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Another theorem of Cauchy which ‘admits exceptions’
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Abstract

Several exceptions are provided for a theorem in Cauchy’s Cours d’Analyse in the proof of which the need
for uniform convergence has been ignored. A reconstruction of this theorem is offered.
� 2011 Elsevier Inc. All rights reserved.
Résumé

Quelques exceptions sont donnés d’un théorème du Cours d’Analyse de Cauchy dans lequel il n’a pas été tenu
compte de la nécessité de considérer la notion de la convergence uniforme. Une refection de ce théorème est
proposé.
� 2011 Elsevier Inc. All rights reserved.
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1. Abel’s example

Chapter VI of Cauchy’s Cours d’Analyse [Cauchy, 1821, 123–172] is about series, but in
what today would be, for the most part, a masterly first course on the convergence of series,
Cauchy claimed that the limit of a convergent sequence of continuous functions must be
continuous [Cauchy, 1821, 131–132]. In 1826 Abel pointed out in a letter to his teacher
Holmboe in Oslo (added in [Abel, 1839, 71] as a note to his paper on the binomial series)
that this theorem ‘admitted exceptions’ by citing the example:

sin x� 1
2 sin 2xþ 1

3 sin 3x� � � � ¼ 1
2x on [0,p), but which is equal to 0 at x = p and so

discontinuous there.
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This example fruitfully stimulated Seidel [1847], Stokes [1847], and Cauchy himself
[1853], in the developments which led to Weierstrass’ account of uniform convergence.
2. Cauchy’s theorems

Chapter II of Cauchy’s Cours d’Analyse [Cauchy, 1821, 26–69] is divided into three sec-
tions. The third section [Cauchy, 1821, 45–69] is about singularities, points where the value
of a function may be problematic (seemingly 0/0, or 1/1 for example, or infinite). In this
third section, Cauchy proposed four related theorems.

1. If f(x + 1) � f(x)! k as x!1, then f ðxÞ
x ! k as x!1.

2. If f ðxþ1Þ
f ðxÞ ! k as x!1, then

ffiffiffiffiffiffiffiffiffi
f ðxÞx

p
! k as x!1, provided that f(x) > 0 for large x.

3. If An+1 � An! k as n!1, then An/n! k as n!1.
4. If An+1/An! k as n!1, then

ffiffiffiffiffiffi
An

n
p

! k as n!1, provided An is positive.

By taking logarithms, Theorem 2 may be deduced from Theorem 1, and similarly The-
orem 4 may be deduced from Theorem 3. Theorem 3 will turn out to be a special case of
Theorem 1, so that apparently the edifice is built on Theorem 1.

Consider the function defined by f ðxÞ ¼ 1
1�xþ½x�, previously proposed in Burn [2004],

where [x] denotes the integral part of x, x 6 [x] < x + 1.
For this function, f(x + 1) � f(x) = 0 for all values of x, while, for x > 1, f ðxÞ

x takes every
value in the range [1,1), on every interval of unit length.

Thus despite Theorem 1, there is no limit for f ðxÞ
x as x!1, and we have an exception to

the theorem. It is easy to construct further exceptions; for example, f(x) + kx, where k is a
real number and f is the function just defined, and also tanpx may be adjusted for this pur-
pose. Cauchy also claimed Theorem 1 for k =1, but this too is contradicted by the exam-
ple gðxÞ ¼ 2x � 1

1�xþ½x�. In this case g(x + 1) � g(x) = 2x for all x, and for x > 1; gðxÞ
x takes

every value in the range (�1, 0], on every interval of unit length. It seems that we must
search for some unstated assumption in Cauchy’s argument.
3. Cauchy’s proof

We examine Cauchy’s proof of Theorem 1, for finite k [Cauchy, 1821, 48–50].
Cauchy’s argument started by claiming that, given e > 0, for sufficiently large h,

k � e < f(x + 1)–f(x) < k + e, for x P h, where k is the limit.
Cauchy then claimed that the arithmetic mean of the numbers

f ðhþ 1Þ � f ðhÞ
f ðhþ 2Þ � f ðhþ 1Þ
&c . . .

f ðhþ nÞ � f ðhþ n� 1Þ;

where n is a positive integer, namely f ðhþnÞ�f ðhÞ
n , also lies between k � e and k + e.

So,

k � e <
f ðhþ nÞ � f ðhÞ

n
< k þ e:
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At this point Cauchy put x = h + n, and obtained f(x) = f(h) + (x � h)(k + a), where
�e < a < e. He then divided through by x and let x!1, which seemed to show that
f ðxÞ

x ! k. But in shifting from h + n to x there was a covert increase in generality, and what

Cauchy had in fact proved is that f ðhþnÞ
hþn ! k, as n!1, that is to say, a theorem about the

convergence of a sequence. This result holds for every possible choice of h, and therefore
applies to an infinite family of sequences, but it does not expose what may happen when
x increases continuously.

It is now clear that Cauchy’s argument, as it stands, may be used to construct an excel-
lent proof of Theorem 3, and as we have noted, Theorem 4 may be deduced.

Theorem 2 is subject to the same kind of exception as Theorem 1, using the function

FðxÞ ¼ e
1

1�xþ½x�, for which Fðxþ1Þ
FðxÞ ¼ 1 for all x, and for which (F(x))1/x has no limit as

x!1. Although we have cast some doubt on Theorems 1 and 2, Cauchy followed each
of these theorems with three corollaries, applications of these theorems, which are mani-
festly sound and interesting.

4. The corollaries

Theorem 1.

Corollary 1 [Cauchy, 1821, 52]: log x
x ! 0 as x!1.

Corollary 2 [Cauchy, 1821, 52]: Ax

x !1 as x!1, provided A > 1.
Corollary 3 [Cauchy, 1821, 53]: It is not necessary to use Theorem 1 to find the value of the

ratio f ðxÞ
x when x =1, except when f(x) becomes infinite with x. If the function is finite [i.e.

bounded] for x =1, the ratio f ðxÞ
x clearly has 0 as limit.

Theorem 2.

Corollary 1 [Cauchy, 1821, 57]: x1/x! 1, as x!1.
Corollary 2 [Cauchy, 1821, 57]: For a polynomial P in x, P1/x! 1, as x!1.
Corollary 3 [Cauchy, 1821, 58]: ½log x�1=x ! 1, as x!1.

With such corollaries, the theorem must clearly be salvaged. What then is the unstated
assumption in the theorem whose validity enables these corollaries?

5. A reconstructed Theorem 1

Given. f is a real function such that f(x + 1) � f(x)! k, as x!1, and f is bounded on
closed bounded intervals:

To prove. f ðxÞ
x ! k, as x!1.

Let g(x) = f(x) � kx, then g(x + 1) � g(x)! 0, as x!1, and g is bounded on closed
bounded intervals.

Given e > 0, there exists an L > 1 such that, �e < g(x + 1) � g(x) < e, for x P L � 1.
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gðxÞ ¼ gðxÞ � gðx� 1Þ
þ gðx� 1Þ � gðx� 2Þ
þ gðx� 2Þ � gðx� 3Þ
� � �
þ gðx�N þ 1Þ � gðx�NÞ
þ gðx�NÞ;
for any positive integer N:

Now, suppose x > L. Choose N so that L > x � N P L � 1. Then �Ne < g(x) � g(x � N)
< Ne < xe, and so j gðxÞ

x �
gðx�NÞ

x j< N
x e < e. But g is bounded on [0,L], so for some M,

�M < g(x) < M, on this interval, and so �M < g(x � N) < M, for all x > L. Thus
�M

x < gðx�NÞ
x < M

x for x > L, and �2 < gðxÞ
x < 2e for x > max{L,M/e}, and so gðxÞ

x becomes

arbitrarily small as x!1. Thus f ðxÞ�kx
x ! 0 and f ðxÞ

x ! k, as x!1. The same adjustment
to the wording of Theorem 1 enables a proof in the case k =1.

The property of being bounded on closed bounded intervals, which we have added to the
statement of Cauchy’s theorem, holds for every continuous function, and so this version of
the theorem establishes all of Cauchy’s corollaries. This property of continuous functions
was first established by Weierstrass in the late 1860s [Dugac, 2003, 131]. However the lan-
guage of boundedness was only introduced by Pasch [1882] following the use of the concept
by Weierstrass. Previous to that, a ‘bound’ was called a ‘limit’ (using the common-sense
meaning of that term) and the ‘boundedness’ of a set of values described by calling the val-
ues ‘finite’, as in Corollary 1.3 above. But the term ‘finite’ is ambiguous. The function f
which we have used for our counter-example is in fact finite for every value of x, though
not bounded. In Smithies [1986], the distinction between the analysis of Cauchy and Wei-
erstrass is drawn. As in some other errors of Cauchy, the lacuna in the present theorem is
the absence of the notion of uniform convergence; for if from Cauchy’s original proof we
construct a sequence of functions hn(x) = f(x + n)/(x + n) for x > 0 and n a positive integer,
then for each sufficiently large x, Cauchy’s argument proves that limn!1hn(x) = k, that is,
pointwise convergence of (hn), and for Cauchy, this argument established the theorem, but
an attempt to show uniform convergence would have exposed the mistake.
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