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Abstract

It may seem odd that Abel, a protagonist of Cauchy’s new rigor, spoke of “exceptions” when he criticized
Cauchy’s theorem on the continuity of sums of continuous functions. However, when interpreted contextually,
exceptions appear as both valid and viable entities in the early 19th century. First, Abel's use of the term “exception”
and the role of the exception in his binomial paper is documented and analyzed. Second, it is suggested how Abel
may have acquainted himself with the exception and his use of it in a process derititatrevisionis discussed.

Finally, an interpretation of Abel’s exception is given that identifies it as a representative example of a more general
transition in the understanding of mathematical objects that took place during the period. With this interpretation,
exceptions find their place in a fundamental transition during the early 19th century fformal approach to
analysis toward a mormeonceptuabne.

0 2004 Elsevier Inc. All rights reserved.

Zusammenfassung

Es konnte merkwirdig aussehen, daf3 Abel, ein Protagonist der neuen Strenge von Cauchy, von “Ausnahmen”
sprach, als er den Lehrsatz von Cauchy uber die Stetigkeit der Reihen von stetigen Funktionen kritisierte. Aber
kontextbezogen interpretiert werden Ausnahmen sowohl akzeptable als auch sinnvolle Objekte der Analysis des
frihen 19. Jahrhunderts. Zuerst werden Abels Gebrauch des Ausdruckes “Ausnahmen” und die Rolle, die Aus-
nahme in seinem Binomial-Arbeit spielt, dokumentiert und analysiert. Danach wird angedeutet, wie Abel sich mit
den Ausnahmen vertraut gemacht haben kdnnte, und es wird sein Gebrauch von Ausnahmen in einem Prozess.
der “kritischen Revision”, diskutiert. Schliesslich wird eine Interpretation von Abels Ausnahme als Zeichen einer
Umwandlung mathematischer Objekte vorgeschlagen. Diese Auslegung zeigt, wie die Ausnahmen ihren Platz in
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einem fundamentalen Wandel des friihen 19. Jahrhunderts finden, von einem formellen Zugang in Richtung auf
eine begrifflichere Auffassung der Mathematik.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

From the mid-18th century to the mid-19th century, the style of mathematical research in analysis
underwent changes fromfarmula-centerecdpproach epitomized by L. Euler (1707-1783) toacept-
centeredstyle presented in works of G. P. L. Dirichlet (1805-1859) and G. F. B. Riemann (1826—1866).
The transition manifested itself in multiple aspects of the mathematical enterprise including notations,
guestions, results, methods, and techniques. It was felt by the active and creative mathematicians o
the nineteenth century who spotted a difference between the computational machinery associated witt
the formula-centeredapproach and the decidedly mental analysis belonging tadneept-centered
approach. We find this distinction seized upon for instance in Dirichlet’'s obituary of C. G. J. Jacobi
(1804-1851) where Dirichlet noticéd

[...] the constantly increasing tendency of the new analysis to put thoughts in the place of calculations,
1]

[ 2

in the methodological principle attributed by D. Hilbert (1862—1943) to Riemann near the end of the
century,

| have tried to avoid the large computational apparatus of Kummer such that also here Riemann’s principle
should be observed, according to which one should conquer proofs not by computations but solely through
thoughts?

or in what H. Minkowski (1864—1909) called the “second Dirichlet principle” heralding the modern times
in mathematics, according to which problems should be conquered

1 All translations into English are made by the author. The original language quotations are included in the footnotes.

2 “Wenn es die immer mehr hervortretende Tendenz der neueren Analysis ist Gedanken an die Stelle der Rechnung zu setzer
so giebt es doch gewisse Gebiete, in denen die Rechnung ihr Recht Babélij der jene Tendenz so wesentlich geférdert
hat, leistete vermdge seiner Meisterschaft in der Technik auch in diesen Gebiete Bewundernsw{bDdigbsst, 1852, 21]

3 “Ich habe versucht, den groRen rechnerischen Apparat von Kummer zu vermeiden, damit auch hier den Grundsatz von
Riemann verwirklicht wirde, demzufolge man die Beweise nicht durch Rechnung, sonder lediglich durch Gedanken zwingen
soll.” [Hilbert, 1897, 67]



H.K. Sgrensen / Historia Mathematica 32 (2005) 453-480 455

with a minimum of blind calculations and a maximum of enlightening thoufjhts.

In the midst of this transition, the Norwegian N. H. Abel (1802-1829) briefly entered onto the interna-
tional mathematical scene in the 1820s to raise a number of new questions and produce breathtaking new
results. Although his mathematical corpus mainly dealt with algebraic questions, particularly pertaining
to elliptic and higher transcendental functions, Abel also produced a new proof of the binomial theorem—
a theorem central to attempts by Euler, J. L. Lagrange (1736—-1813), and A.-L. Cauchy (1789-1857) to
construct firmer foundations for analysis.

Abel’s interest in the binomial theorem was awakened by CaudByisrs d’analyseof 18217 in
which Cauchy constructed a theory of infinite series based on a new standard of rigor. Aspiring to gen-
eralize Cauchy’s proof of the binomial theorem to include complex exponents, Abel set forth on his
path of inquiry adopted from his reading of Cauchy. In the process, however, Abel spotted that one of
Cauchy’s central theorems (on the continuity of any convergent sum of continuous functions) “admit-
ted exceptions”™—and it is this realization and the role it played in the transition between two different
mathematical styles that is discussed in the present paper.

In T. S. Kuhn’s philosophy of scienéethe accumulation of evidence (observations and experiments)
contradicting the prevailing paradigm plays the role of provoking crises ultimately resolved through
revolutions. To some, mathematics differs from the sciences because the statements of mathematics are
thought to be either true or false according to a time-independent correctness of their proofs, and no
real revolutions occur in mathematitdore recently, e.g., with I. Lakatdsmathematics is seen as
created by humans and developed through a dialectic that allows theorems to be falsified (refuted by
counterexamples). Without adhering strictly to any of the theories associated with Kuhn or Lakatos, the
present paper offers a diachronical reading of an important primary source from the early 19th century.
The paper contextualizes this source within the transition from one style (a paradigm) th&bimalk-
centeredmathematics to a new one, here ternsedcept-centered|

One of the main problems facing the historian trying to make use of philosophical frameworks such as
Kuhn or Lakatos is their reconstructed mechanism of development. Instead of claiming that the present
framework presents a universal scheme applicable to all other fields, mathematicians, or periods of time,
| am content to explore its explanatory power in understanding particular aspects of Abel's mathemati-
cal works. Here, | will use the transformation froniamula-centeredo a concept-centeredpproach
to investigate and analyze the role of Abel's exception. This interpretation will help us understand
how theorems can allow exceptions during periods of transition. The development of exceptions into
counterexamples is consequently explained through the evolutifomrofila-centereanathematics into
concept-centerethathematics, an evolution that can be traced in the objects of mathematical studies and
the methods for manipulating them.

4 “[...] von dem anderemirichlet schen Prinzipe, mit einem Minimum an blinder Rechnung, einem Maximum an sehenden
Gedanken die Probleme zu zwingen, datiert die Neuzeit in der Geschichte der Matheriimdsivski, 1905, 163]

5 [Cauchy, 1821]

6 [Kuhn, 1962]

7 On revolutions in mathematics, siillies, 1992]and in particulafGray, 1992]

8 [Lakatos, 1976]

9 This conceptual framework dbrmula-centerecand concept-centeredtyles in mathematics has recently appeared in the
literature, in particular in the works of H. Jahnke and D. Laugwitz.
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2. Abéd’sexception

In his paper on the binomial theorefhAbel used the series

i( )" Lsinnx (1)

n=1

to question an important step in Cauchy’s proof of the binomial theorem, a proof that Abel otherwise
considered the most rigorous one available. Below, | reproduce Abel’s objection in full from an enigmatic
footnote attached to one of the theorems in Abel’'s paper:

Remark. In the above-mentioned work of Myauchy(page 131) [theCours d’analysgCauchy, 1821]}
the following theorem can be found:
“Whenever the various terms of the series

uo+ur+ux+uz+---

are functions of a single variable quantity, and furthermore continuous functions with respect to this vari-
able in the vicinity of a particular value for which the series converges, then the siithe series is also
a continuous function of in the vicinity of that particular value.”

However, it appears to me that this theorem admits exceptions. Thus, for instance, the series

. 1 1
Sing — - sIn = SIin —
¢~ 5sin2p+ Zsind

is discontinuous for every valu@m + 1) of x wherem is an integer. As is known, a multitude of series
with similar properties exists

10 [Abel, 1826] Most historical accounts of the rise of rigorization in analysis describe Abel’s paper and the(sgpries,
e.g.,[Grattan-Guinness, 1972, 79-8%][Bottazzini, 1986, 113-117]
11 “anmerkung. In der oben angefiihrten Schrift des H&auchy(Seite 131) findet man folgende Lehrsatz:

“Wenn die verschiedenen Glieder der Reihe

ug+ug+up+uz~+--- USW

Functionen einer und derselben veranderlichen GroR3e sind, und zwar stetige Functionen, in Beziehung auf diese Veranderliche
in der Nahe eines besonderen Werthes, fiir welchen die Reihe convergirt, so ist auch diesSienReihe, in der Nahe jenes
besonderen Werthes, eine stetige Functionawbn

Es scheint mir aber, dafd dieser Lehrsatz Ausnahmen leidet. So ist z. B. die Reihe

1 1
sing — 5sin2¢+§sinaz>—--~ u.s.w.

unstetig fiir jeden Wertt2m + 1) vonx, wom eine ganze Zahl ist. Bekanntlich giebt es eine Menge von Reihen mit &hnlichen
Eigenschaften.[Abel, 1826, 316, footnote]
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So we notice that it “appeared” to the young Norwegian that Cauchy’s “theorem admitted exceptions.”
Today, exceptions to mathematical theorems are not tolerated, so this remark needs to be seen in its
historical context to make sense of it—understanding this context is the objective of the present paper.

At this point, it should be noted that A. L. Crelle (1780-1855)—the editor ofthenal fir die Reine
und Angewandte Mathematilktranslated Abel’s paper from French into German for publication in the
first volume of theJournal'? Unfortunately, Abel’s original manuscript is no longer extant. Therefore,
we cannot be sure that Abel wrote the footnote himself nor how he chose his original words in French.
Crelle’s version was adopted by B. M. Holmboe (1795-1850) and retranslated into French in the first
edition of Abel's Euvresand later reproduced in the second edifidNeither edition contains any
essential comments concerning the phrasing of the footnote. One could be led to credit Crelle with the
footnotel but as the argument in this paper will show, there is nothing odd in assuming that Abel himself
wrote the footnote and chose the words.

In order to understand how radically Cauchy (and Abel) broke with the established tradition in the
theory of series in the 18203,it has been fruitful to focus on the movement cals&debraic analysis
that goes back to Lagrang®By analyzing this tradition in its German context, H. N. Jahnke has demon-
strated that Cauchy’s choice of a new foundation for analysis was quite contingent: Another approach
that threw away fewer of the established methods but strived for an equally well founded analysis was
attempted by, e.g., M. Ohm (1792-18%2).

As Jahnke has also pointed dita major inspiration for reconsidering the foundations of the theory
of series in the early 19th century came from a phenomenon sometimes callRaigben Paradox-or
particular choices aofi andx, the series

Z Hk 0(m Coi(m — Zn)x), 2)

which is a formal expansion g cosx)”, produced one of the first sophisticated examples in which
the serieg2) was convergent but converged to a “false” sum—i.e., to a value, different@awosx)™.

This fact, first observed by S.-D. Poisson (1781-1840) in £8Xintested the common practice of
inserting numerical values into a formal equality between a series and a closed expression. In particular,
the impermissibility of such an operation was not easily identified from the properties of the series alone.

12 [Abel, 1881, 11, 302]

13 [Abel, 1839, I, 66-92hnd[Abel, 1881, I, 219-250]

14 Crelle was associated with the combinatorial school (see below), and, therefore, he was used to theorems (formulae) having
exceptions.

15 Abel has been described as “more Cauchian than Cau@gttan-Guinness, 1970, 8nd Jahnke—presumably from

the perspective of his 19th-century protagonist M. Ohm—Ilargely equates their positions, even sometimes referring to it as
“Cauchy/Abel”[Jahnke, 1987, 148However, the framework dbrmula-centerechndconcept-centerethathematics lets me

view Abel as a much more complex figure in interpreting Cauchy: Abel was responsible for fixating the pointwise interpretation
of Cauchy’sconcept-centeredefinitions, and at the same time, Abel also worked extensively withirfaimeula-centered
approach to other branches of mathematics; more on this later.

16 see, e.gfFraser, 1987, 1988-1989; Jahnke, 1999]

17 [Jahnke, 1987, 1990]

18 [Jahnke, 1987, 105-117]

19 [Jahnke, 1987, 104]
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Fig. 1. Abel'sexceptionEg. (1)) plotted graphically.

Explaining this problem played a prominent role in both French and German discussions of a proper
foundation for the theory of series. Abel probably came across the example in 1825 during his discussions
with Crelle, who had published on the topic. From his letters to Holmboe and from the binomial paper,
itself 20 it is quite obvious that the proper resolution of this problem was a key inspiration for Abel’s
binomial paper.

Considering the importance of tfiRoisson ParadoXor Abel’s research, one could be led to suggest
that Ohm had exerted a direct influence on Abel during his time in Berlin. However, we have no indication
of any direct interaction between Abel and Ohm—in fact, we have only one short mention in Abel’s first
letter from Berlin:

Previously, Crelle used to house a weekly gathering of mathematicians, but he had to discontinue this
because of a man named Ohm, who nobody got on with due to his horrible arrégance.

When Abel listed the mathematicians who had worked orPtlisson Paradoxhe explicitly included
Crelle but not Ohm, although the latter had worked extensively on the praBlémdging from this
evidence, it is likely that Abel never met Ohm and—more speculatively—that he was discouraged from
reading any of Ohm’s works. Had Abel done so, he would have found in them many discussions of
formulae with exception§® However, | see the occurrence of exceptions in Ohm’s works more as an
indication of the general state of analysis (tbemula-centereépproach) in Abel’s time than as a source
of direct inspiration. Instead, | find it equally likely that Abel drew his inspiration from another source,
with which he was familiar even before his arrival in Germany.

The series chosen by Abel in his binomial paper to question Cauchy’s statement was the Fourier series
expansion of the functiorf (x) = 5 on the open interval-r, m)?* the graph of the series is depicted in
Fig. 1 Abel’'s remark that “as is well known, a multitude of series with similar properties exists” has been
understood as a reference to the work of J. B. J. Fourier (1768—18B@wever, as | will argue below,
the serieq1) (and similar ones) was familiar to Abel through other, more likely, sources. The series,
itself, occurred thrice in Abel's mathematical corpus, always serving the purpose of criticism. The first
instance—the only public one—from Abel’s paper on the binomial theorem has already been presented
and its context will be discussed. Besides, Abel used the series in a letter to Holmboe discussing term-

20 E.g.,[Abel to Holmboe, 1826/01/16; Abel, 1902, 15-18][Abel to Holmboe, 1826/12; Abel, 1902, 52]

21 «Hos Crelle var fer ogsaa een Gang om Ugen en Samling af Mathematikere men han var ngdt til at ophgre dermed da der
var een ved Navn Ohm, som ingen kunde komme ud af det med formedelst hans skreekkelige Arrofigaeide.’Hansteen,
1826/12/05; Abel, 1902, 11]

22 [Abel to Holmboe, 1826/01/16; Abel, 1902, 15]

23 [Jahnke, 1987, e.g., 126]

24 The series expansion is periodic with a period ofahd is periodically repeated on the real axis.

25 E g.,[Fourier, 1822] see, e.gJGrattan-Guinness, 1972, 85]
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wise differentiation of series and in a notebook on the theorem that he put in pl€eeidfiy’s Theorem
(Theorem Cthroughout this paper, | denote Bheorem Cthe statement that “any convergent sum of
continuous functions is, itself, a continuous function”). These two instances will be discussed further
below.

In his paper on the binomial series, Abel extended Cauchy’s traditional way of proving the binomial
theorem to allow for complex exponents. Furthermore, Abel emphasized that establishing the conver-
gence of a series and finding its sum need to be separated into two steps—thereby stressing a point nof
foreign to Cauchy.

The basic structure of Cauchy’s proof originated with Eéfeand it can be described as follows.
First?” Cauchy devoted a problem to studying the functional equation

¢(x+y) =) (y). 3

He found thate (nx) = ¢(x)" for integral values ofz and he extended this to ration?l by letting
y= gx and writinge (x)” = ¢ (px) = ¢(qy) = ¢ (y)?. By extracting roots, Cauchy found thatgx) =
¢(x)§ , and therefore, that (i) = ¢ (1)* for “any numben..”?8 For this last step, Cauchy implicitly—but
consciously—assumed the continuitygfAs a result of these steps, Cauchy obtained that the solutions
to (3) were necessarily the exponential functions.

The proof of the binomial theorem, itself, came in another problem, some 60 pages later. There,
Cauchy first recalled the binomifdrmula(the “formula of Newton”):

m

A4+x)" = Z (’Z)x” for m a positive integer.

n=0

Cauchy then replaced by any numbey and observed that the finite sum changed into the infinite series

B wo mp=1 5 pp-HwE-2 5
¢>(u)_l+lx+ 1.2 x4+ 1.2.3 x° 4+

He then combined three facts concerning thig@a) the series is convergent ferl < x < 1, (b) the
function ¢ is continuous, and (c) by the multiplication of serigssatisfies the functional equatig®).
Thus, the above-mentioned problem applies, and

p(w) =) =1+ x)",

because (1) = 1 + x by direct inspectionTheorem Qprovided the continuity o as a function ofu
and was thus a central step in the proof of Cauchy’s binomial theorem.

26 Eyler gave two proofs of the binomial theorem; the one closer to Cauchy’s adaptdtianes 1775]
27 [Cauchy, 1821, 106-108]
28 [Cauchy, 1821, 108]
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2.1. Abel’s criticism of Cauchy’s proof

At the center of Abel’s critical attention was a theorefheorem G—in Cauchy’s textboolCours
d'analysedescribing the behavior of the sum of an infinite number of continuous functions. Cauchy
argued the correctness of his theorem along the following 3n&srst, he considered the serigs=
> > L un(x)and introduced the notation= s, + r, wheres, denoted the sum of the firstterms of the
series, and, denoted the corresponding tail of the series. He then argued that the increase-ptr)
over s, (x) was infinitely small for infinitely smalle (by the continuity of the polynomial,), and that
r.(x + «) andr,(x) vanished together (as tails of the series). Therefore, the sum was a continuous
function, Cauchy claimed.

Formulated in modern terms, Cauchy’s argument can be summarized as follows:

S = 8§, + 1y,
r.(x +a) — 0 whenn — oo,
r,(x) - 0 whenn — oo, and

sp(x +a) —s,(x) = 0 wheno — 0.
Therefore,
s(x+a)—sx)—0 whena — 0.

In modern terms, this argument is not valid because the two limit procasses)(andn — o) are
not independent. However, Cauchy had no means of symbolically separating the limit processes, anc
his argument suffered accordingfyIn fact, with the standard interpretation (which was partly settled
by Abel's reading of Cauchy), these processes were indeed interrelated, but neither Cauchy nor Abel
devised theories capable of dealing with such double limits. Later, double limits became a center of
much attention, and efforts were made to devise new concepts, incluiiogm convergenctinat would
clarify the situatior’*

It was against this background of Cauchy’s proof of the binomial theorenThadrem Cthat Abel
reacted. Abel’s criticism consisted of three parts. First, Cauchy had banned divergent series from analysis
but Abel insisted on a complete separation of the two processes of finding a sum: (a) convergence of the
series and (b) determination of the sum of the series. Second, Abel wanted to extend Cauchy’s proof of the
binomial theorem to include complex exponents—this extension made the separation of convergence an
sum even more relevant because some cases of complex exponents led to divergent series (or even seri
with a “false sum,” as had been the case withBoeésson Paradox Finally, but to Abel not even worth

29 [Cauchy, 1821, 131-132]

30 With the advent ofionstandard analysis the 20th century, some mathematicians, historians, and philosophers have recon-
structed Cauchy’s argument in terms of the nonstandard model of the real numbers, in which it can be interpreted to be correct;
see, e.g.[Fischer, 1978; Giusti, 1984; Lakatos, 1978; Laugwitz, 1987, 1994; Robinson,.1966]

31 cauchy, himself, played a part in this in 1853, but only after various concepts highlighting modes of convergence had been
expressed independently during the 1840s by K. T. W. Weierstrass, P. L. von Seidel, and G. G. Stokes; [&@tazgini,

1986, 202—-208]See alsgGrattan-Guinness, 1986]
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explicitly mentioning, Abel wanted to recast Cauchy’s theory of series in a slightly different manner
optimal for the proof of the binomial theorem. In this process, he repl@bedrem Gvith another result
because he found the former to be “admitting exceptions.” Thus, the exception was only part of a broader
criticism, and Abel’s motivation for this criticism was rooted in a more general unease with the state of
affairs in the theory of series. In a letter to his mentor, C. Hansteen (1784—1873), Abel wrote of his plans
for future research:

Pure mathematics in its purest form must be my exclusive study for the future. | will devote all my powers to

bringing some light to the vast darkness that incontestably now exiatgailysis It [analysis] completely

lacks plan and coherence and it is truly remarkable that it can be studied by so many—and worst of all
that it is not rigorously treated. Very few theorems exist in higher analysis that are demonstrated with

convincing rigor. Everywhere one finds the unfortunate way of deducing from the special to the general,
and it is highly remarkable that after such procedures so few of the so-called paradoxes entail. It is really
very interesting to search for the reason for ffis.

Abel's statement that the “unfortunate way” of reasoning “from the special to the general” could lead
to “paradoxes” is a direct continuation of Cauchy’s argument against the “generality of algebra” from
his introduction to theCours d’analys€® There, Cauchy described how he had been forced to abandon
certain types of arguments, in particular arguments based on the “generality of algebra,” i.e., the formal
interpretation of equality between expressions, to achieve his desired “geometrical” standard of rigor.
Cauchy replaced this Eulerian idea of formal equality by a numerical conception of equality in which two
expressions were equal if they gave exactly the same results for equal values of the variables. Prompted
by this transition in conceptions of equality, mathematicians revisited, revised, and reformulated old and
important results to bridge the gap between the two styles—I term this proggsal revision—and
many of Abel’s actions can best be understood in this context. Abel's ambition to investigate the relative
infrequency of paradoxes in analysis is one of the core components of his critical revision in the theory
of series. Besides pointing to the problem, Abel also suggested as a partial explanation for the relatively
few problems that had been encountered that until recently analysts had mainly worked with power
series. These, Abel thought, apparently behave nicely and in accord with intuition and the questioned
procedures. He continued:

As soon as others [series that are not power series] enter, which does not happen often, one is mostly led
astray, and a set of interrelated false theorems emerges from false conclusions.—I have worked through
many of these and have had the fortune of seeing it clearly. Whenever one proceeds in the ordinary fashion,
it is probably all right; but | have had to be very cautious because the theorems that have been accepted

32 “Den rene Mathematik i sin reneste Betydning maa blive ganske mit Studium for Fremtiden. Alle mine Kraefter vil jeg
anvende paa at bringe noget mere Lys i det uhyre Mgrke som der uimodsigelig nu fkmidgsen Den mangler saa ganske

al Plan og System, saaat det virkelig er hgist forunderlig at den kan studeres af saa mange og nu det veerste at den aldeles ikke
er streeng behandlet. Der gives yderst faae Saetninger i den hgiere Analyse som ere bevisede med overbevisende Straenghe:
Overalt finder man den ulykkelige Maade at slutte fra det Specielle til det Almindelige, og yderst meerkveerdigt er det at der
efter en saadan Fremgangsmaade dog kuns findes faae af de saakaldte Paradoxer. Det er virkelig meget interessant at eftersgy
Grunden hertil. JAbel to Hansteen, 1826/03/29; Abel, 1902, 22]
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without rigorous proof (i.e., without proof) have struck such deep roots with me that | constantly run the
risk of using them without further testing.

Abel was quite explicit about the need for a critical revision of the theory of series, and he knew that
previously accepted truths had been so well established that mathematicians could have trouble ques
tioning them and investigating the reasons behind their validity. Furthermore, he observed that nonpower
series (e.g., trigonometric series) might provide the key to producing streams of “interrelated, false the-
orems.” These two observations provide the essence of Abel’s critical revision: (1) the prevailing theory
needs critical revision, and (2) trigonometric series could be used to test the accepted truths and princi-
ples.

The exceptionand its context in terms ofheorem Chave now been presented. Before | discuss why
Abel would choose to call it an “exception,” it is time to present and analyze Abel’s reactions to it.

2.2. How did Abel respond to thexceptior?

In response to the problematic statusToieorem Cthat “admitted exceptions,” Abel devised a new
theorem—nhere calle@heorem Ai-tailored to the specific demands raised by the binomial theorem.
WhereasTheorem (dealt with any convergent series of continuous functions, Abel stated and proved a
theorem only dealing with a certain type of series yet powerful enough for (and specifically intended to
be used in) the required step in the proof of the binomial theorem. Abel considered series of the form

> vana” 4)
n=0

and assumed that the functions were continuous in an interval € [a, b]. He then argued that if a
value$ > 0 existed such that the seri®s > ;v,(x)8" converged® and if 0< o < §,% then the sum
function (4) would also be continuous on the same intefVal.

Faced with a situation in which a theorem admitted exceptions, Abel took refuge in a narrower theorem
only pertaining to a subconcept of infinite series—in Abel's case defined by what could appear to be a
somewhat arbitrary forng4). This approach has been viewed by Lakatos as one of the prototypical
responses to the emergence of “monsters” or “exceptions,” and Lakatos termed it “exception-B&rring.”
However, three different arguments can be made on why Abel saw power series as a safe haven protectin
against the “emergence of false theorems” opened by trigonometric seriesTRgstem Alealt with

34 “Saasnart der komme andre imellem hvilket rigtig nok ikke ofte er Tilfeeldet saa gaaer det gjerne ikke godt og af falske
Slutninger opstaae da en Maengde med hinanden forbundne urigtige Saetninger—Jeg har gjennemgaaet flere af disse og h
veeret saa heldig at komme paa det Rene dermed. Naar man blot gaaer almindelig tilveerks saa gaaer det nok; men jeg he
maattet veere seerdeles forsigtig, thi de engang uden straengt Bevigef Beviis) antagne Seetninger have slaaet saa dybe
Rgdder hos mig at jeg hvert Jjeblik staaer Fare for at bruge dem uden ngiere Prdg#élsktd Hansteen, 1826/03/29; Abel,

1902, 22-23]

35 The convergence atwas not explicitly mentioned by Abel but appears to be a tacit assumption that was made explicit in
the Euvres[Abel, 1881, I, 223] see alsdSpalt, 2002, 291]

36 Abel was not explicit about the precise naturexcdnds.

37 [Abel, 1826, 315]

38 [Lakatos, 1976, 133-136]
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a class of series large enough to include the ones needed for the binomial theorem—it was sufficiently
strong; this is a pragmatic reason. Secadrtteorem Abore resemblances to another of Abel’s theorems
guaranteeing the continuity of a power series on its border of convergence under conditions similar to
those assumed ifiheorem A%’; this would be a structural reason. And finally, Abel saw aesthetic values

in power series which, formally, were the simplest specialized class of series. Thus, three intrinsic reasons
for Abel's response can be reconstructed—the first two merit additional attention.

Abel's proof of Theorem Alwas closely modeled on his proof of the theorem preceding it in the
binomial paper—here referred to aheorem A2-that stated the continuity of a power series when its
variable approaches the boundary of convergence; i.e., in modern teiéns,dfis such that the series
Y o payd™ is convergent and if & o < §, then

o0 o0
lim X_;ana" = Z_;anS”. (5)

The close interrelation betwed@meorem AzandTheorem Aled Abel to model his proof of the latter
on the proof of the former. By analyzing the two proofs, their relationship will become apparent and
it will be found thatTheorem Allacks the same kind of uniformity requirementsTdseorem Cand is
therefore equally dubious—as it stands, it is actually false.

In the process of provingheorem A2Abel assumed the convergence of the se¥igs , v,8", broke
off the series aftem terms, and lep denote a quantity that was larger than any of the sections of the tail:

m+M
p= ) v forM=0,1.2.... (6)

n=m

Because the series was assumed to be convergent, guicidaed exists; however, its existence was not
a question to Abel and was never mentioned. Believing to have obtained su@),aAbel wrote the tail
of the serieg4) as

YU(x) = i vt < i v, 6", @)

A previous result of the binomial pagérstated and proved that for any decreasing sequéng¢eand
for any sequencg,} whose partial sums were boundgg”_, 7 < v (for all m), the following inequality
holds:

m
E Erly < VEQ.
k=0

39 [Abel, 1826, 314]
40 [Abel, 1826, 314]
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This rather technical lemma now allowed Abel to conclude f(@irthat

am
ve<(%) ®

and from this,Theorem AZollowed quickly by lettingm increase, since the firgt terms of the series
were always a finite (and thus continuous) polynomial.

When Abel applied the same procedure to the situation in which the coefficients were functions of the
variablex (Theorem A}, he introduced the functiofi(x) such that in analogy wit6),

m+M
0(x) > Y v,(x)8" for M =0,1,2,... and for allx € [a, b]. 9)

n=m

However, Abel treated the functi@x) as a constant, in complete analogy witlf the preceding proof.
Consequently, Abel claimed that could be chosen such thet)” 6 (x) was infinitesimal. He did not re-
alize that such am could depend om—and his notation gave no possibility of making the interrelation
explicit. Thus, when Abel tacitly applied the same argumeni (to + ») and—still tacitly—thought
that a single, definite: could be found independent of it amounted to a hidden uniformity require-
ment. Later, another version basedaisolute convergencgas demonstratett, but a counterexample
to Theorem AZan actually be constructéd.

Once Abel had set up the general theoretical results to be used in his proof of the binomial theorem, he
returned to the procedure already advocated at the beginning of his paper: to consider the convergence «
the binomial series and to determine the conditions under which its sum equaled the binomial. In doing
so, Abel combined his six preliminary theorems (which constitute an elaborate conceptual analysis of
convergence and continuity) with much more explicit manipulations of the particular case at hand, the
binomial series. Although the many details of these manipulations take up most of Abel’s paper, they are
of little direct impact for the present discussion.

Apart from the binomial paper, the primary traces of Abel’s investigations into the permissible opera-
tions on infinite series are found in his notebooks. They date from the year following the publication of
the binomial paper (1827§.Holmboe made selections from these notebooks and published them in the
first edition of Abel'sEuvres** Most of the selection concerns interesting criteria of convergence, but
the last part of it is devoted to the continuity of series of the form

FO)=) da(y)x", (10)

n=0

which constitute a class similar to the one that Abel treatethimorem Aln the binomial paper. Thus,
Abel continued to work on new proofs @®heorem Aland in the notebook, we find two new deductions
of it. Following the deductions, Abel turned to testing the limits of the theorem when he observed:

41 [du Bois-Reymond, 1871]

42 gee the suggestion [Walter, 1985, 138]
43 [Abel, 1881, II, 326]

44 [Abel, 1827/1881]
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For example, [...]
. 1 s 1 3
f() =siny-x + Esm2y-x + 55In3y-x + e

is a continuous function of if x < 1. If x = 1, the series is still convergent but in this casey) is
discontinuous for certain values of*®

Here, we see Abel using a series very similar togkeeptior—indeed, it is the same function translated
horizontally byz—for (self-)critical purposes. The fact that Abel returned toTheorem Alwithin the
first year after his binomial paper was published prompted M. S. Lie (1842-1899), one of the editors
of the second edition of Abel'&uvres to “conclude beyond doubt” that Abel had become dissatisfied
with the published prodf® For the present context, it is more interesting to notice how properties of the
exceptionvere once again utilized to illustrate the boundaries of results. On the same occasion, Abel also
considered a small number of other examples in order to illustrate similar points.

In summary, Abel began his research on the theory of series inspired by Cauchy’s new attitudes toward
rigor and a great sense of the need for critical revision. In a footnote, he criti€lzearem Cthrough
the use of an “exception,” and he went on to prove a limited versiorhebrem Chat was sufficiently
strong and that he thought was more rigorous. We now turn texbeptioras such and Abel’s use of it
in yet another, related context.

3. Abel’sacquaintance with the exception

Abel’s exceptional serigd) played an important role not only in his binomial paper but also in another
context. In this section, | discuss how Abel may have come to know of the remarkable properties of this
series and how he used these. In this respect, some important clues can be found in Abel’s training and
apprenticeship as a mathematician.

3.1. Encounters with Degen

The first mathematician outside Norway with whom Abel had contact was C. F. Degen (1766-1825),
a professor of mathematics at the University of Copenhagen. Their communication began in 1821, when
Abel thought he had solved the general quintic equation and his presumed solution was forwarded to
Degen for evaluatiofi’ In 1823, Abel visited Copenhagen and met Degen. Because their communication

45 «“par exemple, [...]

. 1 1.
f(y):SIny-x+§Sln2y~x2+ §5In3y~x3+~~~

est fonction continue de, si x < 1. Six = 1, la série est encore convergente, mais dans ceg ¢asest discontinue pour
certaine valeurs de.” [Abel, 1827/1881, 202]

46 [Abel, 1881, Il, 326]

47 see, e.g[Stubhaug, 2000, 239-246} [Sgrensen, 2002a, 2002b]
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was only oral, sources documenting their interactions in this period are sparse. However, we know that
Abel held Degen in high regard and that he thought of him as his intellectual m&mitr.also know
from Abel’s letters that he read some of Degen’s works with intefest.

To Degen, the object that Abel later utilized as an “exceptionTheorem Cwas familiar; indeed,
he had used it in an interesting way in a paper from 180Regen’s essay—published in Danish in
the journal of the Royal Danish Academy of Sciences and Letters and entitled “Contributions to the
critigue of studies in mathematics”—discussed the mental prerequisites for the successful cultivation of
mathematics. It was construed as an argument against an exclusively utilitarian rationale or legitimization
for mathematics and took the form of a defense of the intrinsic value of the discipline. However, it was
also Degen’s purpose to discuss the “abuse that one could fear from the generalization of theorems”—
a topic of direct interest to our argumentTo the latter, critical end—explicitly informed by the critical
philosophy of I. Kant (1724-1804)—Degen wrote:

For instance, one would conclude from the fact that

1 1 _
Sing -+ 5'sin2 + S sin3 -+ in inf.:%

that 04+ 0+ 0+ --- = % and conclude wrongl?
In a footnote, Degen continued:

This is not the only case in which the assumption that the variable quanfitgan lead one astray when

one employs the general form without caution..] The authordoes not believe that this remark is su-
perfluous with respect to whoever want to educate themselves as mathematicians. For the masters of the
science it [the remark] is of course not necessary.

Two observations should be made here concerning Degen’s paper. First, Degen used a function strik:
ingly similar to Abel'sexceptionn pointing out that inserting particular numerical values into “general
forms” was highly problematie?* Explicitly, Degen drew the same conclusion that Abel would later draw,

48 |n the period 1821-1824, Abel's main influences were Hansteen and Deg¢Hoéste 1902, 22]
49 [Abel to Holmboe, 1826/08/04; Abel, 1902,.5]

50 [Degen, 1802]

51 [Degen, 1802, 77]

52 “Man vilde f.Ex. deraf, at

1 1 -
sing + > sin2p + = sind + +in inf. = %

slutte, at 0+ 040+ 0+ --- = 7, og slutteurigtigen” [Degen, 1802, 91, original emphasis]

53 “Dette er ikke det enestéilfeelde, hvor den Forudseetning, at den foranderlige Storreise kan fore i Vildfarelsenaar

man uden Forsigtighed anvender den almindelige Form. [...] Forf. troer ikke, at denne Anmeerkning er overflédig i Henseende
til den, der vilde danne sig til Mathematiker. For Mestere i Videnskaben behéves den naturligviigildgeh, 1802, 91-92,
footnote, original emphasis]

54 What Degen called a “general form” is tfermal equalityso central to the Euleriafprmula-centerecpproach to functions.
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namely that inserting = O into the (general) equality

> sin -
Z nx:T[ X (11)

n 2
n=1

would give absurd results. Precisely this difference betweefotheal equality of(11)and the numerical
equality that would result if = 0 were inserted int¢l1)is a central feature of the rigorization of analysis
associated with the name of Cauchy. It hinges on the point that formulae are not themselves the truths
of Cauchy’s analysis—instead, the numerical correspondences, which they entail, lie at the heart of the
discipline. Second, Degen reserved his remarks for the novices of mathematics who had not yet developed
an intuition for the proper use of “general forms”—to the masters of the discipline, such remarks would
be superfluous. I will return to this below, when the role of intuitions in mathematics is briefly touched
upon.

To sum up, it is probable that Abel learned of the properties and problems of the series that would
later serve as hiexceptionfrom Degen’s 1802 paper. We even have a good indication that Abel read
this paper: Abel borrowed the relevant volume of the transactions of the Danish academy on April 30,
1822%° As there are no other papers with mathematical content in this volume of the transactions, | hold
it for certain that Abel borrowed the volume to read Degen’s paper. However, Degen was by no means
the first to treat this series; it had also occurred in the works of Euler and J. F. Pfaff (176529826)m
Abel could also have read. However, | believe that Degen’s sound epistemological and methodological
intuitions—the expression of which was the purpose of his paper—made Abel aware of the potential use
of the example to illustrate how even simple objects could display nonintuitive behavior.

3.2. Theexceptionin Abel’s letter to Holmboe

Abel’s use of theexception(1) was not restricted to the criticism @heorem Ghat has been discussed
above. Indeed, he also used the same series to discuss the permissibility of termwise differentiation of
series. In a long and important letter from Abel to Holmboe—uwritten while Abel was contemplating the
binomial paper—thexceptiorserved as a critical tool. First, Abel related to Holmboe the same use of it
that he would later repeat in the famous footnote of the binomial paper discussed already:

The following example shows how one can be deceived. It can be proved rigorously that for all values of
less thant one has

1 =sin 1sin2x+1$in3x etc
T TS 3 '

From this it appears that the same formula should hold ferz, but in that case one would have

1 . 1. 1.
5T = sinT — > sin 2t + 3 sin3r — etc.=0 (absurd)

55 | am grateful to B. Granrud, who found this information in the loan protocols located in the Manuscript Collection, the
National Library, Oslo.

56 The series occurred, e.g.,[lBuler, 1754, 584hnd was used by Pfaff in 1788; sgeich, 1989, 233-234Both Euler and

Pfaff used it to solve problems, and not as a vehicle for critique.
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One can find indefinitely many such examp?és.

In this letter, we find Abel presenting the same example as in the footnote but interpreting itin a slightly
different way. Notably, in the letter to Holmboe, Abel spoke of “paradoxes,” not of “exceptidrasi
he observed that “indefinitely many such examples can be found”—a point that he also stressed in the
binomial papef? This emphasis on the nonsingular nature of the exception is a common theme in most
of the uses of exceptions in the early 19th century—and one to which | shall return below.

Later in that same letter, Abel discussed the limits to the permissible operations on infinit&’series

One applies all operations to infinite series as if they were finite, but is this permissible? | think not.—
Where is it proved that one gets the differential of an infinite series by differentiating each term? It is easy
to give an example for which this is not true; e.g.,

1 . 1 . 1 .
§x=5|nx—§sm2x+§sm3x—---.

Differentiation gives

1
> = COSx — COS X + cos 3 — etc.

a result which is quite false because this series is divefgent.

57 “Fglgende Exempel viser hvor man kan bedrage sig. Det kan straengt bevises og man har for alle Vaersigen afre
mindre endr

1 . 1. 1
2% = sinx — Esm2x+ §5In3x — etc.
Deraf synes at fglge at den samme Formel skulde finde Sted=for ; men da vilde man faae ud
1 . 1 . 1
[E]ﬂ =sint — > sin2r + 3 sin3r —etc.=0 (absurd)

Man kan finde utallige saadanne Exemplgkbel to Holmboe, 1826/01/16; Abel, 1902, 17-18]

58 [Abel to Holmboe, 1826/01/16; Abel, 1902, 16]

59 [Abel, 1826, 316, footnote]

60 [Abel to Holmboe, 1826/01/16; Abel, 1902, 13-19]

61 “Man anvender alle Operationer paa uendelige Raekker som om de vare endelige, men er dette tilladt. Vel neppe.—Hvor
staaer det beviist at man faar Differentialet af en uendelig Reekke ved at differentiere hvert Led? Det er let at anfare Exempler
hvor dette ikke er rigtigt, f.Ex.:

1 1 1
[E]x =sinx — > sin2c + 3 sin[3]x — - --

Differentieres saa faaer man

1
[5} = COSx — COS % + c0os X — etc.
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Abel further remarked that several other operations were just as problematic as the termwise differen-
tiation of series, and that he found great satisfaction in scrutinizing the established rules:

| have begun to work through the most important rules that are now valid in this respect and demonstrate
in which cases they are true or not.—I make good progress, and it is immensely intetésting.

As can be seen, Abel made good use of the exceptional series that he had come across. Not only
did it illustrate that the convergence of a series of continuous functions did not necessarily imply the
continuity of the sum, it could also be used to illustrate that the common procedure of termwise differen-
tiation was not unproblematic. Furthermore, the excerpt illustrates how Abel actebasept-centered
mathematician faced with a critical amount of counterevidence and began researching the limits of his
concepts (continuity, convergence, etc.) and reformulating statements of theorems to take the exceptions
into account. However, Abel never published much on this critical revision, and we are left with only
sparse evidence for his investigations.

The present discussion has suggested how Abel used the exception(Besiea sound critical tool
inspired by Degen’s essay. It has also illustrated how the footnote in the binomial paper was not Abel’s
only encounter with the exception series and that he made important use of it in other contexts of critical
examination. Now that we know about Abel's familiarity with the “exception,” we must inquire again
why he would choose to describe it as such.

4, “Exception” or “counterexample’: what'sin aword?

At first sight, one might be tempted to interpret Abel’s choice of words as an indication of the vener-
ation he had for Cauchy. Plausible as this might be to those tempted by psychologisms, the fact—to be
demonstrated below—that other mathematicians also spoke seriously about “exceptions” seems to refute
this as being much too simplistic a way out. Below, based on diachronical and contextual readings, | sug-
gest and insist that what Abel termed an “exception” in 1826 needs to be distinguished from the highly
technical meaning given to counterexamples today, and that Aded&ptiormust be interpreted within
the changing attitudes toward analysis in the early 19th century.

4.1. “Exceptions” in early 19th century mathematics

Even outside the school of algebraic analysis, a number of examples can be given, in which
mathematicians—contemporaries of Abel—also spoke of “exceptions.” For instance, as highlighted by
Lakatos®® in the discussion of Euler’s theorem on polyhedra, S. A. J. I'Huillier (1750-1840) and J. F. C.
Hessel (1796-1872) spoke of “theorems suffering exceptions,” using the same phrases as &bel did.

Resultat, ganske falsk, thi denne Reaekke er divergghbel to Holmboe, 1826/01/16; Abel, 1902, 18]

62 “Jeg har begyndt at gjennemgaae de vigtigste Regler som ere geeldende (nu) i denne Henseende, og vise i hvilke Tilfeelde de
ere rigtige eller ikke.—Det gaaer ganske godt og interesserer mig umaagligl'to Holmboe, 1826/01/16; Abel, 1902, 18]

63 [Lakatos, 1976]

64 “[...]1que le théoreme d’Euler souffre des exceptions numbreykésiilier, 1812/1813, 172and “Indessen leidet derselbe

[Satz] Ausnahmen[Hessel, 1832, 13]
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Similarly, in the context of finding the number of imaginary roots of an equation, J. B. Bérard quoted
J. le R. d’Alembert (1717-1783) to the effect that “exceptions confirm the fail&rid, in a discussion

of a proof by F. D. de Foncenex (1734-1799), Lagrange also linked the word “exception” to the concept
of “general validity®®:

This principle is generally valid, but | have remarked that it can be subject to exceptions that can make the
preceding demonstration defectf/e.

Below, two further examples will support my claim, that an “exception” was an independent object in
mathematics that we must try to understand. The first example arose from a discussion between two o
Abel’s best friends, while the second one takes us back to the master, himself, Cauchy.

Six years after Abel’s early death, the professors of mathematics at the University of Christiania (now
Oslo, Norway) engaged in a heated debate concerning the nature of mathematics and its proper teachin
In a textbook on planar geometry from 18%54ansteen suggested an extension of ordinary planar geom-
etry to include curved lines. In the process, he sought to widen the concept of parallel lines to include
nonintersecting, curved ones. Holmboe responded emphatically to this extended definition in a notice in
a Christiania newspap&tHolmboe’s means of refuting Hansteen’s definition consisted of three different
components worthy of comment. First, Holmboe illustrated in some detail how there were “exceptions to
[some of Hansteen’s] theorem¥’Second, Holmboe argued that indefinitely many exceptions (exhibit-
ing quite odd behavior) could be constructed. And finally, Holmboe was not satisfied with presenting
“exceptions” but went on to give other points of criticism in support for his views—exceptions were not
sufficient reason to overthrow results. In Denmark, C. Jirgensen (1805-1860) also reviewed the textbook
and commented upon the theorems that had exceptiokscording to Jiirgensen, Hansteen'’s extension
was quite natural, and Holmboe’s exceptions concerned theorems that were presented ganeeaig
and therefore the criticism by exceptions did not apply. Thus, Jirgensen concluded that the mere lack of
lucid presentational style was not sufficient reason to dismiss the extended concept of paralflél lines.

From this example, three important observations of direct relevance to our discussion can be drawn.
First, Holmboe used the term “exception” in a way comparable to Abel's use of it. Although there is
no direct reference from Holmboe to Abel’'s use of the word, two scenarios force themselves upon us:
It is plausible that the term “exception” was not at all exceptional among mathematicians of the 1820s
and 1830<? or Holmboe may have picked the term out of Abel’s paper. Second, Holmboe’s exceptions
were notdefinitive—they did not close the debate: Holmboe had to observe that indefinitely many such

65 [Bérard, 1819, 349]

66 For more on Lagrange’s concept of “the general” and his belief in it as a principlgGssgner, 1981a, 31@nd[Grabiner,

1981b, 39]

67 «Ce principe est généralement vrai; mais j'ai remarqué depuis qu'il était sujet & de exceptions qui pouvaient mettre la
démonstration précédente en défa[ltdgrange, 1826, 182; the same phrase can be found in the previous editions of 1797/98
(an VI) and 1808]

68 [Hansteen, 1835]

69 [Holmboe, 1835]

70 [Holmboe, 1835, 2]

71 [Jurgensen, 1836]

72 [Jurgensen, 1836, 468]

73 This seems plausible given the examples presented above.
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exceptions existed, and he even had to go beyond the use of exceptions and voice other criticisms against
Hansteen'’s concepts. And third, Jirgensen and Holmboe disagreed over the severity of the exceptions—
according to Jurgensen, theorems that wgeaeral might allow for some exceptions without being
seriously impaired.

After briefly discussing the Hansteen—Holmboe dispute that took place on the periphery of mathe-
matical Europe, we will immediately return to its center. After he annoufidesbrem Gn the Cours
d’analyse(1821), Cauchy did not return specifically to the subject in print until 1853. Then, prompted
by a communication to th&cadémie des sciencbg C. A. Briot (1817-1882) and J.-C. Bouquet (1819-
1885)/4 Cauchy eventually faced the problems associated Witeorem C° Interestingly, in 1853,
Cauchy introduced@heorem On the following way:

In establishing, in myAnalyse algébriquethe general rules relating to the convergence of series, | have
also announced the following theoré.

Here, we sedheorem Cdescribed as both a “theorem” and a “rule™—a fact, to which | shall return
soon. Then, acknowledging the work of Briot and Bouquet, Cauchy describedlh@avem Ccould not
be “admitted without restrictions” and he presented the s@énssinnx as an example with a discon-
tinuous sum function. Cauchy then proceeded to amend the theorem:

By the way, it is easy to see how one should modify the statement of the theorem so that it no longer gives
way to any exceptiofi’

Cauchy’s revision consisted of adding an explicit requirement of uniform convergence. Interesting as
this concept is, our main interest here lies with Cauchy’s choice of words and with his response.

From the quotation, we see how Cauchy had been brought to realiz& hlearem Cadmitted
exceptions—in the brief, printed version, Briot and Bouquet did not speak of “exceptions,” but the word
might have been used in the discussions inAltadémie des sciengeend Cauchy certainly used it.
Also worthy of notice is the fact that Cauchy explicitly considered the family of exceptions that included
Abel’s exception Cauchy’s example—which was also used by Degen and Abel—is a horizontal transla-
tion of Abel's exampl€1) and, in a sense, these are the “natural” exceptiomémrem CBy comparing
their responses, we realize that Abel and Cauchy reacted differently to the fathtaem Cadmitted
exceptions: Abel limited the class of objects under consideration by requiring a dpecialf the func-
tionsu,,, whereas Cauchy made extra requirements concerning the nature of the convét@mazhy
may thus be seen as reacting inancept-centeredray compared to Abel’s restriction of the domain of
the theorem by an essentiallgrmula-centerectriterion. Finally, we learn that Cauchy thought of the

74 [Briot and Bouquet, 1853]

75 [Cauchy, 1853]

76 “En établissant, dans manalyse algébriqudes régles générales relatives a la convergence des séries, jai, de plus, énoncé
le théoréme suivant[Cauchy, 1853, 30—31]

77 “pu reste, il est facile de voir comment on doit modifier 'énoncé du théoréme, pour qu'il n’y ait plus lieu & aucune excep-
tion.” [Cauchy, 1853, 31-32]

78 This difference has been emphasizedlskatos, 1976, 127—1413ee alsdKoetsier, 1991, 73-92]
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contents of th&€ours d’analyses a set of “general rules” governing the convergence of series—this will
be elaborated upon in the following argument.

4.2. Rules and exceptions or theorems and counterexamples

In a certain sense, the crucial part of the present argument can be phrased in terms of the two word-
pairs: rule—exception and theorem—counterexample. In the 19th century, | suggest, a “rule” would be
perceived as general statemerfor which “exceptions” were possible, i.@ result that holds generally
true.”® We have seen how both Cauchy and Abel spoke of “rules” in the theory of series, and we have
observed the curious fact that some such rules admitted “exceptions.” On the other hand, a (mathemat
ical) “theorem” is now perceived as an absolutely true statement; any “counterexample” will render the
theorem false and therefore turn it into a nontheorem. However, when Abel spoke of “exceptions,” they
were exceptions ttheoremsand this complication of the word-pairs has to be disentangled.

In the present context, there is an interesting difference between the theorems of geometry in Euclid
and the results in analysis presented by Euler: Euler's results in analysis were often devised, as
i.e., formal statements that hold generally good. The value of rules lies in their applicability: skilled or
intuitively gifted mathematicians—such as Euler, himself—knew when to apply which rules and when
these rules might possibly lead to “exceptions.” This kind of operational knowledge is opposed to math-
ematicalftheoremghat are held not to be ontyenerallygood but to be precise, i.e., true for all (meaning
each and everyone of) the terms falling under them. In the modern model of mathematical knowledge,
one might argue, a theorem with an exception—which we prefer to calaterexample-is refuted
and is thudalse its domain of validity has been misstated. Furthermore, with the modern view of the-
orems, counterexamples are extremely useful in the very important procedure of precisely establishing
the extension of domains of validity or of concepts—be it heuristically or more informed as suggested in
[Lakatos, 1976]

Thus, | argue, there is an essential difference between the two word-pairs in the truth-values that they
encompassed in the 19th century. A rule with an exception was nevertheldes-that just could not be
applied to the exception. A theorem with a counterexamplefalasand hence was no longer a theorem!

Almost as importantly, mathematicians reacted differently to exceptions and to counterexamples—
indeed, this may come closer to a true definition of the terms as | interpret and use them. A mathematician
of the 18th century faced with an exception would accept it, perhaps ignore it, or perhaps try to understand
it a bit better. On the other hand, a mathematician of the late 19th century who discovered or presentec
a counterexample would be expected to immediately realize that some result had been refuted. He ol
others would then set to work repairing it by carefully analyzing the counterexample and the restrictions
itimposed on the domain of the theorem in question. Thus, we may be helped in distinguishing exceptions
from counterexamples by analyzing how (and if) mathematicians reacted to their presence.

We have noticed repeatedly that Abel and his contemporaries were concerned witlnher of
exceptiongo a given result. At first, this aspect may appear curious and of less importance, but provided
the present interpretation, more sense can be made of it. Above, | have suggested th&irimulee
centeredapproach to analysis, general results (rules) might survive the presentation of a few exceptions.
Thus, Abel’s concern for the infinite number of exceptions was a relevant way of pointing to the severity
of the problem and to caution mathematicians to apply the questioned result with care.

9 | take this as my working definition of “rules” and have pointed to some similar 19th century uses of the term.
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In summary, it appears plausible that the word “exception” could and should be taken very seriously
as a counterpart to the rule-like nature of general statements. However, as must also be clear in the
present context, Abel put forward @xceptionto something that Cauchy had calledh@orem not to
an overly general rule but to an apparently precise mathematical theorem. | claim that the juxtaposition
of Theorem Cand Abel'sexceptionis actually a confusion of the word-pairs that occurred in a time
when a precise notion of theorem was just taking over from the previous emphasis on general rules.
Thus, | suggest that in the interim period, a result (a rule) would be claimed to be a theorem even if
it admitted some exceptions. K. Volkert has provocatively described such theorems as “statistically us-
ing theY-quantifier®®—i.e., they seem to claim to apply “for all” but actually (and with contemporary
knowledge and acceptance) only apply to “almost all” or to “all but some few, uninteresting exceptions.”

4.3. General arguments and exceptions

The mode of mathematics prevalent in the 18th century relied on a heavy apparatus of formal and
explicit manipulations—therefore, | termed it thermula-centeredstyle of mathematics. Because of
the often cumbersome machinery, applicable results were not easily overthrown—not even when faced
with a few exceptions. This was manifested—as will be illustrated below—in the fact that the paradigm
included arguments “by generality” and results that were known to be true only “in general.”

In the early 19th century, Scandinavian mathematicians—including Abel and Degen—spoke of “gen-
eral” or “ordinary” arguments, principles, or rulgsOften, these referred to practices which Cauchy in
1821 labeled “the generality of algebra” and banned from his new rigorization of an&lysipartic-
ular, these arguments would work with formal and general relationships between analytical expressions
without regard for the numerical behavior when numerical values were inserted for the variables.

Examples of this mode of general reasoning can be found in Abel’s works on elliptic and higher tran-
scendental functions. One easily accessible example will have to serve as an introduction to this—by
modern standards—strange way of reasoning. In 1826, Abel presented a papektadbmie des sci-
encesin which he applied a very general, algebraic approach to the question of integrating algebraically
related differentials, his highly celebrated, so-calRadis mémoiré®® Despite its general approach and a
large number of generatpncept-centeredesults, this paper worked well within thiermula-centered
style with pages of long manipulations following each other. One specific operation frequently used in
the paper is particularly noteworthy in the present context.

Abel’s Paris mémoiredealt with integrals—later calledbelian—of the form [ f (x, y) dx, wherey
was related ta by an algebraic equatiopn(x, y) = 0, andf was a rational function. At a crucial point
of the argument, where Abel sought to determine the numbef independent abelian integrdfshe
employed a generalized degree operator that he demotédst as is the case for the ordinary degree
operator of polynomials, de (which Abel also used), the degree of a sum may fail to be the maximum

80 [\olkert, 1986, 144—145]

81 The Danish word “almindelige” can mean both “general” and “ordinary.”

83 [Abel, 1841]

84 Abel found that for givenf andy, a certain numbeyy, existed such thatnysum of abelian integrals (witlf, x) could be
reduced tqu such integrals.
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of the two degrees,

deqg P1 + P,) 2 maxdegP;, degP»}, (12)

if deg P, = degP,. However, in theParis mémoire Abel was not interested in such peculiarities and he
simply argued that the equality equivalent(@®) was true “in general,” i.e., with the exception of some
particular cases of little interest:

Thus, one has in general, except in certain particular cases which | refrain from considerffyy [

Later, the precise determinationf(then termed the “genus”) became a focal point of much research,
e.g., in the works of Riemartf.

Other examples of a similar approach where peculiar special cases were ignored can be found in
Abel's works. For instance, in thRecherche8’ Abel studied the inversion of elliptic integrals (of the
first kind) into elliptic functions These new functions were known only through an abstract, formal
inversion, and thus, for them to become well-established mathematical entities, Abel deduced various
representations including infinite series and infinite products. All these representations were deducec
formally, i.e., both (1) using formulae and long manipulations of such and (2) with no concern for the
convergence of the involved infinite expressions. Only in his final paper on elliptic functiorBrébis
did Abel remark rather laconically on the convergence of the deduced expressions when he simply statec
without further ado that “[the series] are always converg&ht.”

Also in the Précis Abel used another notion related to exceptions—thaesfrictions—when he
stated that:

The formulae presented above hold with certain restrictions if the modukisirbitrary, real or imagi-
89
nary:

These examples serve to illustrate that the concern for convergence and rigor that was so prevalent ir
Abel’s paper on the binomial series was much less outspoken in his research on elliptic functions. They
also illustrate that Abel—when facing useformula-centeredesults—was prepared to accept certain
restrictions in their domain of validity with just a side-remark that they were generally valid.

It is interesting to further investigate the backgrounds for this mode of general reasoning. One pos-
sibility is that it may be related to the relative immaturity of the field. When Abel entered into the field
of elliptic and higher transcendental functions, these were studied only by a rather small group of math-
ematicians led by A.-M. Legendre (1752-1833). Legendre’s presentational style was well within the
formula-centeredapproach, involving and boasting long formal manipulations and various representa-
tions for different purposes. Without aiming to reduce the problem of general arguments to differences

85 “Alors on aura, en général, excepté quelques cas particuliers que je me dispense de considérpkbel,.1841, 162]

86 [Houzel, 1986, 310-313]

87 [Abel, 1827, 1828h]

88 [Abel, 1829, 244]

89 “Les formules présentées dans ce qui précede ont lieu avec quelques restrictions, si lecesiulaelconque, réel ou
imaginaire.”[Abel, 1829, 245]
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between fields of research, | suggest that Abel used two different modes of mathematical argument in
different contexts, onéormula-centeredand oneconcept-centeredOne indication of this can, | argue,
be found in the references to “certain restrictions” that his “generally valid” results might suffer.

In summary, Abel often followed his predecessors in arguing “generally” and (consciously) neglecting
certain cases of little interest where the deductions could be imprecise. In the period dominated by the
formula-centere@pproach to analysis, such deductions were extremely valuable and the presupposition
of intuition on behalf of the reader was not a general problem. However, with the advent of a new
approach with much greater emphasigoecisely formulated theorensuch exceptions were no longer
tolerated. Therefore, we now turn to one other particular example from Abel’s mathematical production
that will help us appreciate this observation.

4.4, Counterexamples in Abel’s criticism of Olivier

As already mentioned, Abel did not publish much on the implementation of Cauchy’s new analysis.
However, on one other occasion—prompted by a paper by a certain L. Olivier in Cdallgsal fur
die Reine und Angewandte Mathematikbel published on possible tests of convergence for infinite
series—tests that were central to Cauchy’s approach to the subject. In 1827, Olivier presented a very
simple criterion of convergence that can be expressed as

o0
> a, convergent <= na, >0 whenn — 00.% (13)
n=0

Thus, Olivier’s claim can be interpreted as stating that the harmonic series precisely determines the border
between convengence and divergence.

In a very short and concise argument, published in the same journal the following year, Abel criticized
Olivier's result. First, he showed directly that the sefjes., @ would contradict Olivier’s criterion.
And following this counterexample, he demonstrated that it is impossible to construct a test function
¢ (n) determining completely the convergence of any series in the way Olivier had sought to in his
criterion(13): That is, no functionp (n) exists such that for all serigs a,,

o0
> ay convergent =  $(n)a, >0 whenn — oo (14)
n=0

Abel based his proof on a process by which he could derive a divergent series from a convergent one and
vice versa. More precisely, Abel showed that if the existence of a test fungtionwas assumed, the
series) 7, ﬁ provided a counterexample (b4).%2

90 [Olivier, 1827]

a1 [Abel, 1828a] Olivier then responded by a brief remark revealing some of his geometrical arguments but essentially accept-
ing Abel’'s observationfOlivier, 1828]

92 |t may be noted that in this argument, Abel actually demonstrated that sound reasoning about divergent series may lead to
interesting and important results—somewhat contrary to his assertion that “it is shameful to base any argument on divergent
series"[Abel to Holmboe, 1826/01/16; Abel, 1902, 16Jhe main difference, of course, lies in the completely different attitudes
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In the present context, Abel’'s evaluation of his opponent’s argument is noteworthy, as is his use of
examples to make his point. In the published version, Abel was very cautious stating only that one of the
implications in the asserted “theorem is very true but the [other one, i.e. the implication toward the left
in (13)] seems not to be so” and that “the theorem announced in the above quotation is thus defective in
this case ®® In his notebooks, however, we find Abel expressing a stronger position when he stated that
“[t]hus, Mr. Olivier has seriously misled himseff*We see Abel expressing himself carefully about the
status of the theorem that he had completely shattered by presenting not only a specific counterexampl
but a very general argument showing the invalidity of any such criterion. This might suggest an interpreta-
tion of Abel's words in terms of diplomacy—but the suggested interpretation contrasting exceptions and
counterexamples appears to explain more, in particular how Abel reacted to these. In the binomial paper
Abel simply noted thexceptiorto Theorem Cand went on to present a different version of the theorem
that he must have believed (1) was sufficient, and (2) did not suffer from the same problems. This is the
type of reasoning that | associate with fieemula-centeredapproach. In his criticism of Olivier, Abel
made quite a point out of the counterexample and went one step further into analyzing the possibility
of such criteria, thereby beginning to describe the class of convergence tests. Thus, in this context, Abel
used the counterexample in a more mode@ungept-centerddsense and began to do proof analysis.

Thus, | interpret Abel’s responses to Cauchy and Olivier as being quite different—one beixcegtion
within theformula-centeredpproach, the other beingcaunterexampl@n the concept-centerestyle.

5. Conclusions

In the previous sections, we have seen how AbeXseptionwas not an isolated incidence in the
early 19th century. We have seen how mathematicians used the same word—"exception"—to designate
a particular kind of example sometimes used in a special kind of critical argument. And we have seen
how the preference for general arguments prevailed into the 19th century. It is now time to return to the
framework offormula-centerecndconcept-centerethathematics to arrive at some overall conclusions
from these observations.

D. Laugwitz captured the essence of the transition in analysis in the period by stating that “[b]efore
Cauchy, the calculus had dealt with expressidfis.mean to elaborate on this, claiming that analysis
in the 18th century essentially dealt with formulae: arguments consisted of manipulations of formu-
lae, questions concerned formulae, and formulae were obtained as the results. This preoccupation witt
formulae—which | termformula-centeredmathematics—was gradually replaced by a “most elevated
viewpoint” in the course of the 19th centuyThis new outlook on mathematical analysis ltadcepts

toward the property of being “divergent.” The illegitimate use of divergent series of which Abel spoke was tied to their manipu-
lations and therefore to tHermula-centeregharadigm. However, Abel’s present argument made use of divergence as a property
(the complement of convergence) and by investigating the delineation of these concepts, it was lcasicefiy-centered

93 [Abel, 1828a, 79]

94 “Donc M. Olivier s’est trompé sérieusemenifbel, 1827/1881, 11, 199]

95 Thus, with Lakatos, we may see Abel in the binomial paper as an “exception barrer,” whilst in debating with Olivier, the
“counterexample opened up a new field of resealftlakatos, 1976, 133—-136, 128]

96 [Laugwitz, 1994, 319]

97 \Weierstrass praised Abel's “most elevated point of view,” see excerpts of quotatifBisimann, 1966, 218]
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for its basic objects and is therefore describedcascept-centereanathematic$® In the concept-
centeredapproach, new types of questions arose and were answered by analyses of the extensions of
concepts and of relations between concepts. This transition frofothmila-centeredo the concept-
centeredoutlook was deep and affected both ontological and epistemological levels of mathematics.
Here, | restrict myself to applying this scheme to offer a perspective on the exceptions, rules (understood
as general statements), theorems, and proofs of the early 19th century.

The great concern for formulae in tfermula-centeredpproach meant that mathematicians working
within this framework were aware that their results (formulae) might not apply in certain cases. We have
seen that from time to time, their results were described as “rules,” and we perceive these as generalized,
formal statements. The “exceptions” that these results, theorems, or rules might admit were intuitively
excluded when applications had to be made, because being the masters of their discipline, mathematicians
knew how to apply their intuitions. However, to younger people entering the field of mathematics in the
19th century, results were thought of tlieoremsand, in a period of transition, even theorems were
admitting exceptions. When the status of various mathematical results were firmly settled within the
concept-centeredpproach, such exceptions became counterexamples that were skillfully employed to
test the limits of concepts and proofs—and to refute theorems.

With this background in mind, it made sense in the early 19th century to speak of “exceptions"—and
they did not just reduce to counterexamples. A theorem—ijust like a formula—might in this interim period
be extremely useful, even if it failed to apply to a few examples that nominally fell within its domain.

It was only with the new critical approach—and the associated critical revision—that the exceptions
became untenable. By modifying statements so that they no longer admitted exceptions, mathematicians
advanced their science on the way to a whotaycept-centerethathematics.

As outlined here, this transition helps us understand the stress on the number of exceptions and the
variation in the attitudes and reactions toward results known to admit exceptions. It suggests that in the
formula-centere@pproach, a singular exception was insufficient reason to overturn an otherwise applica-
ble and useful result, and that mathematicians—when faced with a result allowing for exceptions—would
attempt to provide a different, restricted result having sufficient strength but avoiding the problems dis-
covered in the previous result. On the other hand, after the transition t@waogpt-centerednalysis,
when emphasis was put on the precise statement of theorems, the critical revision of previous results into
precise theorems was inevitable and required. Then, it became important to precisely determine and char-
acterize the exceptions and their numbers and to include this information into the theorems by a process
comparable to Lakatos’ schematized proof-analysis.

Similarly, the framework adds a perspective on the choice of words for the outstanding examples.
When Abel called attention to the “exception” thEtteorem Csuffered, his choice of words reflected
more than merely respect for Cauchy. Abel was using a vocabulary that when appliedonntloda-
centeredapproach let mathematicians use their intuitions to avoid absurd cases. Similarly, when Abel
on other occasions spoke of “restrictions” without specifying them, he was referring to the same general
validity of results. Later, in theoncept-centeregaradigm, such terms were transformed into specified
and explicit “conditions,” and mathematicians used “counterexamples” to differentiate between concepts
and precisely determine the domains of validity of theorems. Abel's use of the word “paradox” is an

98 Versions of this transition-framework have appeared in the literature during the past decades; sgahalg, 1987;
Gray, 1992; Laugwitz, 1999]
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intermediary one which resulted from combining the statements dbtineula-centeregpproach with
the criticism of theconcept-centeredpproach.

By now, it should also be evident that the transition frofaranula-centerednathematics to eaoncept-
centeredoutlook was not immediate. The transition was an extended one that lasted for at least a few
decades of the early 19th century. To some mathematicians working during the transition, the change wa:
felt, but as the example of Abel illustrates, they were sometimes too deeply immersed in the mathematical
style to deliberately and explicitly choose sides: Abel is an interesting, intermediary, and transitional
figure in this respect.
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