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Abstract

It has often been thought that the distinction between pointwise and uniform continuity was a relatively late
arrival to real analysis, due to the mathematicians associated with Weierstrass. In this note, it is argued that Bolzano,
in his work on real function theory dating from the 1830s, had grasped the distinction and stated two key theorems
concerning uniform continuity.
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Résumé

La distinction entre la continuité dans un point et la continuité uniforme est souvent représentée comme une re-
tardataire a I'analyse, due aux mathématiciens autour de Weierstrass. Dans cette note, nous soutenons que Bolzan
dans ses travaux sur I'analyse des années 1830, a bien compris cette distinction, et qu'il a formulé deux théorémes

clés sur la continuité uniforme.
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1. Introduction

The Bohemian philosopher Bernard Bolzano (1781-1848) has long been recognized for his early and
decisive contributions to the foundations of real analysis. Among the best parts of his work are those
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concerned with continuous functions. In his “Purely Analytic Pro@blzano, 1817] for example, he
provided a proof of the Intermediate Value Theorem which set out for the first time, as Pierre Dugac
has remarked, significant parts of the foundations of real andlysigac, 1980, 92]Bolzano’sFunction
Theory[Bolzano, 1930] written in the 1830s, but only published some 100 years later, confirms his
mastery of the concept of continuity and its role in analysis. There, he constructed a continuous, nowhere
differentiable functiorjBolzano, 1930, I, §75; II, §19]and gave nice proofs of two other central results
which are usually associated with later mathematicians, Weierstrass in particular. These are

that a function continuous on a closed interval is bounded {Baieano, 1930, |, 8820-21and

that a function continuous on a closed interval assumes global maximum and minimum values on the
interval[Bolzano, 1930, |, 8§22, 24]

Bolzano’s statements are general and precise (that these propositions were even recognized as theoren
requiring proof is remarkable for that time), and his proofs are strikingly modern, both involving appli-
cations of what is now known as the Bolzano—Weierstrass theorem. (Bolzano used this in the following
form: an infinite point-set contained in a closed interval has a limit point in the interval. He alluded to a
proof of this theorem within his “Theory of Measurable Numbgitlzano, 1930, 28nf There is no
compelling reason to doubt that he had a proof, but so far it has not been found in his papers.)

Another important proposition concerning continuous functions is the following:

Theorem 1. A function which is continuous on a closed interval is also uniformly continuous there.
On the other hand, we have
Theorem 2. A function can be continuous on an open interval without being uniformly continuous there.

In his Function Theory[Bolzano, 1930, I, 813]and in a manuscript containing corrections to this
work [van Rootselaar, 1969, 89Bolzano stated results which bear an uncanny resemblance to these
theorems. Previous commentators on Bolzano’s mathematics, however, have consistently denied tha
Bolzano grasped the concept of uniform continfidplzano, 1930, Editor’s Notes, p. 4; van Rootselaar,
1969, 1-2; van Rootselaar, 1970, 275-276; Sebestik, 1992, 402n23, A4y have thus given indirect
support to the received view that the definition of uniform continuity and the proof of Theorem 1 were
due to Weierstrass and his students, in particular to Eduard Heine (sef@Beaugbaki, 1969, 182; Kline,

1970, 953; Edwards, 1979, 325; Grattan-Guinness, 1980, 135; Laugwitz, 1991, 321]

Heine was indeed the first to publish a definition of uniform continjttgine, 1870, 361and a proof

of Theorem JHeine, 1872, 188]He claimed no originality in these papers, however, and as it turns out

1 Bolzano actually only claimed (and proved) that his function had no derivative on a set of points dense in the interval on
which it is defined.

2 For Bolzano's theory of measurable numbers [&zano, 1962, 1976; Laugwitz, 1965; Sebestik, 1992; van Rootselaar,
1963]

3 Since this article was accepted for publication, van Roots@iadrano, 2000, 10has also argued that Bolzano had grasped
the concept of uniform continuitiRusnock [1999; 2000; 2004)so discusses related issues.
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his proof is an almost verbatim transcription of one given by Dirichlet in his lectures on definite integrals
in 1854[Lejeune-Dirichlet, 1904, 82 The transmission of this result is discussefDungac, 1989)

The concern of this note, however, is to establish that Bolzano has a legitimate claim to priority. We
intend to show, in particular, that he not only grasped the notion of uniform continuity but also gave an
adequate characterization of the concept, stated and proved Theorem 2, and stated Theorem 1 in additio
to providing a useful fragment of its proof.

2. Bolzano on continuity

In 1817, Bolzano published his best known paper in analysis, his “Purely Analytic Proof” of the
Intermediate Value TheorefBolzano, 1817] The definition of continuity he gives there is well-known
and close to those in current usage today:

According to a correct definition, the expression that a funcfievaries according to the law of continuity
for all values ofx inside or outside certain limits means just thatt ifs some such value, the difference
f(x+w)— fx can be made smaller than any given quantity providedn be taken as small as we please.
With the notation that | introduced in §14 Bfer binomische Lehrsatz ., thisis f(x + w) = f(x) + 2
[Bolzano, 1817, Prefacé]

It is clear that the concept which is here defined is what would later be called pointwise continuity
on a domain. Bolzano spoke quite explicitly of a function which varies continuduslgll values of
a certain domainand the definition displays the quantificational structure quite plajhlig said to be
continuous on a domain if and only if, given any point of the domain, a certain condition is satisfied. The
condition in question, namely, continuigt a point is thus present inside Bolzano’s definition and can
be readily detached from the reference to a domain (e.g., an interval). Bolzano, as discussed below, latel
did just this.

Bolzano’s formulation differs from modern ones in two respects. First—a minor point—he made no
use of absolute values in his statement, although they are tacitly understood. Second, and potentially more
misleading, is the use Bolzano made of the symaadh the language of the “Binomial Theoreny'is a
variable quantity “which can become as small as desirf@&blzano, 1816, v]It should not be confused
with aconstanbor fixedquantity. If we were to make the assumption, natural enough for a modern reader,
thatw refers to a constant quantity (i.e., that it is a logical variable ranging over fixed real numbers), then
Bolzano’s definition would turn out to be defective. To take one example, the function

if i 1
fx) = 1 ifxis qf the formz; for somen € N Q)
2x otherwise

would then have to be said to be continuous at the pointO: the differencef (0 + w) — f(0) can be
made smaller than any given quantity by takingufficiently small, provided that the chosen is not of
the form 2.5

4 Quoted after the translation of StephenfBiss [1980, 162]The same definition may be found[Bolzano, 1816, §29]
5 This example is taken from Bolzano’s later wdtkinction TheonfBolzano, 1930, I, 89]
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We would want to say, instead, that there is a valuevasuch that for it,and for all the values
of o', where|w'| < w, we havef (x + ') — fx smaller than a given quantifyThat this was Bolzano’s
understanding is confirmed by his usage of it elsewhere in the “Purely Analytic Proof.” In 815, for
example, he considered functiorfsand ¢, both continuous on an intervéd, b], with f(a) < ¢(a).

From the continuity of the two functions, he inferred thfdt: + i) < ¢ (a + i) for all i less than a certain
value.

A natural interpretation of Bolzano®, then, would be as a range of values (or a neighborhood) of
the form{x | —wo < x < wg} for some fixedwg, but this is nowhere clearly spelled out in either the
“Purely Analytic Proof” or the “Binomial Theorem.” Variable quantities which can become as small as
desired were commonly used in the mathematical literature of that’tame, perhaps Bolzano thought
that there was no need for him to give a detailed explanation of them in these papers. Most historians
have—either wittingly or not—extended the benefit of the doubt to Bolzano on this point and credited
him with formulating the first adequate definition of continuity. One could, however (as Bolzano himself
later recognized), be more precise concerning the points just mentioned.

In his Function Theorywritten in the 1830s, Bolzano dealt with these problems directly, and there we
find a precise, thoroughly modern definition of pointwise continuity. (The concept was also sharpened,
as Bolzano defined left and right continuity.) Here is his definition:

If a uniform functionFx of one or more variables is so constituted that the variation it undergoes when one
of its variables passes from a determinate valte the different value: + Ax diminishesad infinitumas

Ax diminishesad infinitum—if, that is, Fx and F (x + Ax) (the latter of these at least from a certain value

of the incrementAx and for all smaller values) are measurable [i.e., roughly speaking, real and finite], and
the absolute value of the differené&x + Ax) — Fx becomes and remains less than any given frat%ion

if one takesAx small enough (and however smaller one may let it become): then | sathéfainctionF x

is continuous for the value, and thisfor a positive incremendr in the positive directiorwhen that which

has just been said occurs for a positive valué\af for a negative incremerdr in the negative direction

on the other hand, when that which has been said holds for a negative vatue of finally, the stated
condition holds for a positive as well as a negative increment dsay, simply, thatF x is continuousat

the valuer. [Bolzano, 1930, |, §7

6 Thus interpreted, Bolzano’s definition differs from (although it is equivalent to) the usual ones in confining the values of the
variablex + o to aclosedrather than an open interval about

7 In his well-known work on the metaphysics of the calculus, for instance, Lazare Carnot had used them to define infinitely
small quantities as follows: “I caihfinitely small quantityone which is considered as continually decreasing, so that it can
be made as small as desired’ [J’appellequantité infiniment petiteoute quantité qui est considerée comme continuellement
décroissante, tellement qu’elle puisse étre rendu aussi petite qu’on le jd@arnot, 1970, ch. 1, §14This “clarification” of
infinitely small quantities would later become standard usage thanks to Cauchy, who defined continuity as follows: afunction
is continuous at if and only if an infinitely small increase of the variable produces an infinitely small increase in the function,
i.e., f(x +a) — fx isinfinitely small wheneves is [Cauchy, 1821, 34ff.]Infinitely small quantities, he had explained earlier,
are not fixed quantities at all, but rathexriable quantities which have zero as their lif@auchy, 1821, 4, 26]

8 “Wenn eine einférmige FunctioAx von einer oder auch mehreren Veranderlichen so beschaffen ist, daR die Veranderung,
die sie erfahrt, indem eine ihrer Veranderlicheaus dem bestimmten Werthein den Veranderten + Ax Ubergehet, in das
Unendliche abnimmt, wennx in das Unendliche abnimmt, wenn also der Wefth sowohl als auch der Werth(x + Ax),
der letztere wenigstens anzufangen von einem gewissen Werthe der Differefiz alle kleineren abermahls meRbar ist, der
UnterschiedF (x + Ax) — Fx aber seinem absoluten Werthe nach kleiner als jeder gegebene %rum'rd und verbleibt,
wenn man nuAx klein genug nimmt, und so klein man es dann auch noch ferner werden IaR3t: so sage ich, daf? die Function
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In this later definition, a certain value of the incremeit is distinguished, one, namely, which is small
enough so that for it, and for all values afc smaller than it in absolute value, we have(x + Ax) —
F(x)| < % (“if one takesAx small enough (and however smaller one may let it become)”). According
to today’s conventions, two different symbols would be used here, rather than two occurrerces of
However, Bolzano's intentions are clear and perfectly correct; he took a certain fixed vatue btit

he allowed as well, in his inequalities, all nonzero valueaofsmaller in absolute value than the fixed
value. In shortAx was used with the same intention thahad been used in the 1817 paper, only here
the meaning was explicitly set out.

In order to simplify discussion, let us call the distinguished valué\efin Bolzano’s definition a
modulus of continuityor F. That is, givenx and%, a modulus of continuity fo is a positive num-
berw; = w(x, &) such that, for all values ofx with |Ax| < w,, we have|F (x + Ax) — F(x)| < +.
(Bolzano did not introduce a special symbol for the modulus of continuity, letting the phrase “a small
enough value ofAx” serve to designate the fixed value of the increment.) We can then paraphrase
Bolzano’s definition as follows: a functioR is continuous at a value if and only if for any% there
exists a modulus of continuity, for F atx.

A function is said to be continuous on an interval, in fction Theoryas in thePurely analytic
proof of 1817, iff it is continuous at every point in the interval: that is, if and only if, for each value
x in the interval and giver;%, there exists a modulus of continuity, for F atx. One can now ask the
following question: ifF is continuous for each in an interval, can we take, the same size for eveny?

In the case of functions continuous on an open interval, Bolzano answered: not necessarily. Shortly after
giving the definition of continuity, he made this observation:

Theorem. Merely because a functiéitx) is continuous for all values of its variablelying betweeru
andb, it does not follow that for alk between these values there is a fixed nunehehich is small enough
so that one can claim thatx never has to be taken smaller in absolute value tharorder to ensure that
the differenceF (x + Ax) — F(x) will turn out to be smaller thal%.9 [Bolzano, 1930, I, 8§13]

He proved this as follows:

It is neither contradictory in itself, nor contradictory to the given concept of continuity to assume that for
anyx there is always another (e.g., for the@pproaching a certain lim&) for which it is necessary to take

a smallerAx in order to fulfill the condition that the differendé(x + Ax) — Fx becomes less tha;%a and
1

remains so, as one makas smaller and smaller. We have such an example in the funétios: = for
values ofrx approaching 1. Let us write for the sake of brevity- 1 —i. ThenF (x + Ax) — Fx = i(l.f—zx);

i2

NP Thus as becomes smaller, one must take smaller; and

if this is to be< &, thenAx must be<

Fx fur den Werthx stetig veréandere, und zwar bey einem positiven Zuwachse oder im positiver Richtung, wenn das nur eben
gesagte bey einem positiven Werthe v eintritt: und dal3 sie dagegen sich stetig verédndere bey einem negativen Zuwachse
oder in negativer Richtung, wenn das Gesagte bey einem negativen Werthervdtatt hat: wenn endlich das Gesagte bey
einem positiven sowohl als negativen Zuwachs yongilt: so sage ich schlechtweg nur, daB stetig sey fur den Werth.”

9 “Blos daraus, daR eine Functidgfx fiir alle innerhalba und b gelegenen Werthe ihrer Veranderlicherstetig sey, folgt

nicht, daf3 es fur alle innerhalb dieser Grenze gelegenen Werthe @ioie und eben dieselbe Zahjieben miisse, klein genug,

um behaupten zu kénnen, dal mam nach seinem absoluten Werthe riee zu machen brauche, damit der Unterschied
F(x+Ax)—Fx < % ausfalle.”
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wheni diminishesad infinitum i.e., whenx approaches &d infinitum Ax must be taken smaller than any
given number, in order to ensure that the differendéx turns out< %.10 [Bolzano, 1930, I, §13]

This is Bolzano’s claim and proof that a function continuous on an open interval need not be uniformly
continuous there. A reading of this proof makes it clear that what he had in mind is exactly today’s notion
of uniform continuity. The definition of uniform continuity which one can extract from his statement,
however, has given some readers pause:

[Tlhere is a fixed numbe¢ which is small enough so that one can claim that never has to be taken
smaller in absolute value thanin order to ensure that the differenégx + Ax) — F(x) will turn out to
be smaller than a [given] numb%r.

The phrase “never has to be taken smaller” seems incongruous here, and has led some to think tha
Bolzano was confused. Karel Rychlik, the editor of thenction Theoryfor example, paraphrased this
condition as follows:

Let x andx + Ax be points in a seM; givene > 0, there existg > 0 independent of in M such that
it is not necessary foiAx| to be less tham in order to ensuréF (x + Ax) — F(x)| < ¢. [Bolzano, 1930,
Editor’s notes, 4}

He then constructed an example which showed that this property (in conjunction with pointwise conti-
nuity) was not equivalent to uniform continuity on a 8&t From his remarks, it is apparent thizab van
Rootselaar [1969, 1dgreed with Rychlik’s interpretation. Both evidently assumed thatloyBolzano
referred simply to a fixed value of the increment.

Bolzano’s language in the proof, it seems to us, indicates that this interpretation is not justified. For he
says quite clearly that trvex must be chosen smaller and smaller in order to ensurdthat Ax) — Fx
is less thanl% not just for that particular value, but also for all smaller values of the increment'in
order to fulfill the condition that the differendé(x + Ax) — Fx becomes less tha{ﬂ,\, and remains so,
as one makeax smaller and small€). What is being chosen here, in other words, is not a single fixed
value of Ax, but rather a modulus of continuity. Considered by itself, apart from its context, Bolzano’s
formulation is not a definition of uniform continuity. However, the proof makes clear that it is incomplete
not because Bolzano had no idea of uniform continuity, but rather because his formulation is elliptical,

10 «Es ist weder an sich, noch dem gegebenen Begriffe der Stetigkeit widersprechend anzunehmen, daR fiir jedesiandere
anderes, z. B. nahmentlich flir jedesdas einer gewissen Grenﬂssmh nahert, ein kleinereAx nothwendig sey, um die
Bedingung zu erfiillen, daf der Unterschietk + Ax) — Fx < & W|rd und verbleibt, sofern manx noch immer verkleinert.

Ein Beyspiel haben wir an der Functidix = 1 fur solche Werthe von, die SICh dem Werthe von 1 in das Unendliche

nahen. Schrelben wir namlich zur Abkurzumg: 1 i,SOIStF(x + Ax) — Fx = AT Ax) - soll dieR< L Werden so mufd

Ax < N+ seyn. Also je kleinef wird, um desto kleiner muf3 man aug¢tx machen, und wennins Unendllche abnimmt,
d.h., wennx sich der Grenze 1 in das Unendliche nahet, so mufhach und nach kleiner als jeder gegebene Zahl werden,
bloR damit der Unterschied Fx < % ausfalle.”

1 “sind x undx + Ax Punkte aus¥, so kann zu jedem > 0 eine > 0 unabhangig vonr ausM auf solche Art bestimmt
werden, dal3 es nicht nétig ist\x| kleiner alse zu wahlen, wennA F (x)| < ¢ sein soll.”
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and requires us to refer back to the definition of continuity given if?§khe faults of his statement
can be explained, if perhaps not excused, by noting that 813 is a remark concerning the definition of
pointwise continuity and was meant to be read with that definition before one’s eyes.

Things become somewhat clearer if we incorporate the definition of continuity directly into the state-
ment of the theorem. Then we have

Theorem. Merely because a functidix is so constituted that for all values of its variabléying between
a andb, the absolute value of the differené&x + Ax) — Fx becomes and remains less than any given

fraction % if one takesAx small enough (and however smaller one may let it become) it does not follow

that for all x between these values there is a fixed nungbehich is small enough so that one can claim
that Ax never has to be taken smaller in absolute value tharorder to ensure that the differenégx +
Ax) — F(x) will turn out to be smaller tha%.

With this in mind, Bolzano’s text can be summarized as follows. First, a funéti®said to be contin-
uous at a poink if and only if for any% there exists a modulus of continuity fér at x. Bolzano then
pointed out in 8§13 that a function may be continuous on an open interval without it being the case that
for any%, there existg > 0 such that, for alk in the interval, the modulus of continuity, never has to
be taken less than And this was shown through his example, where the size of the moduli of continuity
required to ensureF (x + Ax) — Fx| < % for x € (a, 1) are not in fact bounded away from zero.

The property that Bolzano denied of this particular function can be paraphrased as follows:

Given % there existg > 0 such that, for alk in the interval, there exists a modulus of continuity foat
x which never has to be takene.

This differs slightly from now-standard definitions of uniform continuity, which have

Given % there existe > 0 such that, for alk in the interval, there exists a modulus of continuity for
whichis=e.

But it is easily seen that these two formulations are equivalent; for if there exists a modulus of continuity
equal toe, then there trivially exists one which is e. On the other hand, if there exists a modulus of
continuity which is> e, then the modulus of continuity can always be taken equal to

Thus it seems clear to us that Bolzano here characterized the property of uniform continuity and
proved, with the help of his example, that pointwise continuity on an open interval does notimply uniform
continuity there.

He was not done, however, for in a manuscript published by van Rootselaar containing additions and
emendations to thEunction Theory Bolzano stated that pointwise continuity on a closed inteiwval
sufficient to ensure uniform continuity. He wrote:

12 A further point supporting this reading is that the numl#nappears out of nowhere in §13. If we read the passage as a
comment on the definition of pointwise continuity, however, it becomes clear that what is being talked about is the previously
given number% mentioned there.
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Theorem. If a functiorF x is continuous for all values between and including: « andx = b, then there
is a certain numbe# which is sufficiently small so that for all which do not lie outside o& andb, the
incrementAx does not have to be taken smaller tlean order for the differencé (x + Ax) — Fx to turn
out to be less than a given numb}%;r [van Rootselaar, 1969, 8-

He did not, however, produce a satisfactory proof of this result. What we find in the manuscript is some
rough notes towards a proof. These contain—although Bolzano did not seem to have recognized this—
a useful fragment of a correct proof. Here is a sketch of Bolzano’s attemptedpaodRootselaar, 1969,

off.].

Suppose thatF(x) is continuous on[a, b]. Suppose further that given a numb%r there are
X1, X2, X3, ... € [a, b] such that the allowable incrementy; must be taken smaller and smaller in or-
der to ensure thatF (x; + Ax;) — F(x;)| remains smaller tha%. If the set of suchy; is only finite, then
the Ax; will have a minimum, which will therefore serve for the whole interval. The only remaining case
of interest is where the\x; are infinite in number and tend to zero with increasir(ge., a case where
the stated condition fails). In this case, applying the Bolzano—Weierstrass theorem, there is a limit point
of thex;, sayc, which will lie in [a, b]. By hypothesis,f will be continuous ak = c.

At this point, it is relatively straightforward to obtain a contradiction to complete the proof. Instead
of this, Bolzano attempted, without success, to prove the result directly. A direct proof is possible from
the beginning sketched by Bolzano, but is considerably more complicated than an indiré&tTbns,
although he stated the key theorem linking pointwise and uniform continuity, Bolzano did not manage to
produce a satisfactory proof.

3. Conclusion

The distinction between pointwise and uniform continuity is often cited as a typical advance of later
19th-century, in particular Weierstrassian, analysis and as a sign of the increasingly sophisticated use of
guantificational concepts in mathematics. While there is no doubt much truth in the general picture of
the development of analysis this example has been used to support, the results of this paper indicate tha
such distinctions were within the reach of careful mathematicians of an earlier generation like Dirichlet
or, still earlier, mathematicians like Bolzano who made a special point of attending to the fine points of
conceptual and logical structure.
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