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Functions, Functional Relations, and the Laws of Continuity in Euler
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ALLA MEMORIA DI MIO PADRE
IN THE MEMORY OF MY FATHER

La nozione euleriana di funzione presenta un duplice aspetto: essa era, a un tempo, relazione fun-
zionale tra guantita e formula composta da simboli operazionali, da costanti, e da variabili. Queste
ultime erano concepite come universali e pertanto godenti di particolari proprieta. Anche se il calcolo
di Euler era basato sulla manipolazione delle formule, egli non esito a ricorrere alle relazioni funzion-
ali se necessario. Inoltre le relazioni funzionali erano essenziali per la costruzione o definizione delle
formule analitiche e per le applicazioni dei risultati. Ovviamente un tale modo di intendere le funzioni
provoco ambiguita tra I'aspetto intuitivo, geometrico, 0 empirico dei concetti e la loro rappresentazione
simbolica in analisi. © 2000 Academic Press

Eulerian functions had two aspects: they were both functional relations between quantities and
formulas composed of constants, variables, and operational symbols. The latter were regarded as uni-
versal and possessed extremely special properties. Even though Eulerian calculus was based upor
the manipulation of formulas, mathematicians did not hesitate to use functional relations when it was
necessary. Besides, functional relations were essential to the construction or definition of analytic
formulas and application of the results of calculus. This concept of function led to ambiguity be-
tween the intuitive, geometrical, or empirical nature of concepts and their symbolic representation in
analysis. © 2000 Academic Press
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1. INTRODUCTION

If one were to adopt a presentistic approach and look back at 18th-century calculus,
would observe a nonrigorous corpus of manipulative techniques, which succeeded in an
pating certain modern results thanks to a series of lucky circumstances and fortuitous cz
Effectively, the predecessors of certain equations or theorems were accurately select
a sea of “errors” and “meaningless” assertions. However, such a puzzling image di
gards the conceptual background and the reasons and philosophy underlying 18th-ce!
mathematics and reduces the complexity of historical progress to a mere cataloguin
new conquests which develop according to an unproblematic and purely linear scheme
[37]). This state of things is further aggravated by the fact that 18th-century and mod
terminology are seemingly similar but, in reality, differ profoundly. An exemplary and im
portant case is Euler's concept of function, which I investigate in this paper with the aim
achieving a better knowledge of the fabric of 18th-century analysis.

In particular, | discuss the notion of a variable and analytical expression and argue 1
Eulerian functions have to be considered as two-leveled. There is an intuitive and g

metrical (or empirical, according to circumstances) level—the functional relation betwe
107

0315-0860/00 $35.00
Copyright© 2000 by Academic Press
All rights of reproduction in any form reserved.



108 GIOVANNI FERRARO HMAT 27

gquantities—and there is a formalized level—the analytical expression connecting variak
Even though infinitesimal calculus manipulated analytical expressions, not only were fu
tional relations essential to the construction of analytic formulas and their application,
also Euler did not hesitate to use them when it was necessary. My inquiry helps to exp
the main aspects of Euler’s concept of a function and, in particular, the apparently con
dictory definitions and uses of the term “function,” the permanence of geometric notio
especially the law of continuity, in the analytical concept of function, the peculiar role
elementary functions, and the insignificance of exceptional values.

2. VARIABLES AS ABSTRACT QUANTITIES

While reading thdntroductio in analysin infinitoruni14], one immediately notes that
Euler first defines variable quantities, in Section 2, and only later introduces the conc
of a function, in Section 4, and that the latter presupposes the former. This is puzzlin
the modern reader, who is accustomed to think of a functipf) as a rule that assigns a
unique elemeny of a setB to each element of another seA. One now considers two sets
A andB and a lawf that relates the objects belongingAcandB. The notion of variable
is of no importancex andy merely denote the generic elementsfodnd B, respectively.
However, according to Euler, one initially considered the variaklgs ... , and then the
analytical expression that related them. In a sense, variables, as such, played the basi
of objects belonging to given sets: they were the primary objects of analysis. Sets, tho
were lacking. Of course, Euler knew well that aggregates, classes, or sets could be for
by grouping objects, but mathematical theories were not based upon sets. The crucial f
for my purpose, is that a settlse mere surof individual objects of arbitrary nature, whereas
a variable refers only to quantities and is a universal or abstract entity, which can neve
reduced to the mere sum of individual objects. As a consequence, a modern function
relation betweemdividualobjects of any nature, while Eulerian functions related univers:
objects.

In order to clarify these points, it should be remembered that the notion of a varia
derived historically from the variable geometric quantity. In the 17th century, the cur
was the fundamental object of inquiry in analysis and embodied relations between se\
variable geometric quantities defined with respect to a variable point on the curve (se¢
5]). Geometrical quantities were therefore lines or other geometrical objects connected
curve, such as ordinate, abscissa, arc length, subtangent, normal, and areas between
and axes. In the first works on calculus, analysis was an instrument for studying cur
lines and variables were simply considered as lines denoted by the betiers. . Euler
instead endeavored to eliminate any reference to geometry and, therefore, could not gi
variables a meaning that did not immediately reduce them to lines. Thus, he resorted tc
notion of abstract or universal quantity. In tiéroductio, he gave the following definitions:

A constant quantity is a determinate quantity which always retains the same value ... A variable quantity
is an indeterminate or universal quantity, which comprises all determinate Values.

A variable quantity was therefore conceived of as a universal or abstract quantity. T
means that a variable quantity did not refer to a particular geometric quantity (e.g., absc

L“Quantitas constans est quantitas determinata, perpetuo eundem valorem servans. ... Quantitas variab
guantitas indeterminata seu universalis, quae omnes omnino valores determinatos in se complectitur” [14, ]
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or arc length of a given curvéput to the geometric quantity in general. According to Euler.
the notion of a variable quantity was generated from particular geometrical quantities
means of a process of abstraction, which consists in rendering as a variable what is com
to all quantities, just as “greenness” consists of the specific shared attributes of all gr
individual objects, such as trees and grass. Inrtreductio, he indeed stated: “In the same
way as the ideas of species and genera are formed from the ideas of individuals, so a var
quantity is the genus, within which all determinate quantities are incluti€tdé meaning
Euler gave to terms such as abstraction, genus, species can be deduced from the follc
excerpt fromLetters to a German Princess:

There are moreover other types of concept that are also formed by abstraction. These provide the mind
with the most significant subjects to expand its forces: they are the ideas of genus and species. When |
see a pear tree, a cherry tree, an apple tree, an oak, a fir tree, etc., all these ideas are different; however
note several things that are common to them ... | only stop to consider the things that the different ideas
have in common, and | give the tetneeto the object for which these qualities are appropriate. Thus,

the idea of a tree | form in this way isgeneral notion.

A general notion included the characteristics constituting the essence of this notion (
[20, 203]). The notion of a variable therefore concernedesencef quantity, namely the
capability of being increased or decreased: “every quantity can be increased or decreas
it own nature indefinitely® For this reason, more directly, the usual 18th-century definitio
of a variable stressed this essential charactefistic.

A crucial aspect of the Eulerian conception is that a quantity was a variable insofar as
made the values and other specific characteristics of this quantity ahsBansequently,
when one investigated a function with respect to any of the variables of which it w
composed, one considered only the way that this variable entered into the function, namn
how it combined with itself and the other variables. An abstract quantity was “mere
characterized by its operational relations with other abstract quantities” [36, 241] and
by its specific content (which, apart from anything else, was identical for all the variable
The form of the relation was investigated and the study of quantities was reduced to

2 Aline gave an idea of a variable. At the beginning of the second part dfitteeluctioEuler stated: “Quoniam
guantitas variabilis est magnitudo in genere considerata omnes quantitates determinatas in se complecte
Geometria hujusmodi quantitas variabilis convenientissime repraesentabitur per lineam rectam indefinitam
Cum enim in linea indefinita magnitudinem quamcunque determinatam abscindere liceat, ea pariter ac qual
variabilis eadem quantitatis ideam menti offert.” [14, 2: Section 1].

3 “Quemadmodum. . ex ideis individuorum formantur ideae specierum et generum, ita quantitas variabilis €
genus, sub quo omnes quantitates determinatae continentur” [14, 17]. Euler used the terms “genus” and “spe
in an Aristotelian sense. There are other Aristotelian notions in Euler (see [34]); however, | do not investigat
this paper how they came to Euler.

44|y a encore une autre espéce de notions qui se forment aussi par I'abstraction, et qui fouaiéseatlés
plus importants sujets pour y déployer ses forces: ce sont les idegsmtesetesgces. Quand je vois un poirier,
un cerisier, un pommier, un chéne, un sapin, etc., toute ces idées sont different, mais cependant j'y rems
plusieurs choses qui leur sont communes ... je m'arréte uniqguement a ces choses que les different idéees
commun, et je nomme un arbre I'objet auquel ces qualités conviennent. Ainsi, I'idée de arbre que je me suis for
de cette fagon est ummtion gerérale...” [20, 93].

5 “omnis quantitas sua natura in infinitum augeri et diminui potest” [17, 3].

6 For instance, Lacroix stated: “Quantities, considered as changing in value or capable of changing, are said
variables, and the name constant is given to those quantities that always maintain their value during the calcule
[31, 1:82]. In the preface dhstitutiones calculi differentalis, Euler himself preferred to give a simpler definition
of this type (see footnote 17).
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modality of the combinations of the symbalsy, . .. There was no other solution since two
different abstract quantities were distinguishable only by means of the symbols deno
them [36]/

3. FUNCTIONS AND FUNCTIONAL RELATIONS

Itis well known that Euler based calculus upon the notion of a function, which he defin
in the following manner. “A function of a variable quantity is an analytical expressic
composed in whatever way of that variable and numbers or constant quastiibs”
definition, which appeared in thetroductio, was anticipated by the definition of the genera
term of a series, which appeared in one of Euler’s earlier papers [11], submitted to
Academy of St. Petersburg in 1729: “A general term is a formula that consists of const
quantities or any other quantities likewhich gives the order of terms; thus, if one wishes
the third term, 3 can be set in the placend?

Analytical expressions or formulas (for Euler, these terms were substantially syno
mous) played a crucial role in the above definitions. The following example helps to clat
how Euler used this notion. In [12], he stated: “It is derived from the nature of different
calculus that ify is given in whatever way by means »fand constants and we replace
X by x 4+ dx, then we shall have +dy in place ofy.”'° He assumed a generic function
y(x) is subject to the law of continuity and can be differentiated. From this assumption,
concluded that every function can be expanded in a Taylor series, namely

ady(x)  a*d’y(x)  a’d®y(x) a'd'y(x)
1ldx 2ldx? 3ldx3 41dx4

y(x +a) = y(x) + e (1)
Euler even applied this result to two discrete functionspthéermX = X, and thenth par-
tial sumS(x) = > _; X, of aseries, because “bofandX, in the case that the series is de-
termined, are composedxofind constants! He indeed considere®(x — 1)= %1 X, =
S(x) — X(x) and wrote: “If we compare this with the above formula [namely, (1)], tBeny
anda= —1 and the value of transforme®} namelyS— X, is

ds dds d3s

—S—- = _
1dx+ 1.2dx2  1.2.3dx4

+ etc."™2

7 Itis therefore no wonder that the 18th-century definitions of a variable often stressed symbolism, which se
to transform the abstract concept of a variable into a concrete and manipulable sign (for instance. cf. [33, 1]

8 “Functio quantitatis variabilis, est expressio analytica quomodocunque composita ex illa quantitate varia
et numeris seu quantitatibus constantibus” [14, 1:Section 4].

9“Terminus ... generalis est formula, quam ingrediuntur tum quantitates constantes tum alia quaepiam
constans ut n, quae ordinem terminorum exponit, ut, si tertius terminus desideretur, oporteat loco n ponel
[11, 4]

10«Ex natura calculis differentialis sequitur, si fueyiguomodocunque peret constantes datum atque laco
ponaturx 4+ dx, tum abiturumy in y +dy.” [12, 109].

L «sit igitur series quaecunque+ B+ C + D + - - - + X, in quaA denotat primum terminunB secundum et
X eum, cuius index e, ita ut X sit terminus generalis seriei propositae. Ponatur autem summa huius progressic
A+B+C+ D+ --- +X=S§; erit Sterminus summatorius atque ta®guamX, si series fuerit determinata
ex x et constantibus erunt composita.” [12, 112, my emphasis]

12«Comparentur ergo haec cum superiore formula;®#ity eta = —1, quamobren valor ipsiuStransmutatus
seuS— X, erit

=S—dS/1dx+ddS1-2dx? —d3S/1-2-3dx* +etc.” [12,112].
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Some key concepts emerge from this example. What charact&éea function ok is
two things:Sis composed ok and constants an8lis effectively determined. Moreover an
Eulerian function, as such, is continuous, is differentiable, and can be expanded in Ta
series, namely, continuity and differentiability are intrinsic properties of functions.

I shall return to continuity and differentiability in Section 7. Now | observe that Euleria

functions cannot be reduced to purely analytical expressions. For instance, in [14], E

transformed the analytical expressipe: i;—ﬁ into y = 2% by the substitutioz = 1.

However, Euler did not view this as a mere transformation of an analytical expressi
he instead felt the need for an explanation in terms of a correspondence between pai
numbers: “If we give any determinate valuexothen we find the determinate valueszof
andy. Thus, we obtain the value gf corresponding ta and, at the same time, derize
Sinceifx =1/2, therz=1/3 andy =4/5, we also findy =4/5, if we putz=1/3in i;—g
y being equal to this expressiot”

This example shows how the idea of a correspondence or functional relation is hid
behind analytical expressions. Another interesting example is furnished from the followi
excerpt fromintroductio in analysin infinitorum:

77. Even though we have so far examined more than one variable quantity, they were connected so that
each of them was the function of only one variable and once the value of one variable was determined,
the others would be simultaneously determined at the same time. We shall now consider certain variable
guantities that do not depend on one another; if a determined value is given to one of these variables,
the others remain indeterminate and variable. It would be convenient to denote such variables with
X, Y, z, because they comprise all determined values; if they are compared with each other, they will
be completely unconnected, since it is legitimate to replace any value of one of them stjanes
the othersx andy, remain entirely free as before. This is the difference between dependent variable
quantities and independent variable quantities. In the first case, if we determine one, all the others are
determined. In the second case, the determination of a variable in no way restricts the meanings of the
others.

78. Therefore a function of two or more variable quantikieg, z is an expression composed of these
quantities in whatever mann#.

Euler first, in Section 77, spoke of “dependence” among variables; he later, in Section
defined a function of more than one variable as an analytical expression. At a first glar
this seems to be a contradiction. | think however that the contradiction is only appar
and that Euler’s concept of function effectively contained both the idea of dependence
relation among variables and the idea of analytical expression. The dependence or rel

13«gsumpto ... prox valore quocunque determinato ex eo reperientur valores determinati girg sicque
invenitur valor ipsiusy respondens illi valori ipsius, qui simul prodiit. Uti, si sitx =1/2, fietz=1/3 ety =4/5;
reperitur autem quoque=4/5, siin }; 22, cui expressiony aequatur, ponatur=1/3" [14, 1:59].

1477 Quanquam plures hactenus quantitates variabiles sumus contemplati, tamen eae ita erant compara
omnes unius essent Functiones, unaque determinata reliquae simul determinarentur. Nunc autem ejusmodi ¢
erabimus quantitates variabiles, quae a se invicem non pendeant, ita ut quamvis unae determinatus valor trib
reliquae tamen nihilominus maneant indeterminatae ac variabiles. Ejusmodi ergo quantitates variabiles, cujus
sintx, v, z, ratione significationis convenient, cum quaelibet omnes valores determinatos in se complectatur
si inter se comparentur maxime erunt diversae, cum, licet prazwador quicunque determinatus substituatur,
reliquae tamernx ety aequae late pateant, atque ante. Discrimen ergo inter quantitates variabiles a se pende
et non pendentes, in hoc versatur, ut priori casu, si una determinetur, simul reliquae determinentur, posteriori
determinatio unius significationes reliquarum minime restringat.

78. Functio ergo duarum pluriumve quantitatum variabiliumy, z, est expressio quomodocunque ex his
guantitabus composita. [14, 1:91]
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was only the first, unanalytical, intuitive level of the concept of a function (I shall late
refer to this aspect of Euler’s notion of function as fhectional relation, for the sake of
clarity). At a second level, the intuitive concept of a functional relation was made analyti
by appropriate symbols (I shall refer to this as fienulaor analytical expression). In the
above quotation, Euler referred to the first level of the notion of function, the functior
relation, in Section 77, while the second level or formula was referred to in Section
In my opinion, not only were formulas and functional relations not contrasted with ea
other but they were closely intertwined. A formula was a function since it embodiec
functional relation; conversely, a functional relation could be the object of study in calcu
only insofar as it was expressed by a formula.

Before | investigate this in detail, | wish to make clear that the generic observation
functionality in nature, among empirical objects, which is probably as ancient as man
one thing, while the mathematical treatment of functionality is quite another. Indeed
is in no way certain that an empirical functional relation can be studied by mathemat
even if it could be studied mathematically, this could be done by a geometric or tabt
representation. In the 17th century, certain functional relations were indeed objecti
in curves and studied geometrically. Symbolic written expressions, on which one co
operate using specific rules, were only later used to denote the relations gemngtrical
guantities. Therefore, in the 18th century, the real novelty of the notion of function was |
the appearance of functionality in mathematics but the fact that functionality was subjec
to calculations by means of formulas or analytical expressions.

In theIntroductioEuler mainly intended to investigate this newer aspect of functionali
and, therefore, defined a function as a formula, however, it is not possible to eliminate
idea of a functional relation in his text. This means that the definition of a function o
not characterize this mathematical object entirely and some of its aspects were taci
effect, mathematical definitions play different roles in Eulerian and modern mathemat
In Euler's mathematics, a definition did not necessarily exhaust the defined notion; it cc
have an implicit meaning, which, in a sense, was considered as obvious in a given con
Euler’s concept of definition is, however, beyond the scope of this paper (on this subj
see [23]).

It should also be noted that formulas played a crucial role only in analysis. In geome
and mechanics, the objects of inquiry were functional relations between certain geomet
or physical entities. For instance, while investigating a curve, one had to study functio
relations between certain variable geometric quantities (abscissa, ordinate, tangent, no
arclength, etc.) connected with a curve. According to Euler, the analytical investigatior
curved lines was possible insofar as the functional relations concerning quantities embo
in a curve (such as the relationship between abscissas and ordinates) were incorporate
appropriate formulas. After formulas had been manipulated, it was possible to apply
results to geometry and mechanics if and only if analytical expressions were reinterpra
as functional relations. Thus, in the second part ofltiteductio in analysin infinitorum
where Euler applied various analytical notions, which he had introduced in the first p
to the study of geometry, he reinterpreted analytical expressions as functional relatior
order to represent them geometrically and used them to investigate certain'éurves.

15 For example, he stated: “Sjtfunctio quaecunque ipsiug quae ergo valorem determinatum induat, si pro
x valorem determinatus substituatur. Sumta recta indefinita RAS ad valores pd@mtandos, cuilibet valori
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Forthese reasons, Euler focused either on analytical expressions or on functional relat
according to the circumstances. He emphasized the formula in analytical manipulation.
functional relation was mainly stressed in arithmetical, geometrical, and physical appli
tions, where the context made an intuitive discussion possible (as we shall see in Sectic
and where a reference to the aspects of a function that usually were tacit was appropria
necessary (for instance, as we saw above, in treating the transformation of functions E
explained that the transformation of analytical expressions can also be viewed as the c
position of functional relations). | shall discuss how analytical expressions and functiol
relations were connected in analysis in Sections 5, 6, and 7.

4. AN ALTERNATIVE DEFINITION OF FUNCTION

The two-leveled aspect of a function explains the presence of an apparently differ
definition in Euler'sinstitutiones calculi differentialifl 7], where a function is also defined
as a functional relation. Some historians have recognized “a very general formulatior
the concept of function” [4, 10] and even the first emergence of “a new, general definiti
of function” [39, 39] in Euler’s definition ofnstitutiones calculi differentiali@nd have
identified a direct thread that would link the latter to Dirichlet’s definition, passing b
way of Condorcet’s and Lacroix’s definitioA® At the same time, the same authors are
forced to admit that such a seemingly new and extremely general concept of funct
had no consequence in thestitutiones(see, for instance, [39, 70]) and that 18th-century
calculus was always a calculus of analytical expressions. It is therefore appropriate
explore why Euler preferred an alternative definition of a function in [17] (on the use of tl
term “function” in [18], see Section 7).

| believe that the difference between [14] and [17] was mainly a matter of emphasis t
depended on the particular context in which the 1755 definition was presented, nan
in the preface of thénstitutiones calculi differentialisin this preface, Euler discussed the
epistemological nature of differential calculus for readers with no preliminary acquaintar
with this discipline. He noted that calculus could not be defined using everyday notions :
even that branch of the analysis of finite quantities from which the differential calculus
developed s not sufficient for this purpose. Therefore he had to introduce the basic notior
the calculus (variables, functions, infinitesimals, and differential ratios) in an intuitive we

ipsiusx determinato AP normaliter applicetur recta PM valori ipsjueespondenti aequali§.6 Si igitur hoc
modo pro omnibus valoribus determinatis ipsiugefiniantur valores ipsiug respondentes, ad singula rectae
RS puncta P constituentur rectae normaliter applicatae PM valores fungfi@xgrimentes ... Singulae ergo
applicatarum extremitates M repraesentabunt lineam gquampiam, sive rectam, sive curvam; quae igitur hoc r
pery functionem determinabitur. Quare, qualibet ipsiufunctio, hoc modo ad Geometriam translata, certam
determinabit lineam, sive rectam sive curvam, cuius natura a functyopendebit.§.7. Hoc autem modo linea
curva, quae ex functiongresultat, perfecte cognoscitur, quoniam omnia eius puncta ex fungtiderminantur
... Quomodocunque autem linea curva fuerit comparata, ex eius singulis punctis rectae normales ad rectam R:
possunt, sicque obtinentur intervalla AP, quae valores variaddiibent, et longitudines applicaturam PM, quae
valores functionig/ repraesentant. Hinc nullum curvae extabit punctum, quod non hac ratione per funcjionen
definiatur.” [14, Sections 5-7]

164[T]he classical definition of function included in almost every current treatise on mathematical analy:
is usually attributed either to Dirichlet or to Lobatchevsky (1837 and 1834, respectively). However, historica
speaking, this general opinion is inaccurate because the general concept of a function as an arbitrary rel
between pairs of elements, each taken from its own set, was formulated much earlier, in the middle of the
century” [39, 38].
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Thus the definitions of the 1755 preface are different from those that Euler gave elsewl
in a formal or analytical manner (in [14], for variables and functions, and in Chapters I, |
and V of the first part ofnstitutiones calculi differentialis—i.e., in the treatise in the strict
sense of the word—for infinitesimals and differential ratios). In the 1755 preface, Eu
initially defined a variable simply as a continually increasing or decreasing qualnkity.
then illustrated this notion with a nonanalytical example (the trajectory of a bullet) whi
should not have beenincluded in the treatise in a strict sense, since it dealt with pure ana
Euler considered four quantities (the amount of gunpowder, the angle of fire, the range,
the time) and noted that each of them could be conceived as a variable or constant acco
to circumstances and that the variation of any of these quantities produces variations ir
others. For instance, if the amount of gunpowder was fixed and one changed the ang
fire, then the range and time of the trajectory also changed. One could interpret the re
and time as two variable quantities dependpeth@entes) on the angle of fire. It is precisely
a dependence of this kind that characterizes a function: “Quantities that depend on othe
this way (whereby, when the latter are changed, the former are changed as well) are ref
to as functions of the latter. This definition is extremely broad and covers all ways in whi
one quantity can be determined by others. If, therefo@denotes a variable quantity, then
all quantities which depend uponin any way or are determined by it are called function:s
of x.”18

By this definition, Euler was simply explaining that there was a mathematical term |
denoting the idea of dependence between empirical quantities. The intuitive meaning o
word “function” (in my terminology, the functional relation) was sufficient for the scop
of the preface of [17] (but not for analytical investigation). However, when mechanic
phenomena and geometric problems needed to be converted into analytical terms, tt
tuitive relationships between empirical or geometrical quantities had to be translated
symbols and conceived of as formulas. It is more worthwhile noting the similarity betwe:
on the one hand, the 1755 definition and Section 77 of Chapter V of [14], and, on the of
hand, the 1748 definition and Section 78 of [14]. In conclusion, the 1755 definition can
interpreted as marking the emergence of a new notion of function only if one extrapolz
it from its context.

5. CONDITIONS FOR THE REPRESENTABILITY OF FUNCTIONAL
RELATIONS AS FUNCTIONS

Atthisjuncture, itis necessary to answer the following questions: (Q1) Given a functiol
relationR, what were the conditions that made it a function according to Euler? Converse
(Q2) Given certain signs (such as sin2¥), what was it that made them functions?

In general, one can answer (Q1) by stating that a functional rel&iwas considered a
function if one was able to associate with it an algorithm consisting of symbigisi) and

174[E]tsi enim omnis quantitas sua natura in infinitum augeri et diminui potest; tamen dum calculus ad cer
guoddam institutum dirigitur, aliae quantitates costanter eandem magnitudinem retinere concipiuntur, aliae
per omnes gradus auctionis ac diminutionis variari: ad quam distinctionem notandam illae quantitates coste
hae vero variabiles vocari solent” [17, 3].

18«Quae autem quantitates hoc modo ab aliis pendent, ut his mutatis etiam ipsae mutationes subeant, eae
functiones appellari solent; quae denominatio latissime patet, atque omnes modos, quibus una quantitas pe
determinari potest, in se complectitur. Siigikilenotet quantitatem variabilem, omnes quantitates, quae utcunq
abx pendent seu per eam determinatur, eius functiones vocantur” [17, 4].
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rules of calculationgraecepti). No function was given without a special calculus concernin
it. Conversely, the answer to the second question is that a string of signs, syntactically cor
as regards the rules of elementary algebra and calculus, which denoted numbers, cor
guantities, variable quantities, operations, was conceived as a function only if it represel
a functional relation at least for an interval of values of the variable.

In order to make these points clear, let us observe that trigonometric functions, inten
as formulas involving letters and numbers, were introduced into calculus about 1740 (
[30, 312]). In [14], Euler constructed the analytical functionssiand cosx by assum-
ing as known their geometric meanings as functional relations between lines in a cir
and their properties such as sinf y) = sinx cosy + cosx siny and sirf x + co$ x = 1.
These functional relations were conceived as functions when a special calculus (i.€
group of rules that enabled the signs sin and cos to be both algebraically and differenti
manipulated) was associated with them. In [16], Euler wrote:

The different kinds of quantities, which Analysis deals with, generate different types of calculus, where
rules have to be adapted to any kind of quantities. Thus one teaches the special algorithm of both fractions
and irrational quantities in elementary Analysis. The same use occurs in higher Analysis. There, since
logarithmic and exponential quantities, which form a new kind of transcendental quantities, enter into
computations, one usually teaches a special type of algorithm concerning both symbols and rules. It was
termedexponential calculuby the inventor Joh. Bernoulli and also includes the theory of logarithms
and their differentiation and integration. In addition to the logarithmic and exponential quantities there
occurs in analysis a very important type of transcendental quantity, namely the sine, cosine, and tangent
of angles, whose use is certainly the most frequent. Therefore this type rightly merits, or rather demands,
that a special calculus be given, whose invention in so far as the special signs and rules are comprised,
the celebrated author of this dissertation [Euler], is able rightly to claim all for himself, and of which he
gave examples in hisitroduction to AnalysigndInstitutions of Differential Calculu$?

The calculus of the functiorfi (x) implied a knowledge off (x) as an analytical expres-
sion and functional relation. One had to possess algorithmic rules related to the analy
expressionf (x), such as the differentiation rule; but it was also necessary to be able to ¢
culate the quantityf (x) corresponding to a given value of quantktyfor instance, by mean
of a table of values), at least whernvaried in a certain interval. Only if these conditions
occurred was a symbol associated with a given functional relation accepted as a féfhctic

19Diversa genera quantitatum, circa quas Analysis versatur, diversas etiam species calculi gignunt, in
praecepta ad quodcunque quantitatum genus accommodari debent. Ita in Analysi elementari peculiaris tr
algorithmus tam pro fractionibus quam irrationalibus quantitatibus tractandis. Idem usu venitin Analysi sublimi
ubi cum logarithmi et quantitates exponentiales, quibus novum quantitatum generareveratranscendens consti
in computum ingrediuntur, peculiaris species algorithmi tam signi quam praeceptis distincta tradi solet, qua
inventore Joh. Bemoullicalculus exponentialisst vocata, siquidem ibi quoque doctrina de logarithmis eorumque
differentiatione et integratione tractatur. Praeter logarithmos et quantitates exponentiales aliud in Analysi oc
amplissimum genus quantitatum transcendentium, angulorum scilicet eorumque sinuum, cosinuum et tanger
cuius usus omnino est frequentissimus. Pari igitur iure hoc genus meretur ac potius postulat, ut ei pecul
calculus tribuatur, cuis inventionem, quatenus quibus peculiaribus signis et praeceptis continetur, Cel. AL
huius dissertatione omni iure sibi vindicare potest, cuius insignia specimina in Introductione sua in analysin ¢
Institutionibus calculi differentialis dedit” [16, 542—-543].

20These are precisely the conditions that allowed the object “function” to be accepted as the solution |
problem. Generally speaking, in order to solve a problem it is necessary to exhibit a known object. In analysis
object was considered as known if it had an analytical expression on which one could operate and if one c
at least partially calculate its values. Functional relations by themselves are not acceptable as the solutio
problems, because a functional relation is not generally easy either to calculate or to handle.
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Not all functional relations were therefore viewed as functions and the number of functic
was fixed at a given moment, even if, in principle, it could be increased. When Euler wr
“any function,” he referred precisely tone of the known functions or a composition of
known functions. This poses a new question: What were the functional relations that v
effectively recognized as functions?

In order to answer this question, let us consider the classification of functions in [.
19]. Here, Euler subdivided all operations into two classes, algebraic and transceftlen
The functions composed solely of algebraic operations on variables were termed a

braic (for instancer +z, 4z7, and 2+22-¢42-2) while the others were referred to
as transcendent&. This classification gives rise to various problems. The first problet
concerns algebraic operations, which indeed comprised not only the six elementary
erations (addition, subtraction, multiplication, division, raising to a power, extraction
a root) but also theesolutio aequationum, namely the solution to algebraic equatior
Euler did not explain why he introduced thesolutio aequationum; however, in the first
chapter of [1748], we find sentences such as: “[A]lgebraic functions can often not be
hibited explicitly; a function ofz of this type isZ if it is defined by an equation such
asZ®=azzZ—bz7Z?+cZ — 1. Indeed, although this equation cannot be solved,
is known thatZ is equal to an expression composed of the variatded constants and,
therefore Z is a certain function o2

Euler hypothesized that, given an algebraic equdifn y) =0, y was always express-
ible as a function ok. | think that this hypothetical function served to justify the use o
algebraic equationB(x, y) =0 as (implicit) functions in analysis even when one was nc
able to transform equations into explicit functions.

Other problems concern transcendental functions. According to Euler, some trans
dental functions (logarithmic, exponential, and trigonometric functions) had a status sim
to algebraic ones, as they could be manipulated as easily as the algebraic quantities: “e
[logarithmic and circular functions] are transcendental, now they are so common in anal
that they can be treated in the same easy way as algebraic quanfitiggially, this class
of peculiar transcendental functions consisted solely of the exponential and logarith
functions. Thus in [11, 3], Euler distinguished these functions from transcendental o
that were connected with the quadrature of curves. In [14], when he enumerated trans
dental functions, Euler still did not explicitly mention the trigpnometric ones; however, |

214[O]perationes sunt additio et subtractio, multiplicatio et divisio, evectio ad potestates et radicum extrac
quo etiam resolutio aequationum est referenda. Praeter has operationes, quae algebricae vocari solent,
complures aliae transcendentes, ut exponentiales, logarithmicae, atque innumerabiles aliae, quas Calculus int
suppeditat” [14, 19].

22 some doubts concerned the functions of the kifidc being an irrational number: somebody, Euler said,
preferred to term it “interscendentes” [14, 1:20].

234[F]unctiones algebraicae saepenumero ne quidem explicite exhiberi possunt, cuiusmodi functinégsius
Z, si definiatur per huiusmodi aequationem

Z5=azzZ - bt7?+cfz -1

Quanguam enim haec aequatio resolvi nequit, tamen codstsquari expressioni cuipiam ex variahiliet
constantibus compositae ac propterea ifeinctionem guandam ipsiu [14, 1:19-20].

24logarithmi et arcus circulares] etiamsi transcendentes, nunc quidem in Analysin ita sunt receptae, ut al
facile tractari quaent ac ipsae quantitates algebraicae” [21, 522].
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provided a broad treatment of them in this text (cf. [31]). After [14], the set of elementa
(i.e., algebraic, exponential, logarithmic, and trigonometric) functions, characterized
simple rules and procedures, was established and played a fundamental role in analys
Are there other functions in Euler’s writings? The answer is complex. Some scholars (
[24, 40; 25, 322; 35, 200; 36, 251]) emphasized that the set of commonly accepted funct
was only constituted by elementary functions and their composition in the 18th centur
substantially agree even though, at first glance, it would seem that Euler took many of
transcendental functions into consideration. For instandastitutiones calculi integralis,
we find many transcendental functions expressed by an integral, for instance the logaritt
mtegralfZ 4z or the functions originating as elliptic integrals. Ilmstitutiones calculi dif-
ferentialis, he investigated inexplicable functiéhmcluding the gamma functiotf. Even
though there were partial successes, the result of the investigation of new transcends
functions was never really satisfactory and Euler did not put these functions and elemen
ones on the same pladéThus, starting from the middle of the 18th century, Euler ofter
called two types of objects “functions”: the first type consisted of elementary functions; t
second type consisted of other transcendental functions. He considered the objects ©
first type as functions in a strict sense of the term, while he did not consider the object:
the second type as true functions because their knowledge was incomplete. Indeed, &
saw at the beginning of this section, it was not sufficient that one associated an analy!
expression, such as an integral, and a functional relation to obtain a function. Accord
to Euler, one could not invent a new functiér(x) merely by offering a definition, such
as OZ Idzz or the function interpolating!. A function was an entirely known object to such
a degree that it could be accepted as the final solution to a problem. Tables of values
it and a special calculus concerning it were necessary so that one could determine the
merical value off(x) and manipulate it directly (as occurred for siror cosx) and not
indirectly, by resorting to the general properties of integrals or series. Nonelementary tr
scendental functions either partially or completely lacked the simple rules of calculus t
governed elementary transcendental functions and, therefore, differed from the latter. E
realized that new functions were of essential importance in the development of anal
and believed that they could be accepted as true functions when our knowledge of tl
was improved. In Euler’s writings, nonelementary transcendental functions desfacto,
objects to be investigated and made known, rather effectively given functions. For instar
in Institutiones calculi integralisthe first nonelementary transcendental function we find i
preciselyfoZ G—ZZ (Euler used an indefinite integral), but Euler observed: “These integratio

25 Euler termed inexplicable those functions “quae neque espressionibus determinatis, neque per aequati
radices explicari possunt; ita ut non solum non sit algebrice, sed etiam plerumque incertum sit, ad quod g
trascendentium pertineat. Huiusmodi functio inexplicabilis estl¥2+1/3+ - - - + 1/x, quae utique ad pen-
det, at nisix sit numerus integer nullo modo explicari potest. Simili modo haec expres&io3L4- .. .. X, erit
functio inexplicabilis ipsius, quoniam six sit numerus quicunque eius valor non solum non algebricae, sed r
quidem per ullum certum quantitatum trascendentium genus exprimi potest” [17, Sect. 367]. Euler effectiv
dealt with the functions interpolating the suBx) = Y x_; a, and the product®(x) = [[A_; an-

26 Euler considered them difficult to study since they lacked any closed expression; however, he succeed
finding various infinite expressmns For instance, he expreB¢e)i= [[1_; a, if X was not an integer, by the

infinite productP(x) =aj [To21 a““a” [17, 2: Sect. 382].
27 For instance, see the above quotat|on from [16] or [19, 1:13-14], where Euler argued that logarithmic
trigonometric functions (differently from other transcendental functions) were comparable to algebraic functic



118 GIOVANNI FERRARO HMAT 27

[of the functions%, n=2,3,4,..]depend on the formul %dx. Putx™ =z, hence

XxM1dx = (1/m) dgz and Igx = (1/m) Ig z; this formula is reduced to the very simple form
Igl—zz. If the integral of this kind could be assigned, it would be of a very wide use in Ane

ysis ... It therefore seems that this formw:@fz furnishes a peculiar type of transcendenta

function, which however merits more careful investigatidhtlowever, for the time, “the
nature of this function is not known enougi{.”

It was only in the last years of his life that Euler briefly mentioned the possibility th
certain objects could actually be accepted as functions. In a short note, published in 1
Euler[21, 522-523] observed that quantities concerning the rectification of conics had k
analyzed to such a degree that if a problem was reduced to these quantities, which
included in certain integral formulas of the type

f +gx2
f oo

then it could be regarded as quite sol#édhis reference, however, was isolated and the
use of elliptic integrals as actual functions remained a mere suggestion without prac
consequences in Euler’'s work.

There is another very important aspect of the representability of a functional relatior
a function to which | referred several times above. A functional relation could be expres
by means of an analytical expression if and only if it was a relation beteyeentities. This
meant that, when a functional relation was turned into an analytical exprefssiprbothx
and f (x) were conceived of as abstract quantities or variables; in Euler’s words: “A functi
of a variable quantity is also a variabf&.Of course, if functions are variables, then they
are universal or abstract quantifiégnd enjoyed all the properties of variables. This ha
various important consequences in Euler’s calculus. First, since variables necessarily va
a formula expressed a function if it transformed variable quantities into another varia
guantity: for exampley =a (with a constant) is not a function. Second, since variable
could assume every value, in principle, functions carfieshto C, to use an anachronism
(cf. [35, 432]). Third, since a variable was a universal quantity, there might exist exceptio
values at which a theorem involving functions failed. Fourth, since variables varied i
continuous way, functions were intrinsically continudds.

28“Hae ... integrationes pendentaformy]ég—;ldxquae positax™ = zobx™1dx = (1/m)dzetlgx = (1/m)
Ig zreducitur hanc simplicissimam formaﬁm@—zz cuius integrale si assignare possit, amplissimum usus in Analys

esset allaturum ... Videtur ergo haec formJLliI%—ZZ singularem speciem functionum transcendentium suppeditare
guae utique accuratiorem evolutionem meretur” [19, 1:122].

29“natura huis functionis transcendentis parum cognoscitur” [19, 128].

30“[Q]Juantitates, quae rectificationem sectionum conicarum involvunt, a Geometris iam ita sunt explorata
problemata, quae ad eas fuerint perducta, pro perfecte solutis haberi soleant. Continentur autem istae quatr

transcendendentes in huiusmodi formulis integrabjlo, / {)IE:: [21, 522].

31“Functio ergo quantitatis variabilis ipsa erit quantitas variabilis” [14, 1:18]. In some cases, Euler direc
defined a function as a quantity [17; 18]. The emphasis on quantity corresponded to applied contexts.

321n [35; 36] Panza placed particular emphasis upon this aspect and characterized 18th-century functio
forms expressing quantities or quantities expressed by forms.

33 shall return to different meanings of this term in Section 7. Here | intuitively refer to “continuity” as |
variation without jumps.
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In order to clarify the first three points, | observe that the particularization of a variab
was problematic in Euler's conception. Today the symbol of a variahtea mere sign
denoting one of the elemerdsb, . .. of the setS, on which f (x) is defined; the properties
of x, as a generic element & are the same properties that every elemerg pbssesses
for the simple reason that it belongs $ According to Euler, a variable was instead a
universal object and a universal object was always different from its particular occurrenc
each of which was accidental and transient. A variable did not consist of the enumeral
of its values but substantially differed from them. When a given value was attributed
an abstract quantity, one descended from the general to the particular; the variable lo:
essential character of indeterminacy and its nature was altered. Consequently, a functio
such a variable, must vary (see [27, 47]): it could not assume the same value and, there
y = a (a constant) was not conceived as a function. Euler stated: “Sometimes even me
apparent functions occur, suchzs1?, @8—22, which nevertheless maintain the same value
however one varies the variable quantity. Although they give the misleading appearanc
functions, they are actually constant quantiti&s.”

Besides, given a functiop= y(x), since a variable quantity included all numbers (Eulel
emphasized in [14, 1:18]: “even zero and imaginary numbers”), katimnd y assumed
complex values. He indeed stated:

“Since every determinate value can indeed take the place of the variable quantity, a function assumes
innumerable values and there is no determinate value which the function can not assume, as a variable
quantity also involves imaginary values. Thus, the functjd® — z2) can not assume a value greatest

than 3 if we replace by a real number, however, if we attribute imaginary values guch as §/—1,

then no determinate value is given that can not be derived from the forf(@la z2).”3°

It should also be noted that a constant quantis not a specific casef a variable
guantity, as the latter was an abstract, general quantity. A variable indeed enjoyed its |
properties, which might be false for certain determinate values. What is legitimate
the variable could not be legitimate for all its occasional values. Consequently, given
property P of x, there might exist exceptional values at which the property.failgroof
involving the variables, vy, ... was valid and rigorous as long as the variabley, . ..
remained indeterminate; but this was no longer the case if one gave a determinate vall
X, Y, ... Thus, if one expandedl(x) into a power seried " ; a,x" and made no assump-
tions concerning the individual values of variables, then the equalfy; a,x" = f(x)
was considered globally valid even if there might exist certain occasional values at wh
the general relatiofy_-; a,x" = f(x) did not furnish a numerical equality: these points
were “not significant” [25, 331° (On the treatment of exceptional value in Euler, see
Engelsman [10, 10-13]).

34+gj 7 ejusmodi fuerit Functio multiformis ipsiusut 2°, 12, 83—22 perpetuo nonnisi unicum valorem exhibeat
realem; tumZ Functionem uniformem ipsius mentientur, ac plerumgue loco Functionis uniformis usurpari
poterit” [14, 1:18-19].

35«“Cum enim loco quantitatis variabilis omnes valores determinatos substituere liceat, hinc functio innum
abiles valores determinatos induet; neque ullus valor determinatus excipietur, quem functio induere nequeat
quantitas variabilis quoque valores immaginarios involvat. Sic, etsi haec fuyit@ie- z2 numeris realibus loco
z substituendis nunquam valorem ternario maiorem recipere potest, tamerapsies imaginarios tribuendo, ut
5./—1, nullus assignari poterit valor determinatus, quin ex formi{@— z2) elici queat” [14, 18].

36 Consequently it is very difficult to undermine Eulerian calculus by means of counterexamples derived fr
assigning a particular value to a variable, for the simple reason that an Eulerian theorem was a theorem
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In order to clarify the fourth point, consider Euler's construction of the exponenti
functionin [14, 1:103-105]. At a first sight, it would seem that Euler defined the exponent
functiona” by associating a real value with the sympet a* for each real numbez Indeed,
he initially considered the case in whiglis a natural number and then whers a negative
integer or zero. He, later, observed thatziis a fraction, such ag=5/2, the quantity
a? assumes a unique positive real valaé,{a), which lies betweem? anda3. A similar
situation occurs it is irrational: for examplé? the quantityaﬁ has a determined values
lying betweena? anda®. But, in the absence of a theory of real numb&rajhat is the
actual sense of this construction?

Euler did not really defina? but sought analytically to characterize a quangyitsepre-
sented by the symbaF, by assuming the existence of this quanttfhe use of the symbol
aZ immediately implies that thguantity yhas to be subjected to certain conditions, i.e.,

(a) it must assume the values ,a=3,a2,a*,a% at, a% a3, ...;

(b) it must be governed by the law of powers™ = a*- a*.

This is sufficient for characterizing the exponential function analytically. Indeed, sin
aZ must be a quantity, it varies continually (flows, in Newton’s terms) and Euler can stz
the relation

(c) a® =1+ v, wherew andy are infinitesimaf®
without any special explanation. Thaswas entirely characterized by (a), (b), and (c) anc
this allowed Euler to develop the calculus of exponential functions.

The arithmetical functional relatioal, forn= ..., -3, -2,-1,0,1,2,3,...,isonly
the starting point for the construction gf=a*. What was important for Euler was the
relation between the continuous quantitfedz. Inmodern terms, we could say that he was
searching for a continuous functidr{z) such thatf (x 4+ z) = f(x) - f(2) and f (1) =a; but
it is better to think of the construction af as a Wallis interpolation [22], i.e., as the solution
to the problem: find guantity y= a?thatinterpolates. ., a3, a2, a %, a° a!, a% a3, ....

In the final analysis, the construction of the exponential function refers to a curved line t

concerned abstract quantities (variables) and not their values. Only after Cauchy did this point of view change
a theorem become falsified by a single counterexample derived from assigning a particular value to a variab

37“Eodem modo res se habet, si exponengalores irrationales accipiat, quibus casibus cum difficile sit
numerum valorum involutorum concipere, unicus tantum realis consideratar’ Serit valor determinatus intra
limites a2 eta® comprehensus.” Euler [14, 1:104]

38 Only integers and fractions were indeed numbers in the strict sense of the term in the 18th century, w
irrational numbers were the ratios of two given quantities of the same kind. Mathematicians were natur
accustomed to working with the decimal representation of real numbers or their approximating sequences
e.g., [14, 2: Section 510]). However, a sequence could approximate an irrational number but did not defir
The extension of the term “number” to incommensurable ratios was considered as incorrect because “nun
presupposes an exact and precise denotation. Nevertheless, an incommensurable ratio was similar to a r
and could therefore be viewed as a number because (1) it could be approached by numbers as closely as d
(2) it had many properties that were common to numbers; (3) even though it could not be represented rigor
by means of arithmetic, it could at least be represented geometrically ¢&g1 could be represented as the
diagonal and the side of a square) (for instance, see [2, 188]).

39\When Eulerintroduced the functi@d, he merely stated: “Sitigitur proposita huismodi quantitas exponentiali
aZ, quae est potestas quantitatis constam@gponentem habens variabileth[14, 103].

40Quia esta® = 1, atque crescente exponente ipsius a simul valor potestatis augetur, si quidem a est nun
unitate major; sequitur si esponens infinite parum cyphram excedat, potestatem ipsam quoque infinite p
unitatem esse superaturam.&iumerus infinite parvus, seu fractio tam exigua, ut tantum non nihilo sit aequali
w erita® =1+ ¢, existentep quoque numero infinite parvo.” [14, 1:122].
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passes through the point,@") and this guaranteed the existence of the function. In orde
to satisfy this geometric intuition, Euler excluded valuea @fhich made jumps ia? [14,
1:104-105].

We thus arrive at a crucial aspect of Euler’s analysis: the intuitive image of a functi
was the segment line or piece of a curved line described by means of other lines. Analy!
symbols hide ageometricperception of relationships. By this, | do not mean that Eule
never referred to relations between objects other than quantities but that he analytic
represented only relations between quantities. Functions connected quantities rather
numbers, which were present in analysis only as particular determinations of quanti
(and, as we saw, did not have an independent existence, except for the two more eleme
types of numbers). Although a table of the values of a given function was one of the to
which mathematicians had to possess in order to know this function, a table of values
not the image of a function. To use the language of computer science, Eulerian analysis
analogical rather than digital. In the realm of analysis only the continuous, irreducible
the numerical, actually existed. Not only did the numerical fail to precede the continuc
logically but on the contrary the discrete could be derived from the continuous and
regarded as an interruption of the continuous.

6. LOCAL AND GLOBAL VIEWPOINTS

Today we have #ocal conception of differential calculus. A rule concerning a function
f(x) is derived in the neighborhood of a number under conditions of continuity, differe
tiability, etc., and is then considered valid for the points of the domaif(gj which are
subject to the same conditions. The Eulerian conception was different. It was based u
the principle of the generality of algebra, which was rooted in the notion of variables
universal: anything involving the universal object varialvies universally valicgand could
not be limited to a particular range of its values. Euler expressed this principle as follow

“For, as this calculus concerns variable quantities, that is quantities considered in general, if it were
not generally true thad(log x) = dx/x, whatever value we give to, either positive, negative, or even
imaginary, we would never be able to make use of this rule, the truth of the differential calculus being
founded on the generality of the rules it contaiffs.”

4199, sifita=0, ingens saltus in valoribus ipsia&deprehenditur, quamdiu enim fuezihumerus affirmativus
seu major nihilo, erit perpetua? = 0: siz=0 erita® = 1; sin autem feuriz numerus negativus, tuaf obtinebit
valorem infinite magnum. Si enim= —3; erita?=0"3=1/0°=1/0, idoque infinitum. Multo majores autem
saltus occurrent, si quantitas constahtabeant valorem negativum, put&; tum enim ponendis loconumeris
integris valores ipsiua” alternatim erunt affirmativi et negativi, ut ex hac Serie intelligitur

—4. ,—3. ,—2. ,—1. ;0.

a*a3a%ala%ata%adatec
1 1 1 1
16 *§,+Z,*§,+1,72,+4,78,+16,ec.

Praeterea vero si Exponemtialores tribuantur fracti, Potesta$= (—2)? mox reales mox imaginarios induet val-
ores: erit enimal/2 = /=2 imaginarium, at erial/3= ¥—2 = — ¥2 reale: utrum autem, si exponentiibuantur
valores irrationales, Potesta% exhibeat quantitates reales an imaginarias, ne quidem definiri licet.

100. Hic igitur incommodis numerorum negativorum loco a substituendorum commemoratis, statuamus a
numerum affermativum, et unitate quidem majorem, quia huc quoque illi casus, quibus a est numerus afferma
unitate minor, facile reducuntur.”

42«Car, comme ce calcul roule sur des quantités variables, c’est-a-dire sur des quantités considérées en gé
s'il n’etoit pas vrai généralment qu'il t@t.Ix = dx/x, quelque quantité qu'on donneasoit positive ou negative,
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A function, such as log, was viewed as a whole and its behavior was a global matte
which could not be reduced to the sum of the behavior of the points of its domain:
could not have a property? here, and a different property there. This does not mee
that Euler merely considered functions that had the progdeiity every point: rather they
obeyed rules that were valid over an interval(or, more precisely, for certain values
that this variablex assumed moving with continuity) and hence were also globally vali
Thus, if one proved that a functioh(x) had the propertyP in the intervally, then one
could extend this property beyond the intervg) where it had initially been derived.
This conception, which can be calledganeralized local conception, derived from the
double role of functions, as an analytical expression and a relation. A functional relat
between quantities had a “natural” domdinfor which its properties were valid. When
this functional relation was analytically expressed and was conceived of as an analy
expression, it was not restricted to its original domBinthe results concerning a formula
were derived substantially by using certain local properties of the functional relation, o
then was it conceived globally, without considering any constraints. For instance, gi\
the analytical expression logconstructed from a relation valid for positive values of
quantity X, the principle of generality of algebra allowed wdo be considered whex
is negative and even imaginary. Euler did not definexdgr x as negative or complex
numbers but merely assumed in an unproblematic way that the properties of the analy
expression log (such as the differentiation rule) lasted beyond the original interval ¢
definition. Of course, if what was valid in an interval was generally valid, not only did
function possess the same properties everywhere but it also maintained the same anal
expression everywhere since the analytical expression embodied all its properties. Ther:
one function necessarily consisted of one single forrefld25; 36]) and a relation such
as

¢ 2x if x is a positive quantity
60 = {x2 if X is a nonpositive quantity
was never considered as a function.

Such an approach did not enable Euler to appreciate the difference between comn
and real variables and, therefore, between complex and real analysis. His attention
focused on functions of real variables. For instance, in [14, 1:24], after dividing functio
into many-valued and single-valued, Euler stated that an equatienP Z"~1 + QZ"2 —
RZ"3 4+ SZ"* —etc.=0 (with P, Q, R, S, etc. single-valued functions aj is a many-
valued functionZ of z but observed that iZ assumes one real value, then it behaves as
single-valued function of and generally can be used as a single-valued funéfidius
/P was a many-valued function because it assumed two real values, wkéPeaad to
be considered a single-valued function because it assumed one real value and two cor
values. Real functions were really of interest; complex functions were not an autonom

ou méme imaginaire, on ne pourrait jamais se servir de cette régle, la verité du calcul differential étant fondé
la généralité des régles qu'il renferme” [15, 143-144].

43 According to Fraser [25, 329]: “The existence of an equation among variables implies the global validity
the relation in question.”

44415, Si Z ejusmodi fuerit Functio multiformis ipsiusut perpetuo nonnisi unicum valorem exhibeat realem;
tum Z Functionem uniformem ipsiusmentientur, ac plerumque loco functionis uniformis usurpari poterit.”



HMAT 27 EULERIAN FUNCTIONS 123

object of study, but were useful tools for the theory of real functions and their use seen
to be restricted to exceptional circumstantes.

Finally, itis also worthwhile noting that the generality of algebra was restricted to analys
where functions were studied withoatpriori restrictions concerning variables. In arith-
metic, geometry, and mechanics, functions and variables have natural ranges and ther
mathematicians were obliged to take into consideration the restrictions which the natur
the specific problem under examination imposed. When the results derived from the us
generality were applied to other sciences, they had to be subjected to appropriate reil
pretations which adapted them to concrete circumstances. This approach is an aspect «
mathematical method for studying natural science in the 18th century, which Dhombres
referred to as the “functional method.” By solving a problem mathematically, appropriz
symbols replaced concrete quantities and their relations come to be conceived as fol
las and equations. The solutions to these equations were to be interpreted in relatio
the specific problem and by eliminating anything that was meaningless for this partict
problem. The most systematic example of this conception is Euler’s series theory, wh
the convergence was studiadbosteriorias a condition for applicability of series theory
(cf. [23; 35]). Results were obtained without any restriction concerning the convergence
series; only at the moment of application was the numerical meaning of series (and there
convergence) of importance.

7. THE LAW OF CONTINUITY

Until now, | have often referred to continuity (e.g., when referring to quantities th:
increases continuously) in a sense close to the modern local point of view. According
Euler, continuity was, however, a global matter and was viewed as equivalent to uniquen
This conception was grounded in the idea that an object was continuous if it was an unbrc
object, i.e., if it was not broken into two objects and was therefaeobject. (On the origin
of this conception, see [34].) | shall call Euler’s concept of continuity G-continuity for shor
With respect to this global viewnefunction had to be G-continuous.

If one applies such a concept to a curve, a continuous, unbroken curve is character
by means of theonnectednessr continuity of its run. Thus global and local viewpoints
seem be connected in a simple manner provided we consider a curve as an empirical ol
immediately capable of being grasped by our intuition and not represented analytice
The global point of view (uniqueness, absence of break) can then be regarded locally a:
absence of jumps in the course of the curve or as the assumption of any intermediate
between two given states or gradual change (these notions were considered equivale
the time). | shall call this concept of continuity L-continuity for short.

The intuitive idea of a curved line (such as a mark made by a pencil) implies L-continuif
one can imagine that a curve consists of more than one branch, each of them L-continu
but the idea of a completely discontinuous curve does not belong to geometric intuiti
Since a function was an abstract representation of a curved line, it was necessaril
continuous. A function was L-continuous or was not a function. According to Euler, ea
function y(x) possessed the following propertty = y(x + @) — y(X) is infinitesimal if
w is infinitesimal*® Unlike Cauchy’s approach [6], this propemyas not the definition of

45 See also the last example of Section 7.
46 He stated “augmentum illud, quo quantitatem variabilemcrescere sumpsimus, statuemus infinite parvum
... manifestum est, incrementum seu differentiam functignisioque fore infinite parvam” [17, 82].
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continuitybut only a trivial consequence of the application of the idea of L-continuity t
formulas (see also footnote 10). Indeed, the problem of the definition of L-continuity ne»
arose during the 18th century.

It should be stressed that mathematicians could imagine an L-discontinuous functic
relation (and Euler surely considered discrete functional relations, such as sequences
only if a functional relation was L-continuous at least over an interval was it consider
acceptable in order to construct a function. Of course, the generalized local concep
allowed mathematicians to consider L-continuity as a global property of the analyti
expression. L-continuity was, in a sense, incorporated into the analytical expression
has been seen in the case of the exponential function (see Section 5). Thus, in the se
volume of thelntroductio in analysin infinitorumin the chapter devoted to transcendenta
curves, Euler [14, 2: Section 51] examined the “equation” (significantly, this term, a
not “function,” was used by Eulery=(—1)* and refused to consider it as a function. He
referred toy = (—1)* as paradoxical because its graph is totally discontinuous: there :
pairs of points whose distance is smaller than any assignable quantity and, at the same
no segment of the straight lings=1 andy = —1 belongs to it (to the 20th century eyes, it
is composed of two everywhere dense sets of isolated points).

While the expression (—1)was paradoxical, the expression@ andx* were not con-
sidered problematic although they give rise to a similar case for negative valxe¥loé
difference between (—1)xﬁ, andx* is continuity over an intervak 2 andx* are func-
tions because they could be conceived of as (continuous) quantities in certain intervals (
as we saw, the properties of a function were determined in their entire range by an arbit
interval). Instead- 1)* was paradoxical as it could never be viewed as a (continuous) quc
tity, or, if preferred, it represented a continuous functional relation in no interval. Analy:s
dealt with those expressions that guaranteed regularfiyiori and avoided paradoxical
phenomena.

Furthermore, the image of quantity as a piece of a curved line implied further cons
erable regularities, such as the existence of tangents and of radius of curvature, anc
suggested not only that functions were intrinsically continuous but even that the existenc
differentials and higher-order differentials was intrinsically connected to their nature (s
for instance, [12, 109]). An undifferentiable function was a contradiction in terms.

Let us now return to G-continuity. | have already stated tia function was G-
continuous merely because it was one. For the same reaseaurved line andnefunc-
tional relation were G-continuous. However, if one regarded functions, functional relatio
and curves as different aspects of the same object, then G-continuity became probler
and the simple connection between the local and global points of view began to crt
ble. For instance, the function=k/x is G-continuous since it is one, but its geometrica
counterpart, the hyperbola of the equatips:k/x, is broken into two pieces: it is then
very natural to ask whether the hyperbola is continuous, i.e., whether its two pieces f
a unique curve. Put in more general terimsy does one recognize that an object isDne
The most obvious answer is that an object is one if it retains its properties. Now, if \
study a curve analytically, its properties are included within its analytic expression. If \
accept this view, then it is entirely natural that the criterion of uniqueness must be app
to the analytical expression, as Euler did in classifying curves [14, 2: Section 8]. Indeec
stated that although some curves could be described mechanically, he aimed to study ¢
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insofar as they originated as functions because this method was the most general anc
suited to calculué’ According to Euler, from such an idea about curved lines, it immedi
ately follows that they should be divided into continuous and discontinuous or mixed.
curve was continuous if its nature was determined by only one function, and discontinu
or mixed if it was described piecewise by more than one function and, consequently, \
not formed according to a unique l&&Uniqueness did not apply to the course of a curve
which was seen as an outward manifestation, but to the function itself as a primary obj
The number of the branches of a curve was therefore of no importance.

Euler also subdivided curves into complex and noncomplex ones using a similar criteri
He noted that the equations of certain algebraic curves could be broken down into ratic
factors:

Such equations include not one but many continuous curves, each of which can be expressed by a
particular equation. They are connected with each other only because their equations are multiplied
mutually. Since their connection depends upon our discretion, such curved lines cannot be classified as
constituting a single continuous line. Such equations (referred to above as complex) do not give rise to
continuous curves, although they are composed of continuous lines. For this reason, we shall call these
curves complex?

The complex curves (like mixed ones) were discontinuous because their equation
characterized by arbitrariness; in other words, they are not determinexamyly one
analytical law. Their difference is that the complex curves were composed of more than
whole curve, whereas mixed curves were composed of pieces of more than on&curve

In [14], Euler only considered G-discontinuous curves. However, in [18], a paper wr
ten after the controversy with d’Alembert about the vibrating string (see [38]), he tried
extend the notion of discontinuity to functions. In his [1] d’Alembert described the mc
tion of a stretched elastic string by equations equivalent to a partial differential equat

47“*Quamgquam complures linae curvae per motum puncti continuum mechaniche describi possunt, quo p:
tota linea curva simul oculis offertur, tamen hanc linearum ex functionibus originem hic potissum contemplabin
tanquam magis analyticam latiusque patentem, atque ad calculum magis accommodatam. Quaelibet ergo f
ipsiusx suppeditabit lineam quandam, sive rectam sive curvam, unde vicissim linea curvas ad functiones revo
licebit. Cuiusque ergo lineae curvae natura exprimetur per ejusmodi functionemp§lids 2: Section 8].

48 “Ex hac linearum curvarum idea statim sequitur earum divisio in continuas et discontinuas seu mixtas. Li
scilicet curvacontinuaita est comparata, ut ejus natura per unam ipgidenctionem definitam exprimatur.
Quodsi autem linea curva ita sit comparata, ut variae ejus portiones BM, MD, DM, etc. per variasxipsiu:
functiones exprimantur; ita ut, postquam ex una functione portio BM fuerit definita, tum ex alia functione por
MD describatur; hujusmodi lineas curnvdiscontinuaseumixtasetirregularesappellamus: propterea quod non
secundum una legem constantem formatur, atque ex portionibus variarum curvarum continuarum componu
[14, 2: Section 9].

49 “Hujusmodi ... aequationes in factores resolubiles non unam sed plures curvas continuas in se complectt
guarum gaevis peculiari aequatione exprimi queant; et quae aliter inter se non sunt connexae; nisi quod e
aequationes in se mutuo sint multiplicatae. Qui cum sit nexus ab arbitrio nostro pendens, ejusmodi lineae ct
non unam continuam lineam constituere censeri possunt. Tales ergo aequationes, quas supra complexas voce
producent lineas curvas non continuas, attamen ex continuis compositas, quas propterea complexas vocat
[14, 2: Section 61].

50 0On the basis of these subdivisions the curve of the equatien/ﬁ is not continuous. Although it appears
to be a G-continuous curve since it derives from one two-valued function, it is in reality the complex cur
corresponding to the (implicit function) equatigh— x2 = 0. According to Euler, uniqueness did not refer to the
‘apparent’, complex form, but to the essential, irreducible form. In the light of this observation, Cauchy’s object
to Euler’s classification in [7] should also be considered.
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8%z/9x? =a%9%z/3t?. He solved this equation and fourzd= f(t + x) + F(t — x), for
a=1, f andF being two arbitrary functions. D’Alembert thought that the solution to th
problem had to be interpreted only by means of G-continuous functions, because calc
was grounded in functions derived framefunctional relation (see [38]). In contrast, Euler
tried to eliminate this restriction in geometric or mechanical applications but without pr
udicing the nature of calculus [14]. In the summanpeaf usu functionum discontinarum in
AnalysiEuler explained: “The solutions that Geometers gave to the problem of the vibrat
motion of strings include nothing but the assumption that the figure, which is given to
string at the beginning of the motion, is regular and can be represented by a certain equze
Instead they denied that the other case (if this figure is discontinuous or irregular) wa
relevance for analysis or that the motion that originated from this configuration might
reasonably defined®® He thought that similar problems involved the use of discontinuot
functions necessarity but merely added the new G-discontinuous functions to old cor
tinuous functions, without changing the concept of the latter. Euler obtained this result
a change in terminology and a peculiar interpretation of the constants resulting from
integration of partial differential equations.

In [14], the termfunctionalways denoted an analytical written expression (embodying
functional relation) and the worelirvehad an obvious geometrical meaning. Any function
could be represented geometrically by a curve; the converse was not true, since some c
were not analytically expressible. For this reason a function had to be continuous and ac
could be discontinuous. In [18], every curve was instead viewed as analytically express
by a functio?® and Euler denoted the analytical expression by the &goation, while
he indicated the functional relation by the termgve andfunction (the one was often
used in place of the other in the paper). In this way, Euler could introduce the notion
a discontinuous function: curves or functions were said to be discontinuous if they w
unions of more than one equatigh.

51“Qui problematis de motu cordarum vibratorio solutiones dederunt Geometrae, non nisi illum casum ¢
templati sunt, quo figura, cordae ab initio motus impressa, regularis et certa quadam aequatione comprehen:
supponitur; alterum vero casum, si haec figura fuerit discontinua sive irregularis, negarunt ad Analysin perti
aut motus inde secuturos posse ulla ratione definiri” [18, 7].

52«Quod autem de hoc problemate [Euler referred to a geometric problem that he studied by means of a p:
differential equation ifDe usu functionum discontinarum in Analysi] est ostensum, simul de omnibus aliis eiusd
generis valet, quorum scilicet solutio functiones binarum variabilium implicat, ex quo quaestio initio propos
de usu functionum discontinuarum in Analyseos ita est resoluta, ut in Analysi quidem communi, quae c
functiones unius variabilis tantum versatur, huiusmodi functionibus nullus locus sit concedendus, in sublimior
autem Analyseos partibus, ubi functiones binarum pluriumve variabilium tractantur, tales functiones ita neces
ad calculi essentiam pertinere sint censendae, ut nulla integratio pro absoluta et completa haberi queat, nisi
functio maxime indefinita, atque adeo etiam discontinua, in calculum introducatur” [18, 27].

53“[QJuomodocunque quantitas y per x determinatur, seu quaecunque fuerit functio y ipsius x, semper c
describi potest, cuis abscissae cuicunque x conveniat ea ipsa applicata ... vicissim proposita linea curva quaec
eius applicatae certas quasdam functiones abscissarum exibent” [18, 3].

541n [18, 4-5] Euler stated: “lam vero notissimum est, in Geometria sublimiori alias lineas curva considel
non solere, nisi quarum natura certa quadam relatione inter coordinatas, per quampiam aequationem ex
definiatur, ita ut omnia eius puncta per eandem aequationem tanquam legem determinentur. Quae lex curn
cipium continitatis in se complecti censeatur, quippe qua omnes curvae partes ita vinculo arctissimo inte
coharent, ut nulla in illis mutatio salvo continuitatis nexu locum invenire possit; hanc ob rem istae lineae cur
continuae appellantur, nihilgue interest, sive aequatio illarum naturam continens sit algebrica sive trascen
sive cognita sive etiamnun incognita, dummodo intelligamus dari quandam aequationem, qua natura huis
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Since the aim of [18] was the application and interpretation of certain results of t
calculus, Euler now emphasized the intuitive aspect of functional relation by the wc
“function” (as in the preface of [17]), and resorted to “equation” to denote the form:
aspect. Euler's conception did not, however, change substantially: the tension betweer
formal and intuitive aspects of functionality was not eliminated but produced a change
terminology [35, 259]. G-discontinuity did not regard the analytical expression, i.e., t
formal aspect of a function: it concerned the functional relation, i.e., the informal aspe
however it was termed. According to my terminology, only functional relations were C
discontinuous and could be thought of as arbitrary or as lacking a definite law of formati
(e.g., the relation between the Cartesian coordinates of a curve traced by a free strol
the hand). A formula was instead always associated with a definite law. For this reas
when he spoke of G-discontinuity, Euler was obliged to refer to curves and to use the te
functionas synonymous with the terourve.

After having defined discontinuous functions, Euler had to explain how these new fur
tions entered into calculus (he indeed agreed that calculus concerned single analy
expressions, i.e., continuous functions). He began with the two-leveled notion of a funct
and resorted to a special interpretation of the constants produced by integration. He inc
observed that these new functions, absolutely indefinite and dependent upon our discre
originated from the integration of a function of two variables, a new and little develope
field of the integral calculu®’ which “differs very much from the common integral calcu-
lus, where functions of a single variable only occur. It demands entirely special rules, e
if it also uses the devices of the first part [of calculs].”

In [19, 2:35-37], Euler explained that if one integrates a funckgr) of one variable
X, one obtaing” X(x) dx = F(x) + C, whereF (x) is a function such tha‘-{% = X(x) and
the constan€ is determined by the nature of the problem of which the integration gives tt
solution. In the same way, if one integrates a funcfdr, y) of the variablex andy with
respect tox, one obtaing Z(x, y) dx=F(x, y) + f(y), whereF(x, y) is a function such
thatw = Z(x, y) and f (y) is an arbitrary quantity dependent g’ The character of
the quantityf (y) is determined by the nature of the problem and could even be a quant
that is not expressible by a formula but can be thought of as the ordinate of a curve wh
abscissa iy (i.e., a G-discontinuous functional relation).

Thus, if one considers the wave equatida/dy? = a29%z/dx?, by a change of variable
t=x+ay,u=x—ay, one obtaing?z/atdu = 0. By integrating with respe¢t one has a

linearum curvarum exprimatur. ... Constituto continuitatis criterio sponte patet, quid sit functio discontinua, seul
continuitatis destituita: omnes enim linae curvae per nullam certam aequationem determinatae, cuiusmodi |
manus tractu delineari solent tales functiones discontinuas suppeditant, quandoquidem in iis valores applicat
nulla certa lege abscissis definire licet.”

55“yerum haud diu est, ex quo haec pars Analyseos coli est caepta, ita ut vix adhunc prima eius elementa
sint evoluta.” [18, 20].

56 “plurimum differt a calculo integrali communi, ubi non nisi functiones unius varibilis occurunt, et praecep
omnino singularia postulat, praeterquam quod in eo omnia quoque artificia prioris partis [namely, of calculu:
a function of one variable] sint in usum vocanda” [18, 20].

571n [18, 20], Euler formulated this idea as follows: “Quemadmodum [...] calculi integralis communis Vvis i
eo consistit, ut qualibet integratione nova quantitas constans arbitrio nostra permissa in calculum introducatu
in hac parte, circa functiones binarum occupata, singulis integrationibus, non solum nova quantitas constan:
adeo nova functio cuiuspiam variabilis prorsus indeterminata, in calculum invenitur, quae ita ab arbitrio no:
pendet, ut eius loco etiam functiones discontinuae assumi quaent.”
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functiondz/du =h(u), hencez= [ h(u)du+ f(t)=F(u) + f(t) and
z= f(x +ay)+ F(x —ay). (2)

According to Euler, the function§ andF could be discontinuous.

Since integration naturally contains an element of arbitrariness, Euler believed that
integral calculus of functions of more than one variable could directly provide a functior
relation, without the intermediate step of the formula. Of course, in order to give a se
to this interpretation of integration, it was necessary to explain what the differential ra
(or derivative, in modern terms) of a G-discontinuous function is. Euler merely used
geometric meaning of a function and stated thdt(it) represented a curve, thér(x) was
the slope of the tangent whereas, (i) was interpreted as an area, thg(x) was a curve (he
used precisely the symbél : x [19, 3:69]). This geometrical interpretation was problematic
since the manipulation of G-discontinuous functions required specific rules which wi
never formulated. In [19, 3:192-193], Euler was, however, obliged to admit that the 1
of an immediately geometrical notion in an analytical context gave rise to a remarka
deficiency. He indeed observed that if one applied (2) to the equﬁ-);éon aZ% =0, then
one obtained the complex solutiar= f (x + ayyv/—1) + F(x — ayy/—1). Euler passed to
an equation having a complex coefficient without any special hypothesis: as | had alre
noted in Section 7, he did not appreciate the difference between complex and real anal
An interpretation of this solution, which was obviously influenced by a weak knowled
of the conditions of differentiability of a function of a complex variable, is beyond th
scope of this paper. | limit myself to illustrating how Euler derived "real solutions” fron
z= f(x + ays/—1) + F(x — ays/—1) providedf andF were continuous.

He indeed observed that ffandF are continuous, then they can be reduced to the fori
P + Q+/—1. Hence it is easy, he said, to obtain solutions in the real form

z= %[f(x+ay\/—_l)+ f(x —ayv/—1)]
1
2J/-1

He probably realized that # + Q+/—1 satisfies°z/9y? + a29%z/dx%> =0, then

+ [F(x +ayv/—1) — F(x — ayv/—1)].%® (3)

P+ Q = Re[f (x + ayv/—1) + F(x — ayv/—1)]

+1Im[ (X + ayv/—1) + F(x — ayv/—1)]

= S+ TG+ F ) + @] + 51 (0) = T + F(@) — P

584 Q]uoties autem functiones et F sunt continuae, cuiuscunque demum fuerintindolis, semper earum valor
ad hanc forman® + Q+/—1 reduci possent, unde sequens forma ex illa facile deducenda semper valorem ree
exhibebit

1

1 1 1 i
z= Ef.(x+aydjl)+§f .(x—ayJTl)+2—HF.(x+ay«/f_l)72—\/__lF.(xfay«/f_l) [19,192].
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also does (here, | take = x + ays/—1 and denote the conjugate, real part, and imaginar
part of the complex numbes by w, Re(w), and Im(u), respectively).
Euler assumed that(w) = h(w) for every continuous functioh and therefore

P+ Q= 310+ 1)+ F(@) + Fu)l + 3= (0) = () + F(@) — F(u)

Since f andF are two generic continuous functions, the latter expression furnishes (3).
Euler justified the equalitii(w) = h(w) as follows. Puk = scosg anday = ssing; one
has

(x £ ayv/—1)" = s"(cosng % +/—1sinng)

and sinceh is a continuous functions, namely one composed of analytical (algebraic
elementary transcendental) operations, its values can be exhibited by means of the sin
cosine (every continuous function, in Euler’s sense, can be expanded in a power series
real coefficients).

If f andF are discontinuous, then they cannot be reduced to a real form: “In any cur
traced by a free stroke of the hand, what meaning will one give the ordinates correspon
to the abscissas

X+ayv—1 and x—ayv-1

according to the nature of imaginaries and their real sums [the real part of their sums
the difference which will also be real if it is divided by—1? Therefore we note this not
slight lack of calculus, for which one can make up in no way y&t.”

Despite this fact, Euler’s solution to the problem of the vibrating string was substantia
accepted in the 18th century. G-discontinuous functions were considered as tools wl
made up for a local insufficiency of calculus, just as imaginary quantities made up |
local insufficiencies of real quantities. Calculus remained a calculus of single analyti
expressions and G-discontinuous functions were never really considered. With hindsi
the controversy over the vibrating string posed the question of the lack of analytical tools
describing certain more complicated phenomena: it actually showed the restricted na
of 18th-century analysis and its overall inadequacy for more sophisticated investigati
rather than its local inadequacy. To avoid a “return to geometry” [29, 11] and to make
discontinuous functions actually analytical objects, it was necessary to restructure analy
but Euler did not realize this.

59«Quis autem in curva quacunque libero manus ductu descripta applicatas abscissis
Xx+ayv—1 et x—ayv—1

respondentes animo saltem imaginari ac summam earum realem assignare valuerit aut differentiam,/Guae pe
divisa etiam erit realis? Hic ergo haud exiguus defectus calculi cernitur, quem nullo adhuc modo supplere li
[19, 193].
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8. CONCLUSION

In this paper, | have tried to show that Euler’s analysis mainly concerned a two-leve
mathematical object that can be characterized as an analytical expression embody
functional relation between quantities. Euler usually termed this object “function”; in tf
context of the solution of partial differential equations, he instead called it “continuous fur
tion.” However, the distinction between continuous and discontinuous functions remail
isolated from the mainstream of contemporary mathematical analysis, and “function” \
the prevailing name of this object. In this paper, | have followed this use.

Of course, the effective content of this object depended on the notions of analyti
expression and functional relation between quantities. A functional relation between qu
tities was substantially viewed as a relation between quantities connected to a “nice” cu
hence a function enjoyed all the properties of a “nice” curve, such the absence of jur
and existence of tangents, namely L-continuity and differentiability. A geometric ima
underlay a function.

An analytical expression was viewed as an appropriate string of variables, consts
and symbols of operations. This string had to be exhibited explicitly. Every symbol in
operation was ruled by its own laws and every function had a special calculus (if it could
be reduced to other simpler functions). One can state that, according to Euler, a function
an entirely known object, even if the precise meaning of this remained vague and was
made clear. From the 1750s Euler used the term “function” for certain mathematical objs
that lacked this property. He, however, thought that these objects substantially differed f
effective functions since only the latter could be manipulated and, therefore, accepte
solutions to a problem.
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