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Abstract

We establish new geometric inequalities comparing the volumes of sections and projections of a
convex body, whose barycenter or Santaló point is at the origin, with those of its inner and outer
regularizations. We also provide functional extensions of these inequalities to the setting of log-concave
functions. Our approach relies on the recent optimal M -estimate of Bizeul and Klartag for isotropic
convex bodies.

1 Introduction

The purpose of this work is to establish new geometric inequalities comparing the volumes of sections and
projections of a convex body—whose barycenter or Santaló point lies at the origin—with those of its inner
and outer regularizations. Our method highlights the role of isotropic normalization as a unifying tool
bridging symmetric and general convex bodies. These results extend naturally to the functional setting,
yielding analogous inequalities for log-concave functions that satisfy volume-type bounds similar to those for
convex bodies. A key ingredient in our approach is the recent optimal M -estimate of Bizeul and Klartag for
isotropic convex bodies, which provides the quantitative foundation for our main results.

Throughout, let K be a convex body in Rn with 0 ∈ int(K). We define the outer and inner regularizations
of K by

Kout = conv(K,−K) and Kin = K ∩ (−K).

Clearly, Kin ⊆ K ⊆ Kout, and both Kout and Kin are origin-symmetric. We shall frequently use the duality
relations

(1.1) (Kout)
◦ = (K◦)in and (Kin)◦ = (K◦)out,

which follow from the identities

(conv(A ∪B))◦ = A◦ ∩B◦ and (A ∩B)◦ = conv(A◦ ∪B◦)

valid for convex bodies A,B with 0 ∈ int(A ∩B). Here A◦ denotes the polar body of A.
We write bar(A) for the barycenter

bar(A) =
1

voln(A)

∫
A

x dx

of a convex body A ⊂ Rn, and vrad(A) for its volume radius,

vrad(A) =

(
voln(A)

voln(Bn2 )

)1/n

,

where Bn2 denotes the Euclidean unit ball and voln stands for n-dimensional volume.

Our first result compares the volumes of the projections of Kout and Kin onto a k-dimensional subspace
H of Rn.
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Theorem 1.1. Let K be a convex body in Rn with either bar(K) = 0 or bar(K◦) = 0. Then, for every
1 6 k 6 n− 1 and any H ∈ Gn,k,

vrad(PH(Kout)) 6
ng(n)

k
vrad(PH(Kin)),

where g(n) 6 C(lnn)3.

A related estimate was obtained by Vritsiou in [43, Corollary 11], who proved that if bar(K) = 0 then

vrad(PH(Kout)) 6
(n
k

)5
(ln(en/k))2 vrad(PH(Kin))

for all 1 6 k 6 n− 1 and H ∈ Gn,k. Theorem 1.1 thus yields an estimate that is nearly linear in n/k.

Our second result concerns sections of Kout and Kin by a k-dimensional subspace H ⊂ Rn.

Theorem 1.2. Let K be a convex body in Rn with either bar(K) = 0 or bar(K◦) = 0. Then, for every
1 6 k 6 n− 1 and any H ∈ Gn,k,

vrad(Kout ∩H) 6
ng(n)

k
vrad(Kin ∩H),

where g(n) 6 C(lnn)3.

It is instructive to compare Theorem 1.2 with an inequality due to Rudelson [38], who showed that if K
is a convex body in Rn, then for all 1 6 k 6 n− 1 and all H ∈ Gn,k,

vrad((K −K) ∩H) 6 c min{n/k,
√
k} max

x∈Rn
vrad(K ∩ (x+H)),

where c > 0 is an absolute constant. Fradelizi further proved in [15] that

max
x∈Rn

vrad(K ∩ (x+H)) 6
n+ 1

k + 1
vrad(K ∩ (bar(K) +H))1/k.

Combining these results yields

(1.2) vrad((K −K) ∩H) 6 c
(n
k

)2
vrad(K ∩ (bar(K) +H))

for all 1 6 k 6 n− 1 and H ∈ Gn,k. Since Kin ⊆ K and K −K ⊆ 2Kout, Theorem 1.2 immediately implies
a version of (1.2) with improved dependence on n/k.

Combining Theorems 1.1 and 1.2 yields the following Blaschke–Santaló type inequality for projections
of possibly non-symmetric convex bodies.

Theorem 1.3. Let K be a convex body in Rn such that either bar(K) = 0 or bar(K◦) = 0. Then, for every
1 6 k 6 n− 1 and H ∈ Gn,k,

vrad(PH(K)) vrad(K◦ ∩H) 6
ng(n)

k
,

where g(n) 6 C(lnn)3.

We include the proof in Section 5 to highlight that the three theorems above are closely related. A
stronger version of Theorem 1.3 was proved by Vritsiou [43], who established that

(1.3) vrad(PH(K)) vrad(K◦ ∩H) 6
cn

k
,
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for some absolute constant c > 0. Moreover, (1.3) is sharp: as shown in [43], if Sn is a regular simplex of
edge length

√
2 with barycenter at the origin, then the affine hull of any k of its vertices, together with the

average of the remaining n+ 1− k vertices, forms a subspace Hk ∈ Gn,k for which

vrad(PHk
(S◦n)) vrad(Sn ∩Hk) ≈ n

k
.

For the proofs of the above theorems, we may assume without loss of generality that K (or K◦) is
isotropic (see below and in Section 2 for precise definitions and background). Under this assumption,
stronger estimates can be obtained for a random subspace H ∈ Gn,k.

Theorem 1.4. Let K be an isotropic convex body in Rn. Then, for any 1 6 k 6 n− 1, a random subspace
H ∈ Gn,k satisfies

(1.4) vrad(Kout ∩H) 6 γn vrad(Kin ∩H),

with probability greater than 1 − e−k, where γn 6 C(lnn)2. Moreover, with the same probability, one also
has

(1.5) vrad(Kout ∩H) 6 δn vrad(Kin ∩H),

where δn 6 C lnn.

We also establish functional analogues of Theorems 1.2 and 1.1 for the class Ln of geometric log-concave
integrable functions. These are the centered log-concave functions f : Rn → [0,∞) satisfying f(0) = ‖f‖∞
and 0 <

∫
f <∞. For any f ∈ Ln, define

∆outf(x) = sup
{√

f(x1)f(−x2) : x = 1
2 (x1 + x2)

}
and ∆inf(x) = min{f(x), f(−x)}.

If f = 1K for some convex body K, then ∆outf = 1 1
2 (K−K) and ∆inf = 1K∩(−K). Moreover, for every

x ∈ Rn, one has ∆inf(x) 6 f(x) and ∆inf(x) 6 ∆outf(x). The following theorem extends Theorem 1.2 to
this functional setting.

Theorem 1.5. For any f ∈ Ln, any 1 6 k 6 n− 1, and any H ∈ Gn,k,

(1.6)

(∫
H

∆outf(x) dx

)1/k

6 C(n/k)2g(n)

(∫
H

∆inf(x) dx

)1/k

,

and

(1.7) c

(∫
H

f(x) dx

)1/k

6

(∫
H

∆outf(x) dx

)1/k

,

where c > 0 and C > 1 are absolute constants.

Given a nonnegative measurable function g : Rn → [0,∞) and H ∈ Gn,k, the orthogonal projection of g
onto H is defined by

(PHg)(z) = sup{g(y + z) : y ∈ H⊥}.

With this definition, we obtain the following functional analogue of Theorem 1.1.

Theorem 1.6. For any f ∈ Ln, any 1 6 k 6 n− 1, and any H ∈ Gn,k,

(1.8)

(∫
H

PH(∆outf)(x) dx

)1/k

6 C(n/k)2g(n)

(∫
H

PH(∆inf)(x) dx

)1/k

,

where C > 0 is an absolute constant.
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To prove Theorems 1.5 and 1.6, we employ the family of K. Ball’s bodies Kp(f) associated with a log-
concave function f , allowing us to transfer the problem to the setting of convex bodies and apply Theorems 1.2
and 1.1 accordingly.

The foundation of our results lies in recent advances concerning isotropic convex bodies and, in particular,
in the sharp MM∗-estimate. We denote by pK(x) = inf{t > 0 : x ∈ tK} the Minkowski functional of K,
and by hK(y) = max{〈x, y〉 : x ∈ K} its support function. The parameters

M(K) =

∫
Sn−1

pK(x) dσ(x) and M∗(K) =

∫
Sn−1

hK(x) dσ(x),

where σ denotes the rotationally invariant probability measure on the unit sphere Sn−1, play a central role
in the asymptotic theory of finite-dimensional normed spaces. It is well known that M(K)M∗(K) > 1 for
every convex body K with 0 ∈ int(K).

A classical result of Figiel–Tomczak-Jaegermann [14], Lewis [23], and Pisier [32] asserts that for any
symmetric convex body K ⊂ Rn there exists T ∈ GLn such that

M(TK)M∗(TK) 6 c lnn,

where c > 0 is an absolute constant. Without assuming symmetry, it is natural to consider

E(K) = inf M(TK)M∗(TK),

where the infimum runs over all invertible affine transformations T of Rn satisfying 0 ∈ int(TK). It turns
out that the isotropic position yields a sharp upper bound for E(K).

A convex body K ⊂ Rn is called isotropic if it has volume 1, its barycenter is at the origin, and there
exists a constant LK > 0 such that∫

K

〈x, ξ〉2 dx = L2
K for all ξ ∈ Sn−1.

Every convex body K admits an isotropic affine image, unique up to orthogonal transformations (see [28]).
Using this canonical position, one defines the isotropic constant LK , an affine invariant of K.

A central question in asymptotic convex geometry, posed by Bourgain [8], asked whether there exists an
absolute constant C > 0 such that

Ln := max{LK : K isotropic convex body in Rn} 6 C

for all n > 1. This was recently resolved affirmatively by Klartag and Lehec [21], following major progress
by Guan [18], and soon afterward an alternative proof was given by Bizeul [5].

E. Milman proved in [25] that if K is isotropic in Rn, then

(1.9) M∗(K) 6 C
√
n(lnn)2LK 6 c1

√
n(lnn)2,

where the second inequality uses the boundedness of Ln. The dependence on n is optimal up to the loga-
rithmic term.

The dual estimate for M(K) in the isotropic position was obtained recently by Bizeul and Klartag [6],
who showed that

(1.10) M(K) 6 c2
log n√
n
.

Combining (1.9) and (1.10) gives

(1.11) E(K) 6 c3(lnn)3
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for every convex body K ⊂ Rn. Since M(K)M∗(K) > 1 holds universally, (1.11) provides a sharp upper
bound for E(K) up to a factor of (lnn)3.

In Section 2 we review these results in more detail, and in Section 3 we collect classical geometric
inequalities relevant to our setting.

Our approach exploits these refined M - and M∗-estimates to derive strong regularity estimates for
covering numbers of isotropic convex bodies. These, in turn, allow a careful comparison of sections and
projections of the inner and outer symmetrizations Kin and Kout, leading directly to Theorems 1.1 and 1.2.
In particular, the isotropic position serves not only as a convenient normalization but also as a tool for
transferring results from the symmetric to the general, non-symmetric setting. This strategy underpins the
functional extensions presented in Theorems 1.5 and 1.6, showing that the geometric inequalities naturally
extend to the broader class of log-concave functions.

2 Notation and background

We work in Rn, equipped with the standard inner product 〈·, ·〉. The corresponding Euclidean norm is
denoted by | · |, the Euclidean unit ball by Bn2 , and the unit sphere by Sn−1. Volume in Rn is denoted by
voln, while ωn = voln(Bn2 ) stands for the volume of the Euclidean unit ball.

We denote by σ the rotationally invariant probability measure on Sn−1 and by ν the Haar measure on
O(n). The Grassmann manifold Gn,k of k-dimensional subspaces of Rn is equipped with the Haar probability
measure νn,k. For each integer 1 6 k 6 n−1 and every H ∈ Gn,k, we denote by PH the orthogonal projection
from Rn onto H, and set

BH := Bn2 ∩H, SH := Sn−1 ∩H.

The letters c, c′, c1, c2, . . . denote absolute positive constants whose value may change from line to line.
Whenever we write a ≈ b, we mean that there exist absolute constants c1, c2 > 0 such that c1a 6 b 6 c2a.
Similarly, for convex bodies K,C ⊆ Rn, we write K ≈ C if there exist absolute constants c1, c2 > 0 such
that c1K ⊆ C ⊆ c2K.

A convex body in Rn is a compact convex subset K with nonempty interior. We say that K is symmetric
if K = −K, and centered if its barycenter bar(K) is at the origin.

The radial function of a convex body K with 0 ∈ int(K) is

ρK(x) = max{t > 0 : tx ∈ K}, x ∈ Rn \ {0},

and the support function of K is defined for y ∈ Rn by

hK(y) = max{〈x, y〉 : x ∈ K}.

The radius of K is R(K) = max{|x| : x ∈ K}, and the volume radius is

vrad(K) =

(
voln(K)

voln(Bn2 )

)1/n

.

The polar body K◦ of a convex body K with 0 ∈ int(K) is given by

K◦ = {x ∈ Rn : 〈x, y〉 6 1 for all y ∈ K}.

An absolutely continuous Borel probability measure µ on Rn is called log-concave if its density fµ is of
the form fµ = e−ϕ with ϕ : Rn → R∪ {+∞} convex. The uniform probability measure on any convex body
is log-concave.

The barycenter of µ is

bar(µ) :=

∫
Rn

xfµ(x) dx,
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and its isotropic constant is the affine-invariant quantity

(2.1) Lµ :=

(
‖fµ‖∞∫

Rn fµ(x) dx

) 1
n

det(Cov(µ))
1
2n ,

where

Cov(µ) :=

∫
x⊗ x dµ(x)−

(∫
x dµ(x)

)
⊗
(∫

x dµ(x)

)
is the covariance matrix of µ. A log-concave probability measure µ on Rn is called isotropic if bar(µ) = 0 and
Cov(µ) = In. A convex body K of volume 1 is isotropic if and only if the log-concave probability measure
with density LnK1K/LK

is isotropic.

K. Ball [3] showed that, in every dimension n,

sup
µ
Lµ 6 C sup

K
LK ,

where the suprema are taken over all log-concave probability measures µ and all convex bodies K ⊆ Rn,
respectively. Around 1985–86 (published in 1990), Bourgain [9] obtained the bound Ln 6 cn1/4 lnn, later
improved by Klartag [19] to Ln 6 cn1/4. These estimates remained the best known until 2020. In a
breakthrough, Chen [12] proved that for every ε > 0, one has Ln 6 nε for all sufficiently large n. This
development initiated a series of works culminating in the final affirmative solution of Bourgain’s problem
by Klartag and Lehec [21], following an important contribution by Guan [18]. Shortly thereafter, Bizeul [5]
provided another proof of the conjecture.

The study of E(K) in the non-symmetric case began with the work of Banaszczyk, Litvak, Pajor, and
Szarek [4], who showed that if K is a convex body in Rn in John’s position (i.e., its maximal-volume inscribed
ellipsoid is the Euclidean unit ball), then

M∗(K) 6 c
√
n
√

lnn.

Since K ⊇ Bn2 in John’s position, we also have the trivial bound M(K) 6 M(Bn2 ) = 1, hence E(K) 6
c
√
n
√

lnn. Rudelson [39] improved this to

E(K) 6 cn1/3(lnn)b

for some absolute constant b > 0. This remained the best known bound until the recent work of Bizeul and
Klartag.

After earlier estimates of order n3/4LK for M∗(K) in the isotropic position (see [11, Chapter 9]), E. Mil-
man [25] proved that if K is a symmetric isotropic convex body in Rn, then

M∗(K) 6 c1
√
n(lnn)2LK ,

and the same bound extends to non-symmetric isotropic convex bodies. For the dual problem, estimating
M(K) in isotropic position, the first nontrivial results appeared in [17]. The best known bound in the
symmetric case, due to Giannopoulos and E. Milman [16], was

M(K) 6
C(n lnn)1/3√

n
,

while in the non-symmetric case, Vritsiou [43] obtained the estimate

M(K) 6
cn5/11(lnn)5/22√

n
.

For background on isotropic convex bodies and log-concave measures, we refer to [11]; for general infor-
mation on the local theory of normed spaces, see [1, 2, 34].
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3 Geometric inequalities

In this section, we review several classical geometric inequalities that will be used in the sequel, beginning
with the Blaschke–Santaló inequality.

Let K be a convex body in Rn. The function voln(K) voln((K − z)◦), defined on int(K), is strictly
convex and attains a unique minimum at the Santaló point s(K) of K. The Blaschke–Santaló inequality
asserts that

voln(K) voln((K − s(K))◦) 6 ω2
n.

Moreover, if bar(K) = 0, then s(K◦) = 0. Since (K◦)◦ = K, we obtain

voln(K) voln(K◦) = voln((K◦ − s(K◦))◦) voln(K◦) 6 ω2
n.

Hence we have the following classical result.

Theorem 3.1 (Blaschke–Santaló). Let K be a convex body in Rn such that either bar(K) = 0 or s(K) = 0.
Then,

voln(K) voln(K◦) 6 ω2
n.

A refinement of this inequality was given by Meyer and Pajor [24]. For λ ∈ (0, 1), a hyperplane

F = {x ∈ Rn : 〈x, uF 〉 = αF },

where uF ∈ Rn \ {0} and αF ∈ R, is said to be λ-separating for K if

voln({x ∈ K : 〈x, uF 〉 > αF }) = λ voln(K).

Note that a λ-separating hyperplane necessarily intersects the interior of K.

Theorem 3.2 (Meyer–Pajor). Let K be a convex body in Rn and F a λ-separating hyperplane for K, where
λ ∈ (0, 1). Then, there exists z ∈ int(K) ∩ F such that

voln(K) voln((K − z)◦) 6 ω2
n

4λ(1− λ)
.

Moreover, z is the unique point in int(K) ∩ F such that

bar((K − z)◦) ∈ {tuF : t ∈ R}.

In the opposite direction, the Bourgain–Milman inequality [10] provides a universal lower bound.

Theorem 3.3 (Bourgain–V. Milman). Let K be a convex body in Rn with 0 ∈ int(K). Then,

voln(K) voln(K◦) > voln(K) voln((K − s(K))◦) > cnω2
n,

where c > 0 is an absolute constant.

Classical results of Rogers–Shephard [35] and V. Milman–Pajor [29] compare the volume of a convex
body with those of its inner and outer regularizations.

Theorem 3.4 (Rogers–Shephard / V. Milman–Pajor). Let K be a convex body in Rn. Then,

2nvoln(K) 6 voln(K −K) 6

(
2n

n

)
voln(K) 6 4nvoln(K).

Moreover, if 0 ∈ int(K), then

voln(Kout) = voln(conv(K,−K)) 6 2nvoln(K),

and if bar(K) = 0, then
voln(Kin) = voln(K ∩ (−K)) > 2−nvoln(K).
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If s(K) = 0, then bar(K◦) = 0, and since (Kin)◦ = (K◦)out, the Bourgain–Milman inequality yields

2nvoln(Kin) voln(K◦) > voln(Kin) voln((K◦)out) > cnω2
n > cnvoln(K) voln(K◦),

and hence
voln(Kin) > (c/2)nvoln(K),

an observation due to Rudelson [39].
The following inequality estimates the product of the volumes of a projection of a convex body and the

corresponding orthogonal section (see [36] for the first and [41] for the second claim).

Theorem 3.5 (Rogers–Shephard / Spingarn). Let K be a convex body in Rn with 0 ∈ int(K). Then, for
every 1 6 k 6 n− 1 and any H ∈ Gn,k,

volk(PH(K)) voln−k(K ∩H⊥) 6

(
n

k

)
voln(K).

If bar(K) = 0, then also
voln(K) 6 volk(PH(K)) voln−k(K ∩H⊥).

Rudelson’s inequality [38] compares the volume of a central section of K −K with that of the maximal
corresponding section of K.

Theorem 3.6 (Rudelson). Let K be a convex body in Rn. Then, for every 1 6 k 6 n−1 and any H ∈ Gn,k,

volk((K −K) ∩H)1/k 6 cmin
{√

k,
n

k

}
max
x∈Rn

volk(K ∩ (x+H))1/k.

An inequality of Fradelizi [15] compares the maximal section of a convex body with the section passing
through its barycenter.

Theorem 3.7 (Fradelizi). Let K be a convex body in Rn. Then, for every 1 6 k 6 n−1 and any H ∈ Gn,k,

max
x∈Rn

volk(K ∩ (x+H))1/k 6
n+ 1

k + 1
volk(K ∩ (bar(K) +H))1/k.

Combining these two results yields

(3.1) volk((K −K) ∩H)1/k 6 c
(n
k

)2
volk(K ∩ (bar(K) +H))1/k

for every 1 6 k 6 n − 1 and H ∈ Gn,k. A direct proof of (3.1) with improved dependence on n/k will be
given in Theorem 1.2 (Section 5).

Let K be a convex body in Rn with 0 ∈ int(K). Recall that for 1 6 k 6 n − 1 and H ∈ Gn,k, the
projection PH(K) is the polar body of K◦ ∩H in H. If K is symmetric, then PH(K) and K◦ ∩H are polar
symmetric convex bodies in H, so that

vrad(PH(K)) vrad(K◦ ∩H) 6 1

by the Blaschke–Santaló inequality. Vritsiou [43] extended this to non-symmetric convex bodies.

Theorem 3.8 (Vritsiou). Let K be a convex body in Rn such that either bar(K) = 0 or s(K) = 0. Then,
for every 1 6 k 6 n− 1 and any H ∈ Gn,k,

vrad(PH(K)) vrad(K◦ ∩H) 6 c
n

k
,

where c > 0 is an absolute constant.

The proof of Theorem 3.8 combines the Meyer–Pajor refinement of the Blaschke–Santaló inequality
(Theorem 3.2) with Grünbaum-type inequalities due to Stephen, Zhang, and Myroshnychenko [42, 30].
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4 Covering numbers of isotropic convex bodies

Recall that if A and B are two convex bodies in Rn, the covering number N(A,B) of A by B is the least
integer N for which there exist N translates of B whose union covers A:

N(A,B) = min
{
N ∈ N : ∃x1, . . . , xN ∈ Rn such that A ⊆

N⋃
j=1

(xj +B)
}
.

The Sudakov and dual Sudakov inequalities (see [1, Chapter 4]) state that if K is a symmetric convex
body in Rn, then for every t > 0,

N(K, tBn2 ) 6 exp
(
cnM∗(K)2/t2

)
and N(Bn2 , tK) 6 exp

(
cnM(K)2/t2

)
,

where c > 0 is an absolute constant.

V. Milman proved in [27] that there exists an absolute constant β > 0 such that every centered convex body
A ⊂ Rn admits a linear image Ã satisfying voln(Ã) = voln(Bn2 ) and

(4.1) max
{
N(Ã, Bn2 ), N(Bn2 , Ã), N(Ã◦, Bn2 ), N(Bn2 , Ã

◦)
}
6 exp(βn).

A convex body A satisfying this estimate is said to be in M -position with constant β.
Pisier [33] proposed a different approach, allowing one to construct an entire family of M -positions and

to obtain more precise quantitative information on the corresponding covering numbers.

Theorem 4.1 (Pisier). For every 0 < α < 2 and every symmetric convex body A ⊂ Rn, there exists a linear
image Ã of A such that

max
{
N(Ã, tBn2 ), N(Bn2 , tÃ), N(Ã◦, tBn2 ), N(Bn2 , tÃ

◦)
}
6 exp

(
c(α)n/tα

)
for every t > c(α)1/α, where c(α) depends only on α and satisfies c(α) = O

(
(2− α)−α/2

)
as α→ 2−.

A convex body A satisfying the estimate in Theorem 4.1 is said to be in α-regular M -position with
constant c(α).

The following proposition, a simple consequence of the M∗ estimate (1.9) and the M estimate (1.10), shows

that every isotropic convex body K ⊂ Rn is (almost) in 2-regular M -position. Below, we set rn = ω
−1/n
n ;

note that rn ≈
√
n.

Proposition 4.2. Let K be an isotropic convex body in Rn. Then, for every t > 0,

max
{
N(K, trnB

n
2 ), N(Bn2 , trnK

◦)
}
6 exp

(γ2nn
t2

)
,(4.2)

max
{
N(rnB

n
2 , tK), N(rnK

◦, tBn2 )
}
6 exp

(δ2nn
t2

)
,(4.3)

where γn 6 c1(lnn)2 and δn 6 c2 lnn.

Proof. Let Kin and Kout denote the inner and outer regularizations of K. Observe that

M(Kin) = M∗
(
(K◦)out

)
6M∗(K◦ −K◦) = 2M∗(K◦) = 2M(K),(4.4)

M∗(Kout) 6M∗(K −K) = 2M∗(K).(4.5)

Since Kin ⊆ K ⊆ Kout, it is clear that M(Kout) 6M(K) and M∗(Kin) 6M∗(K).
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The Sudakov inequality, combined with (4.5), gives

N(K, trnB
n
2 ) 6 N(Kout, trnB

n
2 ) 6 exp

(
cnM∗(Kout)

2/(rnt)
2
)

(4.6)

6 exp
(
4cnM∗(K)2/(rnt)

2
)
6 exp

(
γ2nn/t

2
)
.

Similarly, using (4.4) we obtain

N(rnK
◦, tBn2 ) 6 N(rn(Kin)◦, tBn2 ) 6 exp

(
cnr2nM

∗((Kin)◦)2/t2
)

(4.7)

= exp
(
cnr2nM(Kin)2/t2

)
6 exp

(
4cnr2nM(K)2/t2

)
6 exp

(
δ2nn/t

2
)
.

Applying the dual Sudakov inequality and (4.4) yields

N(rnB
n
2 , tK) 6 N(rnB

n
2 , tKin) 6 exp

(
cnr2nM(Kin)2/t2

)
(4.8)

6 exp
(
4cnr2nM(K)2/t2

)
6 exp

(
δ2nn/t

2
)
,

and, using (4.5), we similarly have

N(Bn2 , trnK
◦) 6 N(Bn2 , trn(Kout)

◦) 6 exp
(
cnM((Kout)

◦)2/(rnt)
2
)

(4.9)

6 exp
(
cnM∗(Kout)

2/(rnt)
2
)

= exp
(
4cnM∗(K)2/(rnt)

2
)
6 exp

(
γ2nn/t

2
)
.

Combining (4.6)–(4.9) completes the proof.

5 Projections and sections of the outer and inner regularizations

In this section we compare the volumes of sections and projections of a convex body with those of its inner
and outer regularizations. We begin with the proof of Theorem 1.1.

Proof of Theorem 1.1. Assume first that bar(K) = 0. Since T (Kin) = (TK)in and T (Kout) = (TK)out for
every T ∈ GLn, we may assume that K is isotropic. From (4.6) we know that Nt = N(Kout, trnB

n
2 ) 6

exp(γ2nn/t
2) for every t > 0. Thus, there exist x1, . . . , xNt such that

Kout ⊆
Nt⋃
i=1

(xi + trnB
n
2 ).

Projecting onto a k-dimensional subspace H, we obtain

PH(Kout) ⊆
Nt⋃
i=1

(PH(xi) + trnBH),

where BH denotes the Euclidean unit ball in H. Hence,

volk(PH(Kout)) 6 Nt volk(trnBH) 6 exp(γ2nn/t
2)(trn)kωk.

Choosing t = γn
√
n/k minimizes the right-hand side and gives

volk(PH(Kout)) 6 ekrknγ
k
n(n/k)k/2ωk,

and therefore,

(5.1) vrad(PH(Kout)) 6 ernγn
√
n/k.

On the other hand, (4.8) shows that N ′t = N(rnB
n
2 , tKin) 6 exp(δ2nn/t

2) for every t > 0. Proceeding in
the same way, we obtain

volk(rnBH) 6 N ′t volk(tPH(Kin)) 6 exp(δ2nn/t
2)tkvolk(PH(Kin)).
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Choosing t = δn
√
n/k, we get

rknvolk(BH) 6 ekδkn(n/k)k/2volk(PH(Kin)),

and hence,

(5.2) rn 6 eδn
√
n/k vrad(PH(Kin)).

Combining (5.1) and (5.2), we find that

(5.3) vrad(PH(Kout)) 6 e2δnγn(n/k)vrad(PH(Kin)).

The first claim of the theorem follows with g(n) = e2δnγn 6 c(lnn)3.
Next, assume that bar(K◦) = 0, in which case s(K) = 0. We may assume that K◦ is isotropic. Replacing

K by K◦ in (4.7) and using (1.1), we get

N(rnKout, tB
n
2 ) 6 exp(δ2nn/t

2).

Applying the argument of the first part of the proof, we obtain

(5.4) rnvrad(PH(Kout)) 6 eδn
√
n/k.

Replacing K by K◦ in (4.9) and using again (1.1), we find that N(Bn2 , trnKin) 6 exp(γ2nn/t
2), and by the

same reasoning,

(5.5) 1 6 ernγn
√
n/k vrad(PH(Kin)).

Combining (5.4) and (5.5), we obtain

(5.6) vrad(PH(Kout)) 6 e2δnγn(n/k)vrad(PH(Kin)),

and the second claim of the theorem follows with g(n) = e2δnγn 6 c(lnn)3.

Theorem 1.2 follows easily from Theorem 1.1.

Proof of Theorem 1.2. Since PH((K◦)in) is symmetric and its polar body in H is Kout ∩H, the Blaschke–
Santaló inequality implies

(5.7) vrad(Kout ∩H) vrad(PH((K◦)in)) 6 1.

Similarly, since PH((K◦)out) is symmetric and its polar body inH isKin∩H, the Bourgain–Milman inequality
gives

(5.8) c1 6 vrad(Kin ∩H) vrad(PH((K◦)out)).

Assuming that either bar(K) = 0 or bar(K◦) = 0, we may apply Theorem 1.1 to K◦ and obtain

vrad(PH((K◦)out)) 6 c2
ng(n)

k
vrad(PH((K◦)in)).

Combining this estimate with (5.7) and (5.8), we get

c1 6 vrad(Kin ∩H) vrad(PH((K◦)out))

6 c2
ng(n)

k
vrad(Kin ∩H) vrad(PH((K◦)in))

6 c2
ng(n)

k
vrad(Kin ∩H) vrad(Kout ∩H)−1.

Hence,

vrad(Kout ∩H) 6 c3
ng(n)

k
vrad(Kin ∩H),

where c3 = c2/c1.

11



We now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. We have vrad(PH(K)) 6 vrad(PH(Kout)), and by the Blaschke–Santaló inequality
applied to PH(Kin) in H,

vrad(K◦ ∩H) 6 vrad((Kin)◦ ∩H) 6 vrad(PH(Kin))−1.

Therefore,

vrad(PH(K)) vrad(K◦ ∩H) 6
vrad(PH(Kout))

vrad(PH(Kin))
6
ng(n)

k
,

in view of Theorem 1.1.

In the case where K is isotropic, we can show that for a random k-dimensional subspace of Rn, the
volume radii of the corresponding sections or projections of Kout and Kin are of the same order, up to a
logarithmic factor in the dimension.

Proof of Theorem 1.4. Let K be an isotropic convex body in Rn. Paouris and Pivovarov [31] proved that
for every symmetric convex body C ⊂ Rn and every 1 6 k 6 n− 1,

(5.9) Φk(C) := voln(C)−1/n

(∫
Gn,k

volk(PH(C))−n dνn,k(H)

)− 1
kn

> c1

√
n

k
,

where c1 > 0 is an absolute constant. Moreover, E. Milman and Yehudayoff [26] established the sharp lower
bound Φk(Bn2 ) 6 Φk(C), together with a characterization of equality: ellipsoids are the only local minimizers
with respect to the Hausdorff metric, for all 1 6 k 6 n− 1.

From (5.9) and Markov’s inequality, it follows that

vrad(PH(C)) > c1t
−1√n voln(C)1/n

with probability greater than 1 − t−kn. Applying this result to Kin and taking into account the inequality
of V. Milman and Pajor, which ensures that voln(Kin)1/n > 1

2voln(K)1/n = 1
2 , we obtain

(5.10) vrad(PH(Kin)) > c2
√
n

with probability greater than 1− e−kn, where c2 > 0 is an absolute constant.
Next, we use a well-known consequence of the Aleksandrov inequalities (see [40, Section 6.4]). For every

convex body C ⊂ Rn, the sequence

Qk(C) =

(
1

ωk

∫
Gn,k

volk(PH(C)) dνn,k(H)

)1/k

is decreasing in k. In particular, for any 1 6 k 6 n− 1,

Qk(C) 6 Q1(C),

which can be written equivalently as(
1

ωk

∫
Gn,k

volk(PH(C)) dνn,k(H)

)1/k

6M∗(C).

Applying this to Kout and using that M∗(Kout) 6 2M∗(K) 6 c
√
n(lnn)2 by E. Milman’s inequality, we

obtain

(5.11) vrad(PH(Kout)) 6 γn
√
n

12



with probability greater than 1−e−2k, where γn 6 c3(lnn)2. Combining (5.10) and (5.11), we conclude that

vrad(PH(Kout)) 6 γn vrad(PH(Kin))

with probability greater than 1− e−k.

We now turn to the proof of (1.5). Repeating the above reasoning for the polar body K◦, we obtain

(5.12) vrad(PH((K◦)in)) > c2
√
n voln(K◦)1/n

and

(5.13) vrad(PH((K◦)out)) 6 2M∗(K◦) = 2M(K) 6
δn√
n

for a random H ∈ Gn,k, where δn 6 c lnn. It follows that

vrad(PH((K◦)out)) 6 δn vrad(PH((K◦)in))

with probability greater than 1− e−k.
Finally, repeating the proof of Theorem 1.2, and using the Blaschke–Santaló inequality for the symmetric

convex bodies Kout∩H and Kin∩H (whose polars are PH((K◦)in) and PH((K◦)out), respectively), we obtain

vrad(Kout ∩H) 6 δn vrad(Kin ∩H)

for every H ∈ Gn,k satisfying (5.12) and (5.13).

6 Functional inequalities

We consider the class Ln of geometric log-concave integrable functions: these are the centered log-concave
functions f : Rn → R+ that satisfy f(0) = ‖f‖∞ and 0 <

∫
f < ∞. We say that f is centered if∫

xf(x) dx = 0. For any f, g ∈ Ln we define

(f ? g)(x) = sup{f(x1)g(x2) : x1, x2 ∈ Rn, x = x1 + x2}.

Roysdon [37] obtained a functional version of Rudelson’s theorem on the sections of the difference body. He
considered f(x) = f(−x) and defined ∆0f = f ? f , i.e.

(∆0f)(x) = sup{f(x1)f(x2) : x1, x2 ∈ Rn, x = x1 − x2}.

Note that if f = 1K for some convex body K ⊂ Rn, then ∆0f = 1K−K . Thus, ∆0f may be viewed as a
functional analogue of the difference body. With this definition, Roysdon’s inequality reads as follows.

Theorem 6.1 (Roysdon). For any f ∈ Ln, any 1 6 k 6 n− 1, and any H ∈ Gn,k we have

(6.1)

(∫
H

∆0f(x) dx

)1/k

6 C max
{√

k,
n

k

}
sup
y∈Rn

(
1

‖f |y+H‖∞

∫
y+H

f(x) dx

)1/k

,

where f |y+H denotes the restriction of f to y +H. Moreover,

c

(∫
H

f(x) dx

)1/k

6

(∫
H

∆0f(x) dx

)1/k

,

where c > 0 and C > 1 are absolute constants.
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For any f ∈ Ln we define the functions ∆outf and ∆inf by

∆outf(x) = sup
{√

f(x1)f(−x2) : x = 1
2 (x1 + x2)

}
, ∆inf(x) = min{f(x), f(−x)}.

This definition is consistent with the notion of the α-difference function ∆αf of a function f , introduced by
Colesanti in [13] for any f : Rn → [0,∞] and any α ∈ [−∞, 0]. It is shown in [13] that if f is α-concave, then
∆αf is also α-concave. Difference functions have been studied as functional analogues of the difference body
in a number of works; see, e.g., [13, 20, 7]. One can easily check that the functions ∆outf and ∆inf considered
here coincide with ∆0f and ∆−∞f , respectively. In particular, if f ∈ Ln, then ∆outf is log-concave and
∆inf is quasi-concave.

Note that if f = 1K for some convex body K ⊂ Rn, then ∆outf = 1 1
2 (K−K) and ∆inf = 1K∩(−K).

Moreover, it is clear that ∆inf(x) 6 f(x) and ∆inf(x) 6 ∆outf(x) for every x ∈ Rn; for the latter inequality
we choose x1 = x2 = x and note that ∆outf(x) >

√
f(x)f(−x) > min{f(x), f(−x)}.

We now establish the following functional version of Theorem 1.2.

Theorem 6.2. For any f ∈ Ln, any 1 6 k 6 n− 1, and any H ∈ Gn,k we have

(6.2)

(∫
H

∆outf(x) dx

)1/k

6 C(n/k)2g(n)

(∫
H

∆inf(x) dx

)1/k

and

(6.3) c

(∫
H

f(x) dx

)1/k

6

(∫
H

∆outf(x) dx

)1/k

,

where c > 0 and C > 1 are absolute constants.

For the proof we employ two families of convex bodies associated with each f ∈ Ln. The first, introduced
by K. Ball [3], is given for every p > 0 by

Kp(f) =

{
x ∈ Rn :

∫ ∞
0

rp−1f(rx) dr >
f(0)

p

}
.

From the definition it follows that the radial function of Kp(f) satisfies

(6.4) %Kp(f)(x) =

(
1

f(0)

∫ ∞
0

prp−1f(rx) dr

)1/p

for x 6= 0.

Moreover, for every 0 < p < q one has

(6.5)
Γ(p+ 1)1/p

Γ(q + 1)1/q
Kq(f) ⊆ Kp(f) ⊆ Kq(f).

A proof of these inclusions is given in [11, Proposition 2.5.7]. We also consider the family {Rp(f)}p>1 defined
by

Rp(f) = {x ∈ Rn : f(x) > e−(p−1)f(0)}.

We will use several relations between these two families; their proofs are provided in Subsection 6.1.
Lemma 6.5 shows that

(6.6) c2Kp(f) ⊆ Rp(f) ⊆ c1Kp(f)

for all p > 2, where c1, c2 > 0 are absolute constants. Furthermore, Lemma 6.6 states that

(6.7) Kp(∆outf) ≈ Kp(f)out and Kp(∆inf) ≈ Kp(f)in
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for all p > 2.

Since (6.2) is homogeneous, we may assume that f(0) = ‖f‖∞ = 1. It is well known that for any
H ∈ Gn,k, ∫

H

f(x) dx = volk(Kk(f) ∩H).

Indeed, integrating in polar coordinates gives

volk(Kk(f) ∩H) =

∫
H

1Kk(f)(x) dx =

∫
Sn−1∩H

∫ ρKk(f)(ξ)

0

rk−1 dr dξ

=
1

k

∫
Sn−1∩H

ρKk(f)(ξ)
k dξ =

1

k

∫
Sn−1∩H

k

∫ ∞
0

f(rξ)rk−1 dr dξ

=

∫
H

f(z) dz.

Proof of Theorem 6.2. We begin with the convex body Kk(∆outf). Note that ∆outf(0) = ‖∆outf‖∞ =
‖f‖∞ = 1. We have∫

H

∆outf(x) dx = volk(Kk(∆outf) ∩H) 6 volk(Kn+1(∆outf) ∩H),

since Kk(∆outf) ⊆ Kn+1(∆outf). By Lemma 6.6,

Kn+1(∆outf) ⊆ cKn+1(f)out

for some absolute constant c > 0. As Kn+1(f) is centered, we deduce that

(6.8) volk
(
Kn+1(f)out ∩H

)
6

(
ng(n)

k

)k
volk

(
Kn+1(f)in ∩H

)
.

Moreover,

Kn+1(f)in ⊆
cn

k
Kk(f)in,

and hence

volk(Kn+1(f)in ∩H) 6
(cn
k

)k
volk(Kk(f)in ∩H).

Lemma 6.6 implies that Kk(∆inf) ≈ Kk(f)in, therefore

(
volk(Kk(f)in ∩H)

)1/k ≈ (volk(Kk(∆inf) ∩H)
)1/k

=

(∫
H

∆inf(x) dx

)1/k

.

Combining the above estimates gives(∫
H

∆outf(x) dx

)1/k

6 (n/k)2g(n)

(∫
H

∆inf(x) dx

)1/k

,

which completes the proof of (6.2).

For (6.3), observe first that
Kk(f |H) ⊆ c1(Kk(f) ∩H)

for some absolute constant c1 > 0. Indeed,

Kk(f |H) ⊆ c2Rk(f |H) = c2{x ∈ H : f(x) > (f |H)(0)e−(k−1)}
= c2{x ∈ H : f(x) > e−(k−1)} = c2

(
{x ∈ Rn : f(x) > e−(k−1)} ∩H

)
= c2(Rk(f) ∩H) ⊆ c1(Kk(f) ∩H),
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by (6.6). Then, combining Lemma 6.6 with the Brunn–Minkowski inequality, we obtain

volk(Kk(f |H)) 6 ck1volk(Kk(f) ∩H) 6 ck12−kvolk(Kk(f)out ∩H)(6.9)

6 ck3volk(Kk(∆outf) ∩H) = ck3

∫
H

∆outf(x) dx.

Thus, ∫
H

f(x) dx 6 ck3

∫
H

∆outf(x) dx,

and taking kth roots completes the proof of (6.3).

Next, we establish a functional analogue of Theorem 1.1.

Theorem 6.3. For any f ∈ Ln, any 1 6 k 6 n− 1, and any H ∈ Gn,k we have

(6.10)

(∫
H

PH(∆outf)(x) dx

)1/k

6 C(n/k)2g(n)

(∫
H

PH(∆inf)(x) dx

)1/k

,

where C > 0 is an absolute constant.

Proof. Recall that if g : Rn → [0,∞) is a nonnegative measurable function and H ∈ Gn,k, the orthogonal
projection of g onto H is the function PHg : H → [0,∞) defined by

(PHg)(z) = sup{g(y + z) : y ∈ H⊥}.

It is straightforward to verify that

Rp(PHg) = PH(Rp(g)) for every p > 1.

Moreover, if g = 1K for some compact set K ⊂ Rn, then PHg = 1PH(K).

We shall also use the fact that if g(0) = ‖g‖∞ = 1, then

‖PHg‖1 =

∫
H

PHg(x) dx =

∫ 1

0

volk({x ∈ H : PHg(x) > t}) dt

=

∫ ∞
1

e−(p−1)volk({x ∈ H : PHg(x) > e−(p−1)}) dp

=

∫ ∞
1

e−(p−1)volk(Rp(PHg)) dp =

∫ ∞
1

e−(p−1)volk(PH(Rp(g))) dp.

Let f ∈ Ln with f(0) = ‖f‖∞ = 1. By the right-hand side inclusion of Lemma 6.5 we have∫
H

PH(∆outf)(x) dx =

∫ ∞
1

e−(p−1)volk(PH(Rp(∆outf))) dp(6.11)

6 ck1

∫ ∞
1

e−(p−1)volk(PH(Kp(∆outf))) dp.

From (6.5) we know that Kp(∆outf) ⊆ Kn+1(∆outf) for all 1 6 p 6 n + 1, and we also know that
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Kp(∆outf) ⊆ cp
n+1Kn+1(∆outf) for all p > n+ 1. Therefore,∫

H

PH(∆outf)(x) dx 6 ck1

(∫ n+1

1

e−(p−1)volk(PH(Kn+1(∆outf))) dp(6.12)

+

∫ ∞
n+1

(
c2p

n+ 1

)k
e−(p−1)volk(PH(Kn+1(∆outf))) dp

)

= ck1 volk(PH(Kn+1(∆outf)))

(∫ n+1

1

e−(p−1) dp+

∫ ∞
n+1

(
c2p

n+ 1

)k
e−(p−1) dp

)

6 ck1 volk(PH(Kn+1(∆outf)))

(∫ ∞
1

e−(p−1) dp+
e ck2

(n+ 1)k

∫ ∞
0

pke−p dp

)
6 ck1 volk(PH(Kn+1(∆outf)))

(
1 +

e ck2k!

(n+ 1)k

)
6 ck3 volk(PH(Kn+1(∆outf))).

On the other hand,∫
H

PH(∆inf)(x) dx =

∫ ∞
1

e−(p−1)volk(PH(Rp(∆inf))) dp(6.13)

> ck4

∫ ∞
2

e−(p−1)volk(PH(Kp(∆inf))) dp

> ck4

∫ n+1

max{k,2}
e−(p−1)

(
c5k

n+ 1

)k
volk(PH(Kn+1(∆inf))) dp

>

(
c6k

n+ 1

)k
volk(PH(Kn+1(∆inf))).

Since Kn+1(f) is centered, Theorem 1.1 gives

volk(PH(Kn+1(∆outf)))1/k 6 c7(n/k)g(n)volk(PH(Kn+1(∆inf)))1/k.

Combining this estimate with (6.12) and (6.13) yields∫
H

PH(∆outf)(x) dx 6

(
c8n
√
g(n)

k

)2k ∫
H

PH(∆inf)(x) dx,

or equivalently, (∫
H

PH(∆outf)(x) dx

)1/k

6 c8(n/k)2g(n)

(∫
H

PH(∆inf)(x) dx

)1/k

.

This completes the proof.

6.1 Auxiliary lemmas

In this subsection we present variants of several technical lemmas from [22] (see also [37]).

Lemma 6.4. Let g : [0,+∞) → [0,+∞) be an increasing convex function with g(0) = 0. For any p > 1
define

Mp = sup{e−g(t)tp−1 : t > 0},
and let tp > 0 denote the unique point satisfying Mp = e−g(tp)tp−1p . Then,

(6.14)
Mptp
p

6
∫ ∞
0

tp−1e−g(t) dt 6 c
Mptp√
p− 1

,
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where c > 0 is an absolute constant. Moreover,

(6.15) g(2tp) > p− 1 > g(tp).

Proof. Since g is increasing, we have∫ ∞
0

tp−1e−g(t) dt >
∫ tp

0

tp−1e−g(t) dt > e−g(tp)
∫ tp

0

tp−1 dt =
e−g(tp)tpp

p
=
Mptp
p

.

For the upper bound, set ϕ(t) = g(t)− (p− 1) ln t. Note that ϕ is convex and has a unique critical point
at tp. Since ϕ′−(tp) 6 0 6 ϕ′+(tp), it follows that

g(t) > g(tp) +
p− 1

tp
(t− tp) for all t > 0.

Hence, ∫ ∞
0

tp−1e−g(t) dt 6 e(p−1)−g(tp)
∫ ∞
0

tp−1e
− (p−1)t

tp dt

= e(p−1)−g(tp)
(

tp
p− 1

)p ∫ ∞
0

tp−1e−t dt

= e−g(tp)tp−1p

ep−1(p− 1)!

(p− 1)p−1
tp

p− 1
≈Mp

tp√
p− 1

.

Finally, if 0 < t < tp then g′+(t) 6 (p− 1)/tp, which implies

g(tp) 6 g(0) +

∫ tp

0

p− 1

tp
dt = p− 1,

while

g(2tp) > g(tp) +
p− 1

tp
(2tp − tp) > p− 1.

This completes the proof.

Lemma 6.5. Let f ∈ Ln with f(0) = ‖f‖∞ = 1. For any p > 2 we have

c1Kp(f) ⊆ Rp(f) ⊆ c2Kp(f),

where c1, c2 > 0 are absolute constants. The right-hand side inclusion holds for all p > 1.

Proof. Fix ξ ∈ Sn−1 and consider the convex function g(t) = − ln f(tξ). Let Mp = sup{e−g(t)tp−1 : t > 0},
and suppose that e−g(tp)tp−1p = f(tp)t

p−1
p = Mp. Then, by Lemma 6.4,

Mptp
p

6
∫ ∞
0

f(t)tp−1 dt 6 c
Mptp√
p− 1

.

By the definition of Kp(f), this implies

(Mptp)
1/p 6 %Kp(f)(ξ) 6 (Mptp)

1/p

(
cp√
p− 1

)1/p

6 c1(Mptp)
1/p

for all p > 2, where c1 > 0 is an absolute constant. The left-hand side inequality holds for all p > 1.
Since Mptp = f(tpξ)t

p
p 6 tpp, and from Lemma 6.4 we have g(tp) 6 p− 1, it follows that

Mptp = f(tpξ)t
p−1
p tp > e−(p−1)tpp > e−ptpp.
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Thus,
c2tp 6 %Kp(f)(ξ) 6 c1tp.

Moreover, since g(tp) 6 p− 1 6 g(2tp), we also have f(2tpξ) 6 e−(p−1) 6 f(tpξ), implying

tp 6 %Rp(f)(ξ) 6 2tp.

Combining these estimates yields the desired inclusion.

Lemma 6.6. Let f ∈ Ln with f(0) = ‖f‖∞ = 1. For any p > 2 we have

Kp(∆outf) ≈ Kp(f)out Kp(∆inf) ≈ Kp(f)in.

Proof. Let x ∈ Kp(∆outf). By Lemma 6.5, c1x ∈ Rp(∆outf). Hence there exist x1, x2 ∈ Rn such that
c1x = 1

2 (x1 + x2) and f(x1)f(−x2) > e−2(p−1). Since ‖f‖∞ = 1, we obtain f(x1) > e−2(p−1) and f(−x2) >
e−2(p−1), that is, x1 ∈ R2p−1(f) and x2 ∈ R2p−1(f). Applying Lemma 6.5 again gives

c1x ∈ 1
2

(
R2p−1(f) +R2p−1(f)

)
⊆ c2

(
K2p−1(f)−K2p−1(f)

)
≈ K2p−1(f)put ≈ Kp(f)out,

where we also used Kp(f) = −Kp(f) and (6.5). Thus,

Kp(∆outf) ⊆ c3Kp(f)out.

Conversely, if x1, x2 ∈ Kp(f), then c1x1 ∈ Rp(f) and −c1x2 ∈ Rp(f). Hence,

(∆outf)(c1(x1 − x2)) >
√
f(c1x1)f(−c1x2) > e−(p−1),

which implies
x1 − x2 ∈ c−11 Rp(∆outf) ⊆ (c2/c1)Kp(∆outf).

Therefore,
Kp(f)out ⊆ Kp(f)−Kp(f) ⊆ c4Kp(∆outf).

For the second assertion, observe that

Rp(∆inf) = {x : min{f(x), f(x)} > e−(p−1)}
= {x : f(x) > e−(p−1)} ∩ {x : f(x) > e−(p−1)} = Rp(f) ∩Rp(f),

and thus, by Lemma 6.5,

Kp(∆inf) ≈ Kp(f) ∩Kp(f) = Kp(f) ∩ (−Kp(f)) = Kp(f)in.
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