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Abstract

For any x = (x1, . . . , xN ) ∈ ⊕N
i=1Rn we denote by Tx = [x1 · · ·xN ] the n ×N matrix whose

columns are the vectors xi. Paouris and Pivovarov showed that if N > n and f1, . . . , fN are
probability densities on Rn with ‖fi‖∞ 6 1 then, for any centrally symmetric convex body K in
RN , the expected volume

FK(f1, . . . , fN ) =

∫
Rn

· · ·
∫
Rn

(
voln(Tx(K))

) N∏
i=1

fi(xi) dxN · · · dx1

of Tx(K) is minimized when each fi is the indicator function of the Euclidean ballDn of volume 1
in Rn. We discuss upper and lower bounds for FK(f1, . . . , fN ) in the case where fi are isotropic
densities. In the second part of this note, given N,n > 1 and r > 0, we discuss upper and lower
bounds for the expected volume E

[
voln

(
∩Ni=1B(xi, r)

)]
of random ball polyhedra defined by

an N -tuple of i.i.d. random points x1, . . . , xN in Rn whose density f satisfies ‖f‖∞ 6 1.

1 Introduction

The purpose of this note is to provide estimates on the expected volume of two classes of random
convex sets. Both of them were studied by Paouris and Pivovarov in [20] and [22].

Let K be a centrally symmetric convex body in RN . For any N > n and x = (x1, . . . , xN ) ∈
⊕Ni=1Rn we denote by Tx = [x1 · · ·xN ] the n ×N matrix whose columns are the vectors xi. Then,
we consider the convex set

Tx(K) =
{ N∑
i=1

tixi : t = (t1, . . . , tN ) ∈ K
}
.

Two examples of obvious geometric interest are obtained if we choose K = BN
1 or K = BN

∞. Note
that Tx(BN

1 ) = conv{±x1, . . . ,±xN} is the absolute convex hull of x1, . . . , xN , and Tx(B
N
∞) =∑N

i=1[−xi, xi] is the zonotope defined as the Minkowski sum of the line segments [−xi, xi]. Now,
let µ1, . . . , µN be probability measures on Rn with densities f1, . . . , fN , respectively. Consider the
random convex set Tx(K), where xi has distribution µi for 1 6 i 6 N . An important class of
such random convex sets, the so-called Gaussian convex bodies, has been studied from the same
point of view by Paouris, Pivovarov and Valettas in [24] (see also the references therein for previous
results in the literature). The authors study linear images of a centrally symmetric convex body K
in Rn under an n×N Gaussian random matrix G, where N > n. This corresponds to our object
of study in the case where µ is the standard Gaussian measure γn on Rn. They provide estimates
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for the intrinsic volumes of Tx(K) and study the expectation, variance, small and large deviations
from the mean, small ball probabilities, and higher moments.

In the general case, the next theorem from [20] asserts that if ‖fi‖∞ 6 1 then the expected
volume of Tx(K) is minimized when each µi is the uniform measure on the Euclidean ball Dn of
volume 1 in Rn.

Theorem 1.1 (Paouris-Pivovarov). Let p > 0, N > n and µ1, . . . , µN be probability measures on
Rn with densities f1, . . . , fN , respectively, with respect to the Lebesgue measure on Rn, that satisfy
‖fi‖∞ 6 1. Consider a centrally symmetric convex body K in RN and define

FK(f1, . . . , fN ) =

∫
Rn

· · ·
∫
Rn

(
voln(Tx(K))

)p
dµN (xN ) · · · dµ1(x1).

Then,
FK(f1, . . . , fN ) > FK(1Dn , . . . ,1Dn).

In the first part of this note, our aim is to obtain upper and lower bounds for the expected
volume of the random convex set Tx(K) under the assumption that µ1 = · · · = µN = µ is an
isotropic log-concave probability measure in Rn. We say that µ is isotropic if the barycenter
of µ is at the origin, the density f of µ satisfies ‖f‖∞ = 1, and the covariance matrix of µ is
Cov(µ) = L2

µIn, where Lµ is the isotropic constant of µ. Our starting point is the formula

voln(Tx(K)) =
√
det(TxT ∗x) voln(PEx(K))

where Ex = ker(Tx)
⊥ = Range(T ∗x), and A∗ is the transpose of a matrix A. First we show that

if x1, . . . , xN are independent random vectors distributed according to an isotropic log-concave
probability measure µ on Rn, then

c1Lµ
√
N 6

∫
Rn

· · ·
∫
Rn

(
det(TxT

∗
x)
) 1

2n dµN (x) 6 Lµ
√
N

where c1 > 0 is an absolute constant. Using this result we can give lower and upper bounds for
the expected value ∫

O(N)

(∫
Rn

· · ·
∫
Rn

(
voln(Tx(U(K)))

)
dµN (x)

)
dνN (U)

with respect to U ∈ O(N), which indicates what might be a ‘‘good estimate" for the volume of
the random convex set Tx(K): If µ is an isotropic log-concave probability measure on Rn then for
every N > n and every centrally symmetric convex body K in RN we have that

c1Lµ
√
N/n vrad(K) 6

(∫
O(N)

EµN
(
voln(Tx(U(K)))

)
dνN (U)

) 1
n
6 c2Lµ

√
N/nw(K)

where c1, c2 > 0 are absolute constants, vrad(K) := (volN (K)/volN (B
N
2 ))1/N is the volume radius

of K and w(K) is the mean width of K. This estimate is comparable to the ones given in [24] for
the Gaussian case.

Then, we study the basic examples K = BN
1 and K = BN

∞. Using, additionally, known results
of Bobkov and Nazarov which describe the geometry of an isotropic unconditional convex body in
RN we obtain estimates for the problem in this case. For example, in the range n 6 N 6 exp(

√
n)

we have:
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Theorem 1.2. Let µ be an isotropic log-concave probability measure on Rn. For any n 6 N 6
exp(
√
n) and any unconditional isotropic convex body K in RN we have

c1
√
N/n vrad(K) 6 EµN

(
voln(Tx(K))

1
n

)
6 c2Lµ

√
N/n (log n)2vrad(K)

where c1, c2 > 0 are absolute constants.

In the case K = B
N
q , 2 6 q 6 ∞, we can give more precise asymptotic estimates for the

expected value of the volume of Tx(B
N
q ) (see Theorem 3.15). For every N > n and every 2 6 q 6∞

we have
c1
√
N/n vrad(B

N
q ) 6

(
EµN voln(Tx(B

N
q ))
)1/n

6 c2Lµ
√
N/n vrad(B

N
q )

where c1, c2 > 0 are absolute constants.
We also provide a general upper bound under the assumption that both µ and K are isotropic.

Theorem 1.3. Let µ be an isotropic log-concave probability measure on Rn. For any N > n and any
isotropic convex body K in RN we have

c2Lµ
Ln

vrad(K) 6 EµN
(
voln(Tx(K))

1
n

)
6
c1LµN

n
LKvrad(K)

where c1, c2 > 0 are absolute constants.

In the statement above, Ln := max{LC : C is an isotropic convex body in Rn} (see the next
section for more information and the known upper bounds for Ln).

In the second part of this note we provide estimates for the expected volume of random ball-
polyhedra. Let f be a probability density on Rn with ‖f‖∞ 6 1, fix N > 1 and an N -tuple
r = (r1, . . . , rN ) of positive real numbers. Consider a sequence x1, . . . , xN of independent random
points in Rn distributed according to f , and define the random ball-polyhedron

B(x, r) :=
N⋂
i=1

B(xi, ri)

which is the intersection of the Euclidean balls B(xi, ri). Paouris and Pivovarov proved in [22] that
the expected volume of this random ball polyhedron is maximized when f = 1Dn , the density of
the uniform measure on Dn.

Theorem 1.4 (Paouris-Pivovarov). Let N,n > 1 and r1, . . . , rN ∈ (0,∞). Consider independent
random points x1, . . . , xN and x∗1, . . . , x

∗
N so that xi has density fi with ‖fi‖∞ 6 1, and x∗i has

density 1Dn , i = 1, . . . , N . Then, for any r1, . . . , rN > 0,

Eµ1⊗···⊗µN
(
voln

( N⋂
i=1

B(xi, ri)
))

6 EµNDn

(
voln

( N⋂
i=1

B(x∗i , ri)
))
.

Let K be a centrally symmetric convex body of volume 1 in Rn. Our first observation is that in
the case r1 = · · · = rN = r one has a very simple formula for the expectation

EµNK
(
voln

( N⋂
i=1

B(xi, r)
))
.
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Namely,

EµNK
(
voln

( N⋂
i=1

B(xi, r)
))

=

∫
K+rBn

2

voln((K − y) ∩ rBn
2 )
N dy.

In fact, one may replace Euclidean balls by r-homethets of any centrally symmetric convex body
C in Rn; the corresponding formula is

EµNK
(
voln

( N⋂
i=1

(xi + rC)
))

=

∫
K+rC

voln((K − y) ∩ rC)N dy.

Using an argument, based on the Brunn-Minkowski inequality, that goes back to Rogers and
Shephard, we obtain the next lower bound, which is valid for all r > 0.

Theorem 1.5. Let K be a centrally symmetric convex body of volume 1 in Rn and x1, . . . , xN be
independent random points uniformly distributed in K. Then, for any centrally symmetric convex
body C in Rn we have that(
nN + n

n

)−1
voln(K∩rC)Nvoln(K+rC) 6 EµNK

(
voln

( N⋂
i=1

(xi+rC)
))

6 voln(K∩rC)Nvoln(K+rC).

An interesting question is to determine the best constants in the inequality of Theorem 1.5.
Note that the behavior of EµNK

(
voln

(
∩Ni=1(xi + rC)

))
is different for small and large values of r.

One has

lim
r→∞

1

voln(rC)
EµNK

(
voln

( N⋂
i=1

(xi+rC)
))

= 1 and lim
r→0+

1

voln(rC)N
EµNK

(
voln

( N⋂
i=1

(xi+rC)
))

= 1.

2 Notation and backgound information

In this section we introduce notation and terminology that we use throughout this work, and
provide background information on isotropic convex bodies and log-concave probability measures
in Rn. We write 〈·, ·〉 for the standard inner product in Rn and denote the Euclidean norm by
‖ · ‖2. In what follows, Bn

2 is the Euclidean unit ball and Sn−1 is the unit sphere in Rn, and σ
is the unique rotationally invariant probability measure on Sn−1. The Lebesgue measure in Rn is
denoted by voln. The letters c, c′, cj , c′j etc. denote absolute positive constants whose value may
change from line to line. Sometimes we relax our notation: a ≈ b will mean ‘‘c1a 6 b 6 c2a" for
some absolute constants ci > 0. We write ωn for the volume of Bn

2 ; direct computation shows that

ω
1
n
n ≈ 1/

√
n.

A convex body in Rn is a compact convex set C ⊂ Rn with non-empty interior. For notational
convenience we write C for the homothetic image of volume 1 of a convex body C ⊆ Rn, i.e. C :=
voln(C)

−1/nC. We say that C is centrally symmetric if −C = C. We say that C is unconditional
with respect to the standard orthonormal basis {e1, . . . , en} of Rn if x = (x1, . . . , xn) ∈ C implies
that (ε1x1, . . . , εnxn) ∈ C for any choice of signs εj ∈ {−1, 1}, j = 1, . . . , n. The volume radius
of C is the quantity vrad(C) = (voln(C)/voln(B

n
2 ))

1/n. The support function of C is defined by
hC(y) := max

{
〈x, y〉 : x ∈ C

}
, and the mean width of C is the average

w(C) :=

∫
Sn−1

hC(ξ) dσ(ξ)
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of hC on Sn−1.
A convex body C in Rn is called isotropic if it has volume 1, it is centered, i.e. its barycenter

is at the origin, and its inertia matrix is a multiple of the identity matrix: there exists a constant
LC > 0 such that

‖〈·, ξ〉‖2L2(C) :=

∫
C
〈x, ξ〉2dx = L2

C

for all ξ ∈ Sn−1. The hyperplane conjecture asks whether there exists an absolute constant A > 0
such that

Ln := max{LC : C is an isotropic convex body in Rn} 6 A

for all n > 1. Bourgain proved in [5] that Ln 6 c 4
√
n logn; later, Klartag, in [12], improved

this bound to Ln 6 c 4
√
n. In a breakthrough work, Chen [8] proved that for any ε > 0 there exists

n0(ε) ∈ N such that Ln 6 nε for every n > n0(ε). Very recently, Klartag and Lehec [13] showed that
the hyperplane conjecture and the stronger Kannan-Lovász-Simonovits isoperimetric conjecture
hold true up to a factor that is polylogarithmic in the dimension; more precisely, they achieved the
bound Ln 6 c(log n)4, where c > 0 is an absolute constant.

A Borel measure µ on Rn is called log-concave if µ(λA + (1 − λ)B) > µ(A)λµ(B)1−λ for any
compact subsetsA andB of Rn and any λ ∈ (0, 1). A function f : Rn → [0,∞) is called log-concave
if its support {f > 0} is a convex set in Rn and the restriction of log f to it is concave. It is known
that if a probability measure µ is log-concave and µ(H) < 1 for every hyperplane H in Rn, then
µ has a log-concave density fµ. Note that if C is a convex body in Rn then the Brunn-Minkowski
inequality implies that 1C is the density of a log-concave measure, the uniform measure on C.

If µ is a log-concave measure on Rn with density fµ, we define the isotropic constant of µ by

Lµ :=

(
supx∈Rn fµ(x)∫

Rn fµ(x)dx

) 1
n

[detCov(µ)]
1
2n

where Cov(µ) is the covariance matrix of µ with entries

Cov(µ)ij :=

∫
Rn xixjfµ(x) dx∫

Rn fµ(x) dx
−
∫
Rn xifµ(x) dx∫
Rn fµ(x) dx

∫
Rn xjfµ(x) dx∫
Rn fµ(x) dx

.

We say that a log-concave probability measure µ on Rn is isotropic if it is centered, i.e. if∫
Rn

〈x, ξ〉dµ(x) =
∫
Rn

〈x, ξ〉fµ(x)dx = 0

for all ξ ∈ Sn−1, ‖fµ‖∞ = 1 and Cov(µ) = L2
µIn, where In is the identity n× n matrix.

For every q > 1 and every y ∈ Rn we set

hZq(µ)(y) =

(∫
Rn

|〈x, y〉|qdµ(x)
)1/q

.

The Lq-centroid body Zq(µ) of µ is the centrally symmetric convex body with support function
hZq(µ). Note that µ is isotropic if and only if it is centered and Z2(µ) = LµB

n
2 . It was shown

by Paouris [19] that if 1 6 q 6
√
n then w

(
Zq(µ)

)
' √qLµ, and that for all 1 6 q 6 n one has

vrad(Zq(µ)) 6 c1
√
qLµ. Conversely, it was shown by B. Klartag and E. Milman in [14] that if

1 6 q 6
√
n then vrad(Zq(µ)) > c2

√
qLµ. This determines the volume radius of Zq(µ) for all
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1 6 q 6
√
n. For larger values of q one can still use the lower bound vrad(Zq(µ)) > c2

√
q, obtained

by Lutwak, Yang and Zhang in [16] for convex bodies and extended by Paouris and Pivovarov in
[20] to the class of log-concave probability measures.

For every 1 6 k 6 n− 1 and every E ∈ Gn,k, the marginal of the measure µ with respect to E
is the probability measure πE(µ) on E, with density

fπE(µ)(x) =

∫
x+E⊥

fµ(y)dy.

It is easily checked that if µ is centered, isotropic or log-concave, then πE(µ) is also centered,
isotropic or log-concave, respectively.

We refer the reader to the book [7] for an updated exposition of isotropic log-concave measures
and more information on the hyperplane conjecture.

We close this section with a rough description of the main ideas behind the proof of Theorem 1.1
and Theorem 1.4. The approach of Paouris and Pivovarov is based on rearrangement inequalities;
in particular, on the Brascamp-Lieb-Luttinger inequality. Let H : ⊕Ni=1Rn → R+ be a non-negative
measurable function and consider the multilinear operator FH defined by

FH(f1, . . . , fN ) =
∫
Rn

· · ·
∫
Rn

H(x1, . . . , xN )f1(x1) · · · fN (xN ) dx1 · · · dxN

where f1, . . . , fN : Rn → R+ are integrable functions. Assume that the function H : ⊕Ni=1Rn → R+

has the following property: for any z ∈ Sn−1 and any Y = {y1, . . . , yN} ⊂ z⊥, the function
HY : RN → R+ which is defined by

HY (t) = H(y1 + t1z, . . . , yN + tNz)

is even and quasi-convex. Then,

FH(f1, . . . , fN ) > FH(f∗1 , . . . , f∗N )

where f∗ is the symmetric decreasing rearrangement of f . Moreover, if ‖fi‖∞ 6 1 for all i =
1, . . . , N , then

FH(f1, . . . , fN ) > FH(f∗1 , . . . , f∗N ) > FH(1Dn , . . . ,1Dn)

where Dn is the Euclidean ball of volume 1 in Rn. On the other hand, if for every z ∈ Sn−1 and
any Y = {y1, . . . , yN} ⊂ z⊥ the function HY is even and quasi-concave then the above inequalities
are reversed.

Theorem 1.1 is a consequence of this general result. Define

H(x1, . . . , xN ) =
(
voln(Tx(K))

)p
=
(
voln([x1 · · ·xN ]K)

)p
.

One can show that for any ξ ∈ Sn−1 and y1, . . . , yN ∈ z⊥, if we set Y = {y1, . . . , yN} and de-
fine TY (t) := [y1 + t1ξ, . . . , yN + tNξ] then the function HY : RN → R+ defined by HY (t) =
voln(TY (t)(K))p is even and quasi-convex. Theorem 1.4 is again a consequence of this approach.
Given r1, . . . , rN > 0, define

H(x1, . . . , xN ) = voln

( N⋂
i=1

B(xi, ri)
)
.
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Then, H is even and quasi-concave on its support. Moreover, for any z ∈ Sn−1 and y1, . . . , yN ∈ z⊥
the function Hz,Y : RN → [0,∞) defined by Hz,Y (t) = voln

(
∩Ni=1B(yi + tiz, ri)

)
is even and quasi-

concave on its support. The reader will find more information in the survey article [23] of Paouris
and Pivovarov.

3 Estimates for the expected volume of Tx(K)

Let µ be an isotropic log-concave probability measure on Rn. For any N > n and any centered
convex body K of volume 1 in RN we want to give upper and lower bounds for the quantity

EµN
((

voln(Tx(K)
) 1

n

)
:=

∫
Rn

· · ·
∫
Rn

(
voln(Tx(K)

) 1
n dµN (x)

where Tx is the random n × N matrix with columns N independent random vectors x1, . . . , xN
distributed according to µ. Our starting point is the formula (see for example [21, Proposition 2.1])

(3.1) voln(Tx(K)) =
√

det(TxT ∗x) voln(PEx(K))

where Ex = ker(Tx)
⊥ = Range(T ∗x), and A∗ denotes the transpose of a matrix A. We start with

some preliminary observations regarding the expectation of
√
det(TxT ∗x).

3.1 Preliminary estimates

It is known that
√
det(TxT ∗x) is equal to the volume of the n-dimensional parallelotope spanned in

RN by the rows y1, . . . , yn of Tx. The next lemma provides some estimates for EµN
(
det(TxT

∗
x)

1
2n

)
.

Note that the assumption that µ is log-concave is needed only for the lower bound.

Lemma 3.1. Let x1, . . . , xN be independent random points which are distributed according to an
isotropic log-concave probability measure µ on Rn. Then,

(3.2) c1Lµ
√
N 6

∫
Rn

· · ·
∫
Rn

(
det(TxT

∗
x)
) 1

2n dµN (x) 6 Lµ
√
N

where c1 > 0 is an absolute constant.

Proof. We use the Cauchy-Binet formula: For any S = {i1, . . . , in} ⊆ [N ] with |S| = n we denote
by Tx|S the n× n matrix whose columns are xi1 , . . . , xin . Then,

(3.3) det(TxT
∗
x) =

∑
|S|=n

det((Tx|S)(Tx|S)∗).

From a well-known formula that goes back to Blaschke (see [7, Proposition 3.5.5] for a proof) we
see that

(3.4) EµS
(
det((Tx|S)(Tx|S)∗)

)
= n! det(Cov(µ))

where µS := ⊗i∈Sµ. Note that this identity holds true for any centered probability measure µ on
Rn. Assuming that µ is isotropic, we have det(Cov(µ)) = L2n

µ and it follows that

(3.5)
∫
Rn

· · ·
∫
Rn

det(TxT
∗
x) dµ

N (x) =

(
N

n

)
n! det(Cov(µ)) 6 Nn det(Cov(µ)) = NnL2n

µ .
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Applying Hölder’s inequality we obtain the upper bound in (3.2).
For the lower bound, using first the concavity of the function x 7→ xp for p ∈ (0, 1), we write∫
Rn

· · ·
∫
Rn

(
det(TxT

∗
x)
) 1

2ndµN (x) =

∫
Rn

· · ·
∫
Rn

( ∑
|S|=n

det((Tx|S)(Tx|S)∗)
) 1

2n
dµN (x)

>

(
N

n

) 1
2n 1(

N
n

) ∑
|S|=n

∫
Rn

· · ·
∫
Rn

det((Tx|S)(Tx|S)∗)
1
2ndµN (x).

From [25, Corollary 1] (see also [18, Section 3.7]) we see that, for any S ⊂ [N ] with |S| = n, one
has det((Tx|S)(Tx|S)∗) > (c2n)

nL2n
µ for some absolute constant c2 > 0, with probability greater

than 1− e−n. It follows that∫
Rn

· · ·
∫
Rn

det((Tx|S)(Tx|S)∗)
1
2ndµN (x) > c3Lµ

√
n

for some absolute constant c3 > 0. Therefore,∫
Rn

· · ·
∫
Rn

det(TxT
∗
x)

1
2ndµN (x) > c3Lµ

√
n

(
N

n

) 1
2n

> c1Lµ
√
N

for some absolute constant c1 > 0.

Remark 3.2. From the proof of Lemma 3.1 one may easily check that, for any isotropic log-concave
probability measure µ on Rn and any N > n, the estimate

(3.6) c1Lµ
√
N 6

(∫
Rn

· · ·
∫
Rn

(
det(TxT

∗
x)
)p
dµN (x)

) 1
2pn

6 Lµ
√
N

holds true for all p ∈ [e−n, 1] (in fact, it is plausible that the methods from [25] allow one to obtain
the same bounds for all p > 0).

The next proposition gives an upper and a lower bound for the average(∫
O(N)

(∫
Rn

· · ·
∫
Rn

voln(Tx(U(K))) dµN (x)
)
dνN (U)

) 1
n

over all U ∈ O(N) in terms of the mean width and the volume radius of K respectively, and shows
what one should expect as a reasonable estimate for the expected volume radius of Tx(K). We
need to introduce the parameters

(3.7) Qn(K) =

(
1

ωn

∫
GN,n

|PE(K)| dνN,n(E)

) 1
n

, 1 6 n 6 N.

Aleksandrov’s inequalities (see [27]) imply that n 7→ Qn(K) is decreasing. In particular, for every
1 6 n 6 N − 1 we have

(3.8) vrad(K) 6 Qn(K) 6 w(K).
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Proposition 3.3. Let µ be an log-concave isotropic probability measure on Rn. For any N > n and
any centrally symmetric convex body K in RN we have

c1Lµ
√
N/nQn(K) 6

(∫
O(N)

EµN
(
voln(Tx(U(K)))

)
dνN (U)

) 1
n
6 c2Lµ

√
N/nQn(K),

and in particular,

c1Lµ
√
N/n vrad(K) 6

(∫
O(N)

EµN
(
voln(Tx(U(K)))

)
dνN (U)

) 1
n
6 c2Lµ

√
N/nw(K)

where c1, c2 > 0 are absolute constants.

Proof. Our starting point is (3.1). Let U ∈ O(N) be independent from x and distributed according
to the Haar probability measure νN on O(N). Since det((TxU)(U∗T ∗x)) = det(TxT

∗
x) and PEx ◦U =

PU∗(Ex), we see that
voln(TxU(K)) =

√
det(TxT ∗x) voln(PU∗Ex(K))

where Ex = ker(Tx)
⊥ = Range(T ∗x). Note that Ex is n-dimensional with probability 1, therefore

the distribution of U∗(Ex) is the Haar probability measure νN,n on GN,n for almost all x. It follows
that ∫

O(N)
EµN

(
voln(Tx(U(K)))

)
dνN (U)(3.9)

=

∫
Rn

· · ·
∫
Rn

(∫
O(N)

voln(Tx(U(K))) dνN (U)
)
dµN (x)

=

∫
Rn

· · ·
∫
Rn

(
det(TxT

∗
x)

1/2

∫
O(n)

voln(PU∗Ex(K)dνN (U))
)
dµN (x)

=
(∫

Rn

· · ·
∫
Rn

det(TxT
∗
x)

1/2dµN (x)
)(∫

GN,n

voln(PE(K)) dνN,n(E)
)

=
(∫

Rn

· · ·
∫
Rn

det(TxT
∗
x)

1/2dµN (x)
)
ωn
(
Qn(K)

)n
.

From Lemma 3.1 we get

(cLµ)
nN

n
2 ωn

(
Qn(K)

)n
6
∫
O(N)

EµN
(
voln(Tx(U(K)))

)
dνN (U) 6 LnµN

n
2 ωn

(
Qn(K)

)n
for an absolute constant c > 0. Taking into account the fact that ω1/n

n ≈ 1/
√
n, we obtain the first

claim of the proposition. The second claim follows from (3.8).

3.2 Two basic examples

There are two main examples of convex bodies K for which the expected volume of Tx(K) is well
studied. The first one is K = BN

∞; then, Tx(BN
∞) =

∑N
i=1[−xi, xi] is the zonotope defined as the

Minkowski sum of the line segments [−xi, xi].

Proposition 3.4. Let B
N
∞ denote the cube of volume 1 in RN . Then,

EµNDn

(
voln(Tx(B

N
∞))

1
n
)
≈
√
N/n vrad(B

N
∞).

9



Proof. Let

Ip(Dn;m) :=

∫
Dn

· · ·
∫
Dn

voln

( m∑
i=1

[−xi, xi]
)p
dxm · · · dx1.

Note that
I1/n(Dn;N) = EµNDn

(
voln(Tx(B

N
∞))

1
n
)
.

A direct computation based on the Blashcke-Petkantschin formula (see [28, Theorem 8.2.2]) shows
that

1

voln(Bn
2 )
n

∫
Bn

2

· · ·
∫
Bn

2

voln

( n∑
i=1

[0, xi]
)p
dxn · · · dx1 =

ωnn+p
ωnn

n−1∏
j=0

(n− j)ωn−j
(n+ p− j)ωn+p−j

where ωk = volk(B
k
2 ). It follows that

Ip(Dn;n) :=

∫
Dn

· · ·
∫
Dn

voln

( n∑
i=1

[0, xi]
)p
dxn · · · dx1 =

ωnn+p

ωn+pn

n−1∏
j=0

(n− j)ωn−j
(n+ p− j)ωn+p−j

.

Choosing p = 1/n one may check that

c1
√
n 6 I1/n(Dn;n) 6 c2

√
n

where c1, c2 > 0 are absolute constants. Note that

voln

( N∑
i=1

[−xi, xi]
)
= 2n

∑
I⊂[N ],|I|=n

voln

(∑
j∈I

[0, xj ]
)
.

Using the inequalities(
N

n

)p 1(
N
n

) ∑
I⊂[N ],|I|=n

tpI 6
( ∑
I⊂[N ],|I|=n

tI

)p
6

∑
I⊂[N ],|I|=n

tpI

with tI = EµnDn

(
voln

(∑
j∈I [0, xj ]

))
we see that

c1
√
n

(
N

n

)1/n

6

(
N

n

)1/n

I1/n(Dn;n) 6
1

2
I1/n(Dn;N) 6

(
N

n

)1/n

I1/n(Dn;n) 6 c2
√
n

(
N

n

)1/n

.

Since
(
N
n

)1/n ≈ N
n and vrad(BN

∞) ≈
√
N , we obtain the result.

As an immediate corollary of Theorem 1.1 we have the following.

Proposition 3.5. Let N > n and µ1, . . . , µN be probability measures on Rn with densities fi,
respectively, with respect to the Lebesgue measure, that satisfy ‖fi‖∞ 6 1. Then,

E⊗N
i=1µi

(
voln(Tx(B

N
∞))

1
n
)
> c
√
N/n vrad(B

N
∞)

where c > 0 is an absolute constant.
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The second well-studied example is when K = B
N
1 . Note that Tx(BN

1 ) = conv{±x1, . . . ,±xN}
for all x = (x1, . . . , xN ).

Proposition 3.6. Let B
N
1 denote the multiple of the cross-polytope BN

1 of volume 1 in RN . Then, for
any isotropic log-concave probability measure µ on Rn we have that

c1Lµ
√
N/n

√
log(2N/n)vrad(B

N
1 ) 6 EµN

(
voln(Tx(B

N
1 ))

1
n

)
(3.10)

6 c2Lµ
√
N/n

√
logNvrad(B

N
1 )

if n 6 N 6 exp(
√
n), and

c1
√
N/n

√
log(2N/n)vrad(B

N
1 ) 6 EµN

(
voln(Tx(B

N
1 ))

1
n

)
(3.11)

6 c2Lµ
√
N/n

√
logN(log logN)2vrad(B

N
1 )

if exp(
√
n) 6 N 6 exp(n).

Proof. Observe thatBN
1 ≈ NBN

1 , which implies that Tx(B
N
1 ) ≈ N conv{±x1, . . . ,±xN}. Therefore,

EµN
(
voln(Tx(B

N
1 ))

1
n

)
≈ N EµN

(
voln(conv{±x1, . . . ,±xN})

1
n

)
.

It is proved in [9] that

EµN
(
voln(conv{±x1, . . . ,±xN})

) 1
n
6
c1w(ZlogN (µ))√

n

for all N 6 en, where Zq(µ) is the Lq-centroid body of µ. Since vrad(B
N
1 ) ≈

√
N , this implies that

EµN
(
voln(Tx(B

N
1 ))

1
n

)
6 c2

√
N/n vrad(B

N
1 )w(ZlogN (µ)).

Then, the upper bounds in (3.10) and (3.11) follow from the known upper bounds for w(Zq(µ)),
where µ is an isotropic log-concave probability measure on Rn. Recall that if 1 6 q 6

√
n then

w(Zq(µ)) 6 c
√
qLµ. On the other hand, E. Milman has proved in [17] that for all

√
n 6 q 6 n,

w(Zq(µ)) 6 cLµ log(1 + min{q, n})max
{q log(1 + q)√

n
,
√
q
}

for some absolute constant c > 0. Note that this quantity is always bounded by cLµ
√
n(log n)2.

For the lower bound we use the fact, proved in [9] that if µ is an isotropic log-concave probability
measure on Rn and if x1, . . . , xN are independent random points which are distributed according
to µ, then conv{±x1, . . . ,±xN} ⊇ cZc log(1+N/n)(µ) with probability close to 1. The result from
[9] concerns the case where µ is the uniform measure on a convex body, but one can use the
same arguments to extend it to the more general setting of log-concave probability measures.
See [7, Chapter 11] for a complete discussion including estimates on the probability and related
references. Combining this fact with the known lower bounds for the volume radius of Zq(µ) (see
Section 2) we see that if n 6 N 6 e

√
n then

(3.12) voln(conv{±x1, . . . ,±xN})1/n > c1Lµ

√
log(2N/n)√

n

11



with probability greater than 1− exp(−c2
√
N), while in the range e

√
n 6 N 6 en one has

(3.13) voln(conv{±x1, . . . ,±xN})1/n > c1

√
log(2N/n)√

n
,

again with probability exponentially close to 1. This shows that

EµN
(
voln(Tx(B

N
1 ))

1
n

)
> c
√
N/nLµ

√
log(2N/n)vrad(B

N
1 )

in the range n 6 N 6 exp(
√
n), and the lower bound of (3.11) follows in the same way from

(3.13).

Remark 3.7. Regarding the upper bound in Proposition 3.6 it is worth mentioning that for any
isotropic log-concave probability measure µ on Rn and n 6 N 6 en, we have that

voln(Tx(B
N
1 ))

1
n 6 c2Lµ

√
N/n vrad(B

N
1 )

with probability greater than 1 − 1
N , where c > 0 is an absolute constant. This is proved in [9]

when µ is the uniform measure on an isotropic convex body in Rn (see also [7, Theorem 11.3.2]
for the general case of an isotropic log-concave probability measure).

Remark 3.8. In the same setting of this subsection, lower bounds of the same order for the volume
of a random Tx(B

N
∞) or a random Tx(B

N
1 ) are also given in [21, Theorem 9.3] and [21, Theorem 9.1]

respectively, in the form of small ball probability estimates.

3.3 Some general estimates

We can give some general estimates using the following bounds for the volume radius of an n-
dimensional projection of a convex body in RN .

Lemma 3.9. Let K be a centrally symmetric convex body in RN . For any 1 6 n < N and any
E ∈ GN,n we have that

c1
√
n/N

1√
nM(K)

6 voln(PE(K))1/n 6 c2
√
N/n

w(K)√
n

where c1, c2 > 0 are absolute constants.

Proof. Let N(A,B) denote the covering number of A by B, i.e. the least number of translates
of B whose union covers A. The classical Sudakov inequality (see [1, Chapter 4]) states that
N(K, tBN

2 ) 6 exp(c3Nw
2(K)/t2) for all t > 0. Since N(PE(K), tPE(B

N
2 )) 6 N(K, tBN

2 ) for all
E ∈ GN,n, it follows that

voln(PE(K))1/n 6 exp(c3Nw
2(K)/(t2n))voln(tPE(B

N
2 ))1/n

for all t > 0, and choosing t =
√
N/nw(K) we get

voln(PE(K))1/n 6 c4
√
N/nw(K)voln(BE)

1/n

12



where BE = PE(B
N
2 ) = BN

2 ∩E, and hence voln(BE)
1/n ≈ 1/

√
n. This proves the right hand side

inequality. For the lower bound we use a similar argument, this time employing the dual Sudakov
inequality (see [1, Chapter 4]) N(BN

2 , tK) 6 exp(c3NM
2(K)/t2), which implies that

voln(PE(B
N
2 ))1/n 6 exp(c3NM

2(K)/(t2n))voln(tPE(K))1/n

for all t > 0, and then choose t =
√
N/nM(K).

Taking into account Lemma 3.1 and Lemma 3.9 we have the next general estimates.

Theorem 3.10. Let µ be an isotropic log-concave probability measure on Rn. For any N > n and
any centrally symmetric convex body K in RN we have

c1Lµ
M(K)

6
(
EµN voln(Tx(K))

1
n

)
6
c2LµN

n
w(K)

where c1, c2 > 0 are absolute constants.

Proof. We may write

EµN
(
voln(Tx(K))

)
= EµN

(√
det(TxT ∗x) voln(PEx(K))

)
6 LnµN

n/2 max
E∈GN,n

voln(PE(K)),

by the proof of Lemma 3.1, and then the upper bound from Proposition 3.9 implies that

EµN
(
voln(Tx(K))

1
n

)
6 Lµ

√
N · c2

√
N/n

w(K)√
n

=
c2LµN

n
w(K).

On the other hand, a similar argument shows that

EµN
((

voln(Tx(K))
) 1

n

)
= Ex

(
(det(TxT

∗
x))

1
2n voln(PEx(K))

1
n

)
> min

E∈GN,n

voln(PE(K))
1
n EµN

(
(det(TxT

∗
x))

1
2n

)
,

and combining the lower bounds from Lemma 3.1 and Lemma 3.9 we get

EµN
( (

voln(Tx(K))
) 1

n

)
> c3Lµ

√
N · c4

√
n/N

1√
nM(K)

=
c5Lµ
M(K)

as claimed.

Our next result gives a general upper bound under the assumption that both µ and K are
isotropic.

Theorem 3.11. Let µ be an isotropic log-concave probability measure on Rn. For any N > n and
any isotropic convex body K in RN we have

c2Lµ
Ln

vrad(K) 6 EµN
(
voln(Tx(K))

1
n

)
6
c1LµN

n
LKvrad(K)

where c1, c2 > 0 are absolute constants.

13



Proof. Starting from (3.1) and using the Cauchy-Schwarz inequality we get

EµN
(
voln(Tx(K))

1
n

)
6
(
EµN

(
det(TxT

∗
x)

1
n
)) 1

2
(
EµN

(
voln(PEx(K))

2
n
)) 1

2

6 Lµ
√
N
(
EµN

(
voln(PEx(K))

2
n
)) 1

2

taking into account Lemma 3.1. From a classical inequality of Rogers and Shephard (see [1,
Lemma 1.5.6]) we also know that

voln(K ∩ E⊥x )−1 6 voln(PEx(K)) 6

(
N

n

)
voln(K ∩ E⊥x )−1

for all x. Assuming that K is also isotropic, we have that

voln(K ∩ E⊥x )1/n ≈
LKn+1(πEx (µK))

LK
>

c2
LK

where πEx(µK) is the marginal of K with respect to Ex (the family of convex bodies {Kp(ν)}p>0

associated with a log-concave probability measure ν was introduced by Ball in [2] where the above
result is also proved; see also [7] for the necessary definitions and, in particular, [7, Proposi-
tion 5.1.15] for this statement). Combining the above, we finally get

EµN
(
voln(Tx(K))

1
n

)
6 Lµ

√
N

(
N

n

) 1
n

· 1
c2
LK

and the result follows from the fact that volN (K) = 1 and hence vrad(K) ≈
√
N . For the lower

bound we recall that

EµN
(
voln(Tx(K))

1
n

)
= EµN

(
det(TxT

∗
x)

1
2nvoln(PEx(K))

1
n

)
by (3.1). Then, we observe that

voln(PEx(K))1/n > voln(K ∩ E⊥x )−1/n ≈
LK

LKn+1(πEx (µK))
>

c1
Ln

and conclude that

EµN
(
voln(Tx(K))

1
n

)
>

c1
Ln

EµN
(
det(TxT

∗
x)

1
2n

)
>
c2Lµ
Ln

vrad(K)

where the last inequality follows from Lemma 3.1.

Remark 3.12. Both the upper and the lower bound in Theorem 3.10 and Theorem 3.11 are most
probably non-optimal, unless if N is proportional to n. The best one might hope is an estimate
similar to the one in Proposition 3.3. If this is the case, then the general bounds that we provide
are missing a

√
N/n factor. Related general estimates in the case where N is proportional to n

are also given in [21, Section 10].

In the next theorem we assume that K is an unconditional isotropic convex body in RN and
using Theorem 3.10 and Theorem 3.11 we obtain a better estimate.
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Theorem 3.13. Let µ be an isotropic log-concave probability measure on Rn. For any n 6 N 6
exp(
√
n) and any unconditional isotropic convex body K in RN we have

c1
√
N/n vrad(K) 6 EµN

(
voln(Tx(K))

1
n

)
6 c2Lµ

√
N/n (log n)2vrad(K)

where c1, c2 > 0 are absolute constants.

Proof. By a result of Bobkov and Nazarov from [4] we know that c1B
N
∞ ⊆ K ⊆ c2B

N
1 for some

absolute constants c1, c2 > 0. It follows that Tx(K) ⊆ c2Tx(B
N
1 ) for any x = (x1, . . . , xN ), and

hence
EµN

(
voln(Tx(K))

1
n

)
6 c2EµN

(
voln(Tx(B

N
1 ))

1
n

)
.

Using Proposition 3.5 and Proposition 3.6 we conclude the proof.

Remark 3.14. Taking into account Remark 3.7 we can check that if µ is an isotropic log-concave
probability measure on Rn then for any n 6 N 6 exp(

√
n) and any unconditional isotropic convex

body K in RN we have

c1
√
N/n vrad(K) 6 voln(Tx(K))

1
n 6 c2Lµ

√
N/n vrad(K)

with probability greater than 1− 1
N .

Note that combining Proposition 3.5 and Proposition 3.6 one can obtain an analogous result
for the range exp(

√
n) 6 N 6 exp(n). Our last result concerns the case K = B

N
q , 2 6 q 6∞; we

can obtain a sharp asymptotic estimate for the expected volume of Tx(K).

Theorem 3.15. Let µ be an isotropic probability measure on Rn. For anyN > n and any 2 6 q 6∞
we have

c1
√
N/n vrad(B

N
q ) 6 EµN

(
voln(Tx(B

N
q ))

1
n

)
6 c2Lµ

√
N/n vrad(B

N
q )

where c1, c2 > 0 are absolute constants

Proof. In the proof of Theorem 3.10 we observed the general inequality

(3.14) EµN
(
voln(Tx(K))

)
6 LnµN

n/2 EµN
(
voln(PEx(K))2

) 1
2

where Ex = ker(Tx)
⊥ = Range(T ∗x), which holds for any centrally symmetric convex body K in

RN .
Note that if 2 6 q 6 ∞ then R(BN

q ) ≈ N
1
2
− 1

q and voln(B
N
q )1/N ≈ N

− 1
q . Therefore, BN

q ⊆
c
√
NBN

2 . It follows that

voln(PEx(B
N
q ))

1/n 6 c1voln(PEx(
√
NBN

2 ))1/n 6 c2
√
N/n

for all x = (x1, . . . , xN ), where c2 > 0 is an absolute constant. Taking into account (3.14) we see
that

Eµn
(
voln(Tx(B

N
q ))

1
n

)
6 c3Lµ

√
N
√
N/n 6 c4Lµ

√
N/n vrad(B

N
q )

because vrad(B
N
q ) ≈

√
N . For the lower bound we may apply Theorem 3.13, since B

N
q is 1-

unconditional and isotropic.
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Remark 3.16. Note that the property of BN
q that was really used in the previous argument is

that BN
q is contained in a ball αBN

2 such that
(
volN (αB

N
2 )/volN (B

N
q )
)1/N

6 C, for a constant
C > 0 that does not depend on N or q. In other words, we can also state the next result: Let µ
be an isotropic probability measure on Rn and K be a centrally symmetric convex body in RN . If
K ⊆ αBN

2 and (
volN (αB

N
2 )/voln(K)

)1/N
6 β

then for any N > n we have

Eµn
(
voln(Tx(K))

1
n

)
6 c1βLµ

√
N/n vrad(K),

where c1 > 0 is an absolute constant.

4 Random ball polyhedra

In this section we prove Theorem 1.5. Our argument works in the following more general setting.
We consider two centrally symmetric convex bodies K and C in Rn; for any N > 1, r1, . . . , rN > 0
and x1, . . . , xN ∈ K we consider the convex body

N⋂
i=1

(xi + riC).

The next result provides upper and lower bounds for the expectation of voln
(⋂N

i=1(xi + riC)
)

with

respect to the uniform measure µK(A) =
voln(K∩A)
voln(K) on K.

Theorem 4.1. Let K,C be centrally symmetric convex bodies in Rn and x1, . . . , xN be independent
random points uniformly distributed in K. Then, for any r1, . . . , rN > 0,(

nN + n

n

)−1voln(K + rC)
∏N
i=1 voln(K ∩ riC)

voln(K)N

6 EµNK
(
voln

( N⋂
i=1

(xi + riC)
))

6
voln(K + rC)

∏N
i=1 voln(K ∩ riC)

voln(K)N

where r = min{r1, . . . , rN}.

The proof is based on the next simple formula for the expectation.

Lemma 4.2. Let K,C be centrally symmetric convex bodies in Rn. For any r1, . . . , rN > 0,

EµNK
(
voln

( N⋂
i=1

(xi + riC)
))

=
1

voln(K)N

∫
K+rC

N∏
i=1

voln((K − y) ∩ riC)) dy

where r = min{r1, . . . , rN}.
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Proof. Let r1, . . . , rN > 0. We write

voln(K)N · EµNK
(
voln

( N⋂
i=1

(xi + riC)
))

=

∫
K
· · ·
∫
K

∫
Rn

1⋂N
i=1(xi+riC)(y) dy dxN · · · dx1 =

∫
K
· · ·
∫
K

∫
Rn

N∏
i=1

1xi+riC(y) dy dxN · · · dx1

=

∫
Rn

∫
K
· · ·
∫
K

N∏
i=1

1y+riC(xi) dxN · · · dx1 dy =

∫
Rn

N∏
i=1

(∫
K
1y+riC(xi) dxi

)
dy

=

∫
Rn

N∏
i=1

voln(K ∩ (y + riC)) dy.

The lemma follows from the fact that voln(K ∩ (y+ riC)) = voln((K− y)∩ riC) and that (K− y)∩
riC = ∅ for some 1 6 i 6 N if and only if y /∈ K + rC.

Proof of Theorem 4.1. For each i = 1, . . . , N consider the function ui : K + rC → [0,∞) with
ui(y) = voln((K−y)∩riC)1/n. Using the Brunn-Minkowski inequality and the convexity of K and
C we easily check that ui is an even concave function. Note that

max(ui) = ui(0) = voln(K ∩ riC)1/n

for every i = 1, . . . , N , which gives immediately the upper bound: we have

1

voln(K)N

∫
K+rC

N∏
i=1

voln((K − y) ∩ riC)) dy =
1

voln(K)N

∫
K+rC

N∏
i=1

ui(y)
n dy

6
voln(K + rC)

voln(K)N

N∏
i=1

uni (0) =
voln(K + rC)

∏N
i=1 voln(K ∩ riC)

voln(K)N
.

For the lower bound, let % denote the radial function of K + rC on Sn−1. Then,

voln(K)N · EµNK
(
voln

( N⋂
i=1

(xi + rC)
))

= nωn

∫
Sn−1

∫ %(ξ)

0
tn−1

N∏
i=1

uni (tξ) dt dσ(ξ).

Since each ui is concave, we have

ui(tξ) > (1− t/%(ξ))ui(0) + (t/%(ξ))ui(%(ξ)ξ) > (1− t/%(ξ))ui(0),
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therefore

voln(K)N · EµNK
(
voln

( N⋂
i=1

(xi + rC)
))

> nωn

N∏
i=1

uni (0)

∫
Sn−1

∫ %(ξ)

0
tn−1

(
1− t

%(ξ)

)nN
dt dσ(ξ)

= nωn

N∏
i=1

voln(K ∩ riC)
∫
Sn−1

∫ 1

0
%n(ξ)sn−1(1− s)nN ds dσ(ξ)

= n

N∏
i=1

voln(K ∩ riC) · ωn
∫
Sn−1

%n(ξ) dσ(ξ) ·
∫ 1

0
sn−1(1− s)nN ds

= nB(n, nN + 1)voln(K + rC)
N∏
i=1

voln(K ∩ riC)

=

(
nN + n

n

)−1
voln(K + rC)

N∏
i=1

voln(K ∩ riC)

and the result follows.

Remark 4.3. Note that in the case N = 1 we have voln(x+ rC) = voln(rC) for every x ∈ Rn, and
hence Theorem 4.1 takes the following form: If K,C are centrally symmetric convex bodies in Rn
then, for any r > 0,(

2n

n

)−1
voln(K + rC)voln(K ∩ rC) 6 voln(rC)voln(K) 6 voln(K + rC)voln(K ∩ rC),

which is a well-known inequality of Rogers and Shephard (see [26] and also [1, Section 1.5]). The
constant

(
2n
n

)
is optimal.

Remark 4.4. An interesting question is to determine the best constants in the inequality of The-
orem 4.1. The behavior of EµNK

(
voln

(
∩Ni=1(xi + rC)

))
is of course different for small and large

values of r. In the case C = Bn
2 , Gorbovickis has proved in [11] that for any n > 2 and any

x1, . . . , xN ∈ Rn one has

voln

( N⋂
i=1

B(xi, r)
)
= voln(rB

n
2 )− nωnw(conv(x1, . . . , xN ))rn−1 + o(rn−1)

as r →∞. The next natural analogue of this result is not hard to check:

Proposition 4.5. Let K,C be centrally symmetric convex bodies in Rn. Then,

lim
r→∞

1

voln(rC)
EµNK

(
voln

( N⋂
i=1

(xi + rC)
))

= 1.

18



Proof. A special case of the classical theorem of Minkowski on mixed volumes (see [27, Chapter 5])
states that the function voln(K + rC) is a polynomial in r ∈ [0,∞); one has

voln(K + rC) =
n∑
j=0

(
n

j

)
Vj(K,C) r

j

where Vj(K,C) = V (K;n− j, C; j) is the j-th mixed volume of K and C (we use the notation C; j
for C, . . . , C j-times). One has Vn(K,C) = voln(C). From Lemma 4.2 we see that

EµNK
(
voln

( N⋂
i=1

(xi + rC)
))

=
1

voln(K)N

∫
K+rC

(
voln(K ∩ (y + rC))

)N
dy 6 voln(K + rC).

It follows that

lim sup
r→∞

1

voln(rC)
EµNK

(
voln

( N⋂
i=1

(xi + rC)
))

6 lim
r→∞

1

rnvoln(C)

n∑
j=0

(
n

j

)
Vj(K,C) r

j = 1.

On the other hand, let r0 = min{t > 0 : K ⊆ tC}. Then, if r > r0 and y ∈ (r − r0)C we easily
check that K ⊆ r0C ⊆ y + rC. It follows that

EµNK
(
voln

( N⋂
i=1

(xi + rC)
))

=
1

voln(K)N

∫
K+rC

(
voln(K ∩ (y + rC))

)N
dy > voln((r − r0)C)

for all r > r0, and hence

lim inf
r→∞

1

voln(rC)
EµNK

(
voln

( N⋂
i=1

(xi + rC)
))

> lim
r→∞

(r − r0)nvoln(C)
rnvoln(C)

= 1.

This completes the proof.

It is also not hard to check that the dependence on r is different as r → 0:

Proposition 4.6. Let K,C be centrally symmetric convex bodies in Rn. Then,

lim
r→0+

voln(K)N−1

voln(rC)N
EµNK

(
voln

( N⋂
i=1

(xi + rC)
))

= 1.

Proof. From Lemma 4.2 we see that

EµNK
(
voln

( N⋂
i=1

(xi+rC)
))

=
1

voln(K)N

∫
K+rC

(
voln((K−y)∩rC)

)N
dy 6

voln(K + rC)voln(rC)
N

voln(K)N
.

It follows that

lim sup
r→0+

voln(K)N−1

voln(rC)N
EµNK

(
voln

( N⋂
i=1

(xi + rC)
))

6 lim
r→0+

voln(K + rC)

voln(K)
= 1.
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On the other hand, let t0 = max{t > 0 : C ⊆ 1
tK}. Then, if 0 < r < t0 and y ∈

(
1− r

t0

)
K we

easily check that y + rC ⊆
(
1− r

t0

)
K + r

t0
K = K. It follows that

voln(K)N−1

voln(rC)N
EµNK

(
voln

( N⋂
i=1

(xi + rC)
))

=
1

voln(rC)Nvoln(K)

∫
K+rC

(
voln(K ∩ (y + rC))

)N
dy

>
voln

((
1− r

t0
K
))

voln(K)
=
(
1− r

t0

)n
for all 0 < r < t0, and hence

lim inf
r→0+

voln(K)N−1

voln(rC)N
EµNK

(
voln

( N⋂
i=1

(xi + rC)
))

> lim
r→0+

(
1− r

t0

)n
= 1.

This completes the proof.

Acknowledgement. The author acknowledges support by the Hellenic Foundation for Research
and Innovation (H.F.R.I.) under the ‘‘First Call for H.F.R.I. Research Projects to support Faculty
members and Researchers and the procurement of high-cost research equipment grant" (Project
Number: 1849). He would also like to thank the referee for helpful comments and suggestions.

References

[1] S. Artstein-Avidan, A. Giannopoulos and V. D. Milman, Asymptotic Geometric Analysis, Vol. I, Mathe-
matical Surveys and Monographs 202, American Mathematical Society, Providence, RI, 2015.

[2] K. M. Ball, Logarithmically concave functions and sections of convex sets in Rn, Studia Math. 88 (1988),
69–84.

[3] S. G. Bobkov and M. Madiman, The entropy per coordinate of a random vector is highly constrained
under convexity conditions, IEEE Trans. Inform. Theory 57 (2011), 4940–4954.

[4] S. G. Bobkov and F. L. Nazarov, On convex bodies and log-concave probability measures with uncon-
ditional basis, Geom. Aspects of Funct. Analysis, Lecture Notes in Math. 1807 (2003), 53–69.

[5] J. Bourgain, On the distribution of polynomials on high dimensional convex sets, Lecture Notes in
Mathematics 1469, Springer, Berlin (1991), 127–137.

[6] J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in Rn, Invent.
Math. 88 (1987), 319–340.

[7] S. Brazitikos, A. Giannopoulos, P. Valettas and B-H. Vritsiou, Geometry of isotropic convex bodies,
Mathematical Surveys and Monographs 196, American Mathematical Society, Providence, RI, 2014.

[8] Y. Chen, An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture, Geom.
Funct. Anal. 31 (2021), 34-61.

[9] N. Dafnis, A. Giannopoulos and A. Tsolomitis, Asymptotic shape of a random polytope in a convex
body, J. Funct. Anal. 257 (2009), 2820–2839.

[10] N. Dafnis and G. Paouris, Estimates for the affine and dual affine quermassintegrals of convex bodies,
Illinois J. of Math. 56 (2012), 1005–1021.

20



[11] I. Gorbovickis, Strict Kneser-Poulsen conjecture for large radii, Geom. Dedicata 162 (2013), 95–107.

[12] B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal. 16 (2006),
1274–1290.

[13] B. Klartag and J. Lehec, Bourgain’s slicing problem and KLS isoperimetry up to polylog, Preprint.

[14] B. Klartag and E. Milman, Centroid Bodies and the Logarithmic Laplace Transform – A Unified Approach,
J. Funct. Anal. 262 (2012), 10–34.

[15] E. Lutwak, A general isepiphanic inequality, Proc. Amer. Math. Soc. 90 (1984), 415–421.

[16] E. Lutwak, D. Yang and G. Zhang, Lp affine isoperimetric inequalities, J. Differential Geom. 56 (2000),
111–132.

[17] E. Milman, On the mean width of isotropic convex bodies and their associated Lp-centroid bodies, Int.
Math. Res. Not. IMRN (2015), no. 11, 3408–3423.

[18] V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a
normed n-dimensional space, Lecture Notes in Mathematics 1376, Springer, Berlin (1989), 64–104.

[19] G. Paouris, Concentration of mass in convex bodies, Geom. Funct. Analysis 16 (2006), 1021–1049.

[20] G. Paouris and P. Pivovarov, A probabilistic take on isoperimetric-type inequalities, Advances in Math-
ematics 230 (2012), 1402–1422.

[21] G. Paouris and P. Pivovarov, Small-ball probabilities for the volume of random convex sets, Discrete
Comput. Geom. 49 (2013), 601–646.

[22] G. Paouris and P. Pivovarov, Random ball-polyhedra and inequalities for intrinsic volumes, Monatsc.
Math. 182 (2017), 709–729.

[23] G. Paouris and P. Pivovarov, Randomised isoperimetric inequalities, Convexity and Concentration
(E. Carlen, M. Madiman, E. Werner, Eds.), The IMA Volumes in Mathematics and its Applications 161
(2017), 391–425.

[24] G. Paouris, P. Pivovarov and P. Valettas, Gaussian convex bodies: a non-asymptotic approach, Zap.
Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 457 (2017), 286–316; reprinted in J.
Math. Sci. (N.Y.) 238 (2019), no. 4, 537–559.

[25] P. Pivovarov, On determinants and the volume of random polytopes in isotropic convex bodies, Geom.
Dedicata 149 (2010), 45–58.

[26] C. A. Rogers and G. C. Shephard, Convex bodies associated with a given convex body, J. London Soc.
33 (1958), 270–281.

[27] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Second expanded edition. Encyclopedia
of Mathematics and its Applications 151, Cambridge University Press, Cambridge, 2014.

[28] R. Schneider and W. Weil, Stochastic and integral geometry, Probability and its Applications, Springer-
Verlag, Berlin, 2008.

Keywords: random convex sets, convex bodies, log-concave probability measures, intrinsic vol-
umes, quermassintegrals, isotropic position.
2010 MSC: Primary 60D05; Secondary 46B06, 52A23, 52A40.

Nikos Skarmogiannis: Department of Mathematics, National and Kapodistrian University of Athens,
Panepistimioupolis 157-84, Athens, Greece.
E-mail: nikskar@math.uoa.gr

21


	Introduction
	Notation and backgound information
	Estimates for the expected volume of Tx(K)
	Preliminary estimates
	Two basic examples
	Some general estimates

	Random ball polyhedra

