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The fundamental role of infinitely small quantities for his teaching of the calculus was 
underlined by Cauchy himself in the introduction to his Cours d’analyse of 1821 and in the 
announcements of his later textbooks. First steps toward theories of such quantities which 
are briefly denoted as variables having zero as their limit were made by Cauchy, who 
represented them by sequences converging to zero (in the Cours) or by functions vanishing 
at zero (since 1823). It is shown that the famous so-called errors of Cauchy are correct 
theorems when interpreted with his own concepts. A few gaps in his proofs are explained by 
the hypothesis that he tacitly assumed continuity. No assumptions on uniformity or on 
nonstandard numbers are needed. Finally, some possible completions of Cauchy’s rudimen- 
tary theories of infinitesimals are ventured. 0 1987 Academic Press, Inc. 

Cauchy betonte selbst die grundlegende Bedeutung unendlich kleiner GroBen fur seine 
Art, Analysis zu unterrichten, in der Einfiihrung zum Cours d’analyse (1821) und den 
Selbstanzeigen seiner spateren Lehrbticher. Theoretische Ansatze fiir solche Gr@en, 
welche kurz als Variable mit Limes Null bezeichnet werden, beruhten auf der Darstellung 
durch Nullfolgen (im Cours) oder durch bei Null verschwindende Funktionen (seit 1823). Es 
wird gezeigt, da8 Cauchys oft als falsch bezeichnete S&e auf der Grundlage seiner eigenen 
Begriffe korrekt sind. Einige Beweishicken werden damit erklart, da8 er stillschweigend an 
stetige Funktionen dachte. Historisch unzullssige Annahmen iiber Gleichmlgigkeit oder 
iiber Nichtstandard-Zahlen sind iibertliissig. Moglichkeiten zur Vervollstandigung von 
Cauchys Theorieansatzen werden angedeutet. B 1987 Academic Press, Inc. 

L’importance fondamentale, pour son enseignement, des quantites infiniment petites a Ctt 
soulignte par Cauchy lui-m&me dans son introduction a son “Cours d’analyse” de 1821 et 
dans les avertissements a ses trait& ulterieurs. Le point de depart pour la theorie de ces 
quantites, qui peuvent Ctre designees brievement comme des variables ayant pour limite 
zero, repose sur la representation par les suites qui convergent vers zero (dans le “Cours”) 
ou par les fonctions qui tendent vers zero (depuis 1823). On va montrer que les theoremes 
soi-disant faux de Cauchy sont exacts en se basant sur ses propres notions. Des lacunes dans 
les demonstrations seront expliquees par le fait qu’il suppose implicitement qu’il s’agit des 
fonctions continues. Des hypotheses, historiquement inadmissible% de I’uniformite ou des 
nombres non-standard sont superflues. On indiquera comment on peut completer les theo- 
ries de base de Cauchy. o 1987 Academic press, ~nc. 
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1. INTRODUCTION: CAUCHY’S MOTTO 

In the Auertissemenls of {Cauchy 1823,9] and [Cauchy 1829, 2671 we find the 
motto: “My principal aim has been to reconcile rigor, which I have made a law to 
myself in my Cours d’analyse, with the simplicity which the direct consideration 
of infinitely small quantities produces” (translation in [Edwards 1979, 3091 of the 
original: “Mon but principal a CtC de concilier la rigueur, dont je m’etais fait une 
loi dans mon Cours d’analyse, avec la simplicite que produit la consideration 
directe des quantites infiniment petites”). 

Earlier, in the introduction to his Cours Cauchy [ 1821, ii] had stated the impor- 
tance of infinitely small quantities for the treatment of continuous functions: “En 
parlant de la continuite des fonctions, je n’ai pu me dispenser de faire connaitre les 
proprietes principales des quantites infiniment petites, proprietes qui servent de 
base au calcul infinitesimal.” (“When speaking of the continuity of functions, I 
could not dispense with announcing the main properties of infinitely small quanti- 
ties, properties which serve as foundation of the infinitesimal calculus.“) 

As a historian of mathematics one cannot but take an author’s own intentions 
and reasons seriously: Infinitely small quantities are fundamental in Cauchy’s 
analysis, they are compatible with rigor, and they produce simplicity. Since Abel 
[1826] the neglect of the motto has led to difficulties even with the very first 
theorems on continuity and convergence which I quote for later discussion. 

2. TWO CONTROVERSIAL THEOREMS 

The first theorem on continuity in [Cauchy 1821, 471 is: 

Theo&me I.-Si les variables x, y, z, . . ont pour limites respectives les quantites fixes et 
detenninees X, Y, Z, . . . , et que la fonction f(x, y, z, . . .) soit continue par rapport a 
chacune des variables x, y, z, . . . dans le voisinage du systtme des valeurs particulieres 

x = x, y  = Y, z = z, . ) 

f(x7 Y, 2, . . .I aura pour limite f(X, Y, Z, . .). 

(If a function of several variables is continuous in each one separately it is a 
continuous function of all the variables.) 

The following first theorem on convergence of [Cauchy 1821,120] was repeated 
without change in [Cauchy 1833, 561: 

Theo&me I.-Lorsque les differents terms de la strie (1) [i.e., u,, + U, + u2 + . . .] sont des 
fonctions d’une meme variable x, continues par rapport a cette variable dans le voisinage 
d’une valeur particulitre pour laquelle la serie est convergente, la somme s de la strie est 
aussi, dans le voisinage de cette valeur particulitre, fonction continue de x. 

(The sum s(x) of a convergent series of continuous functions u,(x) is itself a 
continuous function.) 

Both theorems are incorrect when interpreted in the by now common concep- 
tual framework of analysis (which obviously cannot have been Cauchy’s frame- 
work). Both theorems become correct as soon as one adds assumptions on uni- 
formity (which, at least in the form by now common, were never used by Cauchy). 
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The theorems are correct in any of the modern theories of infinitesimals (which, 
apart from being unknown to Cauchy, lack the “simplicity of infinitesimals,” at 
least in the version of Robinson [1966]). 

The three attitudes mentioned (Cauchy erred; Cauchy forgot about essential 
assumptions; Cauchy was correct, but only when put against a modern back- 
ground) are unsatisfactory from the point of view of a historian. The first one, 
shared by a majority, is inadequate even psychologically: Is it believable that 
Cauchy, the exponent of rigor, should make mistakes at the lowest level of his 
calculus? Nevertheless: “For instance, it is well known that he asserted the 
continuity of the sum of a convergent series of continuous functions; Abel gave a 
counterexample. and it is clear that Cuuchy himself knew scores of them” 
[Freudenthal 1971, 137; my italics]. 

The only satisfactory attitude should be: Try and understand Cauchy’s theo- 
rems and their proofs from his own concepts. Attempts have been made to do this 
by eliminating his infinitely small quantities and replacing them by sequences 
[Giusti 19841. Apart from a loss in simplicity this is in one more respect against the 
motto of Cauchy who advocated the direct use of infinitely small quantities. 
Moreover, I shall show that the approach via sequences is mathematically satis- 
factory only for some concepts and theorems. Attempts toward more comprehen- 
sive theories will be sketched in Section IS. 

3. CAUCHY’S INFINITESIMALS 

Usually, “une quantite infiniment petite” or “un infiniment petit” is translated 
as “an infinitesimal.” For the sake of brevity I shall follow this habit. 

Cauchy defines an infinitesimal as a variable having zero as its limit: “Lorsque 
les valeurs numeriques (i.e., absolute values) successives d’une meme variable 
decroissent indefiniment, de man&e a s’abaisser au-dessous de tout nombre 
donne, cette variable devient ce qu’on nomme un inj%ment petit ou une quantite 
injiniment petite. Une variable de cette espece a zero pour limite” [Cauchy 1821, 
19; 1823, 16; 1829, 2731. “On dit qu’une quantite variable devient injiniment 
petite, lorsque sa valeur numerique decroit indefiniment de manike a converger 
vers la limite zero” [Cauchy 1821, 371. (“One says that a variable quantity be- 
comes injnitely small, when its numerical value-i.e., absolute value-decreases 
indefinitely in such a way as to converge to the value zero”-translation as in 
[Edwards 1979, 3101). 

Unfortunately there is only one example to be found in the Cows, the sequence 
1111?1 4, 3, 6, 5, 8, 7, . . . [Cauchy 1821, 371. I note in passing that infinitely large quanti- 
ties are defined in a similar manner, the sequence 1, 2, 3, 4, 5, . . . serving as an 
example [Cauchy 1821, 381. In contrast to the infinitely large quantities, i.e., 
variables which in absolute value are increasing indefinitely in such a way as to 
converge to the limit ~0, there are two injbzite quantities ‘~0 [Cauchy 1821,38, 191. 
Infinitely large quantities are not unimportant. Occasionally they appear as possi- 
ble values of subscripts in sequences s,. 

One might conclude from his later texts that Cauchy did not insist on sequences 
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as the only possible representatives of infinitesimals and infinitely large numbers. 
Beginning with the Addition to [Cauchy 1823, 250 ff.] infinitesimals are repre- 
sented by functions which are continuous in a neighborhood of 0 and vanish at 0. 
In order to avoid a circulus vitiosus this position is not suitable for [Cauchy 18211 
where continuity remains still to be defined. Consequently, I shall postpone this 
discussion of functions as representatives. 

4. CONTINUITY 

Briefly, a function is continuous if an infinitesimal change of the variable pro- 
duces an infinitesimal change of the function itself. This has to be discussed in 
detail. 

Cauchy does not define pointwise continuity. There are definitions of a global 
continuity (in an interval) and of a kind of local continuity (in the vicinity of a 
particular value). Concerning the terminology on intervals with or without ends I 
shall follow Grabiner [1981, footnote on p. 1681: Cauchy’s comprise is translated 
as “included,” and his renfermk as “lying between.” If c is included between the 
limits (i.e., bounds) a and b then a 5 c 5 b, and c lies between a and b if a < c < b. 

Global continuity is defined for functions on intervals with ends [Cauchy 1821, 
431; translation following Edwards [ 1979, 3 10-3 111: 

Si, en partant d’une valeur de x comprise entre ces limites, on attribue a la variable x un 
accroissement infiniment petit (Y, la fonction elle-meme recevra pour accroissement la differ- 
ence 

f(x + a) - f(x). 

qui dtpendra en m&me temps de la nouvelle variable (Y et de la valeur de x. Cela pose, la 
fonctionf(x) sera, entre les deux limites assignees a la variable x, fonction continue de cette 
variable, si, pour chaque valeur de x intermediaire entre ces limites, la valeur numerique de la 
difference 

f(x + a) - f(x) 

decroit indefiniment avec celle de a. En d’autres termes, lafonctionf(x) restera continue par 
rapport d x entre les limites donntes, si, entre ces limites, un accroissement infiniment petit 
de la variable produit toujours un accroissement injiniment petit de la fonction elle-meme. 

If, starting from a value of x included between these limits, one assigns to the variable x an 
infinitely small increment a, the function itself will take on for an increment the difference 
f(x + (u) -f(x), which will depend at the same time on the new variable (Y and on the value of 
x. This granted, the functionf(x) will be, between the two limits assigned to the variable x, a 
continuous function of the variable if, for each value of x intermediate between these limits, 
the numerical value of the differencef(x + cy) - f(x) decreases indefinitely with that of (Y. In 
other words, the function f(x) will remain continuous with respect to x between the given 
limits, if, between these limits, an infinitely small increment of the variable always produces 
an infinitely small increment of the function itself. (The italics are by Cauchy.) 

The definition of local continuity comes immediately after that: “On dit encore 
que la fonctionf(x) est, dans le voisinage d’une valeur particuliere attribuee a la 
variable X, fonction continue de cette variable, toutes les fois qu’elle est continue 
entre deux limites de x, meme tres rapprochees, qui renferment la valeur dont il 
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s’agit.” This means thatf(x) is continuous in the vicinity of a particular value of x, 
say x = x0, if a, b exist, a < x0 < b, such thatf(x) is continuous between the limits 
a and b. 

It should be noted that Cauchy explicitly speaks of a particular value of x 
whenever he means it. Otherwise, ualerar might mean the same as variable. 
Adopting this attitude, Giusti [I9841 has given a most interesting interpretation. 
Considerf(x + a) - f(x), as Cauchy himself does, as a function of two variables, 
and replace x and (Y by sequences x, and a,, the latter converging to 0, such that x, 
+ a,, and x, always belong to the interval under consideration. (The variables 
vary, as Giusti puts it.) Thenf(x) is a continuous function of x in the given interval 
iff(xn + a,) - f(xJ represents an infinitesimal, i.e., is a sequence converging to 0, 
whenever the sequences are chosen in the specified way. This interpretation is in 
agreement with the version which Cauchy put in italics and which is the one he 
actually uses in the COWS and later on, e.g., [Cauchy 1823, 19-201: “Lorsque, la 
fonction f(x) admettant une valeur unique et finie pour toutes les valeurs de x 
comprises entre deux limites don&es, la difference f(x + i) - f(x) est toujours 
entre ces limites une quantite infiniment petite, on dit quef(x) est fonction con- 
tinue de la variable x entre les limites dont il s’agit.” 

If Cauchy had meant it he would certainly have used a less complicated version 
like the following: If for every particular value of x between the given limits and 
for each particular infinitesimal i the difference f(x + i) - f(x) is always an 
infinitesimal, thenf(x) is a continuous function of x. 

Cauchy proceeds to prove the continuity of elementary functions, and these 
proofs hold good both in the pointwise and in Giusti’s interpretation. The follow- 
ing discussion (of Theoreme I) argues against the pointwise concept. 

5. CONTINUOUS FUNCTIONS: THeOReME I 

I return to the theorem restated in Section 2. To simplify notation I shall con- 
sider two variables. The proof in [Cauchy 1821, 45-471 is as follows: Let f(x, y) 
be, in the vicinity of the particular values X, Y, continuous as a function of x and 
continuous as a function of y, and let (Y, p be infinitesimals. Ifx, y attain the values 
X, Y or values very close to them then, by the assumption, the absolute values of 
the differences 

f(x + a, Y) - f(x, Y) 

and (4 

f-(x + ff, y + PI - f(x + a? Y) 

will decrease indefinitely with those of (Y, j3. The same follows for the sum of the 
two differences which isf(x + QI, y + /3) -f(x, y). (In other words, this difference 
is infinitesimal for infinitesimal (Y and /3 which means that f(x, y) is a continuous 
function of two variables.) Cauchy replaces x, y by X, Y and then x + (Y, y + p by 
x, y and obtains Theo&me I. 

Though Giusti mentions it in his list of the so-called “errors” of Cauchy he does 
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not come back to it. I shall discuss the proof using sequences Q, for a and b, for p. 
Until the very last part of the proof, x, y are variables having values in the vicinity 
of X, Y, which should mean that they can be replaced by sequences converging to 
X, Y. The differences (A) become 

and 

.f(xn + an 3 Y,) - fh, YJ 

fh + &I, yn + h2) - fh + Gr YA 

and the assumption is that both these differences converge to zero. But that is 
highly unsatisfactory; it means that we assume the formal definition of continuity 
for f(x, y) as a function of x not only for each fixed y but for all sequences yn 
converging to Y, etc. Though this interpretation leads to a correct proof the motto 
is certainly violated. The assumption is not simple, and there is no direct consider- 
ation of infinitesimals. 

The simple way out is to consider infinitesimals a!\(, p as mathematical entities of 
their own specific rank, which can be “considered directly,” though it may some- 
times be useful to think of them as represented by sequences. A variable x may 
attain particular real values like X, but also values like X + (Y where (Y is an 
infinitesimal. In this interpretation the assumption thatf(x, y) be, in the vicinity of 
X, Y, continuous as a function of x is easily understood: For each fixed value of y 
which is infinitely close to Y (i.e., y - Y is infinitesimal) the function depends only 
on x, and the definition of continuity can be applied. I admit that my hypothesis 
needs further support which will be given in the next sections. Some confirmation 
may also be found in [Fisher 19781. 

6. LIMITS AND CONVERGENCE 

The concept of a limit is defined for variables in [Cauchy 1821, 19; 1823, 13; 
1829, 2691: “When the successive values attributed to a variable approach indefi- 
nitely a fixed value so as to end by differing from it by as little as one wishes, this 
last fixed value is called the limit of all the others. Thus, for example, an irrational 
number is the limit of diverse fractions which furnish more and more approximate 
values of it” (translation in [Edwards 1979, 3101). For series with terms uo, ul, u2, 
. . . the definition is given in [Cauchy 1821, 1141: “Let s, = u. + uI + u2 + . . . + 
u,- i be the sum of the first n terms, n being any integer. If, for increasing values of 
n, the sum s, approaches a certain limit s, the series will be called convergent, and 
the limit in question will be called the sum of the series” (translation in [Grabiner 
1981, 991). 

Infinitesimals do not appear in the definitions but enter as useful tools, for the 
first time in an alternative version of the famous convergence criterion [Cauchy 
1821, 1151: “in other words, it is necessary and sufficient that, for infinitely large 
values of the number n, the sums s,, , s,+~, s,,+~, . . . differ from the limit s, and 
consequently among themselves, by infinitely small quantities.” Incidentally, that 
the condition that s, - s, be infinitesimal for infinitely large m, n is necessary and 
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sufficient for convergence was stated and used by Euler as early as 1735 
[Laugwitz 1986, 50-551. 

7. CONVERGENT SERIES: THfiORI?ME I 

This theorem, which I mentioned in Section 2, has become known as the most 
famous “false theorem”of Cauchy. Moreover, it is of some interest for the con- 
ceptual background of Cauchy that his first theorem on convergence is concerned 
with series of functions and not of numbers. 

I read the proof as follows. I assume that convergence is postulated for all 
values x of the variable in the given interval, and moreover for all x + (Y, CY 
infinitesimal; the latter assumption is needed in the proof, but it is not obvious in 
the statement of the theorem. Let s(x) = s,(x) + r,,(.x) and s(x + ar) = s,,(x + (Y) + 
rJx + a), where s, = uo + ur + . . . + 1(,-r. Then sn is, for finite II, a continuous 
function, and s,(x + a) - s,(x) is infinitesimal. According to the convergence both 
m(x) and (!) r,(x + a) will become “imperceptible” for very large (but still finite) 
numbers n. In other words, for any given finite e > 0, Ir,(x)l < .s and IY,(x + a)] < E 
for some finite ~1. Hence, 

/h-(x + a!) - s(x)\ 5 I&(X + 01) - s,(x)\ + IY,(X + a)/ + Ir,,(x>l < 3F 

for each finite E > 0, i.e., s(x + (Y) - s(x) is infinitesimal. It follows that s(x) is a 
continuous function. 

The reader should compare the original: 

Lorsque. les termes de la serie (1) renferment une meme variable x, cette strie est con- 
vergente, et ses differents termes fonctions continues de x. dans le voisinage d’une valeur 
particuliere attribuee a cette variable, 

St? > r, . et s 

sont encore trois fonctions de la variable x, dont la premiere est evidemment continue par 
rapport ax dans le voisinage de la valeur particuliere dont il s’agit. Cela post, considerons les 
accroissements que recoivent ces trois fonctions, lorsque’on fait croitre x d’une quantite 
infiniment petite (Y. L’accroissement de s, sera, pour toutes les valeurs possibles de n, une 
quantite infiniment petite; et celui de r, deviendra insensible en meme temps que r,, si I’on 
attribue an une valeur trbs considerable. Par suite, I’accroissement de la fonction s ne pourra 
ttre qu’une quantite infiniment petite. [Cauchy 1821, 1201 

My translations are: IZ finite for “valeur possible de n”; n sufficiently large but 
finite for “valeur tres considerable de n”; r, becomes imperceptible, i.e., smaller 
than any given finite E > 0 for sufficiently large finite n, for “rn deviendra insensi- 
ble.” Others have given different interpretations. My translations lead to a correct 
proof which is simple and straightforward. Moreover, they are compatible with 
Cauchy’s own terminology throughout the Cours. For instance, if “tres consider- 
able” meant infinitely large Cauchy would have said so; in [Cauchy 1821, 116- 
1 171 he states that, for real 1x1 < 1, the values of x”, xnl( 1 - x) become infinitesimal 
for infinitely large n. 

In my version of the proof for Theo&me I only finite values of PZ enter, as they 
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do in the definition of convergence, and infinitesimals are used as in the definition 
of continuity. 

The text of Theoreme I is, to put it mildly, at least misleading. The first to 
mention that fact was Abel [1826]. In his proofcauchy needs convergence of the 
series at x as well as at x + (Y where (Y is infinitesimal. The assumptions as stated 
in the theorem are weaker: “dans le voisinage dune valeur particuliere pour 
luquelle la serie est convergent” (the italics are mine). What he really uses in the 
proof and in his applications of the theorem amounts to “lequelle,” referring to 
the whole infinitesimal neighborhood of the particular value, and he says so quite 
clearly: “cette serie est conuergente, et ses differents termes fonctions continues 
de x, duns le uoisinage d’une valeur particuliere.” Here, as in the inequalities 
thereafter, both convergence of the series and continuity of its terms are assumed 
throughout the neighborhood. Abel failed to mention the correctness of the proof. 

Rather late in his life Cauchy [1853] admitted that the statement of his theorem 
(but not its proof) was incorrect: “Au reste, il est facile de voir comment on doit 
modifier 1’PnoncP du theoreme, pour qu’il n’y plus lieu a aucune exception” 
[Cauchy 1853, 31-321. 

Though not drawing back his old proof he sketches a new one. Suppose that n’ 
> n, then the absolute value of 

s,, - s, = u, + u,+] + * * * + l&-l (3) 

is assumed, for sufficiently large n and all x, n’, to be smaller than a number E 
which one may choose arbitrarily small. This is one of the rare explicit uses of 
epsilontics that Cauchy ever made. It looks very much like uniform convergence 
and would lead immediately to a correct proof and theorem. But Cauchy does not 
stop here; he sticks to his infinitesimals. Moreover, in contrast to the passage in 
the COU~JY, he even introduces infinitely large numbers: “il est clair qu’il suffira 
d’attribuer au nombre n une valeur infiniment grande, et a l’accroissement de x 
une valeur infiniment petite, pour demontrer, entre les limites don&es, la con- 
tinuite de la fonction s = s, + ra” [Cauchy 1853, 321. He assumes that the 
expression (3) becomes infinitely small for infinitely large n, which is one version 
of his convergence criterion. As a consequence the proposition is stated as 
Theoreme I: 

I f  the different terms of the series (1) are functions of the real variable x, which are 
continuous with respect to this variable between the given limits; and if, moreover, the sum 
(3) . . . becomes always [toujours] infinitely small for infinitely large values of the integers n 
and n’ > n, then the series (1) will be convergent, and the sum of the series (1) will be, 
between the given limits, a continuous function of the variable x. 

It appears that the proof is more involved than that in the Cows. Moreover, the 
statement of the theorem is correct only if always (toujours) is interpreted as for 
all x + (I! from the interval, x real and (Y infinitely small. This is clarified by a lucid 
discussion of an example of the type Abel had mentioned [Cauchy 1853, 33-341: 
The series xT=r (sin kx)lk does not converge for infinitesimal x # 0. Let x = I/n for 
n infinitely Iarge. Then the remainder term 
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x sin kx m sin (k/n) 1 
Y,(X) = c 7 = c 

h=n h=n kln t 

differs by an infinitesimal from the value of s; ((sin t)lt) dt which is finite though 
TV should be an infinitesimal for a convergent series and n infinitely large. It 
follows that the series is not a counterexample since the assumption of conver- 
gence is violated at x = l/n. 

Giusti gives a correct translation of the example into the language of sequences, 
and he makes a point of it [Giusti 1984, 501. But he fails to translate the general 
theorem and its proof. Actually both x (or x + a) and n will have to be replaced by 
sequences which becomes troublesome as soon as they are not connected as in the 
example where x = l/n. Moreover, the theorem shows the power of Cauchy’s 
“direct consideration of infinitesimals.” 

Among others, the paper of 1853 is strong evidence against the opinion that 
Cauchy used his definition of infinitesimals mainly for one purpose: It permitted 
an easy transfer of the method of limits into the language which was used in the 
official programs of the Ecole polytechnique [Belhoste 1985, 1051. 

It is impossible to mention even a part of the literature on Cauchy’s “error.” A 
detailed discussion and bibliography can be found in [Spalt 19811. 

8. THE BINOMIAL SERIES 

The Cours contains a beautiful, complete, and correct treatment of the binomial 
series xF=o (c)x” for arbitrary real p. The series converges for all x, 1x1 < 1, as a 
consequence of the ratio test [Cauchy 1821, 1371. Then (pp. 141-142) x is a fixed 
number between - 1 and + 1, and 4(p) = xy=,, (c)x” is considered as a function of 
the single variable p. By his theorem on the multiplication of series and using 
the relations on binomial coefficients Cauchy obtains the functional equation 
+(p)$( p’) = $(p + p’). The next step (pp. 146-147) is to show that 4 is a 
continuous function of p. Since u,(p) = (c)x” is, as a function of p (!), a polyno- 
mial of degree n, it is everywhere continuous. By virtue of Theoreme I on continu- 
ity, the sum 4(p) is a continuous function. For each rational b, a well-known 
procedure (pp. 100-102) shows that 4(p) = (4(1))~ = (1 + x)“. Since both 4(p) 
and (1 + x)@ = exp( p log( 1 + x)) are continuous functions of p, we may conclude 
that 

(1 + x)P = i: (E)x” 
n=O 

for all real p and 1x1 < 1. 

As far as I know this is the first proof of this identity. An earlier attempt was 
[Euler 17741. Euler had used the functional equation and succeeded in showing 
that the series development was correct for rational F. The steps which are 
essentially new in Cauchy’s proof are his concept of a continuous function and his 
Theoreme I on convergence. 

Cauchy’s extension of the binomial series to complex numbers [Cauchy 1821, 
Chap. IX] is considered by Fisher [1978]. Fisher points out that in this proof 
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“Cauchy used infinitely small quantities very much like infinitesimals-i.e., like 
numbers rather than variables with limit zero,” a remark which supports my 
opinion [Fisher 1978, 3231. 

Immediate consequences of the binomial series are the exponential and loga- 
rithmic series [Cauchy 1821, 147- 15 I]. If p = 1 /CY, where (Y is an infinitesimal, then 
for Ix(Y~ < 1 

(1 I- cYX)l’a = 1 + ; + -a) + f& (1 - a)(1 - 2cu) + . . . 

and for (Y + 0 the series of eX is obtained. This looks like interchanging limits. But 
the conclusion can easily be justified by Theoreme I. For fixed X, each term of the 
series is a continuous function of (Y. The series converges everywhere as Ial < 
l/\x], and the sum is continuous by the theorem. Let (Y -+ 0. 

Similarly, for any fixed X, 1x1 < I, and ,u + 0 the logarithmic series is a conse- 
quence of 

x - ;  (1 - /&) + $ (1 - & - ;j - .  .  .  = (l + “:” - l 

epln(l+X) - 1 

= 

El. 
= ln(1 + X) + : [ln(l + x)]’ + . . . 

Further, since ln(1 + x) is continuous, and x - x’/2 + x3/3 - + . . . converges 
for 0 5 x 5 1, Theoreme I gives the series for In 2. 

It is true that Cauchy does not refer the reader to his Theo&me I when treating 
these corollaries. On the other hand, the reasoning is similar to that on the bino- 
mial series. Perhaps the fundamental Theoreme I was by now considered a matter 
of course which needs no repeated mention. Reading Cauchy carefully helps to 
eliminate apparent inconsistencies which some see: “He [Cauchy] proved lim( 1 + 
l/n)” = x l/n ! by a popular but unjustified interchange of limit processes . . . , 
although he was well acquainted with such pitfalls” [Freudenthal 1971, 1371. 

9. THE DIFFERENTIAL AND THE DERIVED FUNCTION 

Since Leibniz the differential had been the true raison d’etre of infinitesimals. 
Cauchy succeeded in eliminating infinitesimals from this concept. His differential 
dy = y’dx or 

df(x) = f’(x)dx 

is nothing but a function of two real variables. Of course, since any variable is 
permitted to attain infinitesimal values, so is dx. Cauchy shifted the basic place of 
infinitesimals from differentials to the concept of continuity. 

The first definition in [Cauchy 1823, 22-231, as translated in [Edwards 1979, 
3131, states: 

When a function y  = f(x) remains continuous between two given limits of the variable x, and 
when one assigns to such a variable a value enclosed between the two limits at issue, then an 
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infinitely small increment assigned to the variable produces an infinitely small increment in 
the function itself. Consequently, if one puts AX = i, the two terms of the ratio ofdifferences 

By f(x + 0 - f(x) 
Ax i 

will be infinitely small quantities. But though these two terms will approach the limit zero 
indefinitely and simultaneously, the ratio itself can converge towards another limit, be it 
positive or be it negative. This limit, when it exists, has a definite value for each X. . . The 
form of the new function which serves as the limit of the ratio (f(x + i) - f(x))li will depend 
on the form of the proposed function y  = f(x). In order to indicate this dependence, one gives 
the new function the name of derivedfunction [fonction derivee], and designates it with the 
aid of an accent by the notation y’ or f’(x). 

Curiously enough Cauchy never mentions that the existence of f’(x) implies the 
continuity of f(x) itself, an easy consequence of 

f(x + i) - f(x) 
i 

- f’(x) = infinitesimal and f’(x) finite. 

Usually he even states this continuity as an additional assumption, e.g. [Cauchy 
1829, 312-3131. 

It is much more deplorable that he does not mention a fact which is needed in 
some important proofs: The derived function as defined by Cauchy is always a 
continuous function. 

To see this we must realize that differentiability, like continuity, is not a 
pointwise property. (Compare the definition above!) Hence, not only f’(x) but 
also f’(x + i) will exist if x, x + i are “between the two limits at issue.” Actually, 
f’(x + i) is needed when f”(x) is defined, etc. Now for x + i = X and -i = k, 

_ fG + k) - f(-f) 
k 

+ f’(x) = infinitesimal. 

By adding this to 

f(x + i) - f(x) 
i 

- f’(x) = infinitesimal, 

we obtain that f’(x + i) - f’(x) is always an infinitesimal, and f’(x) is a continuous 
function. Cauchy uses this property liberally, e.g., in the proof of the mean value 
theorem [Cauchy 1823, 44-461. 

10. THE INTEGRAL 

It is a common belief that for any proof of the integrability of a continuous 
function uniform continuity is needed. Consequently, Cauchy’s proof is usually 
declared to be incorrect. 

The proof is given in [Cauchy 1823, 122-1251. The crucial step comes when 
Cauchy passes to the common refinement of two subdivisions of an interval x0 Z x 
5 x, x0 < x1 < * * * < x,-~ < X and when he has to consider the difference of the 
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approximating sums S belonging to a subdivision and its refinement. This differ- 
ence will be 

D = k&()(X, - x0) +- &*(X1 - XI) 2 * * * + &n-1(X - x,.-1). 

Each &k is the difference of values of f(x). As soon as &+I - x, becomes infinitesi- 
mal, &k will be an infinitesimal, by the continuity of the function. Now, by 
Cauchy’s famous theory of means [Cauchy 1821,27-301 it follows that D = E(X - 
xg), where E is a mean (moyenne) of the k&k. Apparently he uses as a hidden 
lemma that any mean of infinitesimals is again an infinitesimal and concludes: 

Therefore, when the elements of the difference X - x0 become infinitely small, the mode 
of division has no more than an imperceptible [insensible] influence on the value of S; and, if 
one makes the numerical values of these elements decrease indefinitely, by increasing their 
number, the value of S will end by being perceptibly [sensiblement] constant or, in other 
words, it will end by attaining a certain limit which will depend solely on the form of the 
function f(x) and on the extreme values x0 and X attributed to the variable x. This limit is that 
which one calls a definite integral. (Translation in [Edwards 1979, 3201; for a commented 
translation, see [Grabiner 1981, 171-1741. Grabiner’s translation is “imperceptible” for in- 
sensible, but “for all practical purposes” for sensiblement.) 

The hidden lemma is true in any reasonable theory of infinitesimals. It will be 
difficult to give sense to the statement that each mean of infinitely many sequences 
with limit zero will again converge to zero. Once more, the direct consideration of 
infinitesimals is superior to an interpretation in terms of sequences. 

Uniform continuity is avoided by the use of the hidden lemma. 

11. THE INTEGRATION OF SERIES 

Cauchy knew that interchanging limits is not always permitted. In 1814 he had 
given an example of a discontinuous function of two variables for which the value 
of the double integral depends on the order of the two integrations. When he needs 
term-by-term integration of infinite series, he is careful with both the assumptions 
and the proof [Cauchy 1823, 237-2381. Notations and assumptions are as in Sec- 
tion 7. The proposition is that 

u,dx converges and is equal to 
X I x0 

sdx, s = 2 u,. 
0 

The proof relies on his Theo&me I on convergence, which is actually mentioned 
only in his Corollaire II on page 239. Since the series converges everywhere in the 
interval, the remainder term r,, is infinitely small for infinitely large n and every- 
where in the interval. Since s r,,dx will be a particular value of the product r, (X - 
x0), it is again an infinitesimal. It follows that 

Isdx - 7 /UkdX = j-rndx 

is infinitesimal for infinitely large IZ and vanishes for n = m. 
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Note that Cauchy uses the infinitesimal version of his convergence criterion in 
both directions. 

Again, it is important that c ld, converge everywhere, i.e., for all x + (Y, x real, 
(Y infinitesimal, of the interval. Though the theorem and its proof are correct under 
these assumptions, there is a gap in the proof of the important Corollaire IV of 
[Cauchy 1823, 239-2401. where u, = a,,~” and x0 = -I/h, X = I/h, I/h being the 
radius of convergence of the power series. Cauchy fails to show that the series 
converges for X - (Y, x0 + (Y, (Y infinitesimal, which is actually true by Abel’s 
theorem. 

12. TAYLOR’S FORMULA 

In [Cauchy 18231 Taylor’s formula is derived from the famous remainder inte- 
gral. Not satisfied with the use of integration Cauchy aimed at a proof needing 
only the tools of the differential calculus. He succeeded immediately after finish- 
ing the RksumP, and gave such a proof in the Addition [Cauchy 1823, 243-2561. 
This is the starting point for his more elaborate theory of infinitesimals which I 
discuss in Section 14. 

The proof itself does not contain any reference to infinitesimals. It rests on his 
generalized mean value theorem, 

j-(x0 + h) f(qXo + 8h) 
mo + h) = F(qxo + B/z) ’ 

provided that f, F, and their first n - 1 derived functions vanish at x = x0 [Cauchy 
1823, 2461. It appears that infinitesimals are not used as a tool for Taylor’s 
theorem but that the new proof of this formula provides an opportunity to estab- 
lish a theory of infinitesimals. On pages 257-261 immediately following the Addi- 
tion the editors of the Oeuures reprinted a research paper, “Sur les formules de 
Taylor and Maclaurin , ” which contains the proof without any mention of infinites- 
imals. 

I suppose that Cauchy thought of his “direct consideration of infinitesimals” as 
a means of mathematics teaching. The textbook [Cauchy 18291 gives the theory of 
infinitesimals as a tool, primarily for the purpose of Taylor’s theorem. 

13. ORDERS OF CONTACT 

In his text on differential geometry Cauchy needs a more general kind of infini- 
tesimals than he has used for Taylor’s formula [Cauchy 18261. He dedicates more 
than 20%, 7 lines out of 33, of the Auertissement of [Cauchy 1826, 9-101 to 
underlining the importance of infinitesimals: 

On trouvera dans la neuvibme, la vingt-unieme et la vingt-deuxieme Lecon, une nouvelle 
thtorie des contacts des courbes et des surfaces courbes, qui a l’avantage de reposer sur des 
definitions independantes du systeme de coordonnees que l’on adopte, et de presenter en 
mCme temps une idee tres-nette du rapprochement plus ou moins considerable de deux 
courbes ou de deux surfaces qui ont entre elles un contact d’un ordre plus or moins tleve. (In 
the ninth, twenty-first and twenty-second Lesson, one will find a new theory of the contact of 



HM 14 INFINITELY SMALL QUANTITIES 271 

curves and curved surfaces, which has the advantage to rest on definitions which are indepen- 
dent of the assumed system of coordinates and which, simultaneously, presents a very clear 
impression of the more or less considerable approach of two curves or two surfaces which 
have among each other a contact of a more or less high order:) 

This is a remarkable idea. Prior to the invention of vector methods a tool is used 
for an invariant or coordinatefree treatment of geometry, in the shape of infinitesi- 
mals. 

Let P be the point of contact of two curves, let Q, R be points on the curves 
with infinitesimal distance i from P, and let o = w(i) be the angle between the 
straight lines PQ, PR. The order of contact is defined as the least upper bound of 
all real numbers Y for which w/i’ is infinitesimal. 

14. SYSTEMS OF INFINITESIMALS 

Apart from the rather vague “variables converging to zero” Cauchy never says 
what his infinitesimals are; we are told only how infinitesimals can be represented. 
It is the same with real numbers: Mathematicians during the second half of the 
19th century developed theories of the real numbers thernselues; Cauchy was 
satisfied with representations, mainly by decimal numbers. As long as the impor- 
tant properties can be deduced from the representations this makes no difference 
for the calculus. 

After preliminary considerations in [Cauchy 1823, 250 ff. (the Addition); 
1826, 132 ff.] a final theory is presented in [Cauchy 1829, 281-286; 325-3391. The 
headline of Chapter 6 is “Sur les derivees des fonctions qui reprksentent des 
quantites infiniment petites” (my italics). 

Without comment Cauchy uses the plural form (systems of infinitesimals) and 
usually speaks of “un systeme quelconque.” Then i denotes the base of the 
system: “Soit toujours i la base du systeme adopt&” This letter i is merely a 
symbol for something which is called an infinitesimal. In general, an infinitesimal 
is represented by f(i) where f(x) is a function defined in a neighborhood of x = 0 
and vanishing at x = 0. Presumably f(x) should be continuous in the vicinity of x = 
0. All that is inferred from the texts. Cauchy himself begins by defining the 
concept of the order of an infinitesimal [Cauchy 1829, 2811: 

Nous terminerons ces Prkliminaires en expliquant ce qu’on doit entendre par des quantitks 
infiniment petites de divers ordres. Designons par a un nombre constant, rationnel ou irra- 
tionnel; par i une quantite infiniment petite, et par r un nombre variable. Dans le systeme de 
quantitts infiniment petites dont i sera la base, une fonction de i representee par f(i) sera un 
infiniment petit de l’ordre a, si la limite du rapport f(i)lir est nulle pour toutes les valeurs de 
r plus petite que U, et infinie pour toutes les valeurs de r plus grandes que U. 

This means that the order a of the infinitesimal f(i) is the uniquely determined real 
number (or +w, as with e-“jZ) such that f(i)li’ is infinitesimal for r < a and 
infinitely large for r > a. 

Cauchy proceeds to prove some very simple properties of the order. A typical 
example is: The order of a product equals the sum of the orders of its members. 



272 DETLEF LAUGWITZ HM 14 

Obviously, operations on infinitesimals are defined by the co~esponding opera- 
tions on the representing functions. The first theorem is on the relation <: 

Theo&me I.-Si, dam un systtme quelconque, I’on considkre deux quantitis infiniment 
petites d’ordres diffkrents, pendant que ces deux quantites s’approcheront indkfiniment de 
ztro, celle qui sera d’un ordre plus klevC finira par obtenir constamment la plus petite valeur 
numkrique. [Cauchy 1829, 282-283; 1826. 133-1341 (If, in any system, two infinitesimals of 
different orders are considered. whilst these quantities approach to zero indefinitely, that 
which has a higher order will finish by having always the smaller absolute value.) 

From the examples considered in the sixth lesson of [Cauchy 1829, 325-3391 it 
will be clear that a function f(x) represents an infinitesimal if it is defined in some 
positive neighborhood of zero, and lim f(x) = 0, Examples are e-l/i and l/log i, 
with orders m and 0 [Cauchy 1829, 326-3271. 

For the “prehistory” of Cauchy’s orders of the infinitely small, see [Guitard 
1986, 12-131. 

15. ATTEMPTS TOWARD THEORIES OF INFINITESIMALS 

All attempts to understand Cauchy from a “rigorous” theory of real numbers 
and functions including uniformity concepts have failed. Giusti’s attempt based on 
sequences is only partly successful. One advantage of modern theories like the 
Nonstandard Analysis of Robinson [1966] is that they provide consistent recon- 
structions of Cauchy’s concepts and results in a language which sounds very much 
like Cauchy’s. I shall briefly sketch two different approaches which follow 
Cauchy’s texts as closely as possible. 

Since Cauchy needs expressions like (f(x + i) - f(x))li I will not restrict myself 
to functions converging to 0; since infinitesimals appear as denominators, even 
functions converging to infinity should be admitted. A Cauchy quantity, or C- 
quantity, will be represented by f(i), where f(x) is defined for 0 < x < E and some 
finite E. I shall say that S(i) and g(i) represent one and the same C-quantity, or f(i) 
= g(i), if f(x) = g(x) for sufficiently small x > 0. This kind of an equivalence class 
has sometimes been called a function germ. The algebraical operations and other 
relations like < are defined via the representing functions in the obvious way, as is 
F(f(i)). The properties of a partially ordered ring are easily verified. If lim f(x) = a 
exists as a real number, then Cauchy writes lim f(i) = a. The modern term is 
standard part. If lim f(i) = 0, the f(i) represents an infinitesimal C-quantity. 

Though a complete theory of such C-quantities is still missing we are in posses- 
sion of a partial theory which covers at least the concepts and results of the Cours 
and the Re’sume’ [Cauchy 1821, 18231. If the independent variable of a function 
representing a C-quantity is restricted to x = l/n, n natural numbers, then only 
sequences a, = f( l/n) enter, and two sequences a,, b, represent one and the same 
quantity if a, = b, for 12 L no and some natural number no. The theory was initiated 
in [Schmieden & Laugwitz 19581 and developed in [Laugwitz 1978, 1980al. While 
Cauchy represents his base i by f(x) = x, we choose w  represented by a, = l/n (or 
rather its reciprocal, a, represented by the sequence of natural numbers). The key 
concept is that of normal sequences and normal functions of quantities. (The term 
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“normal” was replaced by Robinson’s “internal” in more recent publications.) It 
turns out that Cauchy’s concepts and theorems (including the hidden lemma 
mentioned in Section 10) fit in with this theory. 

A different theory has been developed in [Laugwitz 1980b, 1983, 19861. Its 
starting point is a generalization of the method of field extension. A symbol fi 
(corresponding to Cauchy’s l/i) is adjoined to the real numbers. If a formula F(n) 
containing the variable n (for natural numbers) is true for all sufficiently large n, 
then F(a) is defined to be true in the extended theory. Again, Cauchy’s concepts 
and results are reconstructed. This theory had been modeled after ideas of Leibniz 
and Euler. It can easily be modified in a manner which may be close to Cauchy’s 
approach of the Addition through to [Cauchy 18291: If a formula F(x) is true for 0 
< x < E, E some positive real number, then F(i) is true in the extended theory. 

Even if we try, as present-day mathematicians we can hardly free ourselves 
from the influence of set-theoretical thinking which is certainly uncauchyous (sit 
venia verbo). As I have pointed out, neither single numbers nor sets of single 
numbers nor sets of pairs of numbers are basic in the theory of real functions, but 
variables and functions themselves are the primary objects (compare Section 7). 
Cauchy’s intervals are not sets but loci where a variable can move freely. Even a 
nonstandard set (or overdense continuum, as Lakatos called it) does not hit the 
concept. Apparently continuity (at least piecewise) of any function appearing in 
the calculus is a deep-rooted conviction with Cauchy. That may explain the fact 
that he does not bother to show the continuity of differentiable functions. 

For these reasons the attempts mentioned here should be taken with reluctance 
and reserve. 

16. CONCLUDING REMARKS 

It has been impossible to include comments or even bibliographical hints on the 
extensive work concerned with Cauchy’s so-called errors; neither was it suitable 
to mention all of the purported justifications of Cauchy by nonstandard analysts, 
by Lakatos, and by others. Further references can be found in the books and 
papers mentioned in the bibliography, in particular the books of Robinson, Spalt, 
and myself. 

Information on the origins of Cauchy’s concepts and methods can be found in 
[Grabiner 19811 and [Guitard 19861. The influence of Euler should not be ne- 
glected, with regard both to the organization of Cauchy’s texts and, in particular, 
to the fundamental role of infinitesimals. 

A preliminary version of this paper was dedicated to Curt Schmieden on the 
occasion of his 80th birthday (D. Laugwitz, “Cauchy and Infinitesimals,” Pre- 
print 911, Fachbereich Mathematik, Technische Hochschule Darmstadt, June 
1985). 
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