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 THE STORY OF THE BINOMIAL THEOREM

 J. L. COOLIDGE, Harvard University

 1. The early period. The Binomial Theorem, familiar at least in its elemen-

 tary aspects to every student of algebra, has a long and reasonably plain his-
 tory. Most people associate it vaguely in their minds with the name of Newton;
 he either invented it or it was carved on his tomb. In some way or other it was

 his theorem. Well, as a matter of fact it wasn't, although his work did mark an

 important advance in the general theory.

 We find the first trace of the Binomial Theorem in Euclid II, 4, "If a straight
 line be cut at random, the square on the whole is equal to the squares on the

 segments and twice the rectangle of the segments." If the segments are a and
 b this means in algebraic language

 (1) (a + b)2 a2 + b2 + 2ab.

 The corresponding formula for the square of a difference is found in Euclid II, 7,
 "If a straight line be cut at random, the square on the whole and that on one of

 the segments both together, are equal to twice the rectangle contained by the
 whole and said segment, and the square on the remaining segment."

 Here if a represents the whole, and b the first segment, we have

 (2) a2+ b2 = 2ab + (a-b)2

 It would have been perfectly easy for Euclid to go ahead and prove the

 formula for the cube of a binomial, but that would have broken the thread of the
 argument. In Books II and X he was prodigiously interested in the squares of
 binomials, any generalization of these does not seem to have interested him at
 all. The modern tendency to generalize as far as possible, and stretch each
 theorem to its most general form, was quite foreign to the thinking of the
 Greeks in mathematics; clearness and precision were the sovereign qualities
 which were always sought.

 We find a wider mathematical curiosity in Diophantus who cubed various
 binomials, especially (n-1). Whether he had a general formula, or multiplied
 out each time is not clear.

 It is a curious fact that the first use, beyond Euclid's, for finding binomial
 power formulae, was to discover the approximate values of roots. We have a
 significant remark in the commentary of Eutocius on Archimedes' essay on the
 measurement of the circle:

 "Quo modo adpropinquando radix quadratadati numeri invenienda est,
 dictum est ab Herone in Metricis a Pappo, Theone, compluribus aliis, qui mag-
 num Syntaxin Claudii Ptolemi interpretati sunt" [1].

 This suggests a search in Ptolemy's Syntaxis. I have failed to find the pas-
 sage. Tannery assures us that Pappus followed the general method of Hero of
 Alexandria [2]. Hero's method is simplicity itself. If we wish to find an ap-

 147

This content downloaded from 195.251.161.31 on Thu, 16 Mar 2017 22:49:36 UTC
All use subject to http://about.jstor.org/terms



 148 THE STORY OF THE BINOMIAL THEOREM [March,

 proximation to VA, and a, is a first value, a closer one will be

 1 A-
 (3) a2= + - +, +

 As a matter of fact, this is merely a special case of a famous method of
 approximating to a simple root of any function, which we associate with the
 name of Newton, for if a, is an approximation to a root of f(x) = x2 -A a better
 approximation is

 f(al)
 a2 = a,f (a,)

 We find something much closer to our familiar method of finding square roots
 in the work of Theon of Alexandria, who uses our technique of adding to a,
 our correction (A -a2)/2a, [3]. Of course it is a question merely of order of pro-
 cedure, for if we add this correction we have Hero's Formula (3).

 We pass to cube roots. Heath says on p. 63, "In no extant Greek writer do
 we find any description of the method of finding cube roots." If we date Theon
 about A.D. 390 we have to wait more than 100 years for the Hindu Aryabhata;
 there are various translations of his Aryabhatiya; I follow that of Datta and
 Singh, p. 174 [4]:

 "Divide the second aghana place by thrice the square of the cube root; sub-
 tract from the first aghana place the square of the quotient multiplied by thrice
 the preceding (cube root) and (subtract) the cube (of the quotient) from the
 aghana place. The quotient put down at the next place (in the line of the root)
 gives the root."

 I think that this shows clearly enough that Aryabhata was familiar with the
 binomial formula for a cube. Whether the Hindus had the curiosity to raise
 binomials to higher powers or not I can not say; a power higher than the third
 may have appeared to them practically useless. Yet someone must have seen
 the importance of such matters as may be judged from the following quotation,
 which is highly significant for the whole purpose of this paper. The writer is
 Omar Khayyam, and in speaking of a work of his own, now most unfortunately
 lost, he writes [5]:

 "Les Indiens possedent des methodes pour trouver les c6t6s des carres et des
 cubes. J'ai compose un ouvrage sur la demonstration de l'exactitude de ces
 methodes, et j'ai prouve qu'elles conduisent, en effet, a l'objet cherche. J'ai en
 outre augmente les especes, c'est a dire j'ai enseigne a trouver les c6tes du
 carr6-carre, du cubo-cube, du quadratro cube, a une etendue quelconque, ce
 qu'on n'avait pas fait precedement. Les demonstrations que j'ai donne a cette
 occasion, ne sont que des demonstrations arithmetiques, fondees sur les parties
 arithmetiques des Elements d'Euclide-."

 This is an extremely interesting paragraph. Tropfke expresses his opinion
 in no uncertain terms:
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 19491 THE STORY OF THE BINOMIAL THEOREM 149

 "Die letzte Bemerkung kan man offenbar nur auf Benutzung der bi-
 nomschen Entwickelung fur beliebig hohe Exponenten deuten, wodurch dann
 Alkhayammi als Entdecker des Binomialtheorems fur ganzzihlige Exponenten
 anzusehen ware" [6].

 This seems to me eminently true and important, provided we take it literally.
 It all depends on "une etendue quelconque." If he could find any root by
 arithmetical means, he presumably used the binomial theorem, but the only
 actual roots he mentions are quartic, sextic, and ninth, each of these could be
 found by repeating the processes he knew for quadratic and cube roots. When
 we reflect on how inferior was the mathematical notation of his time, I think
 there is some doubt whether he could really extract, let us say, a seventh root.

 A cautious note is sounded in a very recent discussion:
 "Man hat die den modernen Mathematiker naheliegende Vermutung ausge-

 sprochen; das Omar Haiyami den binomschen Entwickelung fur beliebig hohe
 Exponenten etwa in der Weise arbeitete wie wir im 16 Jahrhundert bei Apian,

 Stifel, und andere Mathematiker der Renaissance beobachten" [7].
 Luckey does not definitely pronounce on the point in question, but he seems

 inclined to the view that Omar could only find roots that were based on the
 quadratic and cubic. I am puzzled by his writing in connection with the quadrato
 cubic, "Quadratokubus (x5)." Personally I can not avoid the sentimental hope
 that he really found the general formula.

 2. The arithmetical triangle. We are safe in saying that by the year 1300 at
 least one capable mathematician was familiar with the binomial expansion for
 positive integral exponents. Some two hundred years after Omar, there lived
 in the Flowery Kingdom Chu-Shih-Chieh to whom we are indebted for the
 interesting diagram

 11

 1 2 1

 1 3 3 1

 18 . . . . . . . . 81

 Mikami comments, "This is indicated as an old calculation but not his inven-
 tion. . . . This may perhaps have been borrowed from the Arabs in some
 way" [8]. The horizontal arrangement of the figures suggests strongly that these
 numbers were found by the expansion of binomials, but of course we have
 nothing suggesting a proof. Various mathematicians have suggested that the
 Chinese could expand binomials to quite high powers.

 The first writer to give us something really solid is Michael Stifel who pub-
 lished in 1544 his Arithmetica Integra. Here we find the diagram
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 150 THE STORY OF THE BINOMIAL THEOREM [March,

 1

 2

 3 3

 4 6

 5 10 10

 6 15 20

 7 21 35 35

 8 28 56 70

 9 36 84 126 126

 10 45 120 210 252

 This, of course, can be extracted at once from Chu Shih-Chieh's table, but it
 is very unlikely that Stifel ever saw the latter. The two significant facts for us
 are that he was interested in the approximate extraction of roots, and we should
 like to know the manner in which he explains the construction of his table. In
 the first column, we have the integers in natural order. Each subsequent column
 begins two places lower than the preceding one; it starts with the number im-
 mediately on its left, and each subsequent number in the column is the sum of
 the number immediately above and the number to the left of the latter. Now
 if we write

 (a + b)n = (a + b)(a + b)n-1

 and, if we know the expansion of (a+b) I-, we'find the coefficients of the expan-
 sion of (a+b)" by exactly this process. It would seem that Stifel was showing
 what we should write in modern notation

 (4)~ ~~n)(n1 + n)

 A third form of this figure we owe to Pascal, whose famous triangle appears
 in the form

 1 2 3 4 5 6

 1 3 6 10 15

 1 4 10 20

 1 5 15

 1 6

 1

 Probably Pascal was familiar with Stifel's table; he gives the same rule for the
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 1949] THE STORY OF THE BINOMIAL THEOREM 151

 construction of the triangle, as well as some other identities. He points out that
 the numbers in a N.E. running diagonal are the binomial coefficients, and shows
 how we find the number of groups of r things taken from n things. Finally in
 Pascal we have the general rule which we should write [9]

 (5)~ ~~ n ) n(n -1) (n -2) ... (n -r + 1)
 r r(r -l1)(r -2) ...

 It is important to say that a priority in this has been awarded to others, espe-

 cially Briggs. Netto writes "Die binomsche Formel findet sich zuerst bei H. Briggs
 Arithmetica Logarithmica 1620," and Tropfke, that it is on p. 21 of Gellibrand's
 Trigonometria Britanica, a posthumous work of Briggs [10]. This may be. I
 can only say that I have found no trace. Netto gives no page number and I have
 seen nothing suggestive of it in the French translation, the only thing available
 to me; as for Tropfke, all I find on the page in question is a non-triangular form
 of Pascal's triangle, and there is nothing suggesting Formula (5) in the work.

 3. Gregory and Newton. The first writer to approach the binomial expansion
 of a fractional power was James Gregory, who gave the formula in 1670. His
 method of approach was curiously indirect, his ostensible desire was to find an
 antilogarithm. Let us start with two numbers b and d with the logarithms
 log b= e, log (b+d)=e+c.

 To find the number whose log is (e+a),

 a
 log b + - [log (b + d) - log b] = e + a

 C

 e+a= log [b(1+- )I7.

 Take the two series,

 d2 d3
 b, d, -, _ . . .

 b b$2

 a a-c a-2c a-3c
 y . . . . .

 c 2c 3c 4c

 Combine like this

 a a a-c d2 a a-c a- 2c d3 / d\a/c
 b + - d + +- - - *- = b 1 +-)

 c c 2c b c 2c 3c b2 \ b,

 There is of course no sign of proof [11].
 It is time to turn to Sir Isaac Newton to whom we referred somewhat dis-

 paragingly in our opening paragraph. The story of his interest in the subject is
 told at length in a letter to Oldenburg, dated October 1676, and hence six years
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 152 THE STORY OF THE BINOMIAL THEOREM [March,

 after Gregory's letter just mentioned [121. He tells us that he was interested
 early in the study of interpolation by Wallis. This admirable mathematician
 studied curves whose equations were of the type

 y = (1 - x2)0/2, y = (1 _ x2)1/2, y = (1 X X2)2/2, y = (1-- x2)31/2,

 y = (1 - x2)4/2, y = (1- x2)5/2, y = (1-x2)612.

 If we take the area of the figure bounded by the positive axes, the curve and the
 ordinate, we have for the cases of the first, third, fifth and seventh curve

 X, X-IX, X- 23X3 + 5X59 X- X3 + iX X 7.

 How did Wallis discover these formulae, without the aid of integration? He
 studied quotients of the form

 OP + 1P + 2P . . .nBP

 np + np+ np ..nP

 and noticed that the limit as n increased indefinitely was asymptotically
 1/(p+1), this worked out at least in several instances [131. We pass easily
 from this to finding the area under the curve y = x2'. We divide into n parts the
 segment from the origin to x=nAx on the axis, the points of division being 0,
 Ax, 2Ax, * * *, nAx. We erect rectangles on these, one upper vertex being on the
 curve. The areas will be

 AXP1AX, (2Ax)P.Ax, (3Ax)P.Ax, * , (nAx)P.Ax.

 The sum will be

 (Ax)P+I(lP + 2P + 3P + + n.).

 Now

 (OP + ir+.v. + np) 1

 noo ~(n + l)nP p + 1

 /n+ 1 \(n x) P+l XP+l
 lim (AX)P+1[OP + 1P + 2P + * + nP] = lim ( + ( x
 n-1.00 n-- \w n P+ 1 p+ 1

 This gives the fundamental formula

 rXP+1

 (6) fxPdxP= + Naturally Wallis did not set things up in anything like this form but such is
 the essence of his reasoning. Moreover, an equivalent formula for quite a num-
 ber of cases had been proved by Cavalieri and others [14]. Wallis knew also
 that the integral of a sum is the sum of the corresponding integrals, so there is
 no real mystery about his discovery of these areas.

 Let us return to Newton. He wished to find the areas under the other curves.
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 1949] THE STORY OF THE BINOMIAL THEOREM 153

 beginning with the second which is the circle y = (1 -x2) 1/2. Newton notes that
 in all of Wallis' cases the first term is x and the denominators are 1, 3, 4, 7,

 They cause no trouble. They come in through the integration, not through the
 expansion. The second terms are:

 0 1 2 _3

 Now (1-x2)(k+1)I2 is a mean proportional between (1-x2)kI2 and (1I-x2)(+2)I2
 and this gives the first numerator in cases 1, 3, 5, . He guesses that this
 averaging process works in every case, and the other expansions should begin

 I Xs 5

 3 3 3

 Suppose, then, the expansion begins z-(m/3)x3. How shall the subsequent
 terms be found? Let us follow his own words [15], "Quaerebam itaque quomodo
 in his seriebus ex datis duobus primus figuris reliquae derivari present. Et
 inveni quod posita secunda figura, reliquae producerentur per continuarum
 multiplicationem terminorum hujus serie"

 m-O rn-I m-2 mn-3
 x x x X

 The essential word here certainly is "inveni." Did Newton work this out for
 himself or, more likely, did he follow Pascal's and Stifel's formula which holds in
 the integral case, and guess that it was always correct, and then work out
 some cases? We shall never know the answer, and on this, largely, I think, de-
 pends the amount of credit which he should receive. All that we surely know is
 that he wrote out

 x2 x4 x6
 (1- =2 1- - 2-

 2 8 16

 3x2 3 X4 x6
 (1- X2)312 =1- -- -

 x2 x4 5x6
 (1 - X2)113 = 1------.

 He squared or cubed the series and reached (1 -x2). In the first case he
 found the square root by the usual method and reached the series. I cannot see
 that he did more than this, in which case, brilliant as was his genius in other
 matters, I do not think he deserves extraordinary credit for his contribution to
 the binomial theorem.

 4. Attempts at proof. What shall we now say about demonstrations of the
 theorem; have any of these writers really proved it, or have they merely fol-
 lowed the example of all beginners, showing merely that no other solutions are
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 154 THE STORY OF THE BINOMIAL THEOREM [March,

 possible? We have seen that Omar Khayyam had doubts on the point, he says

 "J'ai prouve qu'elles conduisent en effet a l'objet cherche." Newton's verifica-

 tions, as far as they go, show that the series are equal to binomials. Pascal in

 another connection used mathematical induction. He was one of the first users,
 but he did not prove our theorem in this way. How did anyone know a priori

 that any non-integral power of a binomial was actually equal to a certain con-
 vergent series?

 In 1742 there appeared an article by Giovanni Salvemini who lived in

 Castiglione, for which insufficient reason he was frequently referred to as De
 Castillon. In the Philosophical Transactions, vol. 42, 1742-3, we find his

 article. He points out that everyone knows Newton's formula, but no one, as
 far as he knows, has proved it. He distinguishes three cases (a) a positive integral

 exponent, (b) a positive fractional exponent, (c) a negative exponent. The first

 case he handles by a method still used today. Let us replace (p+q)n by the
 product (p +ql) (p +q2) (p. (p+q). The numerical coefficient of the term of the
 rth order in the q's will be the number of combinations of n things taken r

 at a time, namely ('). Then we set all the qi's equal to q. When it comes to
 expanding (p+q)rIn, we are safe in taking the first exponent as r/n, for that is
 the case when q = 0; thus

 (p + q)"/n = Apr/n + Bpr/n-lq + Cpr/n-2q2 +

 (p + q)r = py(A + Bp-lq + Cp-2q2 + . . . )n.

 He knows how to expand a binomial to any positive integral power, and blithely
 expects that he can do the same thing with a convergent power series, treating
 it as a binomial. In expanding, the new coefficients kindly come in one at a time,
 so that we have

 r(r-1) n(n-1)
 1= An; r =nA'-'B; r 2 = nAn-IC + 12 An-2B2

 1.2 1 - 2

 r /

 r n --1
 1= A; -=B; C.

 n 1.2

 The negative expansion comes by taking the reciprocal of the positive one.
 A much quicker method was devised by a far abler mathematician, Colin

 Maclaurin. Here is what he writes on pp. 607-8 of vol. 2 of his Fluxions,
 Edinburgh, 1742:

 "Let it be required to find 1+xn where n may represent any integer number
 or fraction, positive or negative. It is evident from what is shown in the common
 algebra concerning powers and their roots that the first term of any power of
 (1 +x) is 1, and the subsequent terms involve x, X2, X3, X4, * with invariable
 coefficients. We suppose therefore
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 19491 THE STORY OF THE BINOMIAL THEOREM 155

 1+ xn= 1+ Ax+Bx2+Cx3+...

 represents the general formula. By taking the fluxions on both sides

 n.t 1 + xll' = Ai + 2Bxt + 3Cx2x.

 This is an identity, hence if we take x =0 (or because the first term of 1 +x4
 must be 1) we must have A =n." The other coefficients are quickly found by
 similar processes and further differentiation.

 This demonstration was not essentially new, it appeared five years earlier in

 the work of Colson [16]. The reasoning is less clear as he uses the the same
 letter to mean two different things; he writes on succeeding lines y= a+x Im
 and y=a an. However he comes out all right in the end. But he makes on p. 310
 an important remark which seems to have escaped Maclaurin:

 "Indeed it can hardly be said that this or any other that is developed from
 the Method of Fluxions is a strict investigation of this Theorem. Because the
 Method itself is originally derived from the method of raising Powers, at least
 integral Powers, and presupposes the knowledge of Unciae or numerical co-
 efficients."

 Exactly this same difficulty occurred somewhat later to Euler, who gave two
 other demonstrations, of which I reproduce the second [17]. We start with the
 equations

 (1 + x)"n = 1 +Ax+Bx2+Cx3 +*

 (1 + x)f+l = 1 + A'x + B'X2 + C'X3 + ...

 = (1 + x)(1 + x) n

 Suppose n is an integer. When n ! 0, all coefficients vanish; when n ? 1 all after
 A; when n?2 all after B; and so on. Let us write

 A = aen2 B = ,Sn(n -1)2 C = yn(n - ) (n -2), ...

 (1+ x)"+1 = 1 + a(n + l)x + g(n + 1)nx2 + . . .

 = (1 + x)(1 + anx + fln(n- 1)X2 +*

 Subtracting

 0O(a- l)x + (2Pn-en)x2+**

 Dividing out x, and setting x=0, we have

 1 1
 a= 1, A )= - y = -,)

 2 2.3

 and so on. Euler concludes, "Prorsus superfluum foret hos casus ulterius
 prosequi, cum jam luce meridianam clarius apparat pro singulis litteris se-
 quentibus eosdem plane valores necessario prodire debere, quos evolutio New-
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 156 THE STORY OF THE BINOMIAL THEOREM [March,

 tonianae docuit, atque haec demonstratio naturae rei tam apprimie accomodato
 videtur, ut illi etiam in primis Analyseos elementis denegeri nequeat. Quin etiam
 universum ratiocinium qui hic usi sumus, unam vim retinet, etiamso adeo n ut

 imaginarius spectaretur" [18].
 I must confess that I am not much impressed by this proof. It has the im-

 portant advantage of being equally applicable to all values of the exponent but
 the best reason for the assumption as to the form of the coefficients is that it is
 correct in the integral case; the statement that something is "luce meridiana
 clarius" is not the same thing as a mathematical demonstration.

 5. Convergence. There remains the important problem of the convergence
 of the series. The early writers were more or less aware of the existence of this
 question but were unable to handle it completely. The honor for doing this goes
 to Niels Hendik Abel. His contribution is much too long to be repeated here [19].

 LEMMA (1) Let p1P2p3 . . . p, be a series of positive quantities such that
 lim pm+1/pm= a 1 and em be quantities whose absolute values do not approach 0
 as a limit as m increases without limit, then the series EoPO+E1P1+E2P2 . . . is di-
 vergent.

 We see in fact that regardless of how great m may be, the set

 EmPm + Em+lpm+l + * * * + CnPn

 which may contain positive or negative terms, will not approach 0 as a limit.

 LEMMA (2) If in the above series a <1, / m / <A, the series is convergent

 We see, in fact that the absolute value of the set is less than pmA 1/(1 -x),
 but lim pm=.

 Now Abel makes a trigonometric development by the use of De Moivres'
 theorem.

 Let

 m m(m- 1) 2 m(m- 1)(m- 2) 3
 o(m)=1+ - + 1 x + 23 x +** 1 1.2123

 Let

 x = a + bi, m= k + k'i; (m) =p + qi;

 va2 + b2 = a; x = a[cos + isin' ]

 mv+1 = av[cos yv + i sin yv]
 v

 ) aA t18 2 .. 'g *6[COS (IAO + 'Yl + 72 + ***+ 'Y,)

 + i sin (IuX + 71 + 'Y2 +** + )]
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 19491 THE STORY OF THE BINOMIAL THEOREM 157

 Abel here treats the real and imaginary parts separately, the question of con-
 vergence depends, as above, on whether a is greater than or less than unity.

 The case where it is equal to one, he treats at length, separately. One has the

 feeling that the last word has been said.

 Yet that again is not the case. We have a variety of proofs that, if any
 power of a binomial can be expressed as a series of positive integral powers, this
 is the series. But why should such a series exist a priori? Omar sensed this diffi-

 culty. De Castillon met it, in the case of rational powers of the binomial, and,
 if his method were strengthened by showing that the algebraic operations with
 an infinite series were legitimate, and, that an extension by continuity considera-

 tions from the rational to the irrational is permissible, we might find the whole
 here. In a few cases Newton showed that the series which he developed did what
 they were supposed to do. Perhaps the easiest thing to do would be to find a
 general proof independent of the binomial theorem that tn=nxn*-l; then, with
 the aid of Taylor's Theorem with remainder, give MacLaurin's proof for the
 binomial case. What a long distance from Euclid II, 4!
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