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Abstract

It has often been thought that the distinction between pointwise and uniform continuity was a relative
arrival to real analysis, due to the mathematicians associated with Weierstrass. In this note, it is argued that
in his work on real function theory dating from the 1830s, had grasped the distinction and stated two key th
concerning uniform continuity.
 2004 Elsevier Inc. All rights reserved.

Résumé

La distinction entre la continuité dans un point et la continuité uniforme est souvent représentée comme
tardataire à l’analyse, due aux mathématiciens autour de Weierstrass. Dans cette note, nous soutenons qu
dans ses travaux sur l’analyse des années 1830, a bien compris cette distinction, et qu’il a formulé deux th
clés sur la continuité uniforme.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The Bohemian philosopher Bernard Bolzano (1781–1848) has long been recognized for his e
decisive contributions to the foundations of real analysis. Among the best parts of his work are
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concerned with continuous functions. In his “Purely Analytic Proof”[Bolzano, 1817], for example, he
provided a proof of the Intermediate Value Theorem which set out for the first time, as Pierre
has remarked, significant parts of the foundations of real analysis[Dugac, 1980, 92]. Bolzano’sFunction
Theory [Bolzano, 1930], written in the 1830s, but only published some 100 years later, confirm
mastery of the concept of continuity and its role in analysis. There, he constructed a continuous, n
differentiable function[Bolzano, 1930, I, §75; II, §19]1 and gave nice proofs of two other central resu
which are usually associated with later mathematicians, Weierstrass in particular. These are

that a function continuous on a closed interval is bounded there[Bolzano, 1930, I, §§20–21]; and

that a function continuous on a closed interval assumes global maximum and minimum values on
interval[Bolzano, 1930, I, §§22, 24].

Bolzano’s statements are general and precise (that these propositions were even recognized as
requiring proof is remarkable for that time), and his proofs are strikingly modern, both involving
cations of what is now known as the Bolzano–Weierstrass theorem. (Bolzano used this in the fo
form: an infinite point-set contained in a closed interval has a limit point in the interval. He allude
proof of this theorem within his “Theory of Measurable Numbers”[Bolzano, 1930, 28n].2 There is no
compelling reason to doubt that he had a proof, but so far it has not been found in his papers.)

Another important proposition concerning continuous functions is the following:

Theorem 1. A function which is continuous on a closed interval is also uniformly continuous there.

On the other hand, we have

Theorem 2. A function can be continuous on an open interval without being uniformly continuous there

In his Function Theory[Bolzano, 1930, I, §13], and in a manuscript containing corrections to t
work [van Rootselaar, 1969, 8–9], Bolzano stated results which bear an uncanny resemblance to
theorems. Previous commentators on Bolzano’s mathematics, however, have consistently den
Bolzano grasped the concept of uniform continuity[Bolzano, 1930, Editor’s Notes, p. 4; van Rootsela
1969, 1–2; van Rootselaar, 1970, 275–276; Sebestik, 1992, 402n23, 431].3 They have thus given indirec
support to the received view that the definition of uniform continuity and the proof of Theorem 1
due to Weierstrass and his students, in particular to Eduard Heine (see, e.g.,[Bourbaki, 1969, 182; Kline
1970, 953; Edwards, 1979, 325; Grattan-Guinness, 1980, 135; Laugwitz, 1994, 321]).

Heine was indeed the first to publish a definition of uniform continuity[Heine, 1870, 361]and a proof
of Theorem 1[Heine, 1872, 188]. He claimed no originality in these papers, however, and as it turn

1 Bolzano actually only claimed (and proved) that his function had no derivative on a set of points dense in the int
which it is defined.
2 For Bolzano’s theory of measurable numbers see[Bolzano, 1962, 1976; Laugwitz, 1965; Sebestik, 1992; van Rootse

1963].
3 Since this article was accepted for publication, van Rootselaar[Bolzano, 2000, 10]has also argued that Bolzano had gras

the concept of uniform continuity.Rusnock [1999; 2000; 2004]also discusses related issues.
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his proof is an almost verbatim transcription of one given by Dirichlet in his lectures on definite int
in 1854[Lejeune-Dirichlet, 1904, §2]. (The transmission of this result is discussed in[Dugac, 1989].)

The concern of this note, however, is to establish that Bolzano has a legitimate claim to prior
intend to show, in particular, that he not only grasped the notion of uniform continuity but also ga
adequate characterization of the concept, stated and proved Theorem 2, and stated Theorem 1 in
to providing a useful fragment of its proof.

2. Bolzano on continuity

In 1817, Bolzano published his best known paper in analysis, his “Purely Analytic Proof” o
Intermediate Value Theorem[Bolzano, 1817]. The definition of continuity he gives there is well-know
and close to those in current usage today:

According to a correct definition, the expression that a functionf x varies according to the law of continuity
for all values ofx inside or outside certain limits means just that: ifx is some such value, the difference
f (x +ω)−f x can be made smaller than any given quantity providedω can be taken as small as we please.
With the notation that I introduced in §14 ofDer binomische Lehrsatz. . . , this isf (x + ω) = f (x) + Ω

[Bolzano, 1817, Preface].4

It is clear that the concept which is here defined is what would later be called pointwise con
on a domain. Bolzano spoke quite explicitly of a function which varies continuouslyfor all values of
a certain domain, and the definition displays the quantificational structure quite plainly:f is said to be
continuous on a domain if and only if, given any point of the domain, a certain condition is satisfie
condition in question, namely, continuityat a point, is thus present inside Bolzano’s definition and c
be readily detached from the reference to a domain (e.g., an interval). Bolzano, as discussed be
did just this.

Bolzano’s formulation differs from modern ones in two respects. First—a minor point—he ma
use of absolute values in his statement, although they are tacitly understood. Second, and potenti
misleading, is the use Bolzano made of the symbolω. In the language of the “Binomial Theorem,”ω is a
variablequantity “which can become as small as desired”[Bolzano, 1816, v]. It should not be confuse
with aconstantor fixedquantity. If we were to make the assumption, natural enough for a modern r
thatω refers to a constant quantity (i.e., that it is a logical variable ranging over fixed real numbers
Bolzano’s definition would turn out to be defective. To take one example, the function

f (x) =
{

1 if x is of the form 1
2n for somen ∈ N

2x otherwise
(1)

would then have to be said to be continuous at the pointx = 0: the differencef (0 + ω) − f (0) can be
made smaller than any given quantity by takingω sufficiently small, provided that theω chosen is not o
the form 1

2n .5

4 Quoted after the translation of Stephen B.Russ [1980, 162]. The same definition may be found in[Bolzano, 1816, §29].
5 This example is taken from Bolzano’s later workFunction Theory[Bolzano, 1930, I, §9].
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We would want to say, instead, that there is a value ofω such that for it,and for all the values
of ω′, where|ω′| < ω, we havef (x + ω′) − f x smaller than a given quantity.6 That this was Bolzano’s
understanding is confirmed by his usage of it elsewhere in the “Purely Analytic Proof.” In §1
example, he considered functionsf andφ, both continuous on an interval[a, b], with f (a) < φ(a).
From the continuity of the two functions, he inferred thatf (a + i) < φ(a + i) for all i less than a certai
value.

A natural interpretation of Bolzano’sω, then, would be as a range of values (or a neighborhood
the form {x | −ω0 � x � ω0} for some fixedω0, but this is nowhere clearly spelled out in either
“Purely Analytic Proof” or the “Binomial Theorem.” Variable quantities which can become as sm
desired were commonly used in the mathematical literature of that time,7 and perhaps Bolzano thoug
that there was no need for him to give a detailed explanation of them in these papers. Most hi
have—either wittingly or not—extended the benefit of the doubt to Bolzano on this point and cr
him with formulating the first adequate definition of continuity. One could, however (as Bolzano h
later recognized), be more precise concerning the points just mentioned.

In hisFunction Theory, written in the 1830s, Bolzano dealt with these problems directly, and the
find a precise, thoroughly modern definition of pointwise continuity. (The concept was also shar
as Bolzano defined left and right continuity.) Here is his definition:

If a uniform functionFx of one or more variables is so constituted that the variation it undergoes when o
of its variables passes from a determinate valuex to the different valuex + �x diminishesad infinitumas
�x diminishesad infinitum—if, that is,Fx andF(x +�x) (the latter of these at least from a certain value
of the increment�x and for all smaller values) are measurable [i.e., roughly speaking, real and finite], a
the absolute value of the differenceF(x + �x) − Fx becomes and remains less than any given fraction1

N
if one takes�x small enough (and however smaller one may let it become): then I say thatthe functionFx

is continuous for the valuex, and thisfor a positive incrementor in the positive direction, when that which
has just been said occurs for a positive value of�x; for a negative incrementor in the negative direction,
on the other hand, when that which has been said holds for a negative value of�x; if, finally, the stated
condition holds for a positive as well as a negative increment ofx, I say, simply, thatFx is continuousat
the valuex. [Bolzano, 1930, I, §2]8

6 Thus interpreted, Bolzano’s definition differs from (although it is equivalent to) the usual ones in confining the value
variablex + ω to aclosedrather than an open interval aboutx.
7 In his well-known work on the metaphysics of the calculus, for instance, Lazare Carnot had used them to define

small quantities as follows: “I callinfinitely small quantity, one which is considered as continually decreasing, so that i
be made as small as desired. . .” [J’appellequantité infiniment petite, toute quantité qui est considerée comme continuellem
décroissante, tellement qu’elle puisse être rendu aussi petite qu’on le veut. . .] [Carnot, 1970, ch. 1, §14]. This “clarification” of
infinitely small quantities would later become standard usage thanks to Cauchy, who defined continuity as follows: a fuf

is continuous atx if and only if an infinitely small increase of the variable produces an infinitely small increase in the fun
i.e.,f (x + α) − f x is infinitely small wheneverα is [Cauchy, 1821, 34ff.]. Infinitely small quantities, he had explained earli
are not fixed quantities at all, but rathervariablequantities which have zero as their limit[Cauchy, 1821, 4, 26].
8 “Wenn eine einförmige FunctionFx von einer oder auch mehreren Veränderlichen so beschaffen ist, daß die Veränd

die sie erfährt, indem eine ihrer Veränderlichenx aus dem bestimmten Werthex in den Verändertenx + �x übergehet, in da
Unendliche abnimmt, wenn�x in das Unendliche abnimmt, wenn also der WerthFx sowohl als auch der WerthF(x + �x),
der letztere wenigstens anzufangen von einem gewissen Werthe der Differenz�x für alle kleineren abermahls meßbar ist, d
UnterschiedF(x + �x) − Fx aber seinem absoluten Werthe nach kleiner als jeder gegebene Bruch1

N
wird und verbleibt,

wenn man nur�x klein genug nimmt, und so klein man es dann auch noch ferner werden läßt: so sage ich, daß die
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In this later definition, a certain value of the increment�x is distinguished, one, namely, which is sm
enough so that for it, and for all values of�x smaller than it in absolute value, we have|F(x + �x) −
F(x)| < 1

N
(“if one takes�x small enough (and however smaller one may let it become)”). Accor

to today’s conventions, two different symbols would be used here, rather than two occurrences�x.
However, Bolzano’s intentions are clear and perfectly correct; he took a certain fixed value of�x, but
he allowed as well, in his inequalities, all nonzero values of�x smaller in absolute value than the fix
value. In short,�x was used with the same intention thatω had been used in the 1817 paper, only h
the meaning was explicitly set out.

In order to simplify discussion, let us call the distinguished value of�x in Bolzano’s definition a
modulus of continuityfor F . That is, givenx and 1

N
, a modulus of continuity forF is a positive num-

berωx = ω(x, 1
N

) such that, for all values of�x with |�x| � ωx , we have|F(x + �x) − F(x)| < 1
N

.
(Bolzano did not introduce a special symbol for the modulus of continuity, letting the phrase “a
enough value of�x” serve to designate the fixed value of the increment.) We can then parap
Bolzano’s definition as follows: a functionF is continuous at a valuex if and only if for any 1

N
there

exists a modulus of continuityωx for F atx.
A function is said to be continuous on an interval, in theFunction Theoryas in thePurely analytic

proof of 1817, iff it is continuous at every point in the interval: that is, if and only if, for each v
x in the interval and given1

N
, there exists a modulus of continuityωx for F at x. One can now ask th

following question: ifF is continuous for eachx in an interval, can we takeωx the same size for everyx?
In the case of functions continuous on an open interval, Bolzano answered: not necessarily. Sho
giving the definition of continuity, he made this observation:

Theorem. Merely because a functionF(x) is continuous for all values of its variablex lying betweena
andb, it does not follow that for allx between these values there is a fixed numbere which is small enough
so that one can claim that�x never has to be taken smaller in absolute value thane in order to ensure that
the differenceF(x + �x) − F(x) will turn out to be smaller than1

N
.9 [Bolzano, 1930, I, §13]

He proved this as follows:

It is neither contradictory in itself, nor contradictory to the given concept of continuity to assume that f
anyx there is always another (e.g., for thex approaching a certain limitC) for which it is necessary to take
a smaller�x in order to fulfill the condition that the differenceF(x +�x)−Fx becomes less than1

N
and

remains so, as one makes�x smaller and smaller. We have such an example in the functionFx = 1
1−x

for

values ofx approaching 1. Let us write for the sake of brevityx = 1− i. ThenF(x +�x)−Fx = �x
i(i−�x)

;

if this is to be< 1
N

, then�x must be< i2

N+i
. Thus asi becomes smaller, one must take�x smaller; and

Fx für den Werthx stetig verändere, und zwar bey einem positiven Zuwachse oder im positiver Richtung, wenn das n
gesagte bey einem positiven Werthe von�x eintritt: und daß sie dagegen sich stetig verändere bey einem negativen Zuw
oder in negativer Richtung, wenn das Gesagte bey einem negativen Werthe von�x Statt hat: wenn endlich das Gesagte b
einem positiven sowohl als negativen Zuwachs von�x gilt: so sage ich schlechtweg nur, daßFx stetig sey für den Werthx.”
9 “Blos daraus, daß eine FunctionFx für alle innerhalba und b gelegenen Werthe ihrer Veränderlichenx stetig sey, folgt

nicht, daß es für alle innerhalb dieser Grenze gelegenen Werthe vonx eine und eben dieselbe Zahle geben müsse, klein genu
um behaupten zu können, daß man�x nach seinem absoluten Werthe nie< e zu machen brauche, damit der Untersch
F(x + �x) − Fx < 1 ausfalle.”
N
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wheni diminishesad infinitum, i.e., whenx approaches 1ad infinitum, �x must be taken smaller than any
given number, in order to ensure that the difference�Fx turns out< 1

N
.10 [Bolzano, 1930, I, §13]

This is Bolzano’s claim and proof that a function continuous on an open interval need not be uni
continuous there. A reading of this proof makes it clear that what he had in mind is exactly today’s
of uniform continuity. The definition of uniform continuity which one can extract from his statem
however, has given some readers pause:

[T]here is a fixed numbere which is small enough so that one can claim that�x never has to be taken
smaller in absolute value thane in order to ensure that the differenceF(x + �x) − F(x) will turn out to
be smaller than a [given] number1

N
.

The phrase “never has to be taken smaller” seems incongruous here, and has led some to t
Bolzano was confused. Karel Rychlik, the editor of theFunction Theory, for example, paraphrased th
condition as follows:

Let x andx + �x be points in a setM ; given ε > 0, there existse > 0 independent ofx in M such that
it is not necessary for|�x| to be less thane in order to ensure|F(x + �x) − F(x)| < ε. [Bolzano, 1930,
Editor’s notes, 4]11

He then constructed an example which showed that this property (in conjunction with pointwise
nuity) was not equivalent to uniform continuity on a setM . From his remarks, it is apparent thatBob van
Rootselaar [1969, 1]agreed with Rychlik’s interpretation. Both evidently assumed that by�x, Bolzano
referred simply to a fixed value of the increment.

Bolzano’s language in the proof, it seems to us, indicates that this interpretation is not justified.
says quite clearly that the�x must be chosen smaller and smaller in order to ensure thatF(x +�x)−Fx

is less than1
N

not just for that particular value, but also for all smaller values of the increment�x (“in
order to fulfill the condition that the differenceF(x + �x) − Fx becomes less than1

N
, and remains so

as one makes�x smaller and smaller”). What is being chosen here, in other words, is not a single fi
value of�x, but rather a modulus of continuity. Considered by itself, apart from its context, Bolz
formulation is not a definition of uniform continuity. However, the proof makes clear that it is incom
not because Bolzano had no idea of uniform continuity, but rather because his formulation is el

10 “Es ist weder an sich, noch dem gegebenen Begriffe der Stetigkeit widersprechend anzunehmen, daß für jedes anx ein
anderes, z. B. nahmentlich für jedesx, das einer gewissen GrenzeC sich nähert, ein kleineres�x nothwendig sey, um die
Bedingung zu erfüllen, daß der UnterschiedF(x +�x)−Fx < 1

N
wird und verbleibt, sofern man�x noch immer verkleinert

Ein Beyspiel haben wir an der FunctionFx = 1
1−x

für solche Werthe vonx, die sich dem Werthe von 1 in das Unendlic

nahen. Schreiben wir nämlich zur Abkürzungx = 1 − i, so istF(x + �x) − Fx = �x
i(i−�x)

: soll dieß< 1
N

werden; so muß

�x < i2

N+i
seyn. Also je kleineri wird, um desto kleiner muß man auch�x machen, und wenni ins Unendliche abnimmt

d.h., wennx sich der Grenze 1 in das Unendliche nahet, so muß�x nach und nach kleiner als jeder gegebene Zahl wer
bloß damit der Unterschied�Fx < 1

N
ausfalle.”

11 “Sind x undx + �x Punkte ausM , so kann zu jedemε > 0 ein e > 0 unabhängig vonx ausM auf solche Art bestimm
werden, daß es nicht nötig ist,|�x| kleiner alse zu wählen, wenn|�F(x)| < ε sein soll.”
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and requires us to refer back to the definition of continuity given in §2.12 The faults of his statemen
can be explained, if perhaps not excused, by noting that §13 is a remark concerning the defin
pointwise continuity and was meant to be read with that definition before one’s eyes.

Things become somewhat clearer if we incorporate the definition of continuity directly into the
ment of the theorem. Then we have

Theorem. Merely because a functionFx is so constituted that for all values of its variablex lying between
a andb, the absolute value of the differenceF(x + �x) − Fx becomes and remains less than any given
fraction 1

N
if one takes�x small enough (and however smaller one may let it become) it does not follow

that for allx between these values there is a fixed numbere which is small enough so that one can claim
that�x never has to be taken smaller in absolute value thane in order to ensure that the differenceF(x +
�x) − F(x) will turn out to be smaller than1

N
.

With this in mind, Bolzano’s text can be summarized as follows. First, a functionF is said to be contin
uous at a pointx if and only if for any 1

N
there exists a modulus of continuity forF at x. Bolzano then

pointed out in §13 that a function may be continuous on an open interval without it being the ca
for any 1

N
, there existse > 0 such that, for allx in the interval, the modulus of continuityωx never has to

be taken less thane. And this was shown through his example, where the size of the moduli of cont
required to ensure|F(x + �x) − Fx| < 1

N
for x ∈ (a,1) are not in fact bounded away from zero.

The property that Bolzano denied of this particular function can be paraphrased as follows:

Given 1
N

, there existse > 0 such that, for allx in the interval, there exists a modulus of continuity forF at
x which never has to be taken< e.

This differs slightly from now-standard definitions of uniform continuity, which have

Given 1
N

, there existse > 0 such that, for allx in the interval, there exists a modulus of continuity forF

which is= e.

But it is easily seen that these two formulations are equivalent; for if there exists a modulus of con
equal toe, then there trivially exists one which is� e. On the other hand, if there exists a modulus
continuity which is� e, then the modulus of continuity can always be taken equal toe.

Thus it seems clear to us that Bolzano here characterized the property of uniform continu
proved, with the help of his example, that pointwise continuity on an open interval does not imply u
continuity there.

He was not done, however, for in a manuscript published by van Rootselaar containing additio
emendations to theFunction Theory, Bolzano stated that pointwise continuity on a closed intervais
sufficient to ensure uniform continuity. He wrote:

12 A further point supporting this reading is that the number1
N

appears out of nowhere in §13. If we read the passage
comment on the definition of pointwise continuity, however, it becomes clear that what is being talked about is the pr
given number1 mentioned there.
N
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Theorem. If a functionFx is continuous for all values between and includingx = a andx = b, then there
is a certain numbere which is sufficiently small so that for allx which do not lie outside ofa andb, the
increment�x does not have to be taken smaller thane in order for the differenceF(x + �x) − Fx to turn
out to be less than a given number1

N
. [van Rootselaar, 1969, 8–9]13

He did not, however, produce a satisfactory proof of this result. What we find in the manuscript is
rough notes towards a proof. These contain—although Bolzano did not seem to have recognize
a useful fragment of a correct proof. Here is a sketch of Bolzano’s attempted proof[van Rootselaar, 1969
9ff.].

Suppose thatF(x) is continuous on[a, b]. Suppose further that given a number1
N

there are
x1, x2, x3, . . . ∈ [a, b] such that the allowable increment�xi must be taken smaller and smaller in
der to ensure that|F(xi + �xi) − F(xi)| remains smaller than1

N
. If the set of suchxi is only finite, then

the�xi will have a minimum, which will therefore serve for the whole interval. The only remaining
of interest is where the�xi are infinite in number and tend to zero with increasingi (i.e., a case wher
the stated condition fails). In this case, applying the Bolzano–Weierstrass theorem, there is a lim
of thexi , sayc, which will lie in [a, b]. By hypothesis,f will be continuous atx = c.

At this point, it is relatively straightforward to obtain a contradiction to complete the proof. In
of this, Bolzano attempted, without success, to prove the result directly. A direct proof is possibl
the beginning sketched by Bolzano, but is considerably more complicated than an indirect one.14 Thus,
although he stated the key theorem linking pointwise and uniform continuity, Bolzano did not man
produce a satisfactory proof.

3. Conclusion

The distinction between pointwise and uniform continuity is often cited as a typical advance o
19th-century, in particular Weierstrassian, analysis and as a sign of the increasingly sophisticate
quantificational concepts in mathematics. While there is no doubt much truth in the general pic
the development of analysis this example has been used to support, the results of this paper ind
such distinctions were within the reach of careful mathematicians of an earlier generation like D
or, still earlier, mathematicians like Bolzano who made a special point of attending to the fine po
conceptual and logical structure.
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13 “Lehrsatz: Wenn eine FunctionFx für alle Werthe der Veränderlichenx von x = a bis x = b einschließlich stetig ist: so
gibt es eine gewisse Zahle klein genug, daß für alle Werthe derx nicht außerhalba undb liegen, der Zuwachs�x nicht < e

zu werden braucht, damit der UnterschiedF(x + �x) − Fx < als eine gegebene Zahl1
N

ausfalle.”
14 SeeRusnock [2004, Appendix]for details.



P. Rusnock, A. Kerr-Lawson / Historia Mathematica 32 (2005) 303–311 311

rechnung

tes Resultat

rlag der

ommann-

vol. 10/1.

e royale,

86–101.
hoenflies–

: Grattan-

.

mpanion

. Vieweg,

iences 52,

n Logik,

85.
References

Bolzano, B., 1816. Der binomische Lehrsatz und als Folgerung aus ihm der polynomische, und die Reihen, die zur Be
der Logarithmen und Exponentialgrössen dienen, genauer als bisher erwiesen. C.W. Enders, Prague.

Bolzano, B., 1817. Rein analytischer Beweis des Lehrsatzes, daß zwischen je zwey Werthen, die ein entgegengesetz
gewähren, wenigstens eine reelle Wurzel der Gleichung liegt. Gottlieb Haase, Prague.

Bolzano, B., 1930. Functionenlehre, edited by K. Rychlik. Royal Bohemian Academy of Sciences, Prague.
Bolzano, B., 1962. Theorie der reelen Zahlen im Bolzanos handschriftlichen Nachlasse, edited by K. Rychlik. Ve

Tchechoslowakischen Akademie der Wissenschaften, Prague.
Bolzano, B., 1976. Reine Zahlenlehre, edited by J. Berg. Bernard Bolzano-Gesamtausgabe, Series 2A, vol. 8. Fr

Holzboog, Stuttgart-Bad Cannstatt.
Bolzano, B., 2000. Functionenlehre, edited by B. van Rootselaar. Bernard Bolzano-Gesamtausgabe, Series 2A,

Frommann-Holzboog, Stuttgart-Bad Cannstatt.
Bourbaki, N., 1969. Eléments d’histoire des mathématiques, second ed. Hermann, Paris.
Carnot, L., 1970. Réflexions sur la métaphysique du calcul infinitésimal. Blanchard, Paris.
Cauchy, A.-L., 1821. Cours d’analyse de l’École royale polytechnique. Première partie: analyse algébrique. Imprimeri

Debure frères, Paris.
Dugac, P., 1980. Histoire du théorème des accroissements finis. Archives Internationales d’Histoire des Sciences 30,
Dugac, P., 1989. Sur la correspondance de Borel et sur le théorème de Dirichlet–Heine–Weierstrass–Borel–Sc

Lebesgue. Archives Internationales d’Histoire des Sciences 39, 69–110.
Edwards Jr., C.H., 1979. The Historical Development of the Calculus. Springer-Verlag, New York.
Grattan-Guinness, I., 1980. The emergence of mathematical analysis and its foundational progress, 1780–1880. In

Guinness, I. (Ed.), From the Caluclus to Set Theory 1630–1910. Duckworth, London, pp. 94–148.
Heine, E., 1870. Über trigonometrische Reihen. Journal für die Reine und Angewandte Mathematik 71, 353–365.
Heine, E., 1872. Die Elemente der Functionenlehre. Journal für die Reine und Angewandte Mathematik 74, 172–188
Kline, M., 1970. Mathematical Thought from Ancient to Modern Times. Oxford Univ. Press, New York.
Laugwitz, D., 1965. Bemerkungen zu Bolzanos Größenlehre. Archive for History of Exact Sciences 2, 398–409.
Laugwitz, D., 1994. Real-variable analysis from Cauchy to nonstandard analysis. In: Grattan-Guinness, I. (Ed.), Co

Encyclopedia of the History and Philosophy of the Mathematical Sciences. Routledge, London, pp. 318–330.
Lejeune-Dirichlet, P.G., 1904. Vorlesungen über die Lehre von den einfachen und mehrfachen bestimmten Integralen

Braunschweig.
Rusnock, P., 1999. Philosophy of mathematics: Bolzano’s responses to Kant and Lagrange. Revue d’Histoire des Sc

399–427.
Rusnock, P., 2000. Bolzano’s Philosophy and the Emergence of Modern Mathematics. Rodopi, Amsterdam.
Rusnock, P., 2004. Bolzano’s contributions to real analysis. In: Morscher, E. (Ed.), Bernard Bolzanos Leistungen i

Mathematik, und Physik. Academia Verlag, Sankt Augustin, pp. 99–116.
Russ, S.B., 1980. A translation of Bolzano’s paper on the intermediate value theorem. Historia Mathematica 7, 156–1
Sebestik, J., 1992. Logique et mathématique chez Bernard Bolzano. Vrin, Paris.
van Rootselaar, B., 1963. Bolzano’s theory of real numbers. Archive for History of Exact Sciences 2, 168–180.
van Rootselaar, B., 1969. Bolzano’s corrections to his Functionenlehre. Janus 56, 1–21.
van Rootselaar, B., 1970. Bolzano, Bernard. Dictionary of Scientific Biography. Scribner’s, New York.


	Bolzano and uniform continuity
	Introduction
	Bolzano on continuity
	Conclusion
	Acknowledgments
	References


