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Algebraic analysis is the algebraic treatment of functions and of infinitesimal calculus 
originating from Euler's lntroductio in analysin infinitorum. This approach, as developed 
by the "'Combinatorial School," was influential in Germany at the turn of the 19th century 
and became the basis for the mathematical syllabus of the Prussian gymnasium in the 
Humboldt educational reforms. The present paper discusses algebraic analysis under the 
viewpoint of two problems of legitimation. On the one hand, there was the conceptual and 
technical problem of calculating with infinite formal (divergent) series. How can equality 
between terms involving formal series be interpreted, and how is this "formal equality" 
related to numerical equality? The second problem regards the fact that algebraic analysis 
was not legitimized by referring to geometry or applications, but as an autonomous theory 
which is established by its internal coherence and harmony. Regarding this point the paper 
argues that the hermeneutic view of the sciences, which was widespread in Germany, led 
to a sometimes anti-Kantian attitude that sought to overcome the link of mathematics to 
the intuition of space and time. © 1993 Academic Press, Inc. 

Die Algebraische Analysis ist die von L. Euler's Introductio in analysin infinitorum ausge- 
hende algebraische Auffassung der Funktionenlehre und des InfinitesimalkalkiJls. An der 
Wende von 18. zum 19. Jahrhundert war sie in Deutschland in ihrer Ausformulierung durch 
die "Kombinatorische Schule" von Einflul3 und wurde in der Humboldtschen Bildungsre- 
form zur Grundlage des mathematischen Lehrplans der Preul~ischen Gymnasien. Das vorlie- 
gende Papier diskutiert die Algebraische Analysis unter der Perspektive eines zweifachen 
Begriindungsproblems. Zum einen gab es das begrifftich-technische Problem des Rechnens 
mit unendlichen formalen (divergenten) Reihen. Wie kann die Gleichheit zwischen Termen, 
die formale Reihen beinhalten, verstanden werden, und wie verh~ilt sich diese "formale 
Gleichheit" zu numerischer Gleichheit? Das zweite Problem betrifft die Tatsache, dab die 
Algebraische Analysis nicht durch Bezug auf Geometrie oder Anwendungen begrtindet 
wurde, sondern als eine autonome, selbstgen~gsame Theorie, die durch ihre innere Koh~renz 
und Harmonie gerechtfertigt ist. Dazu wird argumentiert, dab die in Deutschland verbreitete 
hermeneutische Sicht der Wissenschaften zu einer manchmal auch gegen Kant gerichteten 
Einstellung fiihrte, die Mathematik von ihrer Bindung an die Anschauung von Raum und 
Zeit zu 16sen. © 1993 Academic Press, Inc. 

L'analyse algrbrique est la conception algrbrique de la throrie des fonctions et du calcul 
infinitrsimal drrivre de l'Introductio de L. Euler. Au tournant du XVIII~me au XIX~me 
si~cle, elle 6tait influentielle en Allemagne dans sa formulation par "l 'rcole combinatoire," 
devenant la base du curriculum mathrmatique des lycres prussiennes sous la rrforme de 
Humboldt. La contribution discute l'analyse algrbrique sous la perspective d'un double 
probl/~me de fondation. Le premier 6tait le probl/~me conceptuel-technique de calculer 
avec des srries formelles infinies (divergentes). Comment concevoir l'rgalit6 entre termes 
contenant des srries formelles, et quelle est la relation de cette "rgalit6 formelle" avec 
l'rgalit6 numrrique? Le second probl~me concerne le fait que l'analyse algrbrique ne fut 
pas fondre par rrfrrence ~ la grometrie ou aux applications, mais comme throrie autonome 
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et autosatisfaisante justifl6e par sa coh6rence et harmonie internes. La contribution dit que 
la vue herm6neutique des sciences r6pandue en Allemagne a men6 a une attitude quelquefois 
anti-Kantienne qui veut dissocier la math6matique de son rapport b. l'intuition de l'espace 
et du temps. © 1993 Academic Press, Inc. 

AMS 1991 subject classifications: 01A50, 01A55, 01A72, 01A74, 05-03. 
KEY WORDS: hermeneutic culture, Humboldt educational reforms, combinatorial school, formal/ 

divergent series, binomial and polynomial theorem, reversion of series. 

1. T H E  C U L T U R A L  F O U N D A T I O N  OF S C I E N C E  

A remarkable  nexus of  political and cultural events  took place in Ge rmany  and 
France  around the turn of  the 19th century.  Indeed,  the dates of  Napo leon ' s  reign, 
1799 to 1814, coincide very nearly with the first and most  product ive  period 
of the romant ic  movemen t  in Germany .  The year  1794 saw the appearance  of  
the first edition of  Johann Gottl ieb Fichte ' s  (1762-1814) Doctrine o f  Science 
(Grundlage der gesamten Wissenschaftslehre als Handschrift fiir seine ZuhOrer), 
a philosophical  work  which heavily influenced the romantic  movemen t  and the 
general culture climate of  the time. F ichte ' s  views represented a characterist ic  
Ge rman  react ion to events  in France.  He  began his career  with the voluminous 
Defense of  the French Revolution of 1793 (Beitrag zur Berichtigung der Urteile 
des Publikums iiber die franzOsische Revolution), and in 1808 he reached the 
zenith of  his fame with Speeches to the German Nation (Reden an die deutsche 
Nation), a work  destined to excite national resistance against the Napoleonic  
occupat ion  of Germany .  The core of  both  works  was a philosophy of  education 
that const i tuted the inner identity of  the German  reaction to the revolut ionary 
events .  

It was precisely during this Napoleonic  era that Germany  developed a cultural 
identity that  it would maintain throughout  much of  the 19th century and which 
created a cognitive framework that shaped the development  of  science in Germany .  
In what  follows we sketch some features of  this f ramework  and then analyze  
how it was related to mathemat ics ,  taking as our principal example  the so-called 
algebraic analysis,  a theory that derived f rom Leonhard  Euler ' s  famous  Introductio 
in analysin infinitorum, Vol. I of  1748, which later became important  as a mathe-  
matical  background for mathemat ics  teaching at the German  Gymnas ium.  

The first and most  important  feature of  this cognitive f ramework  concerns  the 
relationship between science and practice [Jahnke 1990a, part  A]. The Humbold-  
tian reforms in Germany  created the modern  role of  a university professor  as both  
teacher  and researcher ,  thereby establishing a model  for the institutionalization 
of  science which, above  all, fur thered fundamental  research and pure science far 
r emoved  f rom practical  applications. This was possible only because  for a certain 
t ime there was,  both  within scientific circles and outside them, a broad consensus  
about  the nature of  the relationship be tween  science and practice.  This consensus ,  
character is t ic  of  the German  cultural climate, shall be referred to as the cultural 
foundation o f  science. 

This te rm is intended to convey  the idea that science was pursued not for the 
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sake of technical or commercial applications but because it can contribute to the 
development of a certain awareness of life, to the discussion of notions by which 
society may gain a better understanding of itself and its aims, and to the cultivation 
(Bildung) of the individual. Therefore science was seen as part of a comprehensive 
effort to produce a purely spiritual world, and, under certain circumstances, such 
an effort was considered more important for society than technical innovations. 
In short, science should foster understanding of nature and of culture. In this 
sense, we can thus speak of the formation of a hermeneutic culture in Germany. 
Wilhelm Dilthey has described the spirit of these times by the apt phrase that the 
interpretation of the world out of itself became the watchword of all free minds 
[Dilthey 1905, 211]. Just as philosophy and art generate interpretations of reality, 
so science was now seen as part of an interpretive effort. 

This hermeneutic culture changed the aim of classical philology from the study 
of language to the production of a holistic interpretation of the classical world. A 
similar shift took place in the natural sciences; the primary task was no longer to 
gain new empirical knowledge but to develop a coherent synthetical view of nature. 
In the words of Wilhelm von Humboldt: "Genuine science has to be imbued and 
animated with a presentiment of a fundamental power whose essence is reflected 
in an original idea like in a mirror and must connect the totality of phenomena to 
it" [Humboldt 1814, 557]. The embedding of mathematics into this hermeneutic 
culture also had far-reaching consequences for the view of its methodology. Rather 
than considering pure mathematics in terms of algorithmic procedures for calculat- 
ing certain magnitudes, the emphasis fell on understanding certain relations from 
their own presuppositions in a purely conceptual way. To understand given rela- 
tions in and of themselves one must generalize them and see them abstractly. 
Recurring to the theory of art, we can speak of an act of alienation. In fact, since 
this time the analogy between art and mathematics has held a special attraction 
for many pure mathematicians. 

That such a hermeneutic attitude to the world need not lead to a contemplative 
stance can be seen from the views of Johann Gottlieb Fichte, who favored an 
approach to education involving pure mathematics because the ability to think 
abstractly was, in his opinion, the decisive precondition for thinking in terms of 
alternatives, and of being able to develop a new design for the future, thereby 
creating an ethically acceptable world. According to Fichte: "That  ability to 
independently design images which are by no means copies of reality but suitable 
to become ideals for it would be the first principle from which the cultivation of 
the species by means of the new education would have to proceed."  [Fichte 1808, 
31/2] 

Immanent in this general cognitive framework was an epistemological motive 
related particularly to mathematics. In his Kritik der reinen Vernunft Immanuel 
Kant had defined mathematics as a science that constructed its concepts through 
the pure intuition of space and time. Therefore, these concepts are synthetic a 
priori. Without doubt this conception reflected the views of many mathematicians. 
Yet it stood in curious contrast to the actual trends in mathematical research at 
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that time. It was precisely in the second half of the 18th century that the analytical 
calculus achieved remarkable results in many fields of mathematics and mathemati- 
cal physics, and often these results depended on the use of analytical constructs 
which had no interpretation in the intuition of space and time. This objection 
was raised in the critical discussions of Kant's philosophy. For instance, Johann 
Gottfried Herder (1744-1803), the eminent philosopher of language, spoke of 
Kant's "radical misconception that visible construction should exhaust the es- 
sence of mathematics" [Herder 1799, 265]. By partly mathematical, partly philo- 
sophical arguments, Bernard Bolzano, in an appendix (On Kant's theory of the 
construction of concepts through intuition) to his Contributions to a Better 
Founded Representation of Mathematics, criticized Kant's views as too narrow 
and not really covering arithmetic and algebra [Bolzano 1810, 135 ff]. Conse- 
quently, he arrived at a definition of mathematics as a"science treating the general 
laws (forms) to which things must obey in their existence" [Bolzano l.c., 11]. A 
definition of mathematics as a "theory of forms" (Formenlehre) became common 
at that time. Around 1800, there arose a trend among mathematicians, philoso- 
phers, and educators to overcome the linkage of mathematics to the intuition of 
space and time. 

This process was reinforced by the basic tenets of hermeneutic culture. Since 
the main intellectual interest at the time was to produce a purely spiritual world, 
or as Humboldt put it, to look for the invisible within the visible [Humboldt 1814, 
560], abstract speculation going beyond the empirically obvious was an essential 
element of this worldview. Thus, the notion became more and more common that 
the objects of mathematics are purely mental constructions produced by man's 
faculty of productive imagination (produktive Einbildungskraft) [Fries 1822, 58]. 
For Jakob Friedrich Fries (1773-1843) this productive imagination did not operate 
in the pure intuition of space and time, but was a faculty of man's reason (Vernunft). 
This deviation from Kant was the more remarkable as its author was a strict 
follower of Kant's philosophy and sharply opposed the romantic trends of his 
time. 

These assumptions had a decisive importance for algebraic analysis, a mathemat- 
ical theory which was separated from its applications to geometry and the natural 
sciences and which was conceived as an autonomous theory justified by its own 
inner coherence. This point of view has been most aptly expressed by Julius 
Plticker: " I  would like to advocate myself the view that analysis is a science 
which, independent of any application, exists autonomously by itself, and that 
geometry as well as in another regard mechanics, appears merely as a visual 
interpretation of the sublime whole" [Plticker 1831, IX]. 

Before analyzing these matters further, we should ask ourselves what insights 
we can expect to gain by viewing algebraic analysis within the cultural climate of 
Germany. In what sense can our notion of the cultural foundation of science 
explain what was going on? Surely, the separation of analysis from geometry and 
intuition was a general trend of the time. It can be found in France and Great 
Britain as well as in Germany. Moreover, the cultural context can only partially 
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explain the scientific work and even the philosophy of a single author. This is 
true not only because science cannot be reduced to philosophical or metascientific 
motives but also because modern science is international. A scientist may live in 
a certain cultural context and may even be actively involved in a philosophical 
discourse there, and yet his true orientation may come from a totally different 
context. Thus, an analysis of the cultural and philosophical climate only contri- 
butes to our understanding in a, so to speak, statistical sense. It cannot replace 
the analysis of the individual work of a scientist. In my opinion, the main power 
of explanation provided by the philosophical/cultural context concerns the lan- 
guage in which scientists speak, and the types of explanations and legitimations 
which are considered acceptable or unacceptable. In our case, the separation of 
analysis from geometry and intuition may have been an imperative based on the 
internal state of mathematics, but the manner in which this was discussed and 
legitimized can hardly be understood without considering the cultural context in 
which mathematics was then practiced. 

2. BASIC PROBLEMS OF ALGEBRAIC ANALYSIS 

At the beginning of the 19th century, algebraic analysis meant both a subject 
matter field and the algebraic treatment of functions. In Germany, the field was 
also called Analysis des Endlichen. The great model of the theory was the first 
volume of Leonhard Euler's Introductio in Analysin Infinitorum [Euler 1748], 
where Euler presented an elementary theory of functions which was to provide 
the methods for differential and integral calculus but which did not contain 
this subject matter itself. Euler treated functions as purely algebraic objects, 
and therefore his methods consisted of calculating with infinite expressions: 
infinite series, products, continued fractions. Around the turn of the century, 
there were several attempts to systematize the field. The most important 
approach was that of Joseph Louis Lagrange [1797], while in Germany the so- 
called Combinatorial School led by the Leipzig mathematician Carl Friedrich 
Hindenburg (1739-1808) attempted to give a combinatorial treatment of the 
subject. 

The key mathematical problem of algebraic analysis concerned the meaning 
and importance of infinite formal series. Whereas at the turn of the 19th century 
formal series played a considerable role, they were mostly considered illegitimate 
mathematical entities after 1850. Only at the end of the 19th century did divergent 
series again come up when several authors studied asymptotic series expansions 
and notions of generalized limits ("summability") [Kline 1972, Chap. 47]. Yet the 
viewpoint relevant in our context is that of a formal equality between a function 
and its series expansion in the sense of generating functions. This aspect has been 
expounded most lucidly by Andreas Speiser (1885-1970) in his preface to Euler's 
lntroductio [Speiser 1945]. 

Speiser's argument is interesting for several reasons and I discuss it in detail. 
It should be noted that Speiser's main field of research was algebra, especially 
the theory of groups, and that he was among those mathematicians of our century 
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who have  tried to p romote  a cultural view of  mathematics .  Indeed,  Speiser  has 
intensively studied the period dealt  with herein. 

Concerning Eule r ' s  t rea tment  of  series, Speiser  argues that with regard to series 
given by  a law, and therefore having a general term, one can distinguish an 
arithmetical and an algebraic conception.  According to the ari thmetical  concep-  
tion, the te rms of  a series are interpreted as numbers ,  and therefore convergence  
is required.  Following the algebraic view, the + or - signs are jus t  symbols  of  
combinat ion,  so that convergence  plays no real role. This view is analogous,  for 
example ,  to that in the theory of  groups,  where  abstract  e lements  are combined.  
Euler  was mainly interested in this algebraic conception.  As to its fruitfulness, 
Speiser  wrote:  

By expansion in a series the law of a function is mapped onto a law for the members of the 
series, which brings to light deep properties of the function. Thus, for example, the number 
7r bears a hidden relation to the odd natural numbers, log 2 to all natural numbers, e x, sin x, 
cos x, and the integral logarithm to the factorials. In his immense expeditions into the empire 
of series, Euler made the overwhelming discovery that divergent series provide the strongest 
means for detecting unexpected facts. The passage through the divergent is even more fruitful 
than the passage through the complex within function theory . . . .  That only convergent 
series should have a meaning is an unmathematical assertion--rather, the powerful Eulerian 
problem should be taken up again. Our time, which like the eighteenth century has turned 
to higher philosophical questions, should have the strength to do that. [Speiser 1945, IX/X] 

This quotat ion is remarkable  for several  reasons.  First, it contains an original 
and historically adequate  legitimation of formal  series. Second, there are some 
other  important  aspects  hinted at by the key words  deep properties, hidden rela- 
tions, and higher philosophical questions. Here  Speiser indicates certain connec-  
tions that fit very  well with the historical relation of  mathemat ics  and hermeneut ic  
culture we have  sketched.  Above  all, there is the spirit of  abst ract  speculation.  
The passage  through the divergent  p roves  fruitful, although one cannot  really 
explain why.  The decimal expansion for 7r displays ex t reme irregularity (it has 
passed  every  statistical test  for randomness  so far devised),  and yet  it has a 
series representa t ion displaying the u tmost  regularity. Thus something needs to 
be understood which mathemat ic ians  had not yet been able to understand.  For  
this, one cannot  be content  with obvious  a p p r o a c h e s - - o n e  requires bold, abstract ,  
speculat ive ideas analogous to philosophical  theories and to Euler ' s  approach  in 
treating formal  series even when  one is unable to bring them into a coherent  and 
fully controllable calculus. 

Thus Speiser  not only gives a conclusive argument  for the legitimation of  formal  
series but also shows a sensit ive historical judgement .  The algebraic concept ion 
allowing equalities be tween  series which may  not have a numerical  interpretat ion 
aims at more  abstract  relations be tween laws of  functions and the formal  series 
in which they can be expanded.  This was of  decisive importance around 1800, 
but there were  only limited a t tempts  to develop a comprehens ive  concept ion 
embracing and combining both the algebraic and the arithmetic notion of  series. 
(For  Eu le r ' s  a t tempts  to relate formal  and numerical  equality, see [Barbeau & 
Leah  1976]; some later German  approaches  are discussed in the next chapter  of  
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this paper . )  Thus,  the entire formal  approach to analysis eventually vanished f rom 
mathemat ics ,  and it was not before our century that a higher appreciat ion of  
algebraic methods  within analysis was revived. 

Without doubt  there was a link between the spirit of  abstract  speculat ion in the 
early 19th century and the abst ract  approach to mathemat ics .  This can be seen 
very well if one looks at an a t tempt  to distinguish be tween formal and numerical  
equality made by Christian Gudermann  (1798-1852), later the teacher  of  Karl  
Friedrich Weierstrass .  In 1825 he wrote in a paper  on the polynomial  formula: 

One may be allowed to presume here, as generally known, the more general meaning of the 
concepts of equality, equation and of the corresponding sign = when applied even to infinite 
series . . . .  The sign = then refers to a necessary relation between a primary (original) 
function and its expansion in a series such that this expansion is a mere representation of 
the primary function in a necessary (not arbitrary) manner, and serving for its determination. 
The infinite expansion in fact offers in each of its terms a special feature for the determination 
of the nature of the primary function. Thus it comprises innumerable features of the primary 
function, and only magnitude is not contained in these, because of the infinite nature of the 
expansion. Therefore, in those cases where the expansion is finite the sign = retains its usual 
restricted meaning." [Gudermann 1825, 21/22]. 

Surely, this is not a mathemat ica l ly  explicit conception.  Yet the idea of  postulat-  
ing an abstract  relation be tween the pr imary function and its infinite expansion 
is, in fact,  a plausible mathemat ica l  intuition which may well be made precise 
some day. Speiser seems to have had a similar notion in mind when he drew an 
analogy be tween Eule r ' s  t rea tment  of  formal series and the modern  theory of  
Fourier  series. In the theory of  Fourier  series every  continuous function is uniquely 
determined by its Four ier  coefficients and if the Fourier  series converges  uniformly 
it represents  the function in a numerical  sense. But in the general case this is not 
true, and indeed the series need not even converge.  In this case,  there is a necessary  
relation be tween  the pr imary  function and its expansion which does not comprise  
the special feature of  magnitude [Speiser 1945, X]. 

The notion that there can be equations between power  series which may not 
have a numerical  interpretat ion was commonplace  in the 18th and early 19th 
century.  As a consequence ,  a terminological distinction between numerical  and 
formal  equality arose be tween 1800 and 1820. Still, there were  only a few a t tempts  
to make  this distinction rigorous,  and most  authors relied on vague ideas like the 
one quoted by Gudermann.  

3. T H E  W O R K  OF H I N D E N B U R G  A N D  O H M  

Beginning with C auchy ' s  Analyse Alg~brique [Cauchy 1821] a general trend set 
in that sought more  and more  to eliminate the formal-algebraic approach,  although 
in some Ge rman  tex tbooks  it p roved  to be remarkably  resistant.  As examples  of  
how equations involving formal  series were considered and treated we discuss 
some works  on the binomial  and polynomial  formula.  

In 1779 Carl Friedrich Hindenburg  gave a proof  of  the general polynomial  
formula  [Hindenburg 1779]. Hindenburg was by education a philologist as well as 
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a physicist and a mathematician, and he held a chair in experimental physics rather 
than in mathematics• His mathematical papers were not really deep. However, he 
was obviously a good scientific organizer and attracted some people with a certain 
mathematical stature. His treatment of the polynomial formula was in his time 
considered as a real achievement• The theorem says that the mth power of a 
general polynomial or power series is again a power series, 

(1  + a l x  + a2 x2 + a3 x3 + • • •)m = 1 + A 1 x  + A2 x2 + A3 x3 + • " • , 

whose coefficients can be calculated by 

h = l  

Here the symbol ?C is understood as designating the sum over all products which 
can be formed by taking h factors out of the coefficients al to ar (irrespective of 
their order and with repetitions allowed) and where the sum of the indices equals 
r. The symbol p represents a numerical operator indicating how many times 

• 3 

the respective summands have to be taken. For instance, 5C signifies the sum 
ala~ + a~a3, whereas p53C is equal to 

3! 2 + 3! a2 a 
1!2! alaz 2!1! 1 3" 

This notation is not exactly Hindenburg's, as he did not use numerical indices. 
Hindenburg's formula appeared for the first time in the above notation in a textbook 
by the G6ttingen mathematician Bernhard Friedrich Thibaut [1809]. Apart from 
notation, however, Hindenburg's version of the polynomial formula had the merit 
that, in contrast to earlier formulations, it immediately allowed for a generalization 
to fractional and negative exponents, since the quantity m appears only in the 
binomial coefficients. 

Hindenburg had arrived at this formula by simply setting 

(1 + a l x  -~ a2 x2 ~- a3 x3 + • • . )m = (1  + y)m 

and expanding (1 + y)m according to the binomial formula. The powers 

yk = ( a l x  + azx2  + a3x3 + . . .)k 

with natural numbers k, which appeared in this expansion, could then be calculated 
by using the polynomial formula for natural numbers. 

This natural number version of the polynomial formula had already been found 
by Leibniz [1695] and Johann Bernoulli [1695]. A proof of it had been published 
by Abraham de Moivre in 1697, but he gave only a recursive rule for the calculation 
of the coefficients [cf. Schneider 1968, 1969, 252 pp]. Although Leibniz and de 
Moivre hinted at the possibility of extending the formula to rational and negative 
exponents [cf. Knobloch 1973, 98], this generalization would have required deriv- 
ing a new form of the theorem, a step they never took. In 1730, de Moivre gave 
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the special expansion for m = - 1 [Pensivy 1986/1987, 65]. Later, Euler derived 
the polynomial theorem from a differential equation, valid also for rational and 
negative exponents with a recursive rule for the calculation of the series [Euler 
1755, pars posterior, sect. 202]. Hindenburg's version of the polynomial theorem 
was, thus, the first independen t  formula which explicitly allowed for rational and 
negative exponents m. To write down this formula, however, he had to develop 
a good deal of combinatorial terminology and symbolism, and with this he was 
not very successful. Nevertheless, in a letter to Hindenburg, Lagrange acknowl- 
edged the former's efforts to develop a coherent combinatorial symbolism and 
wrote in regard to his polynomial formula: "La  r6gle g6n6rale que vous y donnez 
pour former les puissances d'un polinome quelquonque ne me paroit rien laisser 

desirer sur cet objet" [quotation by Hindenburg in Archiv der reinen und 
angewandten Mathematik II (1798), 370]. 

The polynomial theorem was of central importance for all calculations with 
power series since the operations of division, of exponentiation, and of extraction 
of roots may be reduced to this formula by taking appropriate negative, positive, 
and fractional exponents, respectively. Moreover, in 1793 Heinrich August Rothe 
(1773-1842), a disciple of Hindenburg, showed that even the solution of an arbi- 
trary algebraic or transcendental equation may be effected by applying the polyno- 
mial formula to obtain the so-called reversion o f  series. Newton had been the first 
to design a recursive algorithm for this problem [Newton 1676], and afterward it 
had been treated by de Moivre [1698; cf. Pensivy 1986/1987, 66 pp.]. If an equation 
between two formal power series in x and y is given by 

a l y ~  + b ly  al+SI + c ly  a1+281 d- . . . .  ax a + bx a+~ + C X  a + 2 8  "[- " • " 

with a, a > 0, then an arbitrary power xL and thus x itself, can be represented 
as a power series in y whose coefficients are calculated with the help of the 
polynomial formula [Rothe 1793]. This theorem, although forgotten today, repre- 
sents something like an implicit  f unc t i on  theorem f o r  f o r m a l  series. 

It is important to note that Rothe's theorem is a purely combinatorial relation. 
Some twenty years earlier, Lagrange had proved another theorem solving the 
same problem of reverting series, but by use of the differential calculus [Lagrange 
1770]. Given an equation 

x = y + zf(x) 

with arbitrary, i.e., analytic f (z being a parameter), then every function ~o(x), and 
in particular x itself, can be expanded into the following power series in z: 

z z .  d [ f ( y )  2. ~p'(y)] z 3. d2[f(y) 3 • ~p'(y)] 
99(x) = ~o(y) + z f ( y ) ~ ' ( y )  + 1 • 2 .  dy + 1 • 2 . 3 .  dy 2 + " " "" 

In 1795 Rothe and Johann Friedrich Pfaff could show that, presupposing Taylor's 
theorem, Lagrange's and Rothe's formulae are equivalent [Pfaff 1795a,b; Rothe 
1795]. For this reason, Rothe's theorem was seen as a remarkable success. For 
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Hindenburg and his adherents the polynomial formula was the most important 
theorem of analysis, because it seemed to be "a  pinnacle from which one can 
survey the regions of analysis." [Klfigel 1796, 51] 

Hindenburg did not explicitly discuss how he conceived of the relation between 
the algebraic and arithmetic view of power series. Although he had derived a 
version of the polynomial theorem which, on the right hand side, allowed an 
algebraic as well as an arithmetic reading, he did not explain the meaning of 
equality and exponentiation in this theorem. Only later did a working definition 
come about which made possible a purely algebraic interpretation of the polyno- 
mial theorem and other power series formulae [cf. for instance Gudermann 1825]: 
a power series Q may be raised to a fractional exponent m/n by means of the 
definition 

Qm/.  = R ~z:) Qm = R". 

Generally speaking, mathematicians of the 18th century believed that substitut- 
ing numerical quantities into formal equations would lead to correct numerical 
results. Examples where this assumption obviously failed were treated by introduc- 
ing new parameters and thus generalizing the respective formula. However, by 
the end of the 18th century the so-called numerical factorials 

a "la := a(a + d)(a + 2d)(a + 3d) • • • (a + (n - 1)d) 

introduced by Euler, Alexandre Th6ophile Vandermonde, and the German mathe- 
matician and member of the combinatorial school Christian Kramp (1760-1826) 
(see [Kramp 1798]), provided an example where these strategies definitely failed. 
This function a nla was one of Euler's functiones inexplicabiles and was closely 
related to his F-function. It motivated Gaul3' work on hypergeometric series and 
later was extensively treated by Karl Weierstrass who used it to discuss his view 
of 18th-century methods of analysis [Weierstrass 1842/1843 and 1856]. 

One of the most debated paradoxes, however, involved the following two equa- 
tions: 

(2 cos x) m = ~] cos(m - 2k)x 
k=0  

k=0 

These formulae are correct for natural numbers m, as can be easily verified, and 
proofs were given in the 18th century that they remain correct if arbitrary rational 
or negative exponents m are admitted. Lagrange, in particular, had treated the 
problem as a paradigm for the power of his methods [Lagrange 1806, 138-141]. 
(For a full discussion of the history of this problem cf. [Jahnke 1987]). In 1811, 
however, Sim6on Denis Poisson showed that the simple substitution of the numeri- 
cal values m = -~ and x = 7r leads to a contradiction. This problem remained 
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unsolved until 1823 when Louis Poinsot (1777-1859) in Paris and Martin Ohm in 
Berlin provided the correct analytical sums for the two trigonometrical series 
[Ohm 1823, Poinsot 1825]. Moreover, as can be seen from his correspondence 
[Abel 1902, 16/7], Niels Henrik Abel's work on the summation of the binomial 
series of 1826, which was later considered so important because it presented the 
first complete and exhaustive summation of the binomial series (including problems 
of convergence and complex exponents) had been motivated by these same para- 
doxes [Abel 1826]. 

The German mathematician Martin Ohm (1792-1872) [cf. Bekemeier 1987], 
brother of the famous physicist Georg Simon Ohm, was one of the few mathemati- 
cians in the early nineteenth century who systematically treated the relation be- 
tween numerical and formal equations. Ohm had been a student of Rothe and, 
therefore, was trained within the broader context of the combinatorial school, 
although he did not follow the combinatorial approach. He viewed all analytical 
formulae as being either numerical  or symbolical ,  the latter comprising only mean-  
ingless symbols  as means to express relations between algebraic operations. Only 
the natural numbers were accepted as numbers in the strict sense, whereas nega- 
tive, rational, and complex numbers were adjoined to the calculus as symbolic 
forms of the type a - b, a/b,  a + ib. Ohm clearly recognized the necessity of 
defining equality for the new symbolic objects and of proving the consistency of 
the resulting system. His system of mathematics represented real progress for the 
rigorous foundation of elementary algebra. The whole procedure was similar to 
the approach of George Peacock (1791-1858) and Augustus de Morgan (I 806-1871) 
in England with their principle of permanence of algebraic operations. In this 
regard, Ohm can even claim priority over them, and he was certainly of equal 
mathematical rank with them. 

A particular problem which Ohm solved was the treatment of multivalued alge- 
braic expressions. It is well known that in general the expression a x is infinitely 
valued for complex a and x. To handle this problem, Ohm systematically distin- 
guished between per fec t  and imperfec t  equations. An equation was called perfect 
if the sets of values on both sides were equal. If, however, the set of values on 
one side was only a subset of the set of values on the other side, it was called 
imperfect. Thus, for instance, the equation 

a x • a y = a X + Y  

is imperfect because, in general, the left hand comprises values which are not 
represented by the right side. This equation becomes perfect by introducing a 
multiplier providing the missing values: 

a x • a y = a x + y  • e 27r i (kx+ly l ,  k, l ~ Z.  

Note that even in the case of perfect equations the exact correspondence between 
the values on both sides need not necessarily be known. To derive this correspon- 
dence from an equation remained a problem which frequently proved rather subtle. 
At the end of the nineteenth century the distinction between perfect and imperfect 
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equations was again used by Otto Stolz (1842-1905), who introduced it, with a 
reference to Ohm, in his Theoretische Ari thmet ik  [Stolz & Gmeiner 1915, 322]. 
Florian Cajori commented on Ohm's treatment of the power function: "I t  must 
be granted that Ohm surpassed all his predecessors in the generality and fullness 
of discussion of the expression a x, and that he is the first writer to successfully 
base the general theory of logarithms (having a complex number as a base) fully 
and unreservedly upon the theory of the general power a x'' [Cajori 1913, 177]. 

By employing this general framework Ohm could successfully treat formal 
series. He adjoined such series as ideal elements to the universe of finite algebraic 
expressions, defining equality and the basic arithmetical operations of series by 
means of the respective coefficient representations• Passing, then, from formal 
equations to numerical ones meant two things: to determine the domain o f  conver- 
gence and to derive from the possibly multivalued expressions a single-valued 
one. 

If we take as an example the binomial formula,  we see that the usual notation 

(1 "[- X) m = ~ X k 
k=0 

is an imperfect equation because for rational or irrational exponents m the left 
side is multivalued whereas the right side is single-valued. This equation becomes 
perfect by multiplying the right-hand side by the factor e 2=ims, s E Z,  providing 
the missing values• For the sake of clarity, we modify Ohm's manner of notation 
and introduce also an analog factor on the left side, the underlined expression 
designating a single value of the mth power, 

 ,n rm x, 

• (cos 2smlrx  + i" sin 2sm~rx) 

with r, s E Z. Both sides now represent equally many values. This equation 
is still a purely formal equation, and passing to a numerical equation requires 
determining the domain of convergence of the binomial series and then deriving 
a single-valued relation, i.e., investigating which r on the left side belongs with 
which s on the right. By means of this technique. Ohm was able to resolve the 
difficulty with the above-mentioned trigonometric series thereby showing that it 
was the multivalued behavior of these functions and not the divergence of their 
series representations that was responsible for the paradox• This confirms Heinrich 
Burkhardt's conclusion that most of the mistaken results which occurred in dealing 
with divergent series were, in fact, the consequences of other procedures of 
doubtful validity [Burkhardt 1910/1911, 205]. 

All in all, Ohm's conception was coherent, and it must be emphasized that in 
regard to the multiplicity of algebraic expressions, it represented a decisive step 
beyond Lagrange, who, in his theory of analytic functions had used the multiplicity 
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of algebraic expressions to argue that in the power series expansion of an arbitrary 
function rational exponents cannot occur [cf. Fraser 1987, 40]. 

It is interesting to compare Ohm's interpretation of the binomial formula with 
that of the "'Newer Analysis," as the approach of Cauchy and Abel was called 
in Germany. In the historiography of 19th-century analysis Cauchy's and Abel's 
treatments of the binomial theorem are usually mentioned because of their conver- 
gence proofs and their programmatic rejection of divergent series (see for example 
[Grattan-Guinness 1970, 80/1]). This is correct, but it does not comprise the whole 
truth. In fact, the conceptual change went much deeper. Cauchy and Abel were 
well aware that the rejection of divergent series was not compelling and they were 
very cautious in their published remarks on this subject. For Abel the rejection 
of divergent series was a logical consequence of his decision to abandon the notion 
of formal equality and to confine mathematical analysis completely to numerical 
equations. In the beginning of his paper on the binomial series Abel explicitly 
discussed how the binomial formula could be interpreted in the case of exponents 
which were not natural numbers. As a result of this discussion he rejected the 
notion of formal equality and took the position that only numerical equality should 
be accepted in mathematics [Abel 1826, 4/5]. 

In general, 18th-century analysts were basically algebraic thinkers. They thought 
in terms of formulae and, consequently, of variables and indeterminates. There- 
fore, for them, power series had a cognitive and psychological primacy over 
numerical series. The latter appeared only as derived from power series by substi- 
tution of numerical quantities. The distinction between formal and numerical 
equality reflected this 18th-century preoccupation with variables/indeterminates 
and power series. Abel's rejection of formal equality was thus a conscious break 
with the 18th-century manner of thinking algebraically, and his new approach to 
calculus is not adequately described as a mere introduction of precise and rigorous 
methods of calculation which the 18th century lacked. In recent books on the 
history of calculus, as for example [Grattan-Guinness] and [Grabiner 1981], the 
authors do more justice to the 18th-century approach to divergent series than is 
done in older studies such as, for example, [Boyer 1959], and they rightly point 
out that Cauchy's rejection of divergent series was an overreaction [Grabiner, 
1981, 100]. In this context, Grabiner refers to work on generalized limits and 
asymptotic expansions from the end of the 19th century. However, notwithstand- 
ing the work done by 18th-century mathematicians on these topics, it seems 
to me that their general cognitive views are more adequately reflected, although 
not fully covered, by modern notions of formal power series and formal 
equality. 

In reflecting these fundamental problems Abel's paper on the binomial series 
had a very programmatic flavor, so much that Abel even avoided writing down 
the binomial formula in the usual notation. Not once can one find the formula 

k 
(1 + x)m = k x 

k = 0  
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in this paper. 
single-valued 
this: 

Instead, Abel wrote down his results completely in the language of 
real functions, and in this language the binomial formula reads like 

m + n i ,  ( m  + n i ) ( m  - 1 + n i ) ( a  + bi) z + . . "  
1 + ~ t a  + b i ) +  1 . 2  

+ (m + n i ) ( m -  1 + n i ) ' " ( m - u +  1 + n i ) ( a + b i )  u + ' ' '  

1 . 2  . . . . .  u 
= ((1 + a )  2 + b2) m/2" e -narctan(b/(l+b) 

• cos marctan ~ +~log((1 + a )  2 + b  2) 

+ i - s i n  marctan ~ + log((1 + a )  2 + b  2) . 

This formula is rather telling. On the one hand, it shows the real complexity of 
the binomial theorem. On the other hand, however, it also becomes clear how 
the rigorous realization of the program of calculating only with single-valued 
numerical functions had, in a certain sense, rather negative effects. It takes some 
labor to verify that the right hand above is only the explicit form of the expression 
(1 + z) w (with z = a + ib and w = m + in),  not to mention the difficulties that 
arise when working with such a formula• The algebraic transparence and heuristic 
power of the binomial theorem had thus vanished completely and, from this 
perspective, Abel's point of view had nothing attractive to offer his contemporar- 
ies. In retrospect, it is clear that only complex function theory and Riemann's 
treatment of multivalued functions could really overcome this difficulty since in 
that theory complex functions are treated in a way where the algebraic structure 
of the formulae is respected• 

Abel's version of the binomial theorem provides a good example illustrating 
why Cauchy's approach to algebraic analysis met with certain reservations in 
Germany. A number of mathematicians judged Cauchy's treatment as lacking 
inner lucidity and sound structure. Like present day criticisms of Weierstrass's 
(e-3) approach to limits as being too complicated for beginners while obscuring 
the clear and fundamental ideas of the founders of the infinitesimal calculus, 
Cauchy was criticized for conjuring up tricks rather than presenting really well- 
organized mathematics. This opinion was even held by the mathematician who 
did the most to make Cauchy's approach the norm for mathematical reasoning 
in Germany: Oskar Schl6milch (1823-1901). Indeed, Schl6milch conceded that 
Cauchy's C o u r s  d ' a n a l y s e  lacked a solid architecture (Schl6milch 1845, V/VI], 
and, for this reason, he decided to write a treatise on algebraic analysis in which 
he hoped to combine Cauchy's rigorous treatment with a lucid presentation. 
Unfortunately, Schl6milch overlooked some essential mathematical points in Cau- 
chy's approach. He did not realize that in deriving the cornerstone of the theory, 
the binomial formula, it is necessary to prove the continuity of the binomial series 
as a function of its exponent, and thus he fell back on older approaches [Schl6milch 
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1845, 62]. In fact, no correct proof of the binomial theorem can be found in 
a German textbook before the 1860s, and the formula remained even later a 
problematical case. This was especially irksome, since the binomial theorem was 
considered a culmination point for school mathematics which was supposed to 
provide inner coherence to the area of algebraic analysis, whereas its proof went 
beyond the scope of school teaching [cf. Jahnke 1990a, part C)]. 

At the same time, some mathematicians felt that in some way the restriction 
to convergent series stood in contradiction to the spirit of algebraic analysis since 
it severely disturbed the intuitive analogy between calculations with finite and 
infinite expressions. As an example of this line of thinking, consider a book 
on algebraic analysis that appeared in 1860, written by Moritz Abraham Stern 
(1807-1894), a well-known number theorist and the first doctoral student of Gauss. 
In this work, Stern turned back to the original views of the Combinatorial School 
and introduced two different signs for equality, one for numerical (=)  and one 
for formal equality (~) [Stern 1860]. This time, however, the climate had changed 
and Stern's book failed to exert any influence on the teaching of algebraic analysis. 

4. THE COGNITIVE UNIVERSE OF ALGEBRAIC ANALYSIS 

In the wake of Humboldt 's educational reforms, algebraic analysis became 
the scientific background for the mathematical syllabus of the Gymnasium. In 
contemporary pedagogical discussions this was not so muchjsutified by its fertility 
in applications to analytic geometry and physics, but, rather, by the inner harmony 
and coherence of the whole theory. Although in the syllabus of 1812, the so-called 
Si~vern syllabus, applications played a considerable role, they were more and 
more repressed with the course of time and in 1834 analytic geometry was even 
officially removed from the syllabus. Algebraic analysis became the core of school 
teaching because it was seen as an elementary model o f  pure mathematics. (For 
details cf. [Jahnke 1990a and b].) 

To explain the spirit behind this conception, consider the following two quota- 
tions from authorities outside the realm of mathematics. The romantic poet 
Friedrich von Hardenberg (Novalis) (1772-1801) considered combinatorial analy- 
sis as a model o f  mathematical genius, since "the genius makes the impossible 
possible," since it is "perfect calculation," "without modifications" [Novalis 
1983, 167 and Jahnke 1990a, 105 pp.]. These phrases alluded to the idea that every 
limitation of a calculation can be symbolically overcome by introducing ideal 
elements making operations possible which had been impossible before. Thus one 
finds here the clear anticipation of a technique which later was frequently used 
in mathematics to formally introduce number forms of ever higher order, thereby 
overcoming the limitations of the earlier systems. These ideal elements do not 
have an empirical meaning but are products of our imagination. 

In his pedagogical writings, W.v. Humboldt attributed a high value to mathemat- 
ics teaching, not for the training of logical thinking, as formal education was later 
interpreted, but to provide an allgemeingiiltige Anschauung. He saw a deep- 
rooted analogy between mathematical and aesthetic intuition and, therefore, it 
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was the inner harmony and coherence of mathematics which constituted in his 
eyes its educational value. One of the consequences of this view was the radical 
refusal to introduce everyday applications into school teaching [Humboldt 1810, 
261]. Mathematics had meaning not because of its applications, but out of itself, 
its inner relations and coherence. The systematic and purely formal nature of 
algebraic analysis made it ideally suited for this educational purpose. Consider 
this passage from a textbook by Enno Heeren Dirksen (1792-1850), who wrote: 
"The science, usually called mathematics, has the peculiarity that its objects as 
well as their determinations exist only insofar as they are produced by a free 
activity of the intellect; and this is the reason why in this field of knowledge 
nothing is recognized from the outside, but only from the way it is constructed" 
[Dirksen 1845, III]. This free activity of the mind results in a mental progress. 
"Being conscious of this mental progress and of the resulting relations, viewed 
in their necessary coherence, that is what makes up the science of analysis" 
[Dirksen 1845, IV]. According to this view, analysis is a purely mental construction 
starting with free constructive acts of thinking, followed by studying the inner 
relations by which these constructions are connected. Although this is a truly 
remarkable definition of analysis, it was by no means unique at the time as the 
quotation by Pl0cker given in the first section above shows. 

Such general views corresponded very well with the systematic classification 
of mathematics found in certain textbooks which reflected the primacy of pure 
analysis. The following example is instructive because it shows that even in the 
second half of the 19th century the combinatorial approach had its adherents. It 
is taken from a textbook by Carl Anton Bretschneider (1808-1878) who was in 
his time a leading teacher and attained some international fame with his historical 
study, Die Geometrie und die Geometer vor Euklides, ein historischer Versuch. 
Bretschneider's classification reads as follows [Bretschneider 1856-1857, 11]: 

Scheme of Mathematics: 
I. Combinatorics. 

1) Theory of Permutations. 
2) Theory of Variations. 
3) Theory of Combinations. 

II. Theory of Quantities. 
A. Theory of Numbers. 

1) Theory of Discrete Numbers, Arithmetic. 
2) Theory of Continuous Numbers, Analysis. 

B. Theory of Forms. ("Gebindelehre") 
1) Theory of Discrete Forms, Syntactics. 
2) Theory of Continuous Forms, Theory of Extension. (Hermann GrafSmann's "Ausde- 

hnungslehre") 

Views like these, which one can find in the German textbook literature, suggest 
the following description of the cognitive universe (Denkwelt) of algebraic analysis: 
in regard to its mathematical substance, algebraic analysis was derived from Eu- 
ler's Introductio; ontologically, the theory was a universe of mentally produced 
symbolic forms; and in its theoretical elaboration it followed an ideal of organic 
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and systematic coherence.  Behind this was a spirit stressing an interest in "hidden 
relations" that have no practical value but are part of  a purely spiritual world. 
This included the expectation that speculative ideas would succeed where routine 
methods had failed and an effort to free oneself from conventional viewpoints and 
to look within the visible for the invisible. 

Algebraic analysis, as a universe of symbolic forms, determined the reality of 
mathematics education at the gymnasium. Since calculations in an arbitrary place 
value system can be interpreted as operations with polynomials, even elementary 
arithmetic can be seen under a combinatorial viewpoint. Thus, from elementary 
arithmetic up to the binomial theorem, the whole field comprised a remarkable 
unity. Later,  the step-by-step extensions of  number domains according to the 
principle of  permanence of  algebraic operations became the core of the whole 
ari thmetic-algebraic syllabus. It was seen as giving inner coherence to arithmetic 
and algebra and as a perfect realization of the idea of  an organic whole. In a well- 
known schoolbook we can read: "Equal ly  important for the success of  instruction 
seems to the author the distinct emphasis on the repetition of the same laws at 
the three different levels of  arithmetical operations which shows arithmetic to the 
student as an organic whole . . . "  [Mtiller 1838, V]. 

Beginning with the 1840's, Cauchy ' s  views on the necessity of convergence 
proofs began to enter into school teaching. Yet this merely led to some compro- 
mises with the older view. Textbook authors added some convergence proofs to 
their power series expansions. The truly revolutionary step of Cauchy in grounding 
analysis in the theory of continuous functions instead of relying on arithmetic or 
algebraic expressions was not introduced at the gymnasium before the end of the 
century. 
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