical expression and argue that
Eulerian functions have to be considered as two-leveled. There is an intuitive and geo-
metrical (or empirical, according to circumstances) level—the functional relation between
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quantities—and there is a formalized level—the analytical expression connecting variables.
Even though infinitesimal calculus manipulated analytical expressions, not only were func-
tional relations essential to the construction of analytic formulas and their application, but
also Euler did not hesitate to use them when it was necessary. My inquiry helps to explain
the main aspects of Euler’s concept of a function and, in particular, the apparently contra-
dictory definitions and uses of the term “function,” the permanence of geometric notions,
especially the law of continuity, in the analytical concept of function, the peculiar role of
elementary functions, and the insignificance of exceptional values.

2. VARIABLES AS ABSTRACT QUANTITIES

While reading theIntroductio in analysin infinitorum[14], one immediately notes that
Euler first defines variable quantities, in Section 2, and only later introduces the concept
of a function, in Section 4, and that the latter presupposes the former. This is puzzling to
the modern reader, who is accustomed to think of a functionf (x) as a rule that assigns a
unique elementy of a setB to each elementx of another setA. One now considers two sets
A andB and a lawf that relates the objects belonging toA andB. The notion of variable
is of no importance:x andy merely denote the generic elements ofA andB, respectively.
However, according to Euler, one initially considered the variablesx, y, . . . , and then the
analytical expression that related them. In a sense, variables, as such, played the basic role
of objects belonging to given sets: they were the primary objects of analysis. Sets, though,
were lacking. Of course, Euler knew well that aggregates, classes, or sets could be formed
by grouping objects, but mathematical theories were not based upon sets. The crucial point,
for my purpose, is that a set isthe mere sumof individual objects of arbitrary nature, whereas
a variable refers only to quantities and is a universal or abstract entity, which can never be
reduced to the mere sum of individual objects. As a consequence, a modern function is a
relation betweenindividualobjects of any nature, while Eulerian functions related universal
objects.

In order to clarify these points, it should be remembered that the notion of a variable
derived historically from the variable geometric quantity. In the 17th century, the curve
was the fundamental object of inquiry in analysis and embodied relations between several
variable geometric quantities defined with respect to a variable point on the curve (see [4,
5]). Geometrical quantities were therefore lines or other geometrical objects connected to a
curve, such as ordinate, abscissa, arc length, subtangent, normal, and areas between curves
and axes. In the first works on calculus, analysis was an instrument for studying curved
lines and variables were simply considered as lines denoted by the lettersx, y, . . . Euler
instead endeavored to eliminate any reference to geometry and, therefore, could not give to
variables a meaning that did not immediately reduce them to lines. Thus, he resorted to the
notion of abstract or universal quantity. In theIntroductio, he gave the following definitions:

A constant quantity is a determinate quantity which always retains the same value ... A variable quantity
is an indeterminate or universal quantity, which comprises all determinate values.1

A variable quantity was therefore conceived of as a universal or abstract quantity. This
means that a variable quantity did not refer to a particular geometric quantity (e.g., abscissa

1 “Quantitas constans est quantitas determinata, perpetuo eundem valorem servans. ... Quantitas variabilis est
quantitas indeterminata seu universalis, quae omnes omnino valores determinatos in se complectitur” [14, 17].
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or arc length of a given curve)2 but to the geometric quantity in general. According to Euler,
the notion of a variable quantity was generated from particular geometrical quantities by
means of a process of abstraction, which consists in rendering as a variable what is common
to all quantities, just as “greenness” consists of the specific shared attributes of all green
individual objects, such as trees and grass. In theIntroductio, he indeed stated: “In the same
way as the ideas of species and genera are formed from the ideas of individuals, so a variable
quantity is the genus, within which all determinate quantities are included.”3 The meaning
Euler gave to terms such as abstraction, genus, species can be deduced from the following
excerpt fromLetters to a German Princess:

There are moreover other types of concept that are also formed by abstraction. These provide the mind
with the most significant subjects to expand its forces: they are the ideas of genus and species. When I
see a pear tree, a cherry tree, an apple tree, an oak, a fir tree, etc., all these ideas are different; however I
note several things that are common to them ... I only stop to consider the things that the different ideas
have in common, and I give the termtree to the object for which these qualities are appropriate. Thus,
the idea of a tree I form in this way is ageneral notion...4

A general notion included the characteristics constituting the essence of this notion (see
[20, 203]). The notion of a variable therefore concerned theessenceof quantity, namely the
capability of being increased or decreased: “every quantity can be increased or decreased by
it own nature indefinitely.”5 For this reason, more directly, the usual 18th-century definition
of a variable stressed this essential characteristic.6

A crucial aspect of the Eulerian conception is that a quantity was a variable insofar as one
made the values and other specific characteristics of this quantity abstract. Consequently,
when one investigated a function with respect to any of the variables of which it was
composed, one considered only the way that this variable entered into the function, namely,
how it combined with itself and the other variables. An abstract quantity was “merely
characterized by its operational relations with other abstract quantities” [36, 241] and not
by its specific content (which, apart from anything else, was identical for all the variables).
The form of the relation was investigated and the study of quantities was reduced to the

2 A line gave an idea of a variable. At the beginning of the second part of theIntroductioEuler stated: “Quoniam
quantitas variabilis est magnitudo in genere considerata omnes quantitates determinatas in se complectens, in
Geometria hujusmodi quantitas variabilis convenientissime repraesentabitur per lineam rectam indefinitam RS.
Cum enim in linea indefinita magnitudinem quamcunque determinatam abscindere liceat, ea pariter ac quantitas
variabilis eadem quantitatis ideam menti offert.” [14, 2: Section 1].

3 “Quemadmodum. . . ex ideis individuorum formantur ideae specierum et generum, ita quantitas variabilis est
genus, sub quo omnes quantitates determinatae continentur” [14, 17]. Euler used the terms “genus” and “species”
in an Aristotelian sense. There are other Aristotelian notions in Euler (see [34]); however, I do not investigate in
this paper how they came to Euler.

4 “ll y a encore une autre espèce de notions qui se forment aussi par l’abstraction, et qui foumissent `a l’âme les
plus importants sujets pour y déployer ses forces: ce sont les idées desgenresetesp̀eces. Quand je vois un poirier,
un cerisier, un pommier, un chêne, un sapin, etc., toute ces idées sont différent, mais cependant j’y remarque
plusieurs choses qui leur sont communes ... je m’arrête uniquement à ces choses que les différent idées ont de
commun, et je nomme un arbre l’objet auquel ces qualités conviennent. Ainsi, l’idée de arbre que je me suis formée
de cette façon est unenotion ǵeńerale...” [20, 93].

5 “omnis quantitas sua natura in infinitum augeri et diminui potest” [17, 3].
6 For instance, Lacroix stated: “Quantities, considered as changing in value or capable of changing, are said to be

variables, and the name constant is given to those quantities that always maintain their value during the calculation”
[31, 1:82]. In the preface ofInstitutiones calculi differentalis, Euler himself preferred to give a simpler definition
of this type (see footnote 17).
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modality of the combinations of the symbolsx, y, . . . There was no other solution since two
different abstract quantities were distinguishable only by means of the symbols denoting
them [36].7

3. FUNCTIONS AND FUNCTIONAL RELATIONS

It is well known that Euler based calculus upon the notion of a function, which he defined
in the following manner. “A function of a variable quantity is an analytical expression
composed in whatever way of that variable and numbers or constant quantities.”8 This
definition, which appeared in theIntroductio, was anticipated by the definition of the general
term of a series, which appeared in one of Euler’s earlier papers [11], submitted to the
Academy of St. Petersburg in 1729: “A general term is a formula that consists of constant
quantities or any other quantities liken, which gives the order of terms; thus, if one wishes
the third term, 3 can be set in the place ofn.”9

Analytical expressions or formulas (for Euler, these terms were substantially synony-
mous) played a crucial role in the above definitions. The following example helps to clarify
how Euler used this notion. In [12], he stated: “It is derived from the nature of differential
calculus that ify is given in whatever way by means ofx and constants and we replace
x by x+ dx, then we shall havey+ dy in place ofy.”10 He assumed a generic function
y(x) is subject to the law of continuity and can be differentiated. From this assumption, he
concluded that every function can be expanded in a Taylor series, namely

y(x + a) = y(x)+ ady(x)

1!dx
+ a2d2y(x)

2!dx2
+ a3d3y(x)

3!dx3
+ a4d4y(x)

4!dx4
− · · · · (1)

Euler even applied this result to two discrete functions, thenth termX = Xn and thenth par-
tial sumS(x)= ∑x

n=1 Xn of a series, because “bothSandX, in the case that the series is de-
termined, are composed ofx and constants.”11He indeed consideredS(x− 1)= ∑x−1

n=1 Xn=
S(x)− X(x) and wrote: “If we compare this with the above formula [namely, (1)], thenS= y
anda=−1 and the value of transformedS, namelyS− X, is

= S− dS

1dx
+ ddS

1 · 2dx2
− d3S

1 · 2 · 3dx4
+ etc.”12

7 It is therefore no wonder that the 18th-century definitions of a variable often stressed symbolism, which served
to transform the abstract concept of a variable into a concrete and manipulable sign (for instance. cf. [33, 1]).

8 “Functio quantitatis variabilis, est expressio analytica quomodocunque composita ex illa quantitate variabili,
et numeris seu quantitatibus constantibus” [14, 1:Section 4].

9 “Terminus ... generalis est formula, quam ingrediuntur tum quantitates constantes tum alia quaepiam non
constans ut n, quae ordinem terminorum exponit, ut, si tertius terminus desideretur, oporteat loco n ponere 3.”
[11, 4]

10 “Ex natura calculis differentialis sequitur, si fuerity quomodocunque perx et constantes datum atque locox
ponaturx+ dx, tum abiturumy in y+ dy.” [12, 109].

11 “Sit igitur series quaecunqueA+ B+C+ D+ · · · + X, in quaA denotat primum terminum,B secundum et
X eum, cuius index estx, ita utX sit terminus generalis seriei propositae. Ponatur autem summa huius progressionis
A+ B+C+ D+ · · · + X= S; erit S terminus summatorius atque tamS quamX, si series fuerit determinata,
ex x et constantibus erunt composita.” [12, 112, my emphasis]

12 “Comparentur ergo haec cum superiore formula; eritS= y eta=−1, quamobren valor ipsiusStransmutatus
seuS− X, erit

= S− dS/1dx+ ddS/1 · 2dx2− d3S/1 · 2 · 3dx4+ etc.” [12,112].
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Some key concepts emerge from this example. What characterizesSas a function ofx is
two things:S is composed ofx and constants andS is effectively determined. Moreover an
Eulerian function, as such, is continuous, is differentiable, and can be expanded in Taylor
series, namely, continuity and differentiability are intrinsic properties of functions.

I shall return to continuity and differentiability in Section 7. Now I observe that Eulerian
functions cannot be reduced to purely analytical expressions. For instance, in [14], Euler
transformed the analytical expressiony= 1− z2

1+ z2 into y= 2x
1+ x2 by the substitutionz= 1− x

1+ x .
However, Euler did not view this as a mere transformation of an analytical expression;
he instead felt the need for an explanation in terms of a correspondence between pairs of
numbers: “If we give any determinate value tox, then we find the determinate values ofz
andy. Thus, we obtain the value ofy corresponding toz and, at the same time, derivez.
Since ifx= 1/2, thenz= 1/3 andy= 4/5, we also findy= 4/5, if we putz= 1/3 in 1− zz

1+ zz,
y being equal to this expression.”13

This example shows how the idea of a correspondence or functional relation is hidden
behind analytical expressions. Another interesting example is furnished from the following
excerpt fromIntroductio in analysin infinitorum:

77. Even though we have so far examined more than one variable quantity, they were connected so that
each of them was the function of only one variable and once the value of one variable was determined,
the others would be simultaneously determined at the same time. We shall now consider certain variable
quantities that do not depend on one another; if a determined value is given to one of these variables,
the others remain indeterminate and variable. It would be convenient to denote such variables with
x, y, z, because they comprise all determined values; if they are compared with each other, they will
be completely unconnected, since it is legitimate to replace any value of one of them such asz, and
the others,x and y, remain entirely free as before. This is the difference between dependent variable
quantities and independent variable quantities. In the first case, if we determine one, all the others are
determined. In the second case, the determination of a variable in no way restricts the meanings of the
others.

78. Therefore a function of two or more variable quantitiesx, y, z is an expression composed of these
quantities in whatever manner.14

Euler first, in Section 77, spoke of “dependence” among variables; he later, in Section 78,
defined a function of more than one variable as an analytical expression. At a first glance,
this seems to be a contradiction. I think however that the contradiction is only apparent
and that Euler’s concept of function effectively contained both the idea of dependence or
relation among variables and the idea of analytical expression. The dependence or relation

13 “Sumpto ... prox valore quocunque determinato ex eo reperientur valores determinati proz et y sicque
invenitur valor ipsiusy respondens illi valori ipsiusz, qui simul prodiit. Uti, si sitx= 1/2, fietz= 1/3 ety=4/5;
reperitur autem quoquey= 4/5, si in 1− zz

1+ zz, cui expressioniy aequatur, ponaturz= 1/3” [14, 1:59].
14 77.Quanquam plures hactenus quantitates variabiles sumus contemplati, tamen eae ita erant comparatae, ut

omnes unius essent Functiones, unaque determinata reliquae simul determinarentur. Nunc autem ejusmodi consid-
erabimus quantitates variabiles, quae a se invicem non pendeant, ita ut quamvis unae determinatus valor tribuatur,
reliquae tamen nihilominus maneant indeterminatae ac variabiles. Ejusmodi ergo quantitates variabiles, cujusmodi
sint x, y, z, ratione significationis convenient, cum quaelibet omnes valores determinatos in se complectatur; at,
si inter se comparentur maxime erunt diversae, cum, licet pro unaz valor quicunque determinatus substituatur,
reliquae tamenx et y aequae late pateant, atque ante. Discrimen ergo inter quantitates variabiles a se pendentes,
et non pendentes, in hoc versatur, ut priori casu, si una determinetur, simul reliquae determinentur, posteriori vero
determinatio unius significationes reliquarum minime restringat.

78. Functio ergo duarum pluriumve quantitatum variabilium,x, y, z, est expressio quomodocunque ex his
quantitabus composita. [14, 1:91]
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was only the first, unanalytical, intuitive level of the concept of a function (I shall later
refer to this aspect of Euler’s notion of function as thefunctional relation, for the sake of
clarity). At a second level, the intuitive concept of a functional relation was made analytical
by appropriate symbols (I shall refer to this as theformulaor analytical expression). In the
above quotation, Euler referred to the first level of the notion of function, the functional
relation, in Section 77, while the second level or formula was referred to in Section 78.
In my opinion, not only were formulas and functional relations not contrasted with each
other but they were closely intertwined. A formula was a function since it embodied a
functional relation; conversely, a functional relation could be the object of study in calculus
only insofar as it was expressed by a formula.

Before I investigate this in detail, I wish to make clear that the generic observation of
functionality in nature, among empirical objects, which is probably as ancient as man, is
one thing, while the mathematical treatment of functionality is quite another. Indeed, it
is in no way certain that an empirical functional relation can be studied by mathematics;
even if it could be studied mathematically, this could be done by a geometric or tabular
representation. In the 17th century, certain functional relations were indeed objectified
in curves and studied geometrically. Symbolic written expressions, on which one could
operate using specific rules, were only later used to denote the relations amonggeometrical
quantities. Therefore, in the 18th century, the real novelty of the notion of function was not
the appearance of functionality in mathematics but the fact that functionality was subjected
to calculations by means of formulas or analytical expressions.

In theIntroductioEuler mainly intended to investigate this newer aspect of functionality
and, therefore, defined a function as a formula, however, it is not possible to eliminate the
idea of a functional relation in his text. This means that the definition of a function did
not characterize this mathematical object entirely and some of its aspects were tacit. In
effect, mathematical definitions play different roles in Eulerian and modern mathematics.
In Euler’s mathematics, a definition did not necessarily exhaust the defined notion; it could
have an implicit meaning, which, in a sense, was considered as obvious in a given context.
Euler’s concept of definition is, however, beyond the scope of this paper (on this subject,
see [23]).

It should also be noted that formulas played a crucial role only in analysis. In geometry
and mechanics, the objects of inquiry were functional relations between certain geometrical
or physical entities. For instance, while investigating a curve, one had to study functional
relations between certain variable geometric quantities (abscissa, ordinate, tangent, normal,
arclength, etc.) connected with a curve. According to Euler, the analytical investigation of
curved lines was possible insofar as the functional relations concerning quantities embodied
in a curve (such as the relationship between abscissas and ordinates) were incorporated into
appropriate formulas. After formulas had been manipulated, it was possible to apply the
results to geometry and mechanics if and only if analytical expressions were reinterpreted
as functional relations. Thus, in the second part of theIntroductio in analysin infinitorum,
where Euler applied various analytical notions, which he had introduced in the first part,
to the study of geometry, he reinterpreted analytical expressions as functional relations in
order to represent them geometrically and used them to investigate certain curves.15

15 For example, he stated: “Sity functio quaecunque ipsiusx, quae ergo valorem determinatum induat, si pro
x valorem determinatus substituatur. Sumta recta indefinita RAS ad valores ipsiusx denotandos, cuilibet valori
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For these reasons, Euler focused either on analytical expressions or on functional relations
according to the circumstances. He emphasized the formula in analytical manipulation. The
functional relation was mainly stressed in arithmetical, geometrical, and physical applica-
tions, where the context made an intuitive discussion possible (as we shall see in Section 4)
and where a reference to the aspects of a function that usually were tacit was appropriate or
necessary (for instance, as we saw above, in treating the transformation of functions Euler
explained that the transformation of analytical expressions can also be viewed as the com-
position of functional relations). I shall discuss how analytical expressions and functional
relations were connected in analysis in Sections 5, 6, and 7.

4. AN ALTERNATIVE DEFINITION OF FUNCTION

The two-leveled aspect of a function explains the presence of an apparently differing
definition in Euler’sInstitutiones calculi differentialis[17], where a function is also defined
as a functional relation. Some historians have recognized “a very general formulation of
the concept of function” [4, 10] and even the first emergence of “a new, general definition
of function” [39, 39] in Euler’s definition ofInstitutiones calculi differentialisand have
identified a direct thread that would link the latter to Dirichlet’s definition, passing by
way of Condorcet’s and Lacroix’s definitions.16 At the same time, the same authors are
forced to admit that such a seemingly new and extremely general concept of function
had no consequence in theInstitutiones(see, for instance, [39, 70]) and that 18th-century
calculus was always a calculus of analytical expressions. It is therefore appropriate to
explore why Euler preferred an alternative definition of a function in [17] (on the use of the
term “function” in [18], see Section 7).

I believe that the difference between [14] and [17] was mainly a matter of emphasis that
depended on the particular context in which the 1755 definition was presented, namely
in the preface of theInstitutiones calculi differentialis. In this preface, Euler discussed the
epistemological nature of differential calculus for readers with no preliminary acquaintance
with this discipline. He noted that calculus could not be defined using everyday notions and
even that branch of the analysis of finite quantities from which the differential calculus is
developed is not sufficient for this purpose. Therefore he had to introduce the basic notions of
the calculus (variables, functions, infinitesimals, and differential ratios) in an intuitive way.

ipsius x determinato AP normaliter applicetur recta PM valori ipsiusy respondenti aequalis.§.6 Si igitur hoc
modo pro omnibus valoribus determinatis ipsiusx definiantur valores ipsiusy respondentes, ad singula rectae
RS puncta P constituentur rectae normaliter applicatae PM valores functionisy exprimentes ... Singulae ergo
applicatarum extremitates M repraesentabunt lineam quampiam, sive rectam, sive curvam; quae igitur hoc modo
per y functionem determinabitur. Quare, qualibet ipsiusx functio, hoc modo ad Geometriam translata, certam
determinabit lineam, sive rectam sive curvam, cuius natura a functionisy pendebit.§.7. Hoc autem modo linea
curva, quae ex functioney resultat, perfecte cognoscitur, quoniam omnia eius puncta ex functioney determinantur
... Quomodocunque autem linea curva fuerit comparata, ex eius singulis punctis rectae normales ad rectam RS duci
possunt, sicque obtinentur intervalla AP, quae valores variabilisx exhibent, et longitudines applicaturam PM, quae
valores functionisy repraesentant. Hinc nullum curvae extabit punctum, quod non hac ratione per functionemy
definiatur.” [14, Sections 5–7]

16 “[T]he classical definition of function included in almost every current treatise on mathematical analysis
is usually attributed either to Dirichlet or to Lobatchevsky (1837 and 1834, respectively). However, historically
speaking, this general opinion is inaccurate because the general concept of a function as an arbitrary relation
between pairs of elements, each taken from its own set, was formulated much earlier, in the middle of the 18th
century” [39, 38].
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Thus the definitions of the 1755 preface are different from those that Euler gave elsewhere
in a formal or analytical manner (in [14], for variables and functions, and in Chapters III, IV,
and V of the first part ofInstitutiones calculi differentialis—i.e., in the treatise in the strict
sense of the word—for infinitesimals and differential ratios). In the 1755 preface, Euler
initially defined a variable simply as a continually increasing or decreasing quantity.17 He
then illustrated this notion with a nonanalytical example (the trajectory of a bullet) which
should not have been included in the treatise in a strict sense, since it dealt with pure analysis.
Euler considered four quantities (the amount of gunpowder, the angle of fire, the range, and
the time) and noted that each of them could be conceived as a variable or constant according
to circumstances and that the variation of any of these quantities produces variations in the
others. For instance, if the amount of gunpowder was fixed and one changed the angle of
fire, then the range and time of the trajectory also changed. One could interpret the range
and time as two variable quantities dependent (pendentes) on the angle of fire. It is precisely
a dependence of this kind that characterizes a function: “Quantities that depend on others in
this way (whereby, when the latter are changed, the former are changed as well) are referred
to as functions of the latter. This definition is extremely broad and covers all ways in which
one quantity can be determined by others. If, therefore,x denotes a variable quantity, then
all quantities which depend uponx in any way or are determined by it are called functions
of x.”18

By this definition, Euler was simply explaining that there was a mathematical term for
denoting the idea of dependence between empirical quantities. The intuitive meaning of the
word “function” (in my terminology, the functional relation) was sufficient for the scope
of the preface of [17] (but not for analytical investigation). However, when mechanical
phenomena and geometric problems needed to be converted into analytical terms, the in-
tuitive relationships between empirical or geometrical quantities had to be translated into
symbols and conceived of as formulas. It is more worthwhile noting the similarity between,
on the one hand, the 1755 definition and Section 77 of Chapter V of [14], and, on the other
hand, the 1748 definition and Section 78 of [14]. In conclusion, the 1755 definition can be
interpreted as marking the emergence of a new notion of function only if one extrapolates
it from its context.

5. CONDITIONS FOR THE REPRESENTABILITY OF FUNCTIONAL
RELATIONS AS FUNCTIONS

At this juncture, it is necessary to answer the following questions: (Q1) Given a functional
relationR, what were the conditions that made it a function according to Euler? Conversely:
(Q2) Given certain signs (such as sinx, 2x), what was it that made them functions?

In general, one can answer (Q1) by stating that a functional relationR was considered a
function if one was able to associate with it an algorithm consisting of symbols (signi) and

17 “[E]tsi enim omnis quantitas sua natura in infinitum augeri et diminui potest; tamen dum calculus ad certum
quoddam institutum dirigitur, aliae quantitates costanter eandem magnitudinem retinere concipiuntur, aliae vero
per omnes gradus auctionis ac diminutionis variari: ad quam distinctionem notandam illae quantitates costantes,
hae vero variabiles vocari solent” [17, 3].

18 “Quae autem quantitates hoc modo ab aliis pendent, ut his mutatis etiam ipsae mutationes subeant, eae harum
functiones appellari solent; quae denominatio latissime patet, atque omnes modos, quibus una quantitas per alias
determinari potest, in se complectitur. Si igiturx denotet quantitatem variabilem, omnes quantitates, quae utcunque
abx pendent seu per eam determinatur, eius functiones vocantur” [17, 4].
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rules of calculation (praecepti). No function was given without a special calculus concerning
it. Conversely, the answer to the second question is that a string of signs, syntactically correct
as regards the rules of elementary algebra and calculus, which denoted numbers, constant
quantities, variable quantities, operations, was conceived as a function only if it represented
a functional relation at least for an interval of values of the variable.

In order to make these points clear, let us observe that trigonometric functions, intended
as formulas involving letters and numbers, were introduced into calculus about 1740 (see
[30, 312]). In [14], Euler constructed the analytical functions sinx and cosx by assum-
ing as known their geometric meanings as functional relations between lines in a circle
and their properties such as sin(x+ y)= sinx cosy+ cosx siny and sin2 x+ cos2 x= 1.
These functional relations were conceived as functions when a special calculus (i.e., a
group of rules that enabled the signs sin and cos to be both algebraically and differentially
manipulated) was associated with them. In [16], Euler wrote:

The different kinds of quantities, which Analysis deals with, generate different types of calculus, where
rules have to be adapted to any kind of quantities. Thus one teaches the special algorithm of both fractions
and irrational quantities in elementary Analysis. The same use occurs in higher Analysis. There, since
logarithmic and exponential quantities, which form a new kind of transcendental quantities, enter into
computations, one usually teaches a special type of algorithm concerning both symbols and rules. It was
termedexponential calculusby the inventor Joh. Bernoulli and also includes the theory of logarithms
and their differentiation and integration. In addition to the logarithmic and exponential quantities there
occurs in analysis a very important type of transcendental quantity, namely the sine, cosine, and tangent
of angles, whose use is certainly the most frequent. Therefore this type rightly merits, or rather demands,
that a special calculus be given, whose invention in so far as the special signs and rules are comprised,
the celebrated author of this dissertation [Euler], is able rightly to claim all for himself, and of which he
gave examples in hisIntroduction to AnalysisandInstitutions of Differential Calculus.19

The calculus of the functionf (x) implied a knowledge off (x) as an analytical expres-
sion and functional relation. One had to possess algorithmic rules related to the analytical
expressionf (x), such as the differentiation rule; but it was also necessary to be able to cal-
culate the quantityf (x) corresponding to a given value of quantityx (for instance, by mean
of a table of values), at least whenx varied in a certain interval. Only if these conditions
occurred was a symbol associated with a given functional relation accepted as a function.20

19 “Diversa genera quantitatum, circa quas Analysis versatur, diversas etiam species calculi gignunt, in quo
praecepta ad quodcunque quantitatum genus accommodari debent. Ita in Analysi elementari peculiaris traditur
algorithmus tam pro fractionibus quam irrationalibus quantitatibus tractandis. Idem usu venit in Analysi sublimiori,
ubi cum logarithmi et quantitates exponentiales, quibus novum quantitatum genera revera transcendens constituitur,
in computum ingrediuntur, peculiaris species algorithmi tam signi quam praeceptis distincta tradi solet, quae ab
inventore Joh. Bemoulliocalculus exponentialisest vocata, siquidem ibi quoque doctrina de logarithmis eorumque
differentiatione et integratione tractatur. Praeter logarithmos et quantitates exponentiales aliud in Analysi occurit
amplissimum genus quantitatum transcendentium, angulorum scilicet eorumque sinuum, cosinuum et tangentium,
cuius usus omnino est frequentissimus. Pari igitur iure hoc genus meretur ac potius postulat, ut ei peculiaris
calculus tribuatur, cuis inventionem, quatenus quibus peculiaribus signis et praeceptis continetur, Cel. Auctor
huius dissertatione omni iure sibi vindicare potest, cuius insignia specimina in Introductione sua in analysin et in
Institutionibus calculi differentialis dedit” [16, 542–543].

20 These are precisely the conditions that allowed the object “function” to be accepted as the solution to a
problem. Generally speaking, in order to solve a problem it is necessary to exhibit a known object. In analysis, an
object was considered as known if it had an analytical expression on which one could operate and if one could
at least partially calculate its values. Functional relations by themselves are not acceptable as the solutions to
problems, because a functional relation is not generally easy either to calculate or to handle.
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Not all functional relations were therefore viewed as functions and the number of functions
was fixed at a given moment, even if, in principle, it could be increased. When Euler wrote
“any function,” he referred precisely toone of the known functions or a composition of
known functions. This poses a new question: What were the functional relations that were
effectively recognized as functions?

In order to answer this question, let us consider the classification of functions in [14,
19]. Here, Euler subdivided all operations into two classes, algebraic and transcendental.21

The functions composed solely of algebraic operations on variables were termed alge-
braic (for instance,π + z, 4zπ , and a+ bz− c

√
2z− z2

a2z− 3bz3 ), while the others were referred to
as transcendental.22 This classification gives rise to various problems. The first problem
concerns algebraic operations, which indeed comprised not only the six elementary op-
erations (addition, subtraction, multiplication, division, raising to a power, extraction of
a root) but also theresolutio aequationum, namely the solution to algebraic equations.
Euler did not explain why he introduced theresolutio aequationum; however, in the first
chapter of [1748], we find sentences such as: “[A]lgebraic functions can often not be ex-
hibited explicitly; a function ofz of this type isZ if it is defined by an equation such
as Z5=azzZ3− bz4Z2+ cz3Z− 1. Indeed, although this equation cannot be solved, it
is known thatZ is equal to an expression composed of the variablez and constants and,
therefore,Z is a certain function ofz.”23

Euler hypothesized that, given an algebraic equationF(x, y)= 0, y was always express-
ible as a function ofx. I think that this hypothetical function served to justify the use of
algebraic equationsF(x, y)= 0 as (implicit) functions in analysis even when one was not
able to transform equations into explicit functions.

Other problems concern transcendental functions. According to Euler, some transcen-
dental functions (logarithmic, exponential, and trigonometric functions) had a status similar
to algebraic ones, as they could be manipulated as easily as the algebraic quantities: “even if
[logarithmic and circular functions] are transcendental, now they are so common in analysis
that they can be treated in the same easy way as algebraic quantities.”24 Initially, this class
of peculiar transcendental functions consisted solely of the exponential and logarithmic
functions. Thus in [11, 3], Euler distinguished these functions from transcendental ones
that were connected with the quadrature of curves. In [14], when he enumerated transcen-
dental functions, Euler still did not explicitly mention the trigonometric ones; however, he

21 “[O]perationes sunt additio et subtractio, multiplicatio et divisio, evectio ad potestates et radicum extractio,
quo etiam resolutio aequationum est referenda. Praeter has operationes, quae algebricae vocari solent, dantur
complures aliae transcendentes, ut exponentiales, logarithmicae, atque innumerabiles aliae, quas Calculus integralis
suppeditat” [14, 19].

22 Some doubts concerned the functions of the kindzc, c being an irrational number: somebody, Euler said,
preferred to term it “interscendentes” [14, 1:20].

23 “[F]unctiones algebraicae saepenumero ne quidem explicite exhiberi possunt, cuiusmodi functio ipsiusz est
Z, si definiatur per huiusmodi aequationem

Z5 = azzZ3 − bz4Z2 + cz3Z − 1.

Quanquam enim haec aequatio resolvi nequit, tamen constatZ aequari expressioni cuipiam ex variabiliz et
constantibus compositae ac propterea foreZ functionem quandam ipsiusz” [14, 1:19–20].

24 “[logarithmi et arcus circulares] etiamsi transcendentes, nunc quidem in Analysin ita sunt receptae, ut aeque
facile tractari quaent ac ipsae quantitates algebraicae” [21, 522].
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provided a broad treatment of them in this text (cf. [31]). After [14], the set of elementary
(i.e., algebraic, exponential, logarithmic, and trigonometric) functions, characterized by
simple rules and procedures, was established and played a fundamental role in analysis.

Are there other functions in Euler’s writings? The answer is complex. Some scholars (see
[24, 40; 25, 322; 35, 200; 36, 251]) emphasized that the set of commonly accepted functions
was only constituted by elementary functions and their composition in the 18th century. I
substantially agree even though, at first glance, it would seem that Euler took many other
transcendental functions into consideration. For instance, inInstitutiones calculi integralis,
we find many transcendental functions expressed by an integral, for instance the logarithmic
integral

∫ z
0

dz
lg z or the functions originating as elliptic integrals. InInstitutiones calculi dif-

ferentialis, he investigated inexplicable functions25 including the gamma function.26 Even
though there were partial successes, the result of the investigation of new transcendental
functions was never really satisfactory and Euler did not put these functions and elementary
ones on the same plane.27 Thus, starting from the middle of the 18th century, Euler often
called two types of objects “functions”: the first type consisted of elementary functions; the
second type consisted of other transcendental functions. He considered the objects of the
first type as functions in a strict sense of the term, while he did not consider the objects of
the second type as true functions because their knowledge was incomplete. Indeed, as we
saw at the beginning of this section, it was not sufficient that one associated an analytical
expression, such as an integral, and a functional relation to obtain a function. According
to Euler, one could not invent a new functionF(x) merely by offering a definition, such
as
∫ z

0
dz
lg z or the function interpolatingx!. A function was an entirely known object to such

a degree that it could be accepted as the final solution to a problem. Tables of values for
it and a special calculus concerning it were necessary so that one could determine the nu-
merical value ofF(x) and manipulate it directly (as occurred for sinx or cosx) and not
indirectly, by resorting to the general properties of integrals or series. Nonelementary tran-
scendental functions either partially or completely lacked the simple rules of calculus that
governed elementary transcendental functions and, therefore, differed from the latter. Euler
realized that new functions were of essential importance in the development of analysis
and believed that they could be accepted as true functions when our knowledge of them
was improved. In Euler’s writings, nonelementary transcendental functions were,de facto,
objects to be investigated and made known, rather effectively given functions. For instance,
in Institutiones calculi integralis, the first nonelementary transcendental function we find is
precisely

∫ z
0

dz
lg z (Euler used an indefinite integral), but Euler observed: “These integrations

25 Euler termed inexplicable those functions “quae neque espressionibus determinatis, neque per aequationum
radices explicari possunt; ita ut non solum non sit algebrice, sed etiam plerumque incertum sit, ad quod genus
trascendentium pertineat. Huiusmodi functio inexplicabilis est 1+ 1/2+ 1/3+ · · · + 1/x, quae utique adx pen-
det, at nisix sit numerus integer nullo modo explicari potest. Simili modo haec expressio 1· 2 · 3 · 4 · · · · · x, erit
functio inexplicabilis ipsiusx, quoniam six sit numerus quicunque eius valor non solum non algebricae, sed ne
quidem per ullum certum quantitatum trascendentium genus exprimi potest” [17, Sect. 367]. Euler effectively
dealt with the functions interpolating the sumsS(x)= ∑x

n=1 an and the productsP(x)= ∏x
n=1 an.

26 Euler considered them difficult to study since they lacked any closed expression; however, he succeeded in
finding various infinite expressions. For instance, he expressedP(x)= ∏x

n=1 an if x was not an integer, by the

infinite productP(x)=ax
1

∏∞
n=1

ax
n+1a1−x

n

an+x
[17, 2: Sect. 382].

27 For instance, see the above quotation from [16] or [19, 1:13–14], where Euler argued that logarithmic and
trigonometric functions (differently from other transcendental functions) were comparable to algebraic functions.
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[of the functions xm−1

(lg x)n , n= 2,3,4, . . .] depend on the formula
∫

xm−1

lg x dx. Putxm= z, hence
xm−1dx= (1/m) dzand lgx= (1/m) lg z; this formula is reduced to the very simple form∫

dz
lg z. If the integral of this kind could be assigned, it would be of a very wide use in Anal-

ysis ... It therefore seems that this formula
∫

dz
lg z furnishes a peculiar type of transcendental

function, which however merits more careful investigation.”28 However, for the time, “the
nature of this function is not known enough.”29

It was only in the last years of his life that Euler briefly mentioned the possibility that
certain objects could actually be accepted as functions. In a short note, published in 1784,
Euler [21, 522–523] observed that quantities concerning the rectification of conics had been
analyzed to such a degree that if a problem was reduced to these quantities, which were
included in certain integral formulas of the type

∫
dx

√
f + gx2

b+ kx2
,

then it could be regarded as quite solved.30 This reference, however, was isolated and the
use of elliptic integrals as actual functions remained a mere suggestion without practical
consequences in Euler’s work.

There is another very important aspect of the representability of a functional relation as
a function to which I referred several times above. A functional relation could be expressed
by means of an analytical expression if and only if it was a relation betweenquantities. This
meant that, when a functional relation was turned into an analytical expressionf (x), bothx
and f (x) were conceived of as abstract quantities or variables; in Euler’s words: “A function
of a variable quantity is also a variable.”31 Of course, if functions are variables, then they
are universal or abstract quantities32 and enjoyed all the properties of variables. This had
various important consequences in Euler’s calculus. First, since variables necessarily varied,
a formula expressed a function if it transformed variable quantities into another variable
quantity: for example,y=a (with a constant) is not a function. Second, since variables
could assume every value, in principle, functions carriedC ontoC, to use an anachronism
(cf. [35, 432]). Third, since a variable was a universal quantity, there might exist exceptional
values at which a theorem involving functions failed. Fourth, since variables varied in a
continuous way, functions were intrinsically continuous.33

28 “Hae ... integrationes pendent a formula
∫ xm−1

lg x dx quae positoxm= zobxm−1dx= (1/m) dzet lgx= (1/m)

lg z reducitur hanc simplicissimam formam
∫ dz

lg z cuius integrale si assignare possit, amplissimum usus in Analysi

esset allaturum ... Videtur ergo haec formula
∫ dz

lg z singularem speciem functionum transcendentium suppeditare,
quae utique accuratiorem evolutionem meretur” [19, 1:122].

29 “natura huis functionis transcendentis parum cognoscitur” [19, 128].
30 “[Q]uantitates, quae rectificationem sectionum conicarum involvunt, a Geometris iam ita sunt exploratae, ut

problemata, quae ad eas fuerint perducta, pro perfecte solutis haberi soleant. Continentur autem istae quantitates

transcendendentes in huiusmodi formulis integrabilus
∫

dx
√

f + gxx
b+ kxx ” [21, 522].

31 “Functio ergo quantitatis variabilis ipsa erit quantitas variabilis” [14, 1:18]. In some cases, Euler directly
defined a function as a quantity [17; 18]. The emphasis on quantity corresponded to applied contexts.

32 In [35; 36] Panza placed particular emphasis upon this aspect and characterized 18th-century functions as
forms expressing quantities or quantities expressed by forms.

33 I shall return to different meanings of this term in Section 7. Here I intuitively refer to “continuity” as a
variation without jumps.
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In order to clarify the first three points, I observe that the particularization of a variable
was problematic in Euler’s conception. Today the symbol of a variablex is a mere sign
denoting one of the elementsa, b, . . . of the setS, on which f (x) is defined; the properties
of x, as a generic element ofS, are the same properties that every element ofS possesses
for the simple reason that it belongs toS. According to Euler, a variable was instead a
universal object and a universal object was always different from its particular occurrences,
each of which was accidental and transient. A variable did not consist of the enumeration
of its values but substantially differed from them. When a given value was attributed to
an abstract quantity, one descended from the general to the particular; the variable lost its
essential character of indeterminacy and its nature was altered. Consequently, a function, as
such a variable, must vary (see [27, 47]): it could not assume the same value and, therefore,
y=a (a constant) was not conceived as a function. Euler stated: “Sometimes even merely
apparent functions occur, such asz0, 1z, aa− zz

a− z , which nevertheless maintain the same value,
however one varies the variable quantity. Although they give the misleading appearance of
functions, they are actually constant quantities.”34

Besides, given a functiony= y(x), since a variable quantity included all numbers (Euler
emphasized in [14, 1:18]: “even zero and imaginary numbers”), bothx and y assumed
complex values. He indeed stated:

“Since every determinate value can indeed take the place of the variable quantity, a function assumes
innumerable values and there is no determinate value which the function can not assume, as a variable
quantity also involves imaginary values. Thus, the function

√
(9− zz) can not assume a value greatest

than 3 if we replacez by a real number, however, if we attribute imaginary values toz, such as 5
√−1,

then no determinate value is given that can not be derived from the formula
√

(9− zz).”35

It should also be noted that a constant quantitywas not a specific caseof a variable
quantity, as the latter was an abstract, general quantity. A variable indeed enjoyed its own
properties, which might be false for certain determinate values. What is legitimate for
the variable could not be legitimate for all its occasional values. Consequently, given any
propertyP of x, there might exist exceptional values at which the property fails. A proof
involving the variablesx, y, . . . was valid and rigorous as long as the variablesx, y, . . .
remained indeterminate; but this was no longer the case if one gave a determinate value to
x, y, . . . Thus, if one expandedf (x) into a power series

∑∞
n=1 anxn and made no assump-

tions concerning the individual values of variables, then the equality
∑∞

n=1 anxn= f (x)
was considered globally valid even if there might exist certain occasional values at which
the general relation

∑∞
n=1 anxn= f (x) did not furnish a numerical equality: these points

were “not significant” [25, 331].36 (On the treatment of exceptional value in Euler, see
Engelsman [10, 10–13]).

34 “Si Z ejusmodi fuerit Functio multiformis ipsiuszutz0, 1z, aa− zz
a− z perpetuo nonnisi unicum valorem exhibeat

realem; tumZ Functionem uniformem ipsiusz mentientur, ac plerumque loco Functionis uniformis usurpari
poterit” [14, 1:18–19].

35 “Cum enim loco quantitatis variabilis omnes valores determinatos substituere liceat, hinc functio innumer-
abiles valores determinatos induet; neque ullus valor determinatus excipietur, quem functio induere nequeat, cum
quantitas variabilis quoque valores immaginarios involvat. Sic, etsi haec functio

√
(9− zz) numeris realibus loco

z substituendis nunquam valorem ternario maiorem recipere potest, tamen ipsiz valores imaginarios tribuendo, ut
5
√−1, nullus assignari poterit valor determinatus, quin ex formula

√
(9− zz) elici queat” [14, 18].

36 Consequently it is very difficult to undermine Eulerian calculus by means of counterexamples derived from
assigning a particular value to a variable, for the simple reason that an Eulerian theorem was a theorem that
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In order to clarify the fourth point, consider Euler’s construction of the exponential
function in [14, 1:103–105]. At a first sight, it would seem that Euler defined the exponential
functionaz by associating a real value with the symboly=az for each real numberz. Indeed,
he initially considered the case in whichz is a natural number and then whenz is a negative
integer or zero. He, later, observed that, ifz is a fraction, such asz= 5/2, the quantity
az assumes a unique positive real value (a2√a), which lies betweena2 anda3. A similar
situation occurs ifz is irrational: for example,37 the quantitya

√
7 has a determined values

lying betweena2 anda3. But, in the absence of a theory of real numbers,38 what is the
actual sense of this construction?

Euler did not really defineaz but sought analytically to characterize a quantityy repre-
sented by the symbolaz, by assuming the existence of this quantity.39 The use of the symbol
az immediately implies that thequantity yhas to be subjected to certain conditions, i.e.,

(a) it must assume the values. . . ,a−3,a−2,a−1,a0,a1,a2,a3, . . . ;
(b) it must be governed by the law of powersaz+x = az ·ax.
This is sufficient for characterizing the exponential function analytically. Indeed, since

az must be a quantity, it varies continually (flows, in Newton’s terms) and Euler can state
the relation

(c) aω= 1+ ψ , whereω andψ are infinitesimal,40

without any special explanation. Thusaz was entirely characterized by (a), (b), and (c) and
this allowed Euler to develop the calculus of exponential functions.

The arithmetical functional relationan, for n= . . . ,−3,−2,−1, 0, 1, 2, 3, . . . , is only
the starting point for the construction ofy=az. What was important for Euler was the
relation between the continuous quantitiesy andz. In modern terms, we could say that he was
searching for a continuous functionf (z) such thatf (x+ z)= f (x) · f (z) and f (1)=a; but
it is better to think of the construction ofaz as a Wallis interpolation [22], i.e., as the solution
to the problem: find aquantity y=az that interpolates. . . ,a−3,a−2,a−1,a0,a1,a2,a3, . . . .
In the final analysis, the construction of the exponential function refers to a curved line that

concerned abstract quantities (variables) and not their values. Only after Cauchy did this point of view change and
a theorem become falsified by a single counterexample derived from assigning a particular value to a variable.

37 “Eodem modo res se habet, si exponensz valores irrationales accipiat, quibus casibus cum difficile sit
numerum valorum involutorum concipere, unicus tantum realis consideratur. Sica

√
7 erit valor determinatus intra

limitesa2 eta3 comprehensus.” Euler [14, 1:104]
38 Only integers and fractions were indeed numbers in the strict sense of the term in the 18th century, while

irrational numbers were the ratios of two given quantities of the same kind. Mathematicians were naturally
accustomed to working with the decimal representation of real numbers or their approximating sequences (see,
e.g., [14, 2: Section 510]). However, a sequence could approximate an irrational number but did not define it.
The extension of the term “number” to incommensurable ratios was considered as incorrect because “number”
presupposes an exact and precise denotation. Nevertheless, an incommensurable ratio was similar to a number
and could therefore be viewed as a number because (1) it could be approached by numbers as closely as desired;
(2) it had many properties that were common to numbers; (3) even though it could not be represented rigorously
by means of arithmetic, it could at least be represented geometrically (e.g.,

√
2 : 1 could be represented as the

diagonal and the side of a square) (for instance, see [2, 188]).
39 When Euler introduced the functionaz, he merely stated: “Sit igitur proposita huismodi quantitas exponentialis

az, quae est potestas quantitatis constantisa exponentem habens variabilemz” [14, 103].
40 “Quia esta0= 1, atque crescente exponente ipsius a simul valor potestatis augetur, si quidem a est numerus

unitate major; sequitur si esponens infinite parum cyphram excedat, potestatem ipsam quoque infinite parum
unitatem esse superaturam. Sitω numerus infinite parvus, seu fractio tam exigua, ut tantum non nihilo sit aequalis,
ω erit aω = 1+ ϕ, existenteϕ quoque numero infinite parvo.” [14, 1:122].
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passes through the point (n,an) and this guaranteed the existence of the function. In order
to satisfy this geometric intuition, Euler excluded values ofa which made jumps inaz [14,
1:104–105].

We thus arrive at a crucial aspect of Euler’s analysis: the intuitive image of a function
was the segment line or piece of a curved line described by means of other lines. Analytical
symbols hide ageometricperception of relationships. By this, I do not mean that Euler
never referred to relations between objects other than quantities but that he analytically
represented only relations between quantities. Functions connected quantities rather than
numbers, which were present in analysis only as particular determinations of quantities
(and, as we saw, did not have an independent existence, except for the two more elementary
types of numbers). Although a table of the values of a given function was one of the tools
which mathematicians had to possess in order to know this function, a table of values was
not the image of a function. To use the language of computer science, Eulerian analysis was
analogical rather than digital. In the realm of analysis only the continuous, irreducible to
the numerical, actually existed. Not only did the numerical fail to precede the continuous
logically but on the contrary the discrete could be derived from the continuous and be
regarded as an interruption of the continuous.

6. LOCAL AND GLOBAL VIEWPOINTS

Today we have alocal conception of differential calculus. A rule concerning a function
f (x) is derived in the neighborhood of a number under conditions of continuity, differen-
tiability, etc., and is then considered valid for the points of the domain off (x) which are
subject to the same conditions. The Eulerian conception was different. It was based upon
the principle of the generality of algebra, which was rooted in the notion of variables as
universal: anything involving the universal object variablewas universally validand could
not be limited to a particular range of its values. Euler expressed this principle as follows:

“For, as this calculus concerns variable quantities, that is quantities considered in general, if it were
not generally true thatd(logx)= dx/x, whatever value we give tox, either positive, negative, or even
imaginary, we would never be able to make use of this rule, the truth of the differential calculus being
founded on the generality of the rules it contains.”42

41 99. Si fita= 0, ingens saltus in valoribus ipsiusaz deprehenditur, quamdiu enim fueritznumerus affirmativus
seu major nihilo, erit perpetuoaz= 0: si z= 0 erita0= 1; sin autem feuritz numerus negativus, tumaz obtinebit
valorem infinite magnum. Si enimz=−3; erit az= 0−3= 1/03= 1/0, idoque infinitum. Multo majores autem
saltus occurrent, si quantitas constansaz habeant valorem negativum, puta−2; tum enim ponendis locoz numeris
integris valores ipsiusaz alternatim erunt affirmativi et negativi, ut ex hac Serie intelligitur

a−4; a−3; a−2; a−1; a0; a−1; a2; a3; a4; ec.

+ 1

16
;−1

8
;+1

4
;−1

2
;+1;−2;+4;−8;+16,ec.

Praeterea vero si Exponentizvalores tribuantur fracti, Potestasaz= (−2)z mox reales mox imaginarios induet val-
ores: erit enima1/2=√−2 imaginarium, at erita1/3= 3

√−2=− 3√2 reale: utrum autem, si exponentiz tribuantur
valores irrationales, Potestasaz exhibeat quantitates reales an imaginarias, ne quidem definiri licet.

100. Hic igitur incommodis numerorum negativorum loco a substituendorum commemoratis, statuamus a esse
numerum affermativum, et unitate quidem majorem, quia huc quoque illi casus, quibus a est numerus affermativus
unitate minor, facile reducuntur.”

42 “Car, comme ce calcul roule sur des quantités variables, c’est-à-dire sur des quantités considérées en général,
s’il n’etoit pas vrai généralment qu’il tûtd.lx= dx/x, quelque quantité qu’on donne àx, soit positive ou negative,
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A function, such as logx, was viewed as a whole and its behavior was a global matter,
which could not be reduced to the sum of the behavior of the points of its domain: it
could not have a propertyP here, and a different property there. This does not mean
that Euler merely considered functions that had the propertyP in every point: rather they
obeyed rules that were valid over an intervalIx (or, more precisely, for certain values
that this variablex assumed moving with continuity) and hence were also globally valid.
Thus, if one proved that a functionf (x) had the propertyP in the intervalIx, then one
could extend this property beyond the intervalIx, where it had initially been derived.43

This conception, which can be called ageneralized local conception, derived from the
double role of functions, as an analytical expression and a relation. A functional relation
between quantities had a “natural” domainD for which its properties were valid. When
this functional relation was analytically expressed and was conceived of as an analytical
expression, it was not restricted to its original domainD: the results concerning a formula
were derived substantially by using certain local properties of the functional relation, only
then was it conceived globally, without considering any constraints. For instance, given
the analytical expression logx constructed from a relation valid for positive values of
quantityx, the principle of generality of algebra allowed logx to be considered whenx
is negative and even imaginary. Euler did not define logx for x as negative or complex
numbers but merely assumed in an unproblematic way that the properties of the analytical
expression logx (such as the differentiation rule) lasted beyond the original interval of
definition. Of course, if what was valid in an interval was generally valid, not only did a
function possess the same properties everywhere but it also maintained the same analytical
expression everywhere since the analytical expression embodied all its properties. Therefore
one function necessarily consisted of one single formula(cf. [25; 36]) and a relation such
as

f (x) =
{

2x if x is a positive quantity

x2 if x is a nonpositive quantity

was never considered as a function.
Such an approach did not enable Euler to appreciate the difference between complex

and real variables and, therefore, between complex and real analysis. His attention was
focused on functions of real variables. For instance, in [14, 1:24], after dividing functions
into many-valued and single-valued, Euler stated that an equationZn− P Zn−1+QZn−2−
RZn−3 + SZn−4− etc.= 0 (with P, Q, R, S, etc. single-valued functions ofz) is a many-
valued functionZ of z but observed that ifZ assumes one real value, then it behaves as a
single-valued function ofz and generally can be used as a single-valued function.44 Thus√

P was a many-valued function because it assumed two real values, whereas3
√

P had to
be considered a single-valued function because it assumed one real value and two complex
values. Real functions were really of interest; complex functions were not an autonomous

ou même imaginaire, on ne pourrait jamais se servir de cette régle, la verité du calcul differential étant fondée sur
la généralité des régles qu’il renferme” [15, 143–144].

43 According to Fraser [25, 329]: “The existence of an equation among variables implies the global validity of
the relation in question.”

44 “15. Si Z ejusmodi fuerit Functio multiformis ipsiusz ut perpetuo nonnisi unicum valorem exhibeat realem;
tum Z Functionem uniformem ipsiusz mentientur, ac plerumque loco functionis uniformis usurpari poterit.”
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object of study, but were useful tools for the theory of real functions and their use seemed
to be restricted to exceptional circumstances.45

Finally, it is also worthwhile noting that the generality of algebra was restricted to analysis,
where functions were studied withouta priori restrictions concerning variables. In arith-
metic, geometry, and mechanics, functions and variables have natural ranges and therefore
mathematicians were obliged to take into consideration the restrictions which the nature of
the specific problem under examination imposed. When the results derived from the use of
generality were applied to other sciences, they had to be subjected to appropriate reinter-
pretations which adapted them to concrete circumstances. This approach is an aspect of the
mathematical method for studying natural science in the 18th century, which Dhombres [9]
referred to as the “functional method.” By solving a problem mathematically, appropriate
symbols replaced concrete quantities and their relations come to be conceived as formu-
las and equations. The solutions to these equations were to be interpreted in relation to
the specific problem and by eliminating anything that was meaningless for this particular
problem. The most systematic example of this conception is Euler’s series theory, where
the convergence was studieda posteriorias a condition for applicability of series theory
(cf. [23; 35]). Results were obtained without any restriction concerning the convergence of
series; only at the moment of application was the numerical meaning of series (and therefore
convergence) of importance.

7. THE LAW OF CONTINUITY

Until now, I have often referred to continuity (e.g., when referring to quantities that
increases continuously) in a sense close to the modern local point of view. According to
Euler, continuity was, however, a global matter and was viewed as equivalent to uniqueness.
This conception was grounded in the idea that an object was continuous if it was an unbroken
object, i.e., if it was not broken into two objects and was thereforeoneobject. (On the origin
of this conception, see [34].) I shall call Euler’s concept of continuity G-continuity for short.
With respect to this global viewonefunction had to be G-continuous.

If one applies such a concept to a curve, a continuous, unbroken curve is characterized
by means of theconnectednessor continuity of its run. Thus global and local viewpoints
seem be connected in a simple manner provided we consider a curve as an empirical object,
immediately capable of being grasped by our intuition and not represented analytically.
The global point of view (uniqueness, absence of break) can then be regarded locally as the
absence of jumps in the course of the curve or as the assumption of any intermediate state
between two given states or gradual change (these notions were considered equivalent at
the time). I shall call this concept of continuity L-continuity for short.

The intuitive idea of a curved line (such as a mark made by a pencil) implies L-continuity:
one can imagine that a curve consists of more than one branch, each of them L-continuous,
but the idea of a completely discontinuous curve does not belong to geometric intuition.
Since a function was an abstract representation of a curved line, it was necessarily L-
continuous. A function was L-continuous or was not a function. According to Euler, each
function y(x) possessed the following property:1y= y(x + ω) − y(x) is infinitesimal if
ω is infinitesimal.46 Unlike Cauchy’s approach [6], this propertywas not the definition of

45 See also the last example of Section 7.
46 He stated “augmentum illudω, quo quantitatem variabilemx crescere sumpsimus, statuemus infinite parvum

... manifestum est, incrementum seu differentiam functionisy quoque fore infinite parvam” [17, 82].
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continuitybut only a trivial consequence of the application of the idea of L-continuity to
formulas (see also footnote 10). Indeed, the problem of the definition of L-continuity never
arose during the 18th century.

It should be stressed that mathematicians could imagine an L-discontinuous functional
relation (and Euler surely considered discrete functional relations, such as sequences), but
only if a functional relation was L-continuous at least over an interval was it considered
acceptable in order to construct a function. Of course, the generalized local conception
allowed mathematicians to consider L-continuity as a global property of the analytical
expression. L-continuity was, in a sense, incorporated into the analytical expression, as
has been seen in the case of the exponential function (see Section 5). Thus, in the second
volume of theIntroductio in analysin infinitorum, in the chapter devoted to transcendental
curves, Euler [14, 2: Section 51] examined the “equation” (significantly, this term, and
not “function,” was used by Euler)y= (−1)x and refused to consider it as a function. He
referred toy= (−1)x as paradoxical because its graph is totally discontinuous: there are
pairs of points whose distance is smaller than any assignable quantity and, at the same time,
no segment of the straight linesy= 1 andy=−1 belongs to it (to the 20th century eyes, it
is composed of two everywhere dense sets of isolated points).

While the expression (−1)x was paradoxical, the expressionsx
√

2 andxx were not con-
sidered problematic although they give rise to a similar case for negative values ofx. The
difference between (−1)x, x

√
2, andxx is continuity over an interval:x

√
2 andxx are func-

tions because they could be conceived of as (continuous) quantities in certain intervals (and,
as we saw, the properties of a function were determined in their entire range by an arbitrary
interval). Instead (−1)x was paradoxical as it could never be viewed as a (continuous) quan-
tity, or, if preferred, it represented a continuous functional relation in no interval. Analysis
dealt with those expressions that guaranteed regularitya priori and avoided paradoxical
phenomena.

Furthermore, the image of quantity as a piece of a curved line implied further consid-
erable regularities, such as the existence of tangents and of radius of curvature, and this
suggested not only that functions were intrinsically continuous but even that the existence of
differentials and higher-order differentials was intrinsically connected to their nature (see,
for instance, [12, 109]). An undifferentiable function was a contradiction in terms.

Let us now return to G-continuity. I have already stated thatone function was G-
continuous merely because it was one. For the same reason,onecurved line andonefunc-
tional relation were G-continuous. However, if one regarded functions, functional relations,
and curves as different aspects of the same object, then G-continuity became problematic
and the simple connection between the local and global points of view began to crum-
ble. For instance, the functiony= k/x is G-continuous since it is one, but its geometrical
counterpart, the hyperbola of the equationy= k/x, is broken into two pieces: it is then
very natural to ask whether the hyperbola is continuous, i.e., whether its two pieces form
a unique curve. Put in more general terms,how does one recognize that an object is one?
The most obvious answer is that an object is one if it retains its properties. Now, if we
study a curve analytically, its properties are included within its analytic expression. If we
accept this view, then it is entirely natural that the criterion of uniqueness must be applied
to the analytical expression, as Euler did in classifying curves [14, 2: Section 8]. Indeed he
stated that although some curves could be described mechanically, he aimed to study curves
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insofar as they originated as functions because this method was the most general and best
suited to calculus.47 According to Euler, from such an idea about curved lines, it immedi-
ately follows that they should be divided into continuous and discontinuous or mixed. A
curve was continuous if its nature was determined by only one function, and discontinuous
or mixed if it was described piecewise by more than one function and, consequently, was
not formed according to a unique law.48 Uniqueness did not apply to the course of a curve,
which was seen as an outward manifestation, but to the function itself as a primary object.
The number of the branches of a curve was therefore of no importance.

Euler also subdivided curves into complex and noncomplex ones using a similar criterion.
He noted that the equations of certain algebraic curves could be broken down into rational
factors:

Such equations include not one but many continuous curves, each of which can be expressed by a
particular equation. They are connected with each other only because their equations are multiplied
mutually. Since their connection depends upon our discretion, such curved lines cannot be classified as
constituting a single continuous line. Such equations (referred to above as complex) do not give rise to
continuous curves, although they are composed of continuous lines. For this reason, we shall call these
curves complex.49

The complex curves (like mixed ones) were discontinuous because their equation was
characterized by arbitrariness; in other words, they are not determined byexactly one
analytical law. Their difference is that the complex curves were composed of more than one
whole curve, whereas mixed curves were composed of pieces of more than one curve.50

In [14], Euler only considered G-discontinuous curves. However, in [18], a paper writ-
ten after the controversy with d’Alembert about the vibrating string (see [38]), he tried to
extend the notion of discontinuity to functions. In his [1] d’Alembert described the mo-
tion of a stretched elastic string by equations equivalent to a partial differential equation

47 “Quamquam complures linae curvae per motum puncti continuum mechaniche describi possunt, quo pacto,
tota linea curva simul oculis offertur, tamen hanc linearum ex functionibus originem hic potissum contemplabimur,
tanquam magis analyticam latiusque patentem, atque ad calculum magis accommodatam. Quaelibet ergo functio
ipsiusx suppeditabit lineam quandam, sive rectam sive curvam, unde vicissim linea curvas ad functiones revocare
licebit. Cuiusque ergo lineae curvae natura exprimetur per ejusmodi functionem ipsiusx” [14, 2: Section 8].

48 “Ex hac linearum curvarum idea statim sequitur earum divisio in continuas et discontinuas seu mixtas. Linea
scilicet curvacontinua ita est comparata, ut ejus natura per unam ipsiusx functionem definitam exprimatur.
Quodsi autem linea curva ita sit comparata, ut variae ejus portiones BM, MD, DM, etc. per varias ipsiusx
functiones exprimantur; ita ut, postquam ex una functione portio BM fuerit definita, tum ex alia functione portio
MD describatur; hujusmodi lineas curvasdiscontinuasseumixtaset irregularesappellamus: propterea quod non
secundum una legem constantem formatur, atque ex portionibus variarum curvarum continuarum componuntur”
[14, 2: Section 9].

49 “Hujusmodi ... aequationes in factores resolubiles non unam sed plures curvas continuas in se complectuntur,
quarum qaevis peculiari aequatione exprimi queant; et quae aliter inter se non sunt connexae; nisi quod earum
aequationes in se mutuo sint multiplicatae. Qui cum sit nexus ab arbitrio nostro pendens, ejusmodi lineae curvae
non unam continuam lineam constituere censeri possunt. Tales ergo aequationes, quas supra complexas vocavimus,
producent lineas curvas non continuas, attamen ex continuis compositas, quas propterea complexas vocabimus”
[14, 2: Section 61].

50 On the basis of these subdivisions the curve of the equationy=
√

x2 is not continuous. Although it appears
to be a G-continuous curve since it derives from one two-valued function, it is in reality the complex curve
corresponding to the (implicit function) equationy2− x2= 0. According to Euler, uniqueness did not refer to the
‘apparent’, complex form, but to the essential, irreducible form. In the light of this observation, Cauchy’s objection
to Euler’s classification in [7] should also be considered.
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∂2z/∂x2=a2∂2z/∂t2. He solved this equation and foundz= f (t + x)+ F(t − x), for
a= 1, f andF being two arbitrary functions. D’Alembert thought that the solution to the
problem had to be interpreted only by means of G-continuous functions, because calculus
was grounded in functions derived fromonefunctional relation (see [38]). In contrast, Euler
tried to eliminate this restriction in geometric or mechanical applications but without prej-
udicing the nature of calculus [14]. In the summary ofDe usu functionum discontinarum in
AnalysiEuler explained: “The solutions that Geometers gave to the problem of the vibrating
motion of strings include nothing but the assumption that the figure, which is given to the
string at the beginning of the motion, is regular and can be represented by a certain equation.
Instead they denied that the other case (if this figure is discontinuous or irregular) was of
relevance for analysis or that the motion that originated from this configuration might be
reasonably defined.”51 He thought that similar problems involved the use of discontinuous
functions necessarily52 but merely added the new G-discontinuous functions to old con-
tinuous functions, without changing the concept of the latter. Euler obtained this result by
a change in terminology and a peculiar interpretation of the constants resulting from the
integration of partial differential equations.

In [14], the termfunctionalways denoted an analytical written expression (embodying a
functional relation) and the wordcurvehad an obvious geometrical meaning. Any function
could be represented geometrically by a curve; the converse was not true, since some curves
were not analytically expressible. For this reason a function had to be continuous and a curve
could be discontinuous. In [18], every curve was instead viewed as analytically expressible
by a function53 and Euler denoted the analytical expression by the termequation, while
he indicated the functional relation by the termscurveand function (the one was often
used in place of the other in the paper). In this way, Euler could introduce the notion of
a discontinuous function: curves or functions were said to be discontinuous if they were
unions of more than one equation.54

51 “Qui problematis de motu cordarum vibratorio solutiones dederunt Geometrae, non nisi illum casum con-
templati sunt, quo figura, cordae ab initio motus impressa, regularis et certa quadam aequatione comprehensa esse
supponitur; alterum vero casum, si haec figura fuerit discontinua sive irregularis, negarunt ad Analysin pertinere
aut motus inde secuturos posse ulla ratione definiri” [18, 7].

52 “Quod autem de hoc problemate [Euler referred to a geometric problem that he studied by means of a partial
differential equation inDe usu functionum discontinarum in Analysi] est ostensum, simul de omnibus aliis eiusdem
generis valet, quorum scilicet solutio functiones binarum variabilium implicat, ex quo quaestio initio proposita
de usu functionum discontinuarum in Analyseos ita est resoluta, ut in Analysi quidem communi, quae circa
functiones unius variabilis tantum versatur, huiusmodi functionibus nullus locus sit concedendus, in sublimioribus
autem Analyseos partibus, ubi functiones binarum pluriumve variabilium tractantur, tales functiones ita necessario
ad calculi essentiam pertinere sint censendae, ut nulla integratio pro absoluta et completa haberi queat, nisi simul
functio maxime indefinita, atque adeo etiam discontinua, in calculum introducatur” [18, 27].

53 “[Q]uomodocunque quantitas y per x determinatur, seu quaecunque fuerit functio y ipsius x, semper curva
describi potest, cuis abscissae cuicunque x conveniat ea ipsa applicata ... vicissim proposita linea curva quaecunque,
eius applicatae certas quasdam functiones abscissarum exibent” [18, 3].

54 In [18, 4–5] Euler stated: “Iam vero notissimum est, in Geometria sublimiori alias lineas curva considerari
non solere, nisi quarum natura certa quadam relatione inter coordinatas, per quampiam aequationem expressa
definiatur, ita ut omnia eius puncta per eandem aequationem tanquam legem determinentur. Quae lex cum prin-
cipium continitatis in se complecti censeatur, quippe qua omnes curvae partes ita vinculo arctissimo inter se
coharent, ut nulla in illis mutatio salvo continuitatis nexu locum invenire possit; hanc ob rem istae lineae curvae
continuae appellantur, nihilque interest, sive aequatio illarum naturam continens sit algebrica sive trascendens,
sive cognita sive etiamnun incognita, dummodo intelligamus dari quandam aequationem, qua natura huismodi
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Since the aim of [18] was the application and interpretation of certain results of the
calculus, Euler now emphasized the intuitive aspect of functional relation by the word
“function” (as in the preface of [17]), and resorted to “equation” to denote the formal
aspect. Euler’s conception did not, however, change substantially: the tension between the
formal and intuitive aspects of functionality was not eliminated but produced a change in
terminology [35, 259]. G-discontinuity did not regard the analytical expression, i.e., the
formal aspect of a function: it concerned the functional relation, i.e., the informal aspect,
however it was termed. According to my terminology, only functional relations were G-
discontinuous and could be thought of as arbitrary or as lacking a definite law of formation
(e.g., the relation between the Cartesian coordinates of a curve traced by a free stroke of
the hand). A formula was instead always associated with a definite law. For this reason,
when he spoke of G-discontinuity, Euler was obliged to refer to curves and to use the term
functionas synonymous with the termcurve.

After having defined discontinuous functions, Euler had to explain how these new func-
tions entered into calculus (he indeed agreed that calculus concerned single analytical
expressions, i.e., continuous functions). He began with the two-leveled notion of a function
and resorted to a special interpretation of the constants produced by integration. He indeed
observed that these new functions, absolutely indefinite and dependent upon our discretion,
originated from the integration of a function of two variables, a new and little developed
field of the integral calculus,55 which “differs very much from the common integral calcu-
lus, where functions of a single variable only occur. It demands entirely special rules, even
if it also uses the devices of the first part [of calculus].”56

In [19, 2:35–37], Euler explained that if one integrates a functionX(x) of one variable
x, one obtains

∫
X(x) dx= F(x)+C, whereF(x) is a function such thatd F(x)

dx = X (x) and
the constantC is determined by the nature of the problem of which the integration gives the
solution. In the same way, if one integrates a functionZ(x, y) of the variablesx andy with
respect tox, one obtains

∫
Z(x, y) dx= F(x, y)+ f (y), whereF(x, y) is a function such

that d F(x,y)
dx = Z(x, y) and f (y) is an arbitrary quantity dependent ony.57 The character of

the quantity f (y) is determined by the nature of the problem and could even be a quantity
that is not expressible by a formula but can be thought of as the ordinate of a curve whose
abscissa isy (i.e., a G-discontinuous functional relation).

Thus, if one considers the wave equation∂2z/∂y2=a2∂2z/∂x2, by a change of variable
t = x+ay,u= x−ay, one obtains∂2z/∂t∂u= 0. By integrating with respectt , one has a

linearum curvarum exprimatur. ... Constituto continuitatis criterio sponte patet, quid sit functio discontinua, seu lege
continuitatis destituita: omnes enim linae curvae per nullam certam aequationem determinatae, cuiusmodi libero
manus tractu delineari solent tales functiones discontinuas suppeditant, quandoquidem in iis valores applicatarum
nulla certa lege abscissis definire licet.”

55 “Verum haud diu est, ex quo haec pars Analyseos coli est caepta, ita ut vix adhunc prima eius elementa satis
sint evoluta.” [18, 20].

56 “plurimum differt a calculo integrali communi, ubi non nisi functiones unius varibilis occurunt, et praecepta
omnino singularia postulat, praeterquam quod in eo omnia quoque artificia prioris partis [namely, of calculus of
a function of one variable] sint in usum vocanda” [18, 20].

57 In [18, 20], Euler formulated this idea as follows: “Quemadmodum [...] calculi integralis communis vis in
eo consistit, ut qualibet integratione nova quantitas constans arbitrio nostra permissa in calculum introducatur: ita
in hac parte, circa functiones binarum occupata, singulis integrationibus, non solum nova quantitas constans, sed
adeo nova functio cuiuspiam variabilis prorsus indeterminata, in calculum invenitur, quae ita ab arbitrio nostro
pendet, ut eius loco etiam functiones discontinuae assumi quaent.”
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function∂z/∂u= h(u), hencez= ∫ h(u) du+ f (t)= F(u)+ f (t) and

z= f (x + ay)+ F(x − ay). (2)

According to Euler, the functionsf andF could be discontinuous.
Since integration naturally contains an element of arbitrariness, Euler believed that the

integral calculus of functions of more than one variable could directly provide a functional
relation, without the intermediate step of the formula. Of course, in order to give a sense
to this interpretation of integration, it was necessary to explain what the differential ratio
(or derivative, in modern terms) of a G-discontinuous function is. Euler merely used the
geometric meaning of a function and stated that iff (x) represented a curve, thenf ′(x) was
the slope of the tangent whereas, iff (x) was interpreted as an area, thenf ′(x) was a curve (he
used precisely the symbolf ′ : x [19, 3:69]). This geometrical interpretation was problematic
since the manipulation of G-discontinuous functions required specific rules which were
never formulated. In [19, 3:192–193], Euler was, however, obliged to admit that the use
of an immediately geometrical notion in an analytical context gave rise to a remarkable
deficiency. He indeed observed that if one applied (2) to the equation∂2z

∂y2 + a2 ∂2z
∂x2 = 0, then

one obtained the complex solutionz= f (x + ay
√−1)+ F(x − ay

√−1). Euler passed to
an equation having a complex coefficient without any special hypothesis: as I had already
noted in Section 7, he did not appreciate the difference between complex and real analysis.
An interpretation of this solution, which was obviously influenced by a weak knowledge
of the conditions of differentiability of a function of a complex variable, is beyond the
scope of this paper. I limit myself to illustrating how Euler derived ”real solutions” from
z= f (x + ay

√−1)+ F(x − ay
√−1) provided f andF were continuous.

He indeed observed that iff andF are continuous, then they can be reduced to the form
P± Q

√−1. Hence it is easy, he said, to obtain solutions in the real form

z = 1

2
[ f (x + ay

√−1)+ f (x − ay
√−1)]

+ 1

2
√−1

[F(x + ay
√−1)− F(x − ay

√−1)].58 (3)

He probably realized that ifP± Q
√−1 satisfies∂2z/∂y2+ a2∂2z/∂x2= 0, then

P + Q = Re[ f (x + ay
√−1)+ F(x − ay

√−1)]

+ Im[ f (x + ay
√−1)+ F(x − ay

√−1)]

= 1

2
[ f (w)+ f (w)+ F(w̄)+ F(w̄)] + 1

2
√−1

[ f (w)− f (w)+ F(w̄)− F(w̄)]

58“[Q]uoties autem functionesf etF sunt continuae, cuiuscunque demum fuerint indolis, semper earum valores
ad hanc formamP± Q

√−1 reduci possent, unde sequens forma ex illa facile deducenda semper valorem realem
exhibebit

z= 1

2
f : (x+ay

√−1)+ 1

2
f : (x−ay

√−1)+ 1

2
√−1

F : (x+ay
√−1)− 1

2
√−1

F : (x−ay
√−1)” [19,192].
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also does (here, I takew= x + ay
√−1 and denote the conjugate, real part, and imaginary

part of the complex numberw by w̄,Re(w), and Im(w), respectively).
Euler assumed thath(w)= h(w̄) for every continuous functionh and therefore

P + Q = 1

2
[ f (w)+ f (w̄)+ F(w̄)+ F(w)] + 1

2
√−1

[ f (w)− f (w̄)+ F(w̄)− F(w)].

Since f andF are two generic continuous functions, the latter expression furnishes (3).
Euler justified the equalityh(w)= h(w̄) as follows. Putx= scosϕ anday= ssinϕ; one

has

(x ± ay
√−1)n = sn(cosnϕ ±√−1 sinnϕ)

and sinceh is a continuous functions, namely one composed of analytical (algebraic or
elementary transcendental) operations, its values can be exhibited by means of the sine and
cosine (every continuous function, in Euler’s sense, can be expanded in a power series with
real coefficients).

If f andF are discontinuous, then they cannot be reduced to a real form: “In any curve
traced by a free stroke of the hand, what meaning will one give the ordinates corresponding
to the abscissas

x + ay
√−1 and x − ay

√−1

according to the nature of imaginaries and their real sums [the real part of their sums] or
the difference which will also be real if it is divided by

√−1? Therefore we note this not
slight lack of calculus, for which one can make up in no way yet.”59

Despite this fact, Euler’s solution to the problem of the vibrating string was substantially
accepted in the 18th century. G-discontinuous functions were considered as tools which
made up for a local insufficiency of calculus, just as imaginary quantities made up for
local insufficiencies of real quantities. Calculus remained a calculus of single analytical
expressions and G-discontinuous functions were never really considered. With hindsight,
the controversy over the vibrating string posed the question of the lack of analytical tools for
describing certain more complicated phenomena: it actually showed the restricted nature
of 18th-century analysis and its overall inadequacy for more sophisticated investigations
rather than its local inadequacy. To avoid a “return to geometry” [29, 11] and to make G-
discontinuous functions actually analytical objects, it was necessary to restructure analysis;
but Euler did not realize this.

59 “Quis autem in curva quacunque libero manus ductu descripta applicatas abscissis

x + ay
√−1 et x − ay

√−1

respondentes animo saltem imaginari ac summam earum realem assignare valuerit aut differentiam, quae per
√−1

divisa etiam erit realis? Hic ergo haud exiguus defectus calculi cernitur, quem nullo adhuc modo supplere licet”
[19, 193].



130 GIOVANNI FERRARO HMAT 27

8. CONCLUSION

In this paper, I have tried to show that Euler’s analysis mainly concerned a two-leveled
mathematical object that can be characterized as an analytical expression embodying a
functional relation between quantities. Euler usually termed this object “function”; in the
context of the solution of partial differential equations, he instead called it “continuous func-
tion.” However, the distinction between continuous and discontinuous functions remained
isolated from the mainstream of contemporary mathematical analysis, and “function” was
the prevailing name of this object. In this paper, I have followed this use.

Of course, the effective content of this object depended on the notions of analytical
expression and functional relation between quantities. A functional relation between quan-
tities was substantially viewed as a relation between quantities connected to a “nice” curve;
hence a function enjoyed all the properties of a “nice” curve, such the absence of jumps
and existence of tangents, namely L-continuity and differentiability. A geometric image
underlay a function.

An analytical expression was viewed as an appropriate string of variables, constants,
and symbols of operations. This string had to be exhibited explicitly. Every symbol in an
operation was ruled by its own laws and every function had a special calculus (if it could not
be reduced to other simpler functions). One can state that, according to Euler, a function was
an entirely known object, even if the precise meaning of this remained vague and was not
made clear. From the 1750s Euler used the term “function” for certain mathematical objects
that lacked this property. He, however, thought that these objects substantially differed from
effective functions since only the latter could be manipulated and, therefore, accepted as
solutions to a problem.
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