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Abstract

It may seem odd that Abel, a protagonist of Cauchy’s new rigor, spoke of “exceptions” when he cri
Cauchy’s theorem on the continuity of sums of continuous functions. However, when interpreted conte
exceptions appear as both valid and viable entities in the early 19th century. First, Abel’s use of the term “ex
and the role of the exception in his binomial paper is documented and analyzed. Second, it is suggested h
may have acquainted himself with the exception and his use of it in a process denotedcritical revisionis discussed
Finally, an interpretation of Abel’s exception is given that identifies it as a representative example of a more
transition in the understanding of mathematical objects that took place during the period. With this interpr
exceptions find their place in a fundamental transition during the early 19th century from aformal approach to
analysis toward a moreconceptualone.
 2004 Elsevier Inc. All rights reserved.

Zusammenfassung

Es könnte merkwürdig aussehen, daß Abel, ein Protagonist der neuen Strenge von Cauchy, von “Aus
sprach, als er den Lehrsatz von Cauchy über die Stetigkeit der Reihen von stetigen Funktionen kritisier
kontextbezogen interpretiert werden Ausnahmen sowohl akzeptable als auch sinnvolle Objekte der Ana
frühen 19. Jahrhunderts. Zuerst werden Abels Gebrauch des Ausdruckes “Ausnahmen” und die Rolle,
nahme in seinem Binomial-Arbeit spielt, dokumentiert und analysiert. Danach wird angedeutet, wie Abel s
den Ausnahmen vertraut gemacht haben könnte, und es wird sein Gebrauch von Ausnahmen in einem
der “kritischen Revision”, diskutiert. Schliesslich wird eine Interpretation von Abels Ausnahme als Zeiche
Umwandlung mathematischer Objekte vorgeschlagen. Diese Auslegung zeigt, wie die Ausnahmen ihren
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einem fundamentalen Wandel des frühen 19. Jahrhunderts finden, von einem formellen Zugang in Rich
eine begrifflichere Auffassung der Mathematik.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

From the mid-18th century to the mid-19th century, the style of mathematical research in a
underwent changes from aformula-centeredapproach epitomized by L. Euler (1707–1783) to aconcept-
centeredstyle presented in works of G. P. L. Dirichlet (1805–1859) and G. F. B. Riemann (1826–1
The transition manifested itself in multiple aspects of the mathematical enterprise including not
questions, results, methods, and techniques. It was felt by the active and creative mathemat
the nineteenth century who spotted a difference between the computational machinery associa
the formula-centeredapproach and the decidedly mental analysis belonging to theconcept-centered
approach. We find this distinction seized upon for instance in Dirichlet’s obituary of C. G. J. J
(1804–1851) where Dirichlet noticed1

[. . . ] the constantly increasing tendency of the new analysis to put thoughts in the place of calculatio
[. . . ],2

in the methodological principle attributed by D. Hilbert (1862–1943) to Riemann near the end
century,

I have tried to avoid the large computational apparatus of Kummer such that also here Riemann’s princ
should be observed, according to which one should conquer proofs not by computations but solely thro
thoughts,3

or in what H. Minkowski (1864–1909) called the “second Dirichlet principle” heralding the modern
in mathematics, according to which problems should be conquered

1 All translations into English are made by the author. The original language quotations are included in the footnotes
2 “Wenn es die immer mehr hervortretende Tendenz der neueren Analysis ist Gedanken an die Stelle der Rechnung

so giebt es doch gewisse Gebiete, in denen die Rechnung ihr Recht behält.Jacobi, der jene Tendenz so wesentlich geförd
hat, leistete vermöge seiner Meisterschaft in der Technik auch in diesen Gebiete Bewundernswürdiges.”[Dirichlet, 1852, 21]
3 “Ich habe versucht, den großen rechnerischen Apparat von Kummer zu vermeiden, damit auch hier den Grund

Riemann verwirklicht würde, demzufolge man die Beweise nicht durch Rechnung, sonder lediglich durch Gedanken
soll.” [Hilbert, 1897, 67]
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with a minimum of blind calculations and a maximum of enlightening thoughts.4

In the midst of this transition, the Norwegian N. H. Abel (1802–1829) briefly entered onto the in
tional mathematical scene in the 1820s to raise a number of new questions and produce breathta
results. Although his mathematical corpus mainly dealt with algebraic questions, particularly per
to elliptic and higher transcendental functions, Abel also produced a new proof of the binomial theo
a theorem central to attempts by Euler, J. L. Lagrange (1736–1813), and A.-L. Cauchy (1789–1
construct firmer foundations for analysis.

Abel’s interest in the binomial theorem was awakened by Cauchy’sCours d’analyseof 1821,5 in
which Cauchy constructed a theory of infinite series based on a new standard of rigor. Aspiring
eralize Cauchy’s proof of the binomial theorem to include complex exponents, Abel set forth
path of inquiry adopted from his reading of Cauchy. In the process, however, Abel spotted that
Cauchy’s central theorems (on the continuity of any convergent sum of continuous functions) “
ted exceptions”—and it is this realization and the role it played in the transition between two dif
mathematical styles that is discussed in the present paper.

In T. S. Kuhn’s philosophy of science,6 the accumulation of evidence (observations and experim
contradicting the prevailing paradigm plays the role of provoking crises ultimately resolved th
revolutions. To some, mathematics differs from the sciences because the statements of mathem
thought to be either true or false according to a time-independent correctness of their proofs,
real revolutions occur in mathematics.7 More recently, e.g., with I. Lakatos,8 mathematics is seen a
created by humans and developed through a dialectic that allows theorems to be falsified (ref
counterexamples). Without adhering strictly to any of the theories associated with Kuhn or Laka
present paper offers a diachronical reading of an important primary source from the early 19th c
The paper contextualizes this source within the transition from one style (a paradigm) that I callformula-
centeredmathematics to a new one, here termedconcept-centered.9

One of the main problems facing the historian trying to make use of philosophical frameworks s
Kuhn or Lakatos is their reconstructed mechanism of development. Instead of claiming that the
framework presents a universal scheme applicable to all other fields, mathematicians, or periods
I am content to explore its explanatory power in understanding particular aspects of Abel’s math
cal works. Here, I will use the transformation from aformula-centeredto aconcept-centeredapproach
to investigate and analyze the role of Abel’s exception. This interpretation will help us unde
how theorems can allow exceptions during periods of transition. The development of exceptio
counterexamples is consequently explained through the evolution offormula-centeredmathematics into
concept-centeredmathematics, an evolution that can be traced in the objects of mathematical stud
the methods for manipulating them.

4 “[. . . ] von dem anderenDirichlet schen Prinzipe, mit einem Minimum an blinder Rechnung, einem Maximum an seh
Gedanken die Probleme zu zwingen, datiert die Neuzeit in der Geschichte der Mathematics.”[Minkowski, 1905, 163]
5 [Cauchy, 1821].
6 [Kuhn, 1962].
7 On revolutions in mathematics, see[Gillies, 1992]and in particular[Gray, 1992].
8 [Lakatos, 1976].
9 This conceptual framework offormula-centeredandconcept-centeredstyles in mathematics has recently appeared in

literature, in particular in the works of H. Jahnke and D. Laugwitz.
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2. Abel’s exception

In his paper on the binomial theorem,10 Abel used the series

∞∑
n=1

(−1)n−1 sinnx

n
(1)

to question an important step in Cauchy’s proof of the binomial theorem, a proof that Abel oth
considered the most rigorous one available. Below, I reproduce Abel’s objection in full from an enig
footnote attached to one of the theorems in Abel’s paper:

Remark. In the above-mentioned work of Mr.Cauchy(page 131) [theCours d’analyse[Cauchy, 1821]],
the following theorem can be found:
“Whenever the various terms of the series

u0 + u1 + u2 + u3 + · · ·

are functions of a single variable quantity, and furthermore continuous functions with respect to this v
able in the vicinity of a particular value for which the series converges, then the sums of the series is also
a continuous function ofx in the vicinity of that particular value.”

However, it appears to me that this theorem admits exceptions. Thus, for instance, the series

sinφ − 1

2
sin 2φ + 1

3
sin 3φ − · · ·

is discontinuous for every value(2m + 1)π of x wherem is an integer. As is known, a multitude of series
with similar properties exists.11

10 [Abel, 1826]. Most historical accounts of the rise of rigorization in analysis describe Abel’s paper and the series(1); see,
e.g.,[Grattan-Guinness, 1972, 79–85]or [Bottazzini, 1986, 113–117].
11 “Anmerkung. In der oben angeführten Schrift des HerrnCauchy(Seite 131) findet man folgende Lehrsatz:

“Wenn die verschiedenen Glieder der Reihe

u0 + u1 + u2 + u3 + · · · u.s.w.

Functionen einer und derselben veränderlichen Größe sind, und zwar stetige Functionen, in Beziehung auf diese Verä
in der Nähe eines besonderen Werthes, für welchen die Reihe convergirt, so ist auch die Summes der Reihe, in der Nähe jene
besonderen Werthes, eine stetige Function vonx.”

Es scheint mir aber, daß dieser Lehrsatz Ausnahmen leidet. So ist z. B. die Reihe

sinφ − 1

2
sin2φ + 1

3
sin3φ − · · · u.s.w.

unstetig für jeden Werth(2m+1)π vonx, wom eine ganze Zahl ist. Bekanntlich giebt es eine Menge von Reihen mit ähnl
Eigenschaften.”[Abel, 1826, 316, footnote]
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So we notice that it “appeared” to the young Norwegian that Cauchy’s “theorem admitted excep
Today, exceptions to mathematical theorems are not tolerated, so this remark needs to be se
historical context to make sense of it—understanding this context is the objective of the present p

At this point, it should be noted that A. L. Crelle (1780–1855)—the editor of theJournal für die Reine
und Angewandte Mathematik—translated Abel’s paper from French into German for publication in
first volume of theJournal.12 Unfortunately, Abel’s original manuscript is no longer extant. Theref
we cannot be sure that Abel wrote the footnote himself nor how he chose his original words in F
Crelle’s version was adopted by B. M. Holmboe (1795–1850) and retranslated into French in t
edition of Abel’s Œuvresand later reproduced in the second edition.13 Neither edition contains an
essential comments concerning the phrasing of the footnote. One could be led to credit Crelle w
footnote,14 but as the argument in this paper will show, there is nothing odd in assuming that Abel h
wrote the footnote and chose the words.

In order to understand how radically Cauchy (and Abel) broke with the established tradition
theory of series in the 1820s,15 it has been fruitful to focus on the movement calledalgebraic analysis
that goes back to Lagrange.16 By analyzing this tradition in its German context, H. N. Jahnke has dem
strated that Cauchy’s choice of a new foundation for analysis was quite contingent: Another ap
that threw away fewer of the established methods but strived for an equally well founded analy
attempted by, e.g., M. Ohm (1792–1872).17

As Jahnke has also pointed out,18 a major inspiration for reconsidering the foundations of the the
of series in the early 19th century came from a phenomenon sometimes called thePoisson Paradox. For
particular choices ofm andx, the series

∞∑
n=0

∏n−1
k=0(m − k)

n! cos
(
(m − 2n)x

)
, (2)

which is a formal expansion of(2cosx)m, produced one of the first sophisticated examples in w
the series(2) was convergent but converged to a “false” sum—i.e., to a value, different from(2cosx)m.
This fact, first observed by S.-D. Poisson (1781–1840) in 1811,19 contested the common practice
inserting numerical values into a formal equality between a series and a closed expression. In pa
the impermissibility of such an operation was not easily identified from the properties of the series

12 [Abel, 1881, II, 302].
13 [Abel, 1839, I, 66–92]and[Abel, 1881, I, 219–250].
14 Crelle was associated with the combinatorial school (see below), and, therefore, he was used to theorems (formula
exceptions.
15 Abel has been described as “more Cauchian than Cauchy”[Grattan-Guinness, 1970, 80], and Jahnke—presumably fro
the perspective of his 19th-century protagonist M. Ohm—largely equates their positions, even sometimes referring
“Cauchy/Abel” [Jahnke, 1987, 148]. However, the framework offormula-centeredandconcept-centeredmathematics lets m
view Abel as a much more complex figure in interpreting Cauchy: Abel was responsible for fixating the pointwise interp
of Cauchy’sconcept-centereddefinitions, and at the same time, Abel also worked extensively within theformula-centered
approach to other branches of mathematics; more on this later.
16 See, e.g.,[Fraser, 1987, 1988–1989; Jahnke, 1999].
17 [Jahnke, 1987, 1990].
18 [Jahnke, 1987, 105–117].
19 [Jahnke, 1987, 104].
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Fig. 1. Abel’sexception(Eq. (1)) plotted graphically.

Explaining this problem played a prominent role in both French and German discussions of a
foundation for the theory of series. Abel probably came across the example in 1825 during his disc
with Crelle, who had published on the topic. From his letters to Holmboe and from the binomial
itself,20 it is quite obvious that the proper resolution of this problem was a key inspiration for A
binomial paper.

Considering the importance of thePoisson Paradoxfor Abel’s research, one could be led to sugg
that Ohm had exerted a direct influence on Abel during his time in Berlin. However, we have no ind
of any direct interaction between Abel and Ohm—in fact, we have only one short mention in Abel
letter from Berlin:

Previously, Crelle used to house a weekly gathering of mathematicians, but he had to discontinue
because of a man named Ohm, who nobody got on with due to his horrible arrogance.21

When Abel listed the mathematicians who had worked on thePoisson Paradox, he explicitly included
Crelle but not Ohm, although the latter had worked extensively on the problem.22 Judging from this
evidence, it is likely that Abel never met Ohm and—more speculatively—that he was discourage
reading any of Ohm’s works. Had Abel done so, he would have found in them many discuss
formulae with exceptions.23 However, I see the occurrence of exceptions in Ohm’s works more a
indication of the general state of analysis (theformula-centeredapproach) in Abel’s time than as a sour
of direct inspiration. Instead, I find it equally likely that Abel drew his inspiration from another so
with which he was familiar even before his arrival in Germany.

The series chosen by Abel in his binomial paper to question Cauchy’s statement was the Fouri
expansion of the functionf (x) = x

2 on the open interval(−π,π)24; the graph of the series is depicted
Fig. 1. Abel’s remark that “as is well known, a multitude of series with similar properties exists” has
understood as a reference to the work of J. B. J. Fourier (1768–1830).25 However, as I will argue below
the series(1) (and similar ones) was familiar to Abel through other, more likely, sources. The s
itself, occurred thrice in Abel’s mathematical corpus, always serving the purpose of criticism. Th
instance—the only public one—from Abel’s paper on the binomial theorem has already been pr
and its context will be discussed. Besides, Abel used the series in a letter to Holmboe discussin

20 E.g.,[Abel to Holmboe, 1826/01/16; Abel, 1902, 15–16]or [Abel to Holmboe, 1826/12; Abel, 1902, 52].
21 “Hos Crelle var før ogsaa een Gang om Ugen en Samling af Mathematikere men han var nødt til at ophøre derm
var een ved Navn Ohm, som ingen kunde komme ud af det med formedelst hans skrækkelige Arrongance.”[Abel to Hansteen
1826/12/05; Abel, 1902, 11]
22 [Abel to Holmboe, 1826/01/16; Abel, 1902, 15].
23 [Jahnke, 1987, e.g., 126].
24 The series expansion is periodic with a period of 2π and is periodically repeated on the real axis.
25 E.g.,[Fourier, 1822]; see, e.g.,[Grattan-Guinness, 1972, 85].
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wise differentiation of series and in a notebook on the theorem that he put in place ofCauchy’s Theorem
(Theorem C; throughout this paper, I denote byTheorem Cthe statement that “any convergent sum
continuous functions is, itself, a continuous function”). These two instances will be discussed
below.

In his paper on the binomial series, Abel extended Cauchy’s traditional way of proving the bin
theorem to allow for complex exponents. Furthermore, Abel emphasized that establishing the
gence of a series and finding its sum need to be separated into two steps—thereby stressing a
foreign to Cauchy.

The basic structure of Cauchy’s proof originated with Euler,26 and it can be described as follow
First,27 Cauchy devoted a problem to studying the functional equation

φ(x + y) = φ(x)φ(y). (3)

He found thatφ(nx) = φ(x)n for integral values ofn and he extended this to rationalp

q
by letting

y = p

q
x and writingφ(x)p = φ(px) = φ(qy) = φ(y)q . By extracting roots, Cauchy found thatφ(

p

q
x) =

φ(x)
p
q , and therefore, thatφ(µ) = φ(1)µ for “any numberµ.”28 For this last step, Cauchy implicitly—bu

consciously—assumed the continuity ofφ. As a result of these steps, Cauchy obtained that the solu
to (3) were necessarily the exponential functions.

The proof of the binomial theorem, itself, came in another problem, some 60 pages later.
Cauchy first recalled the binomialformula(the “formula of Newton”):

(1+ x)m =
m∑

n=0

(
m

n

)
xn for m a positive integer.

Cauchy then replacedm by any numberµ and observed that the finite sum changed into the infinite s

φ(µ) = 1+ µ

1
x + µ(µ − 1)

1 · 2
x2 + µ(µ − 1)(µ − 2)

1 · 2 · 3
x3 + · · · .

He then combined three facts concerning thisφ: (a) the series is convergent for−1 < x < 1, (b) the
functionφ is continuous, and (c) by the multiplication of series,φ satisfies the functional equation(3).
Thus, the above-mentioned problem applies, and

φ(µ) = φ(1)µ = (1+ x)µ,

becauseφ(1) = 1 + x by direct inspection.Theorem Cprovided the continuity ofφ as a function ofµ
and was thus a central step in the proof of Cauchy’s binomial theorem.

26 Euler gave two proofs of the binomial theorem; the one closer to Cauchy’s adaptation is[Euler, 1775].
27 [Cauchy, 1821, 106–108].
28 [Cauchy, 1821, 108].
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2.1. Abel’s criticism of Cauchy’s proof

At the center of Abel’s critical attention was a theorem—Theorem C—in Cauchy’s textbookCours
d’analysedescribing the behavior of the sum of an infinite number of continuous functions. Ca
argued the correctness of his theorem along the following lines29: First, he considered the seriess =∑∞

m=1 um(x) and introduced the notations = sn + rn wheresn denoted the sum of the firstn terms of the
series, andrn denoted the corresponding tail of the series. He then argued that the increase ofsn(x + α)

over sn(x) was infinitely small for infinitely smallα (by the continuity of the polynomialsn), and that
rn(x + α) and rn(x) vanished together (as tails of the series). Therefore, the sum was a cont
function, Cauchy claimed.

Formulated in modern terms, Cauchy’s argument can be summarized as follows:

s = sn + rn,

rn(x + α) → 0 whenn → ∞,

rn(x) → 0 whenn → ∞, and

sn(x + α) − sn(x) → 0 whenα → 0.

Therefore,

s(x + α) − s(x) → 0 whenα → 0.

In modern terms, this argument is not valid because the two limit processes (α → 0 andn → ∞) are
not independent. However, Cauchy had no means of symbolically separating the limit process
his argument suffered accordingly.30 In fact, with the standard interpretation (which was partly set
by Abel’s reading of Cauchy), these processes were indeed interrelated, but neither Cauchy n
devised theories capable of dealing with such double limits. Later, double limits became a ce
much attention, and efforts were made to devise new concepts, includinguniform convergencethat would
clarify the situation.31

It was against this background of Cauchy’s proof of the binomial theorem andTheorem Cthat Abel
reacted. Abel’s criticism consisted of three parts. First, Cauchy had banned divergent series from a
but Abel insisted on a complete separation of the two processes of finding a sum: (a) convergenc
series and (b) determination of the sum of the series. Second, Abel wanted to extend Cauchy’s pro
binomial theorem to include complex exponents—this extension made the separation of converge
sum even more relevant because some cases of complex exponents led to divergent series (or e
with a “false sum,” as had been the case with thePoisson Paradox). Finally, but to Abel not even worth

29 [Cauchy, 1821, 131–132].
30 With the advent ofnonstandard analysisin the 20th century, some mathematicians, historians, and philosophers have
structed Cauchy’s argument in terms of the nonstandard model of the real numbers, in which it can be interpreted to b
see, e.g.,[Fischer, 1978; Giusti, 1984; Lakatos, 1978; Laugwitz, 1987, 1994; Robinson, 1966].
31 Cauchy, himself, played a part in this in 1853, but only after various concepts highlighting modes of convergence h
expressed independently during the 1840s by K. T. W. Weierstrass, P. L. von Seidel, and G. G. Stokes; see, e.g.,[Bottazzini,
1986, 202–208]. See also[Grattan-Guinness, 1986].
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explicitly mentioning, Abel wanted to recast Cauchy’s theory of series in a slightly different m
optimal for the proof of the binomial theorem. In this process, he replacedTheorem Cwith another resul
because he found the former to be “admitting exceptions.” Thus, the exception was only part of a
criticism, and Abel’s motivation for this criticism was rooted in a more general unease with the s
affairs in the theory of series. In a letter to his mentor, C. Hansteen (1784–1873), Abel wrote of hi
for future research:

Pure mathematics in its purest form must be my exclusive study for the future. I will devote all my powers
bringing some light to the vast darkness that incontestably now exists inanalysis. It [analysis] completely
lacks plan and coherence and it is truly remarkable that it can be studied by so many—and worst o
that it is not rigorously treated. Very few theorems exist in higher analysis that are demonstrated w
convincing rigor. Everywhere one finds the unfortunate way of deducing from the special to the gene
and it is highly remarkable that after such procedures so few of the so-called paradoxes entail. It is re
very interesting to search for the reason for this.32

Abel’s statement that the “unfortunate way” of reasoning “from the special to the general” coul
to “paradoxes” is a direct continuation of Cauchy’s argument against the “generality of algebra
his introduction to theCours d’analyse.33 There, Cauchy described how he had been forced to aba
certain types of arguments, in particular arguments based on the “generality of algebra,” i.e., the
interpretation of equality between expressions, to achieve his desired “geometrical” standard o
Cauchy replaced this Eulerian idea of formal equality by a numerical conception of equality in whic
expressions were equal if they gave exactly the same results for equal values of the variables. P
by this transition in conceptions of equality, mathematicians revisited, revised, and reformulated
important results to bridge the gap between the two styles—I term this processcritical revision—and
many of Abel’s actions can best be understood in this context. Abel’s ambition to investigate the r
infrequency of paradoxes in analysis is one of the core components of his critical revision in the
of series. Besides pointing to the problem, Abel also suggested as a partial explanation for the re
few problems that had been encountered that until recently analysts had mainly worked with
series. These, Abel thought, apparently behave nicely and in accord with intuition and the que
procedures. He continued:

As soon as others [series that are not power series] enter, which does not happen often, one is most
astray, and a set of interrelated false theorems emerges from false conclusions.—I have worked thr
many of these and have had the fortune of seeing it clearly. Whenever one proceeds in the ordinary fas
it is probably all right; but I have had to be very cautious because the theorems that have been acce

32 “Den rene Mathematik i sin reneste Betydning maa blive ganske mit Studium for Fremtiden. Alle mine Kræfter
anvende paa at bringe noget mere Lys i det uhyre Mørke som der uimodsigelig nu findes iAnalysen. Den mangler saa gansk
al Plan og System, saaat det virkelig er høist forunderlig at den kan studeres af saa mange og nu det værste at den a
er stræng behandlet. Der gives yderst faae Sætninger i den høiere Analyse som ere bevisede med overbevisende
Overalt finder man den ulykkelige Maade at slutte fra det Specielle til det Almindelige, og yderst mærkværdigt er de
efter en saadan Fremgangsmaade dog kuns findes faae af de saakaldte Paradoxer. Det er virkelig meget interessant
Grunden hertil.”[Abel to Hansteen, 1826/03/29; Abel, 1902, 22]
33 [Cauchy, 1821, ii–iii].
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without rigorous proof (i.e., without proof) have struck such deep roots with me that I constantly run t
risk of using them without further testing.34

Abel was quite explicit about the need for a critical revision of the theory of series, and he kne
previously accepted truths had been so well established that mathematicians could have troub
tioning them and investigating the reasons behind their validity. Furthermore, he observed that no
series (e.g., trigonometric series) might provide the key to producing streams of “interrelated, fa
orems.” These two observations provide the essence of Abel’s critical revision: (1) the prevailing
needs critical revision, and (2) trigonometric series could be used to test the accepted truths an
ples.

Theexceptionand its context in terms ofTheorem Chave now been presented. Before I discuss w
Abel would choose to call it an “exception,” it is time to present and analyze Abel’s reactions to it.

2.2. How did Abel respond to theexception?

In response to the problematic status ofTheorem Cthat “admitted exceptions,” Abel devised a ne
theorem—here calledTheorem A1—tailored to the specific demands raised by the binomial theo
WhereasTheorem Cdealt with any convergent series of continuous functions, Abel stated and pro
theorem only dealing with a certain type of series yet powerful enough for (and specifically inten
be used in) the required step in the proof of the binomial theorem. Abel considered series of the

∞∑
n=0

vn(x)αn (4)

and assumed that the functionsvn were continuous in an intervalx ∈ [a, b]. He then argued that if
value δ > 0 existed such that the series

∑∞
n=0 vn(x)δn converged,35 and if 0� α < δ,36 then the sum

function(4) would also be continuous on the same interval.37

Faced with a situation in which a theorem admitted exceptions, Abel took refuge in a narrower th
only pertaining to a subconcept of infinite series—in Abel’s case defined by what could appear
somewhat arbitrary form(4). This approach has been viewed by Lakatos as one of the prototy
responses to the emergence of “monsters” or “exceptions,” and Lakatos termed it “exception-bar38

However, three different arguments can be made on why Abel saw power series as a safe haven p
against the “emergence of false theorems” opened by trigonometric series. First,Theorem A1dealt with

34 “Saasnart der komme andre imellem hvilket rigtig nok ikke ofte er Tilfældet saa gaaer det gjerne ikke godt og a
Slutninger opstaae da en Mængde med hinanden forbundne urigtige Sætninger.—Jeg har gjennemgaaet flere af d
været saa heldig at komme paa det Rene dermed. Naar man blot gaaer almindelig tilværks saa gaaer det nok; m
maattet være særdeles forsigtig, thi de engang uden strængt Beviis (�: uden Beviis) antagne Sætninger have slaaet saa
Rødder hos mig at jeg hvert Øjeblik staaer Fare for at bruge dem uden nøiere Prøvelse.”[Abel to Hansteen, 1826/03/29; Abe
1902, 22–23]
35 The convergence atδ was not explicitly mentioned by Abel but appears to be a tacit assumption that was made exp
theŒuvres[Abel, 1881, I, 223]; see also[Spalt, 2002, 291].
36 Abel was not explicit about the precise nature ofα andδ.
37 [Abel, 1826, 315].
38 [Lakatos, 1976, 133–136].
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a class of series large enough to include the ones needed for the binomial theorem—it was suf
strong; this is a pragmatic reason. Second,Theorem A1bore resemblances to another of Abel’s theore
guaranteeing the continuity of a power series on its border of convergence under conditions si
those assumed inTheorem A139; this would be a structural reason. And finally, Abel saw aesthetic va
in power series which, formally, were the simplest specialized class of series. Thus, three intrinsic
for Abel’s response can be reconstructed—the first two merit additional attention.

Abel’s proof of Theorem A1was closely modeled on his proof of the theorem preceding it in
binomial paper—here referred to asTheorem A2—that stated the continuity of a power series when
variable approaches the boundary of convergence; i.e., in modern terms, ifδ > 0 is such that the serie∑∞

n=0 anδ
n is convergent and if 0� α < δ, then

lim
α→δ−

∞∑
n=0

anα
n =

∞∑
n=0

anδ
n. (5)

The close interrelation betweenTheorem A2andTheorem A1led Abel to model his proof of the latte
on the proof of the former. By analyzing the two proofs, their relationship will become apparen
it will be found thatTheorem A1lacks the same kind of uniformity requirements asTheorem Cand is
therefore equally dubious—as it stands, it is actually false.

In the process of provingTheorem A2, Abel assumed the convergence of the series
∑∞

n=0 vnδ
n, broke

off the series afterm terms, and letp denote a quantity that was larger than any of the sections of the

p �
m+M∑
n=m

vnδ
n for M = 0,1,2, . . . . (6)

Because the series was assumed to be convergent, such ap indeed exists; however, its existence was
a question to Abel and was never mentioned. Believing to have obtained such ap (6), Abel wrote the tail
of the series(4) as

ψ(x) =
∞∑

n=m

vnα
n <

∞∑
n=m

vnδ
n. (7)

A previous result of the binomial paper40 stated and proved that for any decreasing sequence{εn} and
for any sequence{tn} whose partial sums were bounded

∑m
k=0 tk < ν (for all m), the following inequality

holds:

m∑
k=0

εktk < νε0.

39 [Abel, 1826, 314].
40 [Abel, 1826, 314].
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This rather technical lemma now allowed Abel to conclude from(7) that

ψ(α) <

(
α

δ

)m

p, (8)

and from this,Theorem A2followed quickly by lettingm increase, since the firstm terms of the serie
were always a finite (and thus continuous) polynomial.

When Abel applied the same procedure to the situation in which the coefficients were functions
variablex (Theorem A1), he introduced the functionθ(x) such that in analogy with(6),

θ(x) �
m+M∑
n=m

vn(x)δn for M = 0,1,2, . . . and for allx ∈ [a, b]. (9)

However, Abel treated the functionθ(x) as a constant, in complete analogy withp of the preceding proof
Consequently, Abel claimed thatm could be chosen such that(α

δ
)mθ(x) was infinitesimal. He did not re

alize that such anm could depend onx—and his notation gave no possibility of making the interrelat
explicit. Thus, when Abel tacitly applied the same argument toθ(x + ω) and—still tacitly—thought
that a single, definitem could be found independent ofx, it amounted to a hidden uniformity requir
ment. Later, another version based onabsolute convergencewas demonstrated,41 but a counterexampl
to Theorem A1can actually be constructed.42

Once Abel had set up the general theoretical results to be used in his proof of the binomial theo
returned to the procedure already advocated at the beginning of his paper: to consider the conver
the binomial series and to determine the conditions under which its sum equaled the binomial. I
so, Abel combined his six preliminary theorems (which constitute an elaborate conceptual ana
convergence and continuity) with much more explicit manipulations of the particular case at ha
binomial series. Although the many details of these manipulations take up most of Abel’s paper, t
of little direct impact for the present discussion.

Apart from the binomial paper, the primary traces of Abel’s investigations into the permissible o
tions on infinite series are found in his notebooks. They date from the year following the publica
the binomial paper (1827).43 Holmboe made selections from these notebooks and published them
first edition of Abel’sŒuvres.44 Most of the selection concerns interesting criteria of convergence
the last part of it is devoted to the continuity of series of the form

f (y) =
∞∑

n=0

φn(y)xn, (10)

which constitute a class similar to the one that Abel treated inTheorem A1in the binomial paper. Thus
Abel continued to work on new proofs ofTheorem A1, and in the notebook, we find two new deductio
of it. Following the deductions, Abel turned to testing the limits of the theorem when he observed

41 [du Bois-Reymond, 1871].
42 See the suggestion in[Walter, 1985, 138].
43 [Abel, 1881, II, 326].
44 [Abel, 1827/1881].
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For example, [. . . ]

f (y) = siny · x + 1

2
sin 2y · x2 + 1

3
sin3y · x3 + · · ·

is a continuous function ofy if x < 1. If x = 1, the series is still convergent but in this casef (y) is
discontinuous for certain values ofy.45

Here, we see Abel using a series very similar to theexception—indeed, it is the same function translat
horizontally byπ—for (self-)critical purposes. The fact that Abel returned to theTheorem A1within the
first year after his binomial paper was published prompted M. S. Lie (1842–1899), one of the
of the second edition of Abel’sŒuvres, to “conclude beyond doubt” that Abel had become dissatis
with the published proof.46 For the present context, it is more interesting to notice how properties o
exceptionwere once again utilized to illustrate the boundaries of results. On the same occasion, A
considered a small number of other examples in order to illustrate similar points.

In summary, Abel began his research on the theory of series inspired by Cauchy’s new attitudes
rigor and a great sense of the need for critical revision. In a footnote, he criticizedTheorem Cthrough
the use of an “exception,” and he went on to prove a limited version ofTheorem Cthat was sufficiently
strong and that he thought was more rigorous. We now turn to theexceptionas such and Abel’s use of
in yet another, related context.

3. Abel’s acquaintance with the exception

Abel’s exceptional series(1) played an important role not only in his binomial paper but also in ano
context. In this section, I discuss how Abel may have come to know of the remarkable properties
series and how he used these. In this respect, some important clues can be found in Abel’s trai
apprenticeship as a mathematician.

3.1. Encounters with Degen

The first mathematician outside Norway with whom Abel had contact was C. F. Degen (1766–
a professor of mathematics at the University of Copenhagen. Their communication began in 182
Abel thought he had solved the general quintic equation and his presumed solution was forwa
Degen for evaluation.47 In 1823, Abel visited Copenhagen and met Degen. Because their communi

45 “Par exemple, [. . . ]

f (y) = siny · x + 1

2
sin 2y · x2 + 1

3
sin 3y · x3 + · · ·

est fonction continue dey, si x < 1. Si x = 1, la série est encore convergente, mais dans ce casf (y) est discontinue pou
certaine valeurs dey.” [Abel, 1827/1881, 202]
46 [Abel, 1881, II, 326].
47 See, e.g.,[Stubhaug, 2000, 239–240]or [Sørensen, 2002a, 2002b].
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was only oral, sources documenting their interactions in this period are sparse. However, we kn
Abel held Degen in high regard and that he thought of him as his intellectual mentor.48 We also know
from Abel’s letters that he read some of Degen’s works with interest.49

To Degen, the object that Abel later utilized as an “exception” toTheorem Cwas familiar; indeed
he had used it in an interesting way in a paper from 1802.50 Degen’s essay—published in Danish
the journal of the Royal Danish Academy of Sciences and Letters and entitled “Contributions
critique of studies in mathematics”—discussed the mental prerequisites for the successful cultiv
mathematics. It was construed as an argument against an exclusively utilitarian rationale or legitim
for mathematics and took the form of a defense of the intrinsic value of the discipline. However,
also Degen’s purpose to discuss the “abuse that one could fear from the generalization of theo
a topic of direct interest to our argument.51 To the latter, critical end—explicitly informed by the critic
philosophy of I. Kant (1724–1804)—Degen wrote:

For instance, one would conclude from the fact that

sinφ + 1

2
sin 2φ + 1

3
sin 3φ + · · · in inf. = π − φ

2

that 0+ 0+ 0+ · · · = π
2 and conclude wrongly.52

In a footnote, Degen continued:

This is not the only case in which the assumption that the variable quantity= 0 can lead one astray when
one employs the general form without caution. [. . . ] The authordoes not believe that this remark is su-
perfluous with respect to whoever want to educate themselves as mathematicians. For the masters
science it [the remark] is of course not necessary.53

Two observations should be made here concerning Degen’s paper. First, Degen used a functi
ingly similar to Abel’sexceptionin pointing out that inserting particular numerical values into “gen
forms” was highly problematic.54 Explicitly, Degen drew the same conclusion that Abel would later d

48 In the period 1821–1824, Abel’s main influences were Hansteen and Degen, see[Holst, 1902, 22].
49 [Abel to Holmboe, 1826/08/04; Abel, 1902, 5].
50 [Degen, 1802].
51 [Degen, 1802, 77].
52 “Man vilde f.Ex. deraf, at

sinφ + 1

2
sin2φ + 1

3
sin3φ + +in inf. = π − φ

2

slutte, at 0+ 0+ 0+ 0+ · · · = π
2 , og slutteurigtigen.” [Degen, 1802, 91, original emphasis]

53 “Dette er ikke det enesteTilfælde, hvor den Forudsætning, at den foranderlige Störrelse= 0, kan före i Vildfarelse,naar
man uden Forsigtighed anvender den almindelige Form. [. . . ] Forf. troer ikke, at denne Anmærkning er overflödig i He
til den, der vilde danne sig til Mathematiker. For Mestere i Videnskaben behöves den naturligviis ikke.”[Degen, 1802, 91–92
footnote, original emphasis]
54 What Degen called a “general form” is theformal equalityso central to the Eulerian,formula-centeredapproach to functions
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n=1

sinnx

n
= π − x

2
(11)

would give absurd results. Precisely this difference between theformalequality of(11)and the numerica
equality that would result ifx = 0 were inserted into(11)is a central feature of the rigorization of analy
associated with the name of Cauchy. It hinges on the point that formulae are not themselves th
of Cauchy’s analysis—instead, the numerical correspondences, which they entail, lie at the hea
discipline. Second, Degen reserved his remarks for the novices of mathematics who had not yet de
an intuition for the proper use of “general forms”—to the masters of the discipline, such remarks
be superfluous. I will return to this below, when the role of intuitions in mathematics is briefly tou
upon.

To sum up, it is probable that Abel learned of the properties and problems of the series tha
later serve as hisexceptionfrom Degen’s 1802 paper. We even have a good indication that Abel
this paper: Abel borrowed the relevant volume of the transactions of the Danish academy on A
1822.55 As there are no other papers with mathematical content in this volume of the transactions
it for certain that Abel borrowed the volume to read Degen’s paper. However, Degen was by no
the first to treat this series; it had also occurred in the works of Euler and J. F. Pfaff (1765–1825),56 whom
Abel could also have read. However, I believe that Degen’s sound epistemological and method
intuitions—the expression of which was the purpose of his paper—made Abel aware of the poten
of the example to illustrate how even simple objects could display nonintuitive behavior.

3.2. Theexceptionin Abel’s letter to Holmboe

Abel’s use of theexception(1) was not restricted to the criticism ofTheorem Cthat has been discusse
above. Indeed, he also used the same series to discuss the permissibility of termwise different
series. In a long and important letter from Abel to Holmboe—written while Abel was contemplatin
binomial paper—theexceptionserved as a critical tool. First, Abel related to Holmboe the same use
that he would later repeat in the famous footnote of the binomial paper discussed already:

The following example shows how one can be deceived. It can be proved rigorously that for all values ox

less thanπ one has

1

2
x = sinx − 1

2
sin 2x + 1

3
sin 3x − etc.

From this it appears that the same formula should hold forx = π , but in that case one would have

1

2
π = sinπ − 1

2
sin2π + 1

3
sin 3π − etc.= 0 (absurd).

55 I am grateful to B. Granrud, who found this information in the loan protocols located in the Manuscript Collectio
National Library, Oslo.
56 The series occurred, e.g., in[Euler, 1754, 584]and was used by Pfaff in 1788; see[Reich, 1989, 233–234]. Both Euler and
Pfaff used it to solve problems, and not as a vehicle for critique.
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One can find indefinitely many such examples.57

In this letter, we find Abel presenting the same example as in the footnote but interpreting it in a s
different way. Notably, in the letter to Holmboe, Abel spoke of “paradoxes,” not of “exceptions,”58 and
he observed that “indefinitely many such examples can be found”—a point that he also stresse
binomial paper.59 This emphasis on the nonsingular nature of the exception is a common theme i
of the uses of exceptions in the early 19th century—and one to which I shall return below.

Later in that same letter, Abel discussed the limits to the permissible operations on infinite seri60:

One applies all operations to infinite series as if they were finite, but is this permissible? I think not.
Where is it proved that one gets the differential of an infinite series by differentiating each term? It is e
to give an example for which this is not true; e.g.,

1

2
x = sinx − 1

2
sin 2x + 1

3
sin3x − · · · .

Differentiation gives

1

2
= cosx − cos2x + cos3x − etc.

a result which is quite false because this series is divergent.61

57 “Følgende Exempel viser hvor man kan bedrage sig. Det kan strængt bevises og man har for alle Værdier afx som ere
mindre endπ

1

2
x = sinx − 1

2
sin2x + 1

3
sin 3x − etc.

Deraf synes at følge at den samme Formel skulde finde Sted forx = π ; men da vilde man faae ud

[
1

2

]
π = sinπ − 1

2
sin 2π + 1

3
sin3π − etc.= 0 (absurd).

Man kan finde utallige saadanne Exempler.”[Abel to Holmboe, 1826/01/16; Abel, 1902, 17–18]
58 [Abel to Holmboe, 1826/01/16; Abel, 1902, 16].
59 [Abel, 1826, 316, footnote].
60 [Abel to Holmboe, 1826/01/16; Abel, 1902, 13–19].
61 “Man anvender alle Operationer paa uendelige Rækker som om de vare endelige, men er dette tilladt. Vel nepp
staaer det beviist at man faar Differentialet af en uendelig Række ved at differentiere hvert Led? Det er let at anføre E
hvor dette ikke er rigtigt, f.Ex.:

[
1

2

]
x = sinx − 1

2
sin2x + 1

3
sin[3]x − · · ·

Differentieres saa faaer man

[
1

2

]
= cosx − cos2x + cos3x − etc.
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Abel further remarked that several other operations were just as problematic as the termwise d
tiation of series, and that he found great satisfaction in scrutinizing the established rules:

I have begun to work through the most important rules that are now valid in this respect and demonst
in which cases they are true or not.—I make good progress, and it is immensely interesting.62

As can be seen, Abel made good use of the exceptional series that he had come across.
did it illustrate that the convergence of a series of continuous functions did not necessarily im
continuity of the sum, it could also be used to illustrate that the common procedure of termwise d
tiation was not unproblematic. Furthermore, the excerpt illustrates how Abel acted as aconcept-centered
mathematician faced with a critical amount of counterevidence and began researching the limit
concepts (continuity, convergence, etc.) and reformulating statements of theorems to take the ex
into account. However, Abel never published much on this critical revision, and we are left with
sparse evidence for his investigations.

The present discussion has suggested how Abel used the exception series(1) as a sound critical too
inspired by Degen’s essay. It has also illustrated how the footnote in the binomial paper was not
only encounter with the exception series and that he made important use of it in other contexts of
examination. Now that we know about Abel’s familiarity with the “exception,” we must inquire a
why he would choose to describe it as such.

4. “Exception” or “counterexample”: what’s in a word?

At first sight, one might be tempted to interpret Abel’s choice of words as an indication of the v
ation he had for Cauchy. Plausible as this might be to those tempted by psychologisms, the fac
demonstrated below—that other mathematicians also spoke seriously about “exceptions” seems
this as being much too simplistic a way out. Below, based on diachronical and contextual reading
gest and insist that what Abel termed an “exception” in 1826 needs to be distinguished from the
technical meaning given to counterexamples today, and that Abel’sexceptionmust be interpreted within
the changing attitudes toward analysis in the early 19th century.

4.1. “Exceptions” in early 19th century mathematics

Even outside the school of algebraic analysis, a number of examples can be given, in
mathematicians—contemporaries of Abel—also spoke of “exceptions.” For instance, as highligh
Lakatos,63 in the discussion of Euler’s theorem on polyhedra, S. A. J. l’Huillier (1750–1840) and J.
Hessel (1796–1872) spoke of “theorems suffering exceptions,” using the same phrases as Ab64

Resultat, ganske falsk, thi denne Række er divergent.”[Abel to Holmboe, 1826/01/16; Abel, 1902, 18]
62 “Jeg har begyndt at gjennemgaae de vigtigste Regler som ere gældende (nu) i denne Henseende, og vise i hvilke T
ere rigtige eller ikke.—Det gaaer ganske godt og interesserer mig umaadelig.”[Abel to Holmboe, 1826/01/16; Abel, 1902, 18
63 [Lakatos, 1976].
64 “[. . . ] que le théorème d’Euler souffre des exceptions numbreuses”[Lhuilier, 1812/1813, 172]and “Indessen leidet derselb
[Satz] Ausnahmen.”[Hessel, 1832, 13].
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Similarly, in the context of finding the number of imaginary roots of an equation, J. B. Bérard q
J. le R. d’Alembert (1717–1783) to the effect that “exceptions confirm the rule.”65 And, in a discussion
of a proof by F. D. de Foncenex (1734–1799), Lagrange also linked the word “exception” to the c
of “general validity”66:

This principle is generally valid, but I have remarked that it can be subject to exceptions that can make
preceding demonstration defective.67

Below, two further examples will support my claim, that an “exception” was an independent ob
mathematics that we must try to understand. The first example arose from a discussion betwee
Abel’s best friends, while the second one takes us back to the master, himself, Cauchy.

Six years after Abel’s early death, the professors of mathematics at the University of Christiani
Oslo, Norway) engaged in a heated debate concerning the nature of mathematics and its proper
In a textbook on planar geometry from 1835,68 Hansteen suggested an extension of ordinary planar g
etry to include curved lines. In the process, he sought to widen the concept of parallel lines to
nonintersecting, curved ones. Holmboe responded emphatically to this extended definition in a n
a Christiania newspaper.69 Holmboe’s means of refuting Hansteen’s definition consisted of three diff
components worthy of comment. First, Holmboe illustrated in some detail how there were “except
[some of Hansteen’s] theorems.”70 Second, Holmboe argued that indefinitely many exceptions (exh
ing quite odd behavior) could be constructed. And finally, Holmboe was not satisfied with pres
“exceptions” but went on to give other points of criticism in support for his views—exceptions we
sufficient reason to overthrow results. In Denmark, C. Jürgensen (1805–1860) also reviewed the t
and commented upon the theorems that had exceptions.71 According to Jürgensen, Hansteen’s extens
was quite natural, and Holmboe’s exceptions concerned theorems that were presented as beinggeneral,
and therefore the criticism by exceptions did not apply. Thus, Jürgensen concluded that the mere
lucid presentational style was not sufficient reason to dismiss the extended concept of parallel lin72

From this example, three important observations of direct relevance to our discussion can be
First, Holmboe used the term “exception” in a way comparable to Abel’s use of it. Although th
no direct reference from Holmboe to Abel’s use of the word, two scenarios force themselves u
It is plausible that the term “exception” was not at all exceptional among mathematicians of the
and 1830s,73 or Holmboe may have picked the term out of Abel’s paper. Second, Holmboe’s exce
were notdefinitive—they did not close the debate: Holmboe had to observe that indefinitely many

65 [Bérard, 1819, 349].
66 For more on Lagrange’s concept of “the general” and his belief in it as a principle, see[Grabiner, 1981a, 317]and[Grabiner,
1981b, 39].
67 “Ce principe est généralement vrai; mais j’ai remarqué depuis qu’il était sujet à de exceptions qui pouvaient m
démonstration précédente en défaut.”[Lagrange, 1826, 182; the same phrase can be found in the previous editions of 1
(an VI) and 1808]
68 [Hansteen, 1835].
69 [Holmboe, 1835].
70 [Holmboe, 1835, 2].
71 [Jürgensen, 1836].
72 [Jürgensen, 1836, 468].
73 This seems plausible given the examples presented above.
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exceptions existed, and he even had to go beyond the use of exceptions and voice other criticism
Hansteen’s concepts. And third, Jürgensen and Holmboe disagreed over the severity of the exce
according to Jürgensen, theorems that weregeneralmight allow for some exceptions without bein
seriously impaired.

After briefly discussing the Hansteen–Holmboe dispute that took place on the periphery of
matical Europe, we will immediately return to its center. After he announcedTheorem Cin the Cours
d’analyse(1821), Cauchy did not return specifically to the subject in print until 1853. Then, prom
by a communication to theAcadémie des sciencesby C. A. Briot (1817–1882) and J.-C. Bouquet (181
1885),74 Cauchy eventually faced the problems associated withTheorem C.75 Interestingly, in 1853
Cauchy introducedTheorem Cin the following way:

In establishing, in myAnalyse algébrique, the general rules relating to the convergence of series, I hav
also announced the following theorem.76

Here, we seeTheorem Cdescribed as both a “theorem” and a “rule”—a fact, to which I shall re
soon. Then, acknowledging the work of Briot and Bouquet, Cauchy described howTheorem Ccould not
be “admitted without restrictions” and he presented the series

∑ 1
n

sinnx as an example with a discon
tinuous sum function. Cauchy then proceeded to amend the theorem:

By the way, it is easy to see how one should modify the statement of the theorem so that it no longer g
way to any exception.77

Cauchy’s revision consisted of adding an explicit requirement of uniform convergence. Interes
this concept is, our main interest here lies with Cauchy’s choice of words and with his response.

From the quotation, we see how Cauchy had been brought to realize thatTheorem Cadmitted
exceptions—in the brief, printed version, Briot and Bouquet did not speak of “exceptions,” but the
might have been used in the discussions in theAcadémie des sciences, and Cauchy certainly used
Also worthy of notice is the fact that Cauchy explicitly considered the family of exceptions that inc
Abel’s exception. Cauchy’s example—which was also used by Degen and Abel—is a horizontal tr
tion of Abel’s example(1) and, in a sense, these are the “natural” exceptions toTheorem C. By comparing
their responses, we realize that Abel and Cauchy reacted differently to the fact thatTheorem Cadmitted
exceptions: Abel limited the class of objects under consideration by requiring a specialformof the func-
tionsum, whereas Cauchy made extra requirements concerning the nature of the convergence.78 Cauchy
may thus be seen as reacting in aconcept-centeredway compared to Abel’s restriction of the domain
the theorem by an essentiallyformula-centeredcriterion. Finally, we learn that Cauchy thought of t

74 [Briot and Bouquet, 1853].
75 [Cauchy, 1853].
76 “En établissant, dans monAnalyse algébrique, les règles générales relatives à la convergence des séries, j’ai, de plus,
le théorème suivant.”[Cauchy, 1853, 30–31]
77 “Au reste, il est facile de voir comment on doit modifier l’énoncé du théorème, pour qu’il n’y ait plus lieu à aucune
tion.” [Cauchy, 1853, 31–32]
78 This difference has been emphasized by[Lakatos, 1976, 127–141]; see also[Koetsier, 1991, 73–92].
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contents of theCours d’analyseas a set of “general rules” governing the convergence of series—thi
be elaborated upon in the following argument.

4.2. Rules and exceptions or theorems and counterexamples

In a certain sense, the crucial part of the present argument can be phrased in terms of the tw
pairs: rule–exception and theorem–counterexample. In the 19th century, I suggest, a “rule” wo
perceived as ageneral statementfor which “exceptions” were possible, i.e.,a result that holds generall
true.79 We have seen how both Cauchy and Abel spoke of “rules” in the theory of series, and w
observed the curious fact that some such rules admitted “exceptions.” On the other hand, a (ma
ical) “theorem” is now perceived as an absolutely true statement; any “counterexample” will rend
theorem false and therefore turn it into a nontheorem. However, when Abel spoke of “exceptions
were exceptions totheorems, and this complication of the word-pairs has to be disentangled.

In the present context, there is an interesting difference between the theorems of geometry in
and the results in analysis presented by Euler: Euler’s results in analysis were often devised arules,
i.e., formal statements that hold generally good. The value of rules lies in their applicability: skil
intuitively gifted mathematicians—such as Euler, himself—knew when to apply which rules and
these rules might possibly lead to “exceptions.” This kind of operational knowledge is opposed to
ematicaltheoremsthat are held not to be onlygenerallygood but to be precise, i.e., true for all (mean
each and everyone of ) the terms falling under them. In the modern model of mathematical know
one might argue, a theorem with an exception—which we prefer to call acounterexample—is refuted
and is thusfalse: its domain of validity has been misstated. Furthermore, with the modern view o
orems, counterexamples are extremely useful in the very important procedure of precisely esta
the extension of domains of validity or of concepts—be it heuristically or more informed as sugge
[Lakatos, 1976].

Thus, I argue, there is an essential difference between the two word-pairs in the truth-values t
encompassed in the 19th century. A rule with an exception was neverthelessa rule—that just could not be
applied to the exception. A theorem with a counterexample wasfalseand hence was no longer a theore

Almost as importantly, mathematicians reacted differently to exceptions and to counterexam
indeed, this may come closer to a true definition of the terms as I interpret and use them. A mathem
of the 18th century faced with an exception would accept it, perhaps ignore it, or perhaps try to und
it a bit better. On the other hand, a mathematician of the late 19th century who discovered or pr
a counterexample would be expected to immediately realize that some result had been refute
others would then set to work repairing it by carefully analyzing the counterexample and the rest
it imposed on the domain of the theorem in question. Thus, we may be helped in distinguishing exc
from counterexamples by analyzing how (and if) mathematicians reacted to their presence.

We have noticed repeatedly that Abel and his contemporaries were concerned with thenumber of
exceptionsto a given result. At first, this aspect may appear curious and of less importance, but pr
the present interpretation, more sense can be made of it. Above, I have suggested that in theformula-
centeredapproach to analysis, general results (rules) might survive the presentation of a few exce
Thus, Abel’s concern for the infinite number of exceptions was a relevant way of pointing to the s
of the problem and to caution mathematicians to apply the questioned result with care.

79 I take this as my working definition of “rules” and have pointed to some similar 19th century uses of the term.
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In summary, it appears plausible that the word “exception” could and should be taken very se
as a counterpart to the rule-like nature of general statements. However, as must also be cle
present context, Abel put forward anexceptionto something that Cauchy had called atheorem, not to
an overly general rule but to an apparently precise mathematical theorem. I claim that the juxtap
of Theorem Cand Abel’sexceptionis actually a confusion of the word-pairs that occurred in a t
when a precise notion of theorem was just taking over from the previous emphasis on genera
Thus, I suggest that in the interim period, a result (a rule) would be claimed to be a theorem
it admitted some exceptions. K. Volkert has provocatively described such theorems as “statistic
ing the∀-quantifier”80—i.e., they seem to claim to apply “for all” but actually (and with contempor
knowledge and acceptance) only apply to “almost all” or to “all but some few, uninteresting excep

4.3. General arguments and exceptions

The mode of mathematics prevalent in the 18th century relied on a heavy apparatus of form
explicit manipulations—therefore, I termed it theformula-centeredstyle of mathematics. Because
the often cumbersome machinery, applicable results were not easily overthrown—not even whe
with a few exceptions. This was manifested—as will be illustrated below—in the fact that the par
included arguments “by generality” and results that were known to be true only “in general.”

In the early 19th century, Scandinavian mathematicians—including Abel and Degen—spoke o
eral” or “ordinary” arguments, principles, or rules.81 Often, these referred to practices which Cauch
1821 labeled “the generality of algebra” and banned from his new rigorization of analysis.82 In partic-
ular, these arguments would work with formal and general relationships between analytical expr
without regard for the numerical behavior when numerical values were inserted for the variables.

Examples of this mode of general reasoning can be found in Abel’s works on elliptic and highe
scendental functions. One easily accessible example will have to serve as an introduction to t
modern standards—strange way of reasoning. In 1826, Abel presented a paper to theAcadémie des sc
ences, in which he applied a very general, algebraic approach to the question of integrating algeb
related differentials, his highly celebrated, so-calledParis mémoire.83 Despite its general approach and
large number of general,concept-centeredresults, this paper worked well within theformula-centered-
style with pages of long manipulations following each other. One specific operation frequently u
the paper is particularly noteworthy in the present context.

Abel’s Paris mémoiredealt with integrals—later calledabelian—of the form
∫
f (x, y)dx, wherey

was related tox by an algebraic equationχ(x, y) = 0, andf was a rational function. At a crucial poin
of the argument, where Abel sought to determine the numberµ of independent abelian integrals,84 he
employed a generalized degree operator that he denotedh. Just as is the case for the ordinary deg
operator of polynomials, degP (which Abel also used), the degree of a sum may fail to be the maxim

80 [Volkert, 1986, 144–145].
81 The Danish word “almindelige” can mean both “general” and “ordinary.”
82 [Cauchy, 1821, ii–iii].
83 [Abel, 1841].
84 Abel found that for givenf andχ , a certain number,µ, existed such thatanysum of abelian integrals (withf,χ ) could be
reduced toµ such integrals.
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of the two degrees,

deg(P1 + P2)
?= max{degP1,degP2}, (12)

if degP1 = degP2. However, in theParis mémoire, Abel was not interested in such peculiarities and
simply argued that the equality equivalent of(12) was true “in general,” i.e., with the exception of som
particular cases of little interest:

Thus, one has in general, except in certain particular cases which I refrain from considering [. . . ]85

Later, the precise determination ofµ (then termed the “genus”) became a focal point of much rese
e.g., in the works of Riemann.86

Other examples of a similar approach where peculiar special cases were ignored can be f
Abel’s works. For instance, in theRecherches,87 Abel studied the inversion of elliptic integrals (of th
first kind) into elliptic functions. These new functions were known only through an abstract, fo
inversion, and thus, for them to become well-established mathematical entities, Abel deduced
representations including infinite series and infinite products. All these representations were d
formally, i.e., both (1) using formulae and long manipulations of such and (2) with no concern f
convergence of the involved infinite expressions. Only in his final paper on elliptic functions, thePrécis,
did Abel remark rather laconically on the convergence of the deduced expressions when he simp
without further ado that “[the series] are always convergent.”88

Also in the Précis, Abel used another notion related to exceptions—that ofrestrictions—when he
stated that:

The formulae presented above hold with certain restrictions if the modulusc is arbitrary, real or imagi-
nary.89

These examples serve to illustrate that the concern for convergence and rigor that was so pre
Abel’s paper on the binomial series was much less outspoken in his research on elliptic function
also illustrate that Abel—when facing usefulformula-centeredresults—was prepared to accept cert
restrictions in their domain of validity with just a side-remark that they were generally valid.

It is interesting to further investigate the backgrounds for this mode of general reasoning. On
sibility is that it may be related to the relative immaturity of the field. When Abel entered into the
of elliptic and higher transcendental functions, these were studied only by a rather small group o
ematicians led by A.-M. Legendre (1752–1833). Legendre’s presentational style was well with
formula-centeredapproach, involving and boasting long formal manipulations and various repre
tions for different purposes. Without aiming to reduce the problem of general arguments to diffe

85 “Alors on aura, en général, excepté quelques cas particuliers que je me dispense de considérer: [. . . ].”[Abel, 1841, 162]
86 [Houzel, 1986, 310–313].
87 [Abel, 1827, 1828b].
88 [Abel, 1829, 244].
89 “Les formules présentées dans ce qui précède ont lieu avec quelques restrictions, si le modulec est quelconque, réel o
imaginaire.”[Abel, 1829, 245]
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between fields of research, I suggest that Abel used two different modes of mathematical argu
different contexts, oneformula-centeredand oneconcept-centered. One indication of this can, I argu
be found in the references to “certain restrictions” that his “generally valid” results might suffer.

In summary, Abel often followed his predecessors in arguing “generally” and (consciously) neg
certain cases of little interest where the deductions could be imprecise. In the period dominated
formula-centeredapproach to analysis, such deductions were extremely valuable and the presupp
of intuition on behalf of the reader was not a general problem. However, with the advent of
approach with much greater emphasis onprecisely formulated theorems, such exceptions were no long
tolerated. Therefore, we now turn to one other particular example from Abel’s mathematical prod
that will help us appreciate this observation.

4.4. Counterexamples in Abel’s criticism of Olivier

As already mentioned, Abel did not publish much on the implementation of Cauchy’s new an
However, on one other occasion—prompted by a paper by a certain L. Olivier in Crelle’sJournal für
die Reine und Angewandte Mathematik—Abel published on possible tests of convergence for infi
series—tests that were central to Cauchy’s approach to the subject. In 1827, Olivier presente
simple criterion of convergence that can be expressed as

∞∑
n=0

an convergent ⇐⇒ nan → 0 whenn → ∞.90 (13)

Thus, Olivier’s claim can be interpreted as stating that the harmonic series precisely determines th
between convengence and divergence.

In a very short and concise argument, published in the same journal the following year, Abel cri
Olivier’s result. First, he showed directly that the series

∑∞
n=2

1
n logn

would contradict Olivier’s criterion
And following this counterexample, he demonstrated that it is impossible to construct a test fu
φ(n) determining completely the convergence of any series in the way Olivier had sought to
criterion(13): That is, no functionφ(n) exists such that for all series

∑
an,

∞∑
n=0

an convergent ⇐⇒ φ(n)an → 0 whenn → ∞.91 (14)

Abel based his proof on a process by which he could derive a divergent series from a convergent
vice versa. More precisely, Abel showed that if the existence of a test functionφ(n) was assumed, th
series

∑∞
n=1

1
φ(n)

provided a counterexample to(14).92

90 [Olivier, 1827].
91 [Abel, 1828a]; Olivier then responded by a brief remark revealing some of his geometrical arguments but essentially
ing Abel’s observations[Olivier, 1828].
92 It may be noted that in this argument, Abel actually demonstrated that sound reasoning about divergent series m
interesting and important results—somewhat contrary to his assertion that “it is shameful to base any argument on
series”[Abel to Holmboe, 1826/01/16; Abel, 1902, 16]. The main difference, of course, lies in the completely different attitu
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In the present context, Abel’s evaluation of his opponent’s argument is noteworthy, as is his
examples to make his point. In the published version, Abel was very cautious stating only that on
implications in the asserted “theorem is very true but the [other one, i.e. the implication toward t
in (13)] seems not to be so” and that “the theorem announced in the above quotation is thus defe
this case.”93 In his notebooks, however, we find Abel expressing a stronger position when he stat
“[t]hus, Mr. Olivier has seriously misled himself.”94 We see Abel expressing himself carefully about
status of the theorem that he had completely shattered by presenting not only a specific counter
but a very general argument showing the invalidity of any such criterion. This might suggest an inte
tion of Abel’s words in terms of diplomacy—but the suggested interpretation contrasting exceptio
counterexamples appears to explain more, in particular how Abel reacted to these. In the binomia
Abel simply noted theexceptionto Theorem Cand went on to present a different version of the theo
that he must have believed (1) was sufficient, and (2) did not suffer from the same problems. Th
type of reasoning that I associate with theformula-centeredapproach. In his criticism of Olivier, Abe
made quite a point out of the counterexample and went one step further into analyzing the po
of such criteria, thereby beginning to describe the class of convergence tests. Thus, in this conte
used the counterexample in a more modern (concept-centered) sense and began to do proof analysi95

Thus, I interpret Abel’s responses to Cauchy and Olivier as being quite different—one being anexception
within theformula-centeredapproach, the other being acounterexamplein theconcept-centeredstyle.

5. Conclusions

In the previous sections, we have seen how Abel’sexceptionwas not an isolated incidence in th
early 19th century. We have seen how mathematicians used the same word—“exception”—to de
a particular kind of example sometimes used in a special kind of critical argument. And we hav
how the preference for general arguments prevailed into the 19th century. It is now time to return
framework offormula-centeredandconcept-centeredmathematics to arrive at some overall conclusi
from these observations.

D. Laugwitz captured the essence of the transition in analysis in the period by stating that “[b
Cauchy, the calculus had dealt with expressions.”96 I mean to elaborate on this, claiming that analy
in the 18th century essentially dealt with formulae: arguments consisted of manipulations of
lae, questions concerned formulae, and formulae were obtained as the results. This preoccupa
formulae—which I termformula-centeredmathematics—was gradually replaced by a “most elev
viewpoint” in the course of the 19th century.97 This new outlook on mathematical analysis hadconcepts

toward the property of being “divergent.” The illegitimate use of divergent series of which Abel spoke was tied to their m
lations and therefore to theformula-centeredparadigm. However, Abel’s present argument made use of divergence as a pr
(the complement of convergence) and by investigating the delineation of these concepts, it was basicallyconcept-centered.
93 [Abel, 1828a, 79].
94 “Donc M. Olivier s’est trompé sérieusement.”[Abel, 1827/1881, II, 199]
95 Thus, with Lakatos, we may see Abel in the binomial paper as an “exception barrer,” whilst in debating with Oliv
“counterexample opened up a new field of research.”[Lakatos, 1976, 133–136, 128]
96 [Laugwitz, 1994, 319].
97 Weierstrass praised Abel’s “most elevated point of view,” see excerpts of quotations in[Biermann, 1966, 218].
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for its basic objects and is therefore described asconcept-centeredmathematics.98 In the concept-
centeredapproach, new types of questions arose and were answered by analyses of the exten
concepts and of relations between concepts. This transition from theformula-centeredto theconcept-
centeredoutlook was deep and affected both ontological and epistemological levels of mathem
Here, I restrict myself to applying this scheme to offer a perspective on the exceptions, rules (und
as general statements), theorems, and proofs of the early 19th century.

The great concern for formulae in theformula-centeredapproach meant that mathematicians work
within this framework were aware that their results (formulae) might not apply in certain cases. W
seen that from time to time, their results were described as “rules,” and we perceive these as gen
formal statements. The “exceptions” that these results, theorems, or rules might admit were int
excluded when applications had to be made, because being the masters of their discipline, mathem
knew how to apply their intuitions. However, to younger people entering the field of mathematics
19th century, results were thought of astheoremsand, in a period of transition, even theorems w
admitting exceptions. When the status of various mathematical results were firmly settled with
concept-centeredapproach, such exceptions became counterexamples that were skillfully emplo
test the limits of concepts and proofs—and to refute theorems.

With this background in mind, it made sense in the early 19th century to speak of “exceptions”
they did not just reduce to counterexamples. A theorem—just like a formula—might in this interim p
be extremely useful, even if it failed to apply to a few examples that nominally fell within its dom
It was only with the new critical approach—and the associated critical revision—that the exce
became untenable. By modifying statements so that they no longer admitted exceptions, mathem
advanced their science on the way to a wholelyconcept-centeredmathematics.

As outlined here, this transition helps us understand the stress on the number of exceptions
variation in the attitudes and reactions toward results known to admit exceptions. It suggests tha
formula-centeredapproach, a singular exception was insufficient reason to overturn an otherwise a
ble and useful result, and that mathematicians—when faced with a result allowing for exceptions—
attempt to provide a different, restricted result having sufficient strength but avoiding the problem
covered in the previous result. On the other hand, after the transition towardconcept-centeredanalysis,
when emphasis was put on the precise statement of theorems, the critical revision of previous res
precise theorems was inevitable and required. Then, it became important to precisely determine a
acterize the exceptions and their numbers and to include this information into the theorems by a
comparable to Lakatos’ schematized proof-analysis.

Similarly, the framework adds a perspective on the choice of words for the outstanding exa
When Abel called attention to the “exception” thatTheorem Csuffered, his choice of words reflecte
more than merely respect for Cauchy. Abel was using a vocabulary that when applied in theformula-
centeredapproach let mathematicians use their intuitions to avoid absurd cases. Similarly, whe
on other occasions spoke of “restrictions” without specifying them, he was referring to the same
validity of results. Later, in theconcept-centeredparadigm, such terms were transformed into spec
and explicit “conditions,” and mathematicians used “counterexamples” to differentiate between co
and precisely determine the domains of validity of theorems. Abel’s use of the word “paradox”

98 Versions of this transition-framework have appeared in the literature during the past decades; see, e.g.,[Jahnke, 1987
Gray, 1992; Laugwitz, 1999].
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intermediary one which resulted from combining the statements of theformula-centeredapproach with
the criticism of theconcept-centeredapproach.

By now, it should also be evident that the transition from aformula-centeredmathematics to aconcept-
centeredoutlook was not immediate. The transition was an extended one that lasted for at leas
decades of the early 19th century. To some mathematicians working during the transition, the cha
felt, but as the example of Abel illustrates, they were sometimes too deeply immersed in the mathe
style to deliberately and explicitly choose sides: Abel is an interesting, intermediary, and trans
figure in this respect.
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