Sections and projections of the outer and inner regularizations of a convex body

Natalia Tziotziou

Abstract

We establish new geometric inequalities comparing the volumes of sections and projections of a convex body, whose barycenter or Santaló point is at the origin, with those of its inner and outer regularizations. We also provide functional extensions of these inequalities to the setting of log-concave functions. Our approach relies on the recent optimal M-estimate of Bizeul and Klartag for isotropic convex bodies.

1 Introduction

The purpose of this work is to establish new geometric inequalities comparing the volumes of sections and projections of a convex body—whose barycenter or Santaló point lies at the origin—with those of its inner and outer regularizations. Our method highlights the role of isotropic normalization as a unifying tool bridging symmetric and general convex bodies. These results extend naturally to the functional setting, yielding analogous inequalities for log-concave functions that satisfy volume-type bounds similar to those for convex bodies. A key ingredient in our approach is the recent optimal M-estimate of Bizeul and Klartag for isotropic convex bodies, which provides the quantitative foundation for our main results.

Throughout, let K be a convex body in \mathbb{R}^n with $0 \in \text{int}(K)$. We define the *outer* and *inner regularizations* of K by

$$K_{\text{out}} = \text{conv}(K, -K)$$
 and $K_{\text{in}} = K \cap (-K)$.

Clearly, $K_{\text{in}} \subseteq K \subseteq K_{\text{out}}$, and both K_{out} and K_{in} are origin-symmetric. We shall frequently use the duality relations

$$(1.1) (K_{\text{out}})^{\circ} = (K^{\circ})_{\text{in}} \quad \text{and} \quad (K_{\text{in}})^{\circ} = (K^{\circ})_{\text{out}},$$

which follow from the identities

$$(\operatorname{conv}(A \cup B))^{\circ} = A^{\circ} \cap B^{\circ} \quad \text{and} \quad (A \cap B)^{\circ} = \operatorname{conv}(A^{\circ} \cup B^{\circ})$$

valid for convex bodies A, B with $0 \in \text{int}(A \cap B)$. Here A° denotes the polar body of A. We write bar(A) for the barycenter

$$bar(A) = \frac{1}{vol_n(A)} \int_A x \, dx$$

of a convex body $A \subset \mathbb{R}^n$, and $\operatorname{vrad}(A)$ for its volume radius,

$$\operatorname{vrad}(A) = \left(\frac{\operatorname{vol}_n(A)}{\operatorname{vol}_n(B_2^n)}\right)^{1/n},$$

where B_2^n denotes the Euclidean unit ball and vol_n stands for n-dimensional volume.

Our first result compares the volumes of the projections of K_{out} and K_{in} onto a k-dimensional subspace H of \mathbb{R}^n .

Theorem 1.1. Let K be a convex body in \mathbb{R}^n with either bar(K) = 0 or $bar(K^\circ) = 0$. Then, for every $1 \leq k \leq n-1$ and any $H \in G_{n,k}$,

$$\operatorname{vrad}(P_H(K_{\operatorname{out}})) \leqslant \frac{ng(n)}{k} \operatorname{vrad}(P_H(K_{\operatorname{in}})),$$

where $g(n) \leqslant C(\ln n)^3$.

A related estimate was obtained by Vritsiou in [43, Corollary 11], who proved that if bar(K) = 0 then

$$\operatorname{vrad}(P_H(K_{\operatorname{out}})) \leqslant \left(\frac{n}{k}\right)^5 (\ln(en/k))^2 \operatorname{vrad}(P_H(K_{\operatorname{in}}))$$

for all $1 \le k \le n-1$ and $H \in G_{n,k}$. Theorem 1.1 thus yields an estimate that is nearly linear in n/k.

Our second result concerns sections of K_{out} and K_{in} by a k-dimensional subspace $H \subset \mathbb{R}^n$.

Theorem 1.2. Let K be a convex body in \mathbb{R}^n with either bar(K) = 0 or $bar(K^{\circ}) = 0$. Then, for every $1 \leq k \leq n-1$ and any $H \in G_{n,k}$,

$$\operatorname{vrad}(K_{\operatorname{out}} \cap H) \leqslant \frac{ng(n)}{k} \operatorname{vrad}(K_{\operatorname{in}} \cap H),$$

where $g(n) \leqslant C(\ln n)^3$.

It is instructive to compare Theorem 1.2 with an inequality due to Rudelson [38], who showed that if K is a convex body in \mathbb{R}^n , then for all $1 \leq k \leq n-1$ and all $H \in G_{n,k}$,

$$\operatorname{vrad}((K-K)\cap H) \leqslant c \min\{n/k, \sqrt{k}\} \max_{x \in \mathbb{R}^n} \operatorname{vrad}(K \cap (x+H)),$$

where c > 0 is an absolute constant. Fradelizi further proved in [15] that

$$\max_{x \in \mathbb{R}^n} \operatorname{vrad}(K \cap (x+H)) \leqslant \frac{n+1}{k+1} \operatorname{vrad}(K \cap (\operatorname{bar}(K) + H))^{1/k}.$$

Combining these results yields

$$\operatorname{vrad}((K-K)\cap H)\leqslant c\left(\frac{n}{k}\right)^2\operatorname{vrad}(K\cap (\operatorname{bar}(K)+H))$$

for all $1 \le k \le n-1$ and $H \in G_{n,k}$. Since $K_{\text{in}} \subseteq K$ and $K-K \subseteq 2K_{\text{out}}$, Theorem 1.2 immediately implies a version of (1.2) with improved dependence on n/k.

Combining Theorems 1.1 and 1.2 yields the following Blaschke–Santaló type inequality for projections of possibly non-symmetric convex bodies.

Theorem 1.3. Let K be a convex body in \mathbb{R}^n such that either bar(K) = 0 or $bar(K^{\circ}) = 0$. Then, for every $1 \leq k \leq n-1$ and $H \in G_{n,k}$,

$$\operatorname{vrad}(P_H(K))\operatorname{vrad}(K^{\circ}\cap H)\leqslant \frac{ng(n)}{k},$$

where $g(n) \leq C(\ln n)^3$.

We include the proof in Section 5 to highlight that the three theorems above are closely related. A stronger version of Theorem 1.3 was proved by Vritsiou [43], who established that

(1.3)
$$\operatorname{vrad}(P_H(K))\operatorname{vrad}(K^{\circ}\cap H) \leqslant \frac{cn}{k},$$

for some absolute constant c > 0. Moreover, (1.3) is sharp: as shown in [43], if S_n is a regular simplex of edge length $\sqrt{2}$ with barycenter at the origin, then the affine hull of any k of its vertices, together with the average of the remaining n + 1 - k vertices, forms a subspace $H_k \in G_{n,k}$ for which

$$\operatorname{vrad}(P_{H_k}(S_n^{\circ}))\operatorname{vrad}(S_n \cap H_k) \approx \frac{n}{k}.$$

For the proofs of the above theorems, we may assume without loss of generality that K (or K°) is isotropic (see below and in Section 2 for precise definitions and background). Under this assumption, stronger estimates can be obtained for a random subspace $H \in G_{n,k}$.

Theorem 1.4. Let K be an isotropic convex body in \mathbb{R}^n . Then, for any $1 \leq k \leq n-1$, a random subspace $H \in G_{n,k}$ satisfies

$$(1.4) \operatorname{vrad}(K_{\operatorname{out}} \cap H) \leqslant \gamma_n \operatorname{vrad}(K_{\operatorname{in}} \cap H),$$

with probability greater than $1 - e^{-k}$, where $\gamma_n \leqslant C(\ln n)^2$. Moreover, with the same probability, one also has

$$(1.5) \operatorname{vrad}(K_{\operatorname{out}} \cap H) \leq \delta_n \operatorname{vrad}(K_{\operatorname{in}} \cap H),$$

where $\delta_n \leqslant C \ln n$.

We also establish functional analogues of Theorems 1.2 and 1.1 for the class \mathcal{L}^n of geometric log-concave integrable functions. These are the centered log-concave functions $f: \mathbb{R}^n \to [0, \infty)$ satisfying $f(0) = ||f||_{\infty}$ and $0 < \int f < \infty$. For any $f \in \mathcal{L}^n$, define

$$\Delta_{\text{out}} f(x) = \sup \left\{ \sqrt{f(x_1) f(-x_2)} : x = \frac{1}{2} (x_1 + x_2) \right\} \quad \text{and} \quad \Delta_{\text{in}} f(x) = \min \{ f(x), f(-x) \}.$$

If $f = \mathbb{1}_K$ for some convex body K, then $\Delta_{\text{out}} f = \mathbb{1}_{\frac{1}{2}(K-K)}$ and $\Delta_{\text{in}} f = \mathbb{1}_{K\cap(-K)}$. Moreover, for every $x \in \mathbb{R}^n$, one has $\Delta_{\text{in}} f(x) \leqslant f(x)$ and $\Delta_{\text{in}} f(x) \leqslant \Delta_{\text{out}} f(x)$. The following theorem extends Theorem 1.2 to this functional setting.

Theorem 1.5. For any $f \in \mathcal{L}^n$, any $1 \leq k \leq n-1$, and any $H \in G_{n,k}$,

(1.6)
$$\left(\int_{H} \Delta_{\text{out}} f(x) \, dx \right)^{1/k} \leqslant C(n/k)^{2} g(n) \left(\int_{H} \Delta_{\text{in}} f(x) \, dx \right)^{1/k},$$

and

(1.7)
$$c\left(\int_{H} f(x) dx\right)^{1/k} \leqslant \left(\int_{H} \Delta_{\text{out}} f(x) dx\right)^{1/k},$$

where c > 0 and C > 1 are absolute constants.

Given a nonnegative measurable function $g: \mathbb{R}^n \to [0, \infty)$ and $H \in G_{n,k}$, the orthogonal projection of g onto H is defined by

$$(P_H g)(z) = \sup\{g(y+z) : y \in H^{\perp}\}.$$

With this definition, we obtain the following functional analogue of Theorem 1.1.

Theorem 1.6. For any $f \in \mathcal{L}^n$, any $1 \leq k \leq n-1$, and any $H \in G_{n,k}$,

(1.8)
$$\left(\int_{H} P_{H}(\Delta_{\mathrm{out}}f)(x) dx \right)^{1/k} \leqslant C(n/k)^{2} g(n) \left(\int_{H} P_{H}(\Delta_{\mathrm{in}}f)(x) dx \right)^{1/k},$$

where C > 0 is an absolute constant.

To prove Theorems 1.5 and 1.6, we employ the family of K. Ball's bodies $K_p(f)$ associated with a log-concave function f, allowing us to transfer the problem to the setting of convex bodies and apply Theorems 1.2 and 1.1 accordingly.

The foundation of our results lies in recent advances concerning isotropic convex bodies and, in particular, in the sharp MM^* -estimate. We denote by $p_K(x) = \inf\{t > 0 : x \in tK\}$ the Minkowski functional of K, and by $h_K(y) = \max\{\langle x, y \rangle : x \in K\}$ its support function. The parameters

$$M(K) = \int_{S^{n-1}} p_K(x) \, d\sigma(x)$$
 and $M^*(K) = \int_{S^{n-1}} h_K(x) \, d\sigma(x)$,

where σ denotes the rotationally invariant probability measure on the unit sphere S^{n-1} , play a central role in the asymptotic theory of finite-dimensional normed spaces. It is well known that $M(K)M^*(K) \ge 1$ for every convex body K with $0 \in \text{int}(K)$.

A classical result of Figiel–Tomczak-Jaegermann [14], Lewis [23], and Pisier [32] asserts that for any symmetric convex body $K \subset \mathbb{R}^n$ there exists $T \in GL_n$ such that

$$M(TK)M^*(TK) \le c \ln n$$
,

where c > 0 is an absolute constant. Without assuming symmetry, it is natural to consider

$$E(K) = \inf M(TK)M^*(TK),$$

where the infimum runs over all invertible affine transformations T of \mathbb{R}^n satisfying $0 \in \text{int}(TK)$. It turns out that the isotropic position yields a sharp upper bound for E(K).

A convex body $K \subset \mathbb{R}^n$ is called *isotropic* if it has volume 1, its barycenter is at the origin, and there exists a constant $L_K > 0$ such that

$$\int_K \langle x, \xi \rangle^2 \, dx = L_K^2 \quad \text{for all } \xi \in S^{n-1}.$$

Every convex body K admits an isotropic affine image, unique up to orthogonal transformations (see [28]). Using this canonical position, one defines the isotropic constant L_K , an affine invariant of K.

A central question in asymptotic convex geometry, posed by Bourgain [8], asked whether there exists an absolute constant C > 0 such that

$$L_n := \max\{L_K : K \text{ isotropic convex body in } \mathbb{R}^n\} \leqslant C$$

for all $n \ge 1$. This was recently resolved affirmatively by Klartag and Lehec [21], following major progress by Guan [18], and soon afterward an alternative proof was given by Bizeul [5].

E. Milman proved in [25] that if K is isotropic in \mathbb{R}^n , then

(1.9)
$$M^*(K) \leqslant C\sqrt{n}(\ln n)^2 L_K \leqslant c_1 \sqrt{n}(\ln n)^2,$$

where the second inequality uses the boundedness of L_n . The dependence on n is optimal up to the logarithmic term.

The dual estimate for M(K) in the isotropic position was obtained recently by Bizeul and Klartag [6], who showed that

$$(1.10) M(K) \leqslant c_2 \frac{\log n}{\sqrt{n}}.$$

Combining (1.9) and (1.10) gives

$$(1.11) E(K) \leqslant c_3 (\ln n)^3$$

for every convex body $K \subset \mathbb{R}^n$. Since $M(K)M^*(K) \ge 1$ holds universally, (1.11) provides a sharp upper bound for E(K) up to a factor of $(\ln n)^3$.

In Section 2 we review these results in more detail, and in Section 3 we collect classical geometric inequalities relevant to our setting.

Our approach exploits these refined M- and M^* -estimates to derive strong regularity estimates for covering numbers of isotropic convex bodies. These, in turn, allow a careful comparison of sections and projections of the inner and outer symmetrizations $K_{\rm in}$ and $K_{\rm out}$, leading directly to Theorems 1.1 and 1.2. In particular, the isotropic position serves not only as a convenient normalization but also as a tool for transferring results from the symmetric to the general, non-symmetric setting. This strategy underpins the functional extensions presented in Theorems 1.5 and 1.6, showing that the geometric inequalities naturally extend to the broader class of log-concave functions.

2 Notation and background

We work in \mathbb{R}^n , equipped with the standard inner product $\langle \cdot, \cdot \rangle$. The corresponding Euclidean norm is denoted by $|\cdot|$, the Euclidean unit ball by B_2^n , and the unit sphere by S^{n-1} . Volume in \mathbb{R}^n is denoted by vol_n , while $\omega_n = \operatorname{vol}_n(B_2^n)$ stands for the volume of the Euclidean unit ball.

We denote by σ the rotationally invariant probability measure on S^{n-1} and by ν the Haar measure on O(n). The Grassmann manifold $G_{n,k}$ of k-dimensional subspaces of \mathbb{R}^n is equipped with the Haar probability measure $\nu_{n,k}$. For each integer $1 \leq k \leq n-1$ and every $H \in G_{n,k}$, we denote by P_H the orthogonal projection from \mathbb{R}^n onto H, and set

$$B_H := B_2^n \cap H, \qquad S_H := S^{n-1} \cap H.$$

The letters c, c', c_1, c_2, \ldots denote absolute positive constants whose value may change from line to line. Whenever we write $a \approx b$, we mean that there exist absolute constants $c_1, c_2 > 0$ such that $c_1 a \leqslant b \leqslant c_2 a$. Similarly, for convex bodies $K, C \subseteq \mathbb{R}^n$, we write $K \approx C$ if there exist absolute constants $c_1, c_2 > 0$ such that $c_1 K \subseteq C \subseteq c_2 K$.

A convex body in \mathbb{R}^n is a compact convex subset K with nonempty interior. We say that K is symmetric if K = -K, and centered if its barycenter bar(K) is at the origin.

The radial function of a convex body K with $0 \in \text{int}(K)$ is

$$\rho_K(x) = \max\{t > 0 : tx \in K\}, \qquad x \in \mathbb{R}^n \setminus \{0\},$$

and the support function of K is defined for $y \in \mathbb{R}^n$ by

$$h_K(y) = \max\{\langle x, y \rangle : x \in K\}.$$

The radius of K is $R(K) = \max\{|x| : x \in K\}$, and the volume radius is

$$\operatorname{vrad}(K) = \left(\frac{\operatorname{vol}_n(K)}{\operatorname{vol}_n(B_2^n)}\right)^{1/n}.$$

The polar body K° of a convex body K with $0 \in \text{int}(K)$ is given by

$$K^{\circ} = \{x \in \mathbb{R}^n : \langle x, y \rangle \leq 1 \text{ for all } y \in K\}.$$

An absolutely continuous Borel probability measure μ on \mathbb{R}^n is called *log-concave* if its density f_{μ} is of the form $f_{\mu} = e^{-\varphi}$ with $\varphi : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ convex. The uniform probability measure on any convex body is log-concave.

The barycenter of μ is

$$\operatorname{bar}(\mu) := \int_{\mathbb{R}^n} x f_{\mu}(x) \, dx,$$

and its *isotropic constant* is the affine-invariant quantity

(2.1)
$$L_{\mu} := \left(\frac{\|f_{\mu}\|_{\infty}}{\int_{\mathbb{R}^n} f_{\mu}(x) \, dx}\right)^{\frac{1}{n}} \det(\operatorname{Cov}(\mu))^{\frac{1}{2n}},$$

where

$$\operatorname{Cov}(\mu) := \int x \otimes x \, d\mu(x) - \left(\int x \, d\mu(x) \right) \otimes \left(\int x \, d\mu(x) \right)$$

is the covariance matrix of μ . A log-concave probability measure μ on \mathbb{R}^n is called *isotropic* if $\operatorname{bar}(\mu) = 0$ and $\operatorname{Cov}(\mu) = I_n$. A convex body K of volume 1 is isotropic if and only if the log-concave probability measure with density $L_K^n \mathbb{1}_{K/L_K}$ is isotropic.

K. Ball [3] showed that, in every dimension n,

$$\sup_{\mu} L_{\mu} \leqslant C \sup_{K} L_{K},$$

where the suprema are taken over all log-concave probability measures μ and all convex bodies $K \subseteq \mathbb{R}^n$, respectively. Around 1985–86 (published in 1990), Bourgain [9] obtained the bound $L_n \leqslant cn^{1/4} \ln n$, later improved by Klartag [19] to $L_n \leqslant cn^{1/4}$. These estimates remained the best known until 2020. In a breakthrough, Chen [12] proved that for every $\varepsilon > 0$, one has $L_n \leqslant n^{\varepsilon}$ for all sufficiently large n. This development initiated a series of works culminating in the final affirmative solution of Bourgain's problem by Klartag and Lehec [21], following an important contribution by Guan [18]. Shortly thereafter, Bizeul [5] provided another proof of the conjecture.

The study of E(K) in the non-symmetric case began with the work of Banaszczyk, Litvak, Pajor, and Szarek [4], who showed that if K is a convex body in \mathbb{R}^n in John's position (i.e., its maximal-volume inscribed ellipsoid is the Euclidean unit ball), then

$$M^*(K) \leqslant c\sqrt{n}\sqrt{\ln n}$$
.

Since $K \supseteq B_2^n$ in John's position, we also have the trivial bound $M(K) \leqslant M(B_2^n) = 1$, hence $E(K) \leqslant c\sqrt{n}\sqrt{\ln n}$. Rudelson [39] improved this to

$$E(K) \leqslant c n^{1/3} (\ln n)^b$$

for some absolute constant b > 0. This remained the best known bound until the recent work of Bizeul and Klartag.

After earlier estimates of order $n^{3/4}L_K$ for $M^*(K)$ in the isotropic position (see [11, Chapter 9]), E. Milman [25] proved that if K is a symmetric isotropic convex body in \mathbb{R}^n , then

$$M^*(K) \leqslant c_1 \sqrt{n} (\ln n)^2 L_K,$$

and the same bound extends to non-symmetric isotropic convex bodies. For the dual problem, estimating M(K) in isotropic position, the first nontrivial results appeared in [17]. The best known bound in the symmetric case, due to Giannopoulos and E. Milman [16], was

$$M(K) \leqslant \frac{C(n\ln n)^{1/3}}{\sqrt{n}},$$

while in the non-symmetric case, Vritsiou [43] obtained the estimate

$$M(K) \leqslant \frac{cn^{5/11}(\ln n)^{5/22}}{\sqrt{n}}.$$

For background on isotropic convex bodies and log-concave measures, we refer to [11]; for general information on the local theory of normed spaces, see [1, 2, 34].

3 Geometric inequalities

In this section, we review several classical geometric inequalities that will be used in the sequel, beginning with the Blaschke–Santaló inequality.

Let K be a convex body in \mathbb{R}^n . The function $\operatorname{vol}_n(K)\operatorname{vol}_n((K-z)^\circ)$, defined on $\operatorname{int}(K)$, is strictly convex and attains a unique minimum at the *Santaló point* s(K) of K. The Blaschke–Santaló inequality asserts that

$$\operatorname{vol}_n(K)\operatorname{vol}_n((K - s(K))^\circ) \leq \omega_n^2$$
.

Moreover, if bar(K) = 0, then $s(K^{\circ}) = 0$. Since $(K^{\circ})^{\circ} = K$, we obtain

$$\operatorname{vol}_n(K)\operatorname{vol}_n(K^\circ) = \operatorname{vol}_n((K^\circ - s(K^\circ))^\circ)\operatorname{vol}_n(K^\circ) \leqslant \omega_n^2$$

Hence we have the following classical result.

Theorem 3.1 (Blaschke–Santaló). Let K be a convex body in \mathbb{R}^n such that either bar(K) = 0 or s(K) = 0. Then,

$$\operatorname{vol}_n(K) \operatorname{vol}_n(K^{\circ}) \leq \omega_n^2$$
.

A refinement of this inequality was given by Meyer and Pajor [24]. For $\lambda \in (0,1)$, a hyperplane

$$F = \{x \in \mathbb{R}^n : \langle x, u_F \rangle = \alpha_F \},\$$

where $u_F \in \mathbb{R}^n \setminus \{0\}$ and $\alpha_F \in \mathbb{R}$, is said to be λ -separating for K if

$$\operatorname{vol}_n(\{x \in K : \langle x, u_F \rangle \geqslant \alpha_F \}) = \lambda \operatorname{vol}_n(K).$$

Note that a λ -separating hyperplane necessarily intersects the interior of K.

Theorem 3.2 (Meyer–Pajor). Let K be a convex body in \mathbb{R}^n and F a λ -separating hyperplane for K, where $\lambda \in (0,1)$. Then, there exists $z \in \text{int}(K) \cap F$ such that

$$\operatorname{vol}_n(K)\operatorname{vol}_n((K-z)^\circ) \leqslant \frac{\omega_n^2}{4\lambda(1-\lambda)}.$$

Moreover, z is the unique point in $int(K) \cap F$ such that

$$\operatorname{bar}((K-z)^{\circ}) \in \{tu_F : t \in \mathbb{R}\}.$$

In the opposite direction, the Bourgain–Milman inequality [10] provides a universal lower bound.

Theorem 3.3 (Bourgain-V. Milman). Let K be a convex body in \mathbb{R}^n with $0 \in \text{int}(K)$. Then,

$$\operatorname{vol}_n(K)\operatorname{vol}_n(K^\circ) \geqslant \operatorname{vol}_n(K)\operatorname{vol}_n((K - s(K))^\circ) \geqslant c^n\omega_n^2,$$

where c > 0 is an absolute constant.

Classical results of Rogers–Shephard [35] and V. Milman–Pajor [29] compare the volume of a convex body with those of its inner and outer regularizations.

Theorem 3.4 (Rogers-Shephard / V. Milman-Pajor). Let K be a convex body in \mathbb{R}^n . Then,

$$2^n \operatorname{vol}_n(K) \leq \operatorname{vol}_n(K - K) \leq {2n \choose n} \operatorname{vol}_n(K) \leq 4^n \operatorname{vol}_n(K).$$

Moreover, if $0 \in \text{int}(K)$, then

$$\operatorname{vol}_n(K_{\operatorname{out}}) = \operatorname{vol}_n(\operatorname{conv}(K, -K)) \leq 2^n \operatorname{vol}_n(K),$$

and if bar(K) = 0, then

$$\operatorname{vol}_n(K_{\operatorname{in}}) = \operatorname{vol}_n(K \cap (-K)) \geqslant 2^{-n} \operatorname{vol}_n(K).$$

If s(K) = 0, then $\operatorname{bar}(K^{\circ}) = 0$, and since $(K_{\operatorname{in}})^{\circ} = (K^{\circ})_{\operatorname{out}}$, the Bourgain–Milman inequality yields $2^{n}\operatorname{vol}_{n}(K_{\operatorname{in}})\operatorname{vol}_{n}(K^{\circ}) \geqslant \operatorname{vol}_{n}(K_{\operatorname{in}})\operatorname{vol}_{n}(K^{\circ})_{\operatorname{out}} \geqslant c^{n}\omega_{n}^{2} \geqslant c^{n}\operatorname{vol}_{n}(K)\operatorname{vol}_{n}(K^{\circ})$,

and hence

$$\operatorname{vol}_n(K_{\operatorname{in}}) \geqslant (c/2)^n \operatorname{vol}_n(K),$$

an observation due to Rudelson [39].

The following inequality estimates the product of the volumes of a projection of a convex body and the corresponding orthogonal section (see [36] for the first and [41] for the second claim).

Theorem 3.5 (Rogers–Shephard / Spingarn). Let K be a convex body in \mathbb{R}^n with $0 \in \text{int}(K)$. Then, for every $1 \leq k \leq n-1$ and any $H \in G_{n,k}$,

$$\operatorname{vol}_k(P_H(K))\operatorname{vol}_{n-k}(K\cap H^{\perp}) \leqslant \binom{n}{k}\operatorname{vol}_n(K).$$

If bar(K) = 0, then also

$$\operatorname{vol}_n(K) \leqslant \operatorname{vol}_k(P_H(K)) \operatorname{vol}_{n-k}(K \cap H^{\perp}).$$

Rudelson's inequality [38] compares the volume of a central section of K - K with that of the maximal corresponding section of K.

Theorem 3.6 (Rudelson). Let K be a convex body in \mathbb{R}^n . Then, for every $1 \leq k \leq n-1$ and any $H \in G_{n,k}$,

$$\operatorname{vol}_k((K-K)\cap H)^{1/k} \leqslant c \min\left\{\sqrt{k}, \frac{n}{k}\right\} \max_{x\in\mathbb{R}^n} \operatorname{vol}_k(K\cap (x+H))^{1/k}.$$

An inequality of Fradelizi [15] compares the maximal section of a convex body with the section passing through its barycenter.

Theorem 3.7 (Fradelizi). Let K be a convex body in \mathbb{R}^n . Then, for every $1 \leq k \leq n-1$ and any $H \in G_{n,k}$,

$$\max_{x \in \mathbb{R}^n} \operatorname{vol}_k(K \cap (x+H))^{1/k} \leqslant \frac{n+1}{k+1} \operatorname{vol}_k(K \cap (\operatorname{bar}(K) + H))^{1/k}.$$

Combining these two results yields

(3.1)
$$\operatorname{vol}_{k}((K-K)\cap H)^{1/k} \leq c\left(\frac{n}{k}\right)^{2} \operatorname{vol}_{k}(K\cap (\operatorname{bar}(K)+H))^{1/k}$$

for every $1 \le k \le n-1$ and $H \in G_{n,k}$. A direct proof of (3.1) with improved dependence on n/k will be given in Theorem 1.2 (Section 5).

Let K be a convex body in \mathbb{R}^n with $0 \in \text{int}(K)$. Recall that for $1 \leq k \leq n-1$ and $H \in G_{n,k}$, the projection $P_H(K)$ is the polar body of $K^{\circ} \cap H$ in H. If K is symmetric, then $P_H(K)$ and $K^{\circ} \cap H$ are polar symmetric convex bodies in H, so that

$$\operatorname{vrad}(P_H(K))\operatorname{vrad}(K^{\circ}\cap H)\leqslant 1$$

by the Blaschke–Santaló inequality. Vritsiou [43] extended this to non-symmetric convex bodies.

Theorem 3.8 (Vritsiou). Let K be a convex body in \mathbb{R}^n such that either $\operatorname{bar}(K) = 0$ or s(K) = 0. Then, for every $1 \leq k \leq n-1$ and any $H \in G_{n,k}$,

$$\operatorname{vrad}(P_H(K))\operatorname{vrad}(K^{\circ}\cap H)\leqslant c\,\frac{n}{k},$$

where c > 0 is an absolute constant.

The proof of Theorem 3.8 combines the Meyer-Pajor refinement of the Blaschke-Santaló inequality (Theorem 3.2) with Grünbaum-type inequalities due to Stephen, Zhang, and Myroshnychenko [42, 30].

4 Covering numbers of isotropic convex bodies

Recall that if A and B are two convex bodies in \mathbb{R}^n , the covering number N(A, B) of A by B is the least integer N for which there exist N translates of B whose union covers A:

$$N(A,B) = \min \Big\{ N \in \mathbb{N} : \exists x_1, \dots, x_N \in \mathbb{R}^n \text{ such that } A \subseteq \bigcup_{j=1}^N (x_j + B) \Big\}.$$

The Sudakov and dual Sudakov inequalities (see [1, Chapter 4]) state that if K is a symmetric convex body in \mathbb{R}^n , then for every t > 0,

$$N(K, tB_2^n) \le \exp(cnM^*(K)^2/t^2)$$
 and $N(B_2^n, tK) \le \exp(cnM(K)^2/t^2)$,

where c > 0 is an absolute constant.

V. Milman proved in [27] that there exists an absolute constant $\beta > 0$ such that every centered convex body $A \subset \mathbb{R}^n$ admits a linear image \tilde{A} satisfying $\operatorname{vol}_n(\tilde{A}) = \operatorname{vol}_n(B_2^n)$ and

$$(4.1) \qquad \max \left\{ N(\tilde{A}, B_2^n), N(B_2^n, \tilde{A}), N(\tilde{A}^\circ, B_2^n), N(B_2^n, \tilde{A}^\circ) \right\} \leqslant \exp(\beta n).$$

A convex body A satisfying this estimate is said to be in M-position with constant β .

Pisier [33] proposed a different approach, allowing one to construct an entire family of M-positions and to obtain more precise quantitative information on the corresponding covering numbers.

Theorem 4.1 (Pisier). For every $0 < \alpha < 2$ and every symmetric convex body $A \subset \mathbb{R}^n$, there exists a linear image \tilde{A} of A such that

$$\max\Bigl\{N(\tilde{A},tB_2^n),N(B_2^n,t\tilde{A}),N(\tilde{A}^\circ,tB_2^n),N(B_2^n,t\tilde{A}^\circ)\Bigr\}\leqslant \exp\bigl(c(\alpha)n/t^\alpha\bigr)$$

for every $t \geqslant c(\alpha)^{1/\alpha}$, where $c(\alpha)$ depends only on α and satisfies $c(\alpha) = O((2-\alpha)^{-\alpha/2})$ as $\alpha \to 2^-$.

A convex body A satisfying the estimate in Theorem 4.1 is said to be in α -regular M-position with constant $c(\alpha)$.

The following proposition, a simple consequence of the M^* estimate (1.9) and the M estimate (1.10), shows that every isotropic convex body $K \subset \mathbb{R}^n$ is (almost) in 2-regular M-position. Below, we set $r_n = \omega_n^{-1/n}$; note that $r_n \approx \sqrt{n}$.

Proposition 4.2. Let K be an isotropic convex body in \mathbb{R}^n . Then, for every t > 0,

(4.2)
$$\max \left\{ N(K, tr_n B_2^n), \ N(B_2^n, tr_n K^\circ) \right\} \leqslant \exp\left(\frac{\gamma_n^2 n}{t^2}\right),$$

(4.3)
$$\max \left\{ N(r_n B_2^n, tK), \ N(r_n K^\circ, t B_2^n) \right\} \leqslant \exp\left(\frac{\delta_n^2 n}{t^2}\right),$$

where $\gamma_n \leqslant c_1(\ln n)^2$ and $\delta_n \leqslant c_2 \ln n$.

Proof. Let $K_{\rm in}$ and $K_{\rm out}$ denote the inner and outer regularizations of K. Observe that

$$(4.4) M(K_{\rm in}) = M^*((K^{\circ})_{\rm out}) \leqslant M^*(K^{\circ} - K^{\circ}) = 2M^*(K^{\circ}) = 2M(K),$$

(4.5)
$$M^*(K_{\text{out}}) \leqslant M^*(K - K) = 2M^*(K).$$

Since $K_{\text{in}} \subseteq K \subseteq K_{\text{out}}$, it is clear that $M(K_{\text{out}}) \leqslant M(K)$ and $M^*(K_{\text{in}}) \leqslant M^*(K)$.

The Sudakov inequality, combined with (4.5), gives

(4.6)
$$N(K, tr_n B_2^n) \leq N(K_{\text{out}}, tr_n B_2^n) \leq \exp(cnM^*(K_{\text{out}})^2/(r_n t)^2)$$
$$\leq \exp(4cnM^*(K)^2/(r_n t)^2) \leq \exp(\gamma_n^2 n/t^2).$$

Similarly, using (4.4) we obtain

(4.7)
$$N(r_nK^{\circ}, tB_2^n) \leqslant N(r_n(K_{\rm in})^{\circ}, tB_2^n) \leqslant \exp(cnr_n^2 M^*((K_{\rm in})^{\circ})^2/t^2)$$
$$= \exp(cnr_n^2 M(K_{\rm in})^2/t^2) \leqslant \exp(4cnr_n^2 M(K)^2/t^2) \leqslant \exp(\delta_n^2 n/t^2).$$

Applying the dual Sudakov inequality and (4.4) yields

(4.8)
$$N(r_n B_2^n, tK) \leqslant N(r_n B_2^n, tK_{\rm in}) \leqslant \exp(cnr_n^2 M(K_{\rm in})^2/t^2)$$
$$\leqslant \exp(4cnr_n^2 M(K)^2/t^2) \leqslant \exp(\delta_n^2 n/t^2),$$

and, using (4.5), we similarly have

$$(4.9) N(B_2^n, tr_n K^{\circ}) \leq N(B_2^n, tr_n (K_{\text{out}})^{\circ}) \leq \exp(cnM((K_{\text{out}})^{\circ})^2/(r_n t)^2)$$

$$\leq \exp(cnM^*(K_{\text{out}})^2/(r_n t)^2) = \exp(4cnM^*(K)^2/(r_n t)^2) \leq \exp(\gamma_n^2 n/t^2).$$

Combining (4.6)–(4.9) completes the proof.

5 Projections and sections of the outer and inner regularizations

In this section we compare the volumes of sections and projections of a convex body with those of its inner and outer regularizations. We begin with the proof of Theorem 1.1.

Proof of Theorem 1.1. Assume first that $\operatorname{bar}(K) = 0$. Since $T(K_{\operatorname{in}}) = (TK)_{\operatorname{in}}$ and $T(K_{\operatorname{out}}) = (TK)_{\operatorname{out}}$ for every $T \in GL_n$, we may assume that K is isotropic. From (4.6) we know that $N_t = N(K_{\operatorname{out}}, tr_n B_2^n) \leqslant \exp(\gamma_n^2 n/t^2)$ for every t > 0. Thus, there exist x_1, \ldots, x_{N_t} such that

$$K_{\text{out}} \subseteq \bigcup_{i=1}^{N_t} (x_i + tr_n B_2^n).$$

Projecting onto a k-dimensional subspace H, we obtain

$$P_H(K_{\text{out}}) \subseteq \bigcup_{i=1}^{N_t} (P_H(x_i) + tr_n B_H),$$

where B_H denotes the Euclidean unit ball in H. Hence,

$$\operatorname{vol}_k(P_H(K_{\operatorname{out}})) \leqslant N_t \operatorname{vol}_k(tr_n B_H) \leqslant \exp(\gamma_n^2 n/t^2)(tr_n)^k \omega_k.$$

Choosing $t = \gamma_n \sqrt{n/k}$ minimizes the right-hand side and gives

$$\operatorname{vol}_k(P_H(K_{\mathrm{out}})) \leqslant e^k r_n^k \gamma_n^k (n/k)^{k/2} \omega_k,$$

and therefore,

(5.1)
$$\operatorname{vrad}(P_H(K_{\text{out}})) \leqslant er_n \gamma_n \sqrt{n/k}.$$

On the other hand, (4.8) shows that $N'_t = N(r_n B_2^n, tK_{\rm in}) \leq \exp(\delta_n^2 n/t^2)$ for every t > 0. Proceeding in the same way, we obtain

$$\operatorname{vol}_k(r_n B_H) \leqslant N_t' \operatorname{vol}_k(t P_H(K_{\operatorname{in}})) \leqslant \exp(\delta_n^2 n / t^2) t^k \operatorname{vol}_k(P_H(K_{\operatorname{in}})).$$

Choosing $t = \delta_n \sqrt{n/k}$, we get

$$r_n^k \operatorname{vol}_k(B_H) \leqslant e^k \delta_n^k (n/k)^{k/2} \operatorname{vol}_k(P_H(K_{\operatorname{in}})),$$

and hence,

(5.2)
$$r_n \leqslant e\delta_n \sqrt{n/k} \operatorname{vrad}(P_H(K_{\text{in}})).$$

Combining (5.1) and (5.2), we find that

(5.3)
$$\operatorname{vrad}(P_H(K_{\text{out}})) \leq e^2 \delta_n \gamma_n(n/k) \operatorname{vrad}(P_H(K_{\text{in}})).$$

The first claim of the theorem follows with $g(n) = e^2 \delta_n \gamma_n \leqslant c(\ln n)^3$.

Next, assume that $bar(K^{\circ}) = 0$, in which case s(K) = 0. We may assume that K° is isotropic. Replacing K by K° in (4.7) and using (1.1), we get

$$N(r_n K_{\text{out}}, tB_2^n) \leqslant \exp(\delta_n^2 n/t^2).$$

Applying the argument of the first part of the proof, we obtain

(5.4)
$$r_n \operatorname{vrad}(P_H(K_{\text{out}})) \leq e \delta_n \sqrt{n/k}.$$

Replacing K by K° in (4.9) and using again (1.1), we find that $N(B_2^n, tr_n K_{\rm in}) \leq \exp(\gamma_n^2 n/t^2)$, and by the same reasoning,

$$(5.5) 1 \leqslant er_n \gamma_n \sqrt{n/k} \operatorname{vrad}(P_H(K_{in})).$$

Combining (5.4) and (5.5), we obtain

(5.6)
$$\operatorname{vrad}(P_H(K_{\text{out}})) \leq e^2 \delta_n \gamma_n(n/k) \operatorname{vrad}(P_H(K_{\text{in}})),$$

and the second claim of the theorem follows with $g(n) = e^2 \delta_n \gamma_n \leqslant c(\ln n)^3$.

Theorem 1.2 follows easily from Theorem 1.1.

Proof of Theorem 1.2. Since $P_H((K^{\circ})_{in})$ is symmetric and its polar body in H is $K_{out} \cap H$, the Blaschke–Santaló inequality implies

(5.7)
$$\operatorname{vrad}(K_{\operatorname{out}} \cap H) \operatorname{vrad}(P_H((K^{\circ})_{\operatorname{in}})) \leq 1.$$

Similarly, since $P_H((K^{\circ})_{\text{out}})$ is symmetric and its polar body in H is $K_{\text{in}} \cap H$, the Bourgain–Milman inequality gives

$$(5.8) c_1 \leq \operatorname{vrad}(K_{in} \cap H) \operatorname{vrad}(P_H((K^{\circ})_{out})).$$

Assuming that either bar(K) = 0 or $bar(K^{\circ}) = 0$, we may apply Theorem 1.1 to K° and obtain

$$\operatorname{vrad}(P_H((K^\circ)_{\operatorname{out}})) \leqslant c_2 \frac{ng(n)}{k} \operatorname{vrad}(P_H((K^\circ)_{\operatorname{in}})).$$

Combining this estimate with (5.7) and (5.8), we get

$$c_{1} \leqslant \operatorname{vrad}(K_{\operatorname{in}} \cap H) \operatorname{vrad}(P_{H}((K^{\circ})_{\operatorname{out}}))$$

$$\leqslant c_{2} \frac{ng(n)}{k} \operatorname{vrad}(K_{\operatorname{in}} \cap H) \operatorname{vrad}(P_{H}((K^{\circ})_{\operatorname{in}}))$$

$$\leqslant c_{2} \frac{ng(n)}{k} \operatorname{vrad}(K_{\operatorname{in}} \cap H) \operatorname{vrad}(K_{\operatorname{out}} \cap H)^{-1}.$$

Hence.

$$\operatorname{vrad}(K_{\operatorname{out}} \cap H) \leqslant c_3 \frac{ng(n)}{k} \operatorname{vrad}(K_{\operatorname{in}} \cap H),$$

where $c_3 = c_2/c_1$.

We now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. We have $\operatorname{vrad}(P_H(K)) \leq \operatorname{vrad}(P_H(K_{\operatorname{out}}))$, and by the Blaschke-Santaló inequality applied to $P_H(K_{\operatorname{in}})$ in H,

$$\operatorname{vrad}(K^{\circ} \cap H) \leqslant \operatorname{vrad}((K_{\operatorname{in}})^{\circ} \cap H) \leqslant \operatorname{vrad}(P_H(K_{\operatorname{in}}))^{-1}.$$

Therefore,

$$\operatorname{vrad}(P_H(K))\operatorname{vrad}(K^{\circ}\cap H) \leqslant \frac{\operatorname{vrad}(P_H(K_{\operatorname{out}}))}{\operatorname{vrad}(P_H(K_{\operatorname{in}}))} \leqslant \frac{ng(n)}{k},$$

in view of Theorem 1.1.

In the case where K is isotropic, we can show that for a random k-dimensional subspace of \mathbb{R}^n , the volume radii of the corresponding sections or projections of K_{out} and K_{in} are of the same order, up to a logarithmic factor in the dimension.

Proof of Theorem 1.4. Let K be an isotropic convex body in \mathbb{R}^n . Paouris and Pivovarov [31] proved that for every symmetric convex body $C \subset \mathbb{R}^n$ and every $1 \leq k \leq n-1$,

(5.9)
$$\Phi_k(C) := \operatorname{vol}_n(C)^{-1/n} \left(\int_{G_{n,k}} \operatorname{vol}_k(P_H(C))^{-n} d\nu_{n,k}(H) \right)^{-\frac{1}{kn}} \geqslant c_1 \sqrt{\frac{n}{k}},$$

where $c_1 > 0$ is an absolute constant. Moreover, E. Milman and Yehudayoff [26] established the sharp lower bound $\Phi_k(B_2^n) \leq \Phi_k(C)$, together with a characterization of equality: ellipsoids are the only local minimizers with respect to the Hausdorff metric, for all $1 \leq k \leq n-1$.

From (5.9) and Markov's inequality, it follows that

$$\operatorname{vrad}(P_H(C)) \geqslant c_1 t^{-1} \sqrt{n} \operatorname{vol}_n(C)^{1/n}$$

with probability greater than $1 - t^{-kn}$. Applying this result to $K_{\rm in}$ and taking into account the inequality of V. Milman and Pajor, which ensures that ${\rm vol}_n(K_{\rm in})^{1/n} \geqslant \frac{1}{2} {\rm vol}_n(K)^{1/n} = \frac{1}{2}$, we obtain

(5.10)
$$\operatorname{vrad}(P_H(K_{\text{in}})) \geqslant c_2 \sqrt{n}$$

with probability greater than $1 - e^{-kn}$, where $c_2 > 0$ is an absolute constant.

Next, we use a well-known consequence of the Aleksandrov inequalities (see [40, Section 6.4]). For every convex body $C \subset \mathbb{R}^n$, the sequence

$$Q_k(C) = \left(\frac{1}{\omega_k} \int_{G_{n,k}} \operatorname{vol}_k(P_H(C)) \, d\nu_{n,k}(H)\right)^{1/k}$$

is decreasing in k. In particular, for any $1 \le k \le n-1$,

$$Q_k(C) \leqslant Q_1(C),$$

which can be written equivalently as

$$\left(\frac{1}{\omega_k} \int_{G_{n,k}} \operatorname{vol}_k(P_H(C)) \, d\nu_{n,k}(H)\right)^{1/k} \leqslant M^*(C).$$

Applying this to K_{out} and using that $M^*(K_{\text{out}}) \leq 2M^*(K) \leq c\sqrt{n}(\ln n)^2$ by E. Milman's inequality, we obtain

(5.11)
$$\operatorname{vrad}(P_H(K_{\operatorname{out}})) \leqslant \gamma_n \sqrt{n}$$

with probability greater than $1 - e^{-2k}$, where $\gamma_n \leq c_3 (\ln n)^2$. Combining (5.10) and (5.11), we conclude that

$$\operatorname{vrad}(P_H(K_{\operatorname{out}})) \leqslant \gamma_n \operatorname{vrad}(P_H(K_{\operatorname{in}}))$$

with probability greater than $1 - e^{-k}$.

We now turn to the proof of (1.5). Repeating the above reasoning for the polar body K° , we obtain

$$(5.12) \operatorname{vrad}(P_H((K^{\circ})_{in})) \geqslant c_2 \sqrt{n} \operatorname{vol}_n(K^{\circ})^{1/n}$$

and

(5.13)
$$\operatorname{vrad}(P_H((K^\circ)_{\operatorname{out}})) \leqslant 2M^*(K^\circ) = 2M(K) \leqslant \frac{\delta_n}{\sqrt{n}}$$

for a random $H \in G_{n,k}$, where $\delta_n \leqslant c \ln n$. It follows that

$$\operatorname{vrad}(P_H((K^{\circ})_{\operatorname{out}})) \leq \delta_n \operatorname{vrad}(P_H((K^{\circ})_{\operatorname{in}}))$$

with probability greater than $1 - e^{-k}$.

Finally, repeating the proof of Theorem 1.2, and using the Blaschke–Santaló inequality for the symmetric convex bodies $K_{\text{out}} \cap H$ and $K_{\text{in}} \cap H$ (whose polars are $P_H((K^{\circ})_{\text{in}})$ and $P_H((K^{\circ})_{\text{out}})$, respectively), we obtain

$$\operatorname{vrad}(K_{\operatorname{out}} \cap H) \leq \delta_n \operatorname{vrad}(K_{\operatorname{in}} \cap H)$$

for every $H \in G_{n,k}$ satisfying (5.12) and (5.13).

6 Functional inequalities

We consider the class \mathcal{L}^n of geometric log-concave integrable functions: these are the centered log-concave functions $f: \mathbb{R}^n \to \mathbb{R}^+$ that satisfy $f(0) = ||f||_{\infty}$ and $0 < \int f < \infty$. We say that f is centered if $\int x f(x) dx = 0$. For any $f, g \in \mathcal{L}^n$ we define

$$(f \star q)(x) = \sup\{f(x_1)q(x_2) : x_1, x_2 \in \mathbb{R}^n, \ x = x_1 + x_2\}.$$

Roysdon [37] obtained a functional version of Rudelson's theorem on the sections of the difference body. He considered $\overline{f}(x) = f(-x)$ and defined $\Delta_0 f = f \star \overline{f}$, i.e.

$$(\Delta_0 f)(x) = \sup\{f(x_1)f(x_2) : x_1, x_2 \in \mathbb{R}^n, \ x = x_1 - x_2\}.$$

Note that if $f = \mathbb{1}_K$ for some convex body $K \subset \mathbb{R}^n$, then $\Delta_0 f = \mathbb{1}_{K-K}$. Thus, $\Delta_0 f$ may be viewed as a functional analogue of the difference body. With this definition, Roysdon's inequality reads as follows.

Theorem 6.1 (Roysdon). For any $f \in \mathcal{L}^n$, any $1 \leq k \leq n-1$, and any $H \in G_{n,k}$ we have

(6.1)
$$\left(\int_{H} \Delta_{0} f(x) dx \right)^{1/k} \leqslant C \max \left\{ \sqrt{k}, \frac{n}{k} \right\} \sup_{y \in \mathbb{R}^{n}} \left(\frac{1}{\|f|_{y+H}\|_{\infty}} \int_{y+H} f(x) dx \right)^{1/k},$$

where $f|_{y+H}$ denotes the restriction of f to y+H. Moreover,

$$c\left(\int_{H} f(x) dx\right)^{1/k} \leqslant \left(\int_{H} \Delta_{0} f(x) dx\right)^{1/k},$$

where c > 0 and C > 1 are absolute constants.

For any $f \in \mathcal{L}^n$ we define the functions $\Delta_{\text{out}} f$ and $\Delta_{\text{in}} f$ by

$$\Delta_{\text{out}} f(x) = \sup \left\{ \sqrt{f(x_1)f(-x_2)} : x = \frac{1}{2}(x_1 + x_2) \right\}, \qquad \Delta_{\text{in}} f(x) = \min \{ f(x), f(-x) \}.$$

This definition is consistent with the notion of the α -difference function $\Delta_{\alpha}f$ of a function f, introduced by Colesanti in [13] for any $f: \mathbb{R}^n \to [0, \infty]$ and any $\alpha \in [-\infty, 0]$. It is shown in [13] that if f is α -concave, then $\Delta_{\alpha}f$ is also α -concave. Difference functions have been studied as functional analogues of the difference body in a number of works; see, e.g., [13, 20, 7]. One can easily check that the functions $\Delta_{\text{out}}f$ and $\Delta_{\text{in}}f$ considered here coincide with $\Delta_0 f$ and $\Delta_{-\infty} f$, respectively. In particular, if $f \in \mathcal{L}^n$, then $\Delta_{\text{out}}f$ is log-concave and $\Delta_{\text{in}}f$ is quasi-concave.

Note that if $f = \mathbb{1}_K$ for some convex body $K \subset \mathbb{R}^n$, then $\Delta_{\text{out}} f = \mathbb{1}_{\frac{1}{2}(K-K)}$ and $\Delta_{\text{in}} f = \mathbb{1}_{K\cap(-K)}$. Moreover, it is clear that $\Delta_{\text{in}} f(x) \leqslant f(x)$ and $\Delta_{\text{in}} f(x) \leqslant \Delta_{\text{out}} f(x)$ for every $x \in \mathbb{R}^n$; for the latter inequality we choose $x_1 = x_2 = x$ and note that $\Delta_{\text{out}} f(x) \geqslant \sqrt{f(x)f(-x)} \geqslant \min\{f(x), f(-x)\}$.

We now establish the following functional version of Theorem 1.2.

Theorem 6.2. For any $f \in \mathcal{L}^n$, any $1 \leq k \leq n-1$, and any $H \in G_{n,k}$ we have

(6.2)
$$\left(\int_{H} \Delta_{\text{out}} f(x) \, dx \right)^{1/k} \leqslant C(n/k)^{2} g(n) \left(\int_{H} \Delta_{\text{in}} f(x) \, dx \right)^{1/k}$$

and

(6.3)
$$c\left(\int_{H} f(x) dx\right)^{1/k} \leqslant \left(\int_{H} \Delta_{\text{out}} f(x) dx\right)^{1/k},$$

where c > 0 and C > 1 are absolute constants.

For the proof we employ two families of convex bodies associated with each $f \in \mathcal{L}^n$. The first, introduced by K. Ball [3], is given for every p > 0 by

$$K_p(f) = \left\{ x \in \mathbb{R}^n : \int_0^\infty r^{p-1} f(rx) \, dr \geqslant \frac{f(0)}{p} \right\}.$$

From the definition it follows that the radial function of $K_n(f)$ satisfies

(6.4)
$$\varrho_{K_p(f)}(x) = \left(\frac{1}{f(0)} \int_0^\infty pr^{p-1} f(rx) \, dr\right)^{1/p} \quad \text{for } x \neq 0.$$

Moreover, for every 0 one has

(6.5)
$$\frac{\Gamma(p+1)^{1/p}}{\Gamma(q+1)^{1/q}}K_q(f) \subseteq K_p(f) \subseteq K_q(f).$$

A proof of these inclusions is given in [11, Proposition 2.5.7]. We also consider the family $\{R_p(f)\}_{p>1}$ defined by

$$R_p(f) = \{x \in \mathbb{R}^n : f(x) \geqslant e^{-(p-1)}f(0)\}.$$

We will use several relations between these two families; their proofs are provided in Subsection 6.1. Lemma 6.5 shows that

$$(6.6) c_2 K_p(f) \subseteq R_p(f) \subseteq c_1 K_p(f)$$

for all $p \ge 2$, where $c_1, c_2 > 0$ are absolute constants. Furthermore, Lemma 6.6 states that

(6.7)
$$K_p(\Delta_{\text{out}}f) \approx K_p(f)_{\text{out}} \text{ and } K_p(\Delta_{\text{in}}f) \approx K_p(f)_{\text{in}}$$

for all $p \ge 2$.

Since (6.2) is homogeneous, we may assume that $f(0) = ||f||_{\infty} = 1$. It is well known that for any $H \in G_{n,k}$,

$$\int_{H} f(x) dx = \operatorname{vol}_{k}(K_{k}(f) \cap H).$$

Indeed, integrating in polar coordinates gives

$$\operatorname{vol}_{k}(K_{k}(f) \cap H) = \int_{H} \mathbb{1}_{K_{k}(f)}(x) \, dx = \int_{S^{n-1} \cap H} \int_{0}^{\rho_{K_{k}(f)}(\xi)} r^{k-1} \, dr \, d\xi$$
$$= \frac{1}{k} \int_{S^{n-1} \cap H} \rho_{K_{k}(f)}(\xi)^{k} \, d\xi = \frac{1}{k} \int_{S^{n-1} \cap H} k \int_{0}^{\infty} f(r\xi) r^{k-1} \, dr \, d\xi$$
$$= \int_{H} f(z) \, dz.$$

Proof of Theorem 6.2. We begin with the convex body $K_k(\Delta_{\text{out}}f)$. Note that $\Delta_{\text{out}}f(0) = \|\Delta_{\text{out}}f\|_{\infty} = \|f\|_{\infty} = 1$. We have

$$\int_{H} \Delta_{\text{out}} f(x) \, dx = \text{vol}_{k}(K_{k}(\Delta_{\text{out}} f) \cap H) \leqslant \text{vol}_{k}(K_{n+1}(\Delta_{\text{out}} f) \cap H),$$

since $K_k(\Delta_{\text{out}} f) \subseteq K_{n+1}(\Delta_{\text{out}} f)$. By Lemma 6.6

$$K_{n+1}(\Delta_{\text{out}}f) \subseteq c K_{n+1}(f)_{\text{out}}$$

for some absolute constant c > 0. As $K_{n+1}(f)$ is centered, we deduce that

(6.8)
$$\operatorname{vol}_{k}(K_{n+1}(f)_{\operatorname{out}} \cap H) \leqslant \left(\frac{ng(n)}{k}\right)^{k} \operatorname{vol}_{k}(K_{n+1}(f)_{\operatorname{in}} \cap H).$$

Moreover,

$$K_{n+1}(f)_{\mathrm{in}} \subseteq \frac{cn}{k} K_k(f)_{\mathrm{in}},$$

and hence

$$\operatorname{vol}_k(K_{n+1}(f)_{\operatorname{in}} \cap H) \leqslant \left(\frac{cn}{k}\right)^k \operatorname{vol}_k(K_k(f)_{\operatorname{in}} \cap H).$$

Lemma 6.6 implies that $K_k(\Delta_{\rm in} f) \approx K_k(f)_{\rm in}$, therefore

$$\left(\operatorname{vol}_k(K_k(f)_{\operatorname{in}}\cap H)\right)^{1/k} \approx \left(\operatorname{vol}_k(K_k(\Delta_{\operatorname{in}}f)\cap H)\right)^{1/k} = \left(\int_H \Delta_{\operatorname{in}}f(x)\,dx\right)^{1/k}.$$

Combining the above estimates gives

$$\left(\int_{H} \Delta_{\text{out}} f(x) \, dx\right)^{1/k} \leqslant (n/k)^{2} g(n) \left(\int_{H} \Delta_{\text{in}} f(x) \, dx\right)^{1/k},$$

which completes the proof of (6.2).

For (6.3), observe first that

$$K_k(f|_H) \subseteq c_1(K_k(f) \cap H)$$

for some absolute constant $c_1 > 0$. Indeed,

$$K_k(f|_H) \subseteq c_2 R_k(f|_H) = c_2 \{ x \in H : f(x) \geqslant (f|_H)(0) e^{-(k-1)} \}$$

= $c_2 \{ x \in H : f(x) \geqslant e^{-(k-1)} \} = c_2 (\{ x \in \mathbb{R}^n : f(x) \geqslant e^{-(k-1)} \} \cap H)$
= $c_2 (R_k(f) \cap H) \subseteq c_1 (K_k(f) \cap H),$

by (6.6). Then, combining Lemma 6.6 with the Brunn-Minkowski inequality, we obtain

(6.9)
$$\operatorname{vol}_{k}(K_{k}(f|_{H})) \leqslant c_{1}^{k} \operatorname{vol}_{k}(K_{k}(f) \cap H) \leqslant c_{1}^{k} 2^{-k} \operatorname{vol}_{k}(K_{k}(f)_{\operatorname{out}} \cap H)$$
$$\leqslant c_{3}^{k} \operatorname{vol}_{k}(K_{k}(\Delta_{\operatorname{out}} f) \cap H) = c_{3}^{k} \int_{H} \Delta_{\operatorname{out}} f(x) \, dx.$$

Thus,

$$\int_{H} f(x) dx \leqslant c_3^k \int_{H} \Delta_{\text{out}} f(x) dx,$$

and taking kth roots completes the proof of (6.3).

Next, we establish a functional analogue of Theorem 1.1.

Theorem 6.3. For any $f \in \mathcal{L}^n$, any $1 \leq k \leq n-1$, and any $H \in G_{n,k}$ we have

(6.10)
$$\left(\int_{H} P_{H}(\Delta_{\operatorname{out}} f)(x) \, dx \right)^{1/k} \leqslant C(n/k)^{2} g(n) \left(\int_{H} P_{H}(\Delta_{\operatorname{in}} f)(x) \, dx \right)^{1/k},$$

where C > 0 is an absolute constant.

Proof. Recall that if $g: \mathbb{R}^n \to [0, \infty)$ is a nonnegative measurable function and $H \in G_{n,k}$, the orthogonal projection of g onto H is the function $P_H g: H \to [0, \infty)$ defined by

$$(P_H g)(z) = \sup\{g(y+z) : y \in H^{\perp}\}.$$

It is straightforward to verify that

$$R_p(P_H g) = P_H(R_p(g))$$
 for every $p > 1$.

Moreover, if $g = \mathbb{1}_K$ for some compact set $K \subset \mathbb{R}^n$, then $P_H g = \mathbb{1}_{P_H(K)}$.

We shall also use the fact that if $g(0) = ||g||_{\infty} = 1$, then

$$||P_H g||_1 = \int_H P_H g(x) \, dx = \int_0^1 \operatorname{vol}_k(\{x \in H : P_H g(x) \ge t\}) \, dt$$

$$= \int_1^\infty e^{-(p-1)} \operatorname{vol}_k(\{x \in H : P_H g(x) \ge e^{-(p-1)}\}) \, dp$$

$$= \int_1^\infty e^{-(p-1)} \operatorname{vol}_k(R_p(P_H g)) \, dp = \int_1^\infty e^{-(p-1)} \operatorname{vol}_k(P_H(R_p(g))) \, dp.$$

Let $f \in \mathcal{L}^n$ with $f(0) = ||f||_{\infty} = 1$. By the right-hand side inclusion of Lemma 6.5 we have

(6.11)
$$\int_{H} P_{H}(\Delta_{\text{out}}f)(x) dx = \int_{1}^{\infty} e^{-(p-1)} \text{vol}_{k}(P_{H}(R_{p}(\Delta_{\text{out}}f))) dp$$
$$\leq c_{1}^{k} \int_{1}^{\infty} e^{-(p-1)} \text{vol}_{k}(P_{H}(K_{p}(\Delta_{\text{out}}f))) dp.$$

From (6.5) we know that $K_p(\Delta_{\text{out}}f) \subseteq K_{n+1}(\Delta_{\text{out}}f)$ for all $1 \leqslant p \leqslant n+1$, and we also know that

 $K_p(\Delta_{\text{out}}f) \subseteq \frac{cp}{n+1}K_{n+1}(\Delta_{\text{out}}f)$ for all p > n+1. Therefore,

$$(6.12) \int_{H} P_{H}(\Delta_{\text{out}}f)(x) dx \leq c_{1}^{k} \left(\int_{1}^{n+1} e^{-(p-1)} \text{vol}_{k}(P_{H}(K_{n+1}(\Delta_{\text{out}}f))) dp \right)$$

$$+ \int_{n+1}^{\infty} \left(\frac{c_{2}p}{n+1} \right)^{k} e^{-(p-1)} \text{vol}_{k}(P_{H}(K_{n+1}(\Delta_{\text{out}}f))) dp \right)$$

$$= c_{1}^{k} \text{vol}_{k}(P_{H}(K_{n+1}(\Delta_{\text{out}}f))) \left(\int_{1}^{n+1} e^{-(p-1)} dp + \int_{n+1}^{\infty} \left(\frac{c_{2}p}{n+1} \right)^{k} e^{-(p-1)} dp \right)$$

$$\leq c_{1}^{k} \text{vol}_{k}(P_{H}(K_{n+1}(\Delta_{\text{out}}f))) \left(\int_{1}^{\infty} e^{-(p-1)} dp + \frac{e c_{2}^{k}}{(n+1)^{k}} \int_{0}^{\infty} p^{k} e^{-p} dp \right)$$

$$\leq c_{1}^{k} \text{vol}_{k}(P_{H}(K_{n+1}(\Delta_{\text{out}}f))) \left(1 + \frac{e c_{2}^{k}k!}{(n+1)^{k}} \right) \leq c_{3}^{k} \text{vol}_{k}(P_{H}(K_{n+1}(\Delta_{\text{out}}f))).$$

On the other hand,

(6.13)
$$\int_{H} P_{H}(\Delta_{\inf}f)(x) dx = \int_{1}^{\infty} e^{-(p-1)} \operatorname{vol}_{k}(P_{H}(R_{p}(\Delta_{\inf}f))) dp$$

$$\geq c_{4}^{k} \int_{2}^{\infty} e^{-(p-1)} \operatorname{vol}_{k}(P_{H}(K_{p}(\Delta_{\inf}f))) dp$$

$$\geq c_{4}^{k} \int_{\max\{k,2\}}^{n+1} e^{-(p-1)} \left(\frac{c_{5}k}{n+1}\right)^{k} \operatorname{vol}_{k}(P_{H}(K_{n+1}(\Delta_{\inf}f))) dp$$

$$\geq \left(\frac{c_{6}k}{n+1}\right)^{k} \operatorname{vol}_{k}(P_{H}(K_{n+1}(\Delta_{\inf}f))).$$

Since $K_{n+1}(f)$ is centered, Theorem 1.1 gives

$$\operatorname{vol}_k(P_H(K_{n+1}(\Delta_{\operatorname{out}}f)))^{1/k} \leq c_7(n/k)g(n)\operatorname{vol}_k(P_H(K_{n+1}(\Delta_{\operatorname{in}}f)))^{1/k}.$$

Combining this estimate with (6.12) and (6.13) yields

$$\int_{H} P_{H}(\Delta_{\text{out}}f)(x) dx \leqslant \left(\frac{c_{8}n\sqrt{g(n)}}{k}\right)^{2k} \int_{H} P_{H}(\Delta_{\text{in}}f)(x) dx,$$

or equivalently,

$$\left(\int_{H} P_{H}(\Delta_{\mathrm{out}}f)(x) \, dx\right)^{1/k} \leqslant c_{8}(n/k)^{2} g(n) \left(\int_{H} P_{H}(\Delta_{\mathrm{in}}f)(x) \, dx\right)^{1/k}.$$

This completes the proof.

6.1 Auxiliary lemmas

In this subsection we present variants of several technical lemmas from [22] (see also [37]).

Lemma 6.4. Let $g:[0,+\infty)\to [0,+\infty)$ be an increasing convex function with g(0)=0. For any p>1 define

$$M_p = \sup\{e^{-g(t)}t^{p-1} : t > 0\},\$$

and let $t_p > 0$ denote the unique point satisfying $M_p = e^{-g(t_p)}t_p^{p-1}$. Then,

(6.14)
$$\frac{M_p t_p}{p} \leqslant \int_0^\infty t^{p-1} e^{-g(t)} dt \leqslant c \frac{M_p t_p}{\sqrt{p-1}},$$

where c > 0 is an absolute constant. Moreover,

$$(6.15) g(2t_p) \geqslant p - 1 \geqslant g(t_p).$$

Proof. Since q is increasing, we have

$$\int_0^\infty t^{p-1}e^{-g(t)}\,dt \geqslant \int_0^{t_p} t^{p-1}e^{-g(t)}\,dt \geqslant e^{-g(t_p)}\int_0^{t_p} t^{p-1}\,dt = \frac{e^{-g(t_p)}t_p^p}{p} = \frac{M_p t_p}{p}$$

For the upper bound, set $\varphi(t) = g(t) - (p-1) \ln t$. Note that φ is convex and has a unique critical point at t_p . Since $\varphi'_-(t_p) \leq 0 \leq \varphi'_+(t_p)$, it follows that

$$g(t) \ge g(t_p) + \frac{p-1}{t_p}(t - t_p)$$
 for all $t > 0$.

Hence,

$$\begin{split} \int_0^\infty t^{p-1} e^{-g(t)} \, dt &\leqslant e^{(p-1)-g(t_p)} \int_0^\infty t^{p-1} e^{-\frac{(p-1)t}{t_p}} \, dt \\ &= e^{(p-1)-g(t_p)} \left(\frac{t_p}{p-1}\right)^p \int_0^\infty t^{p-1} e^{-t} \, dt \\ &= e^{-g(t_p)} t_p^{p-1} \frac{e^{p-1}(p-1)!}{(p-1)^{p-1}} \frac{t_p}{p-1} \approx M_p \frac{t_p}{\sqrt{p-1}}. \end{split}$$

Finally, if $0 < t < t_p$ then $g'_{+}(t) \leqslant (p-1)/t_p$, which implies

$$g(t_p) \le g(0) + \int_0^{t_p} \frac{p-1}{t_p} dt = p - 1,$$

while

$$g(2t_p) \geqslant g(t_p) + \frac{p-1}{t_p} (2t_p - t_p) \geqslant p - 1.$$

This completes the proof.

Lemma 6.5. Let $f \in \mathcal{L}^n$ with $f(0) = ||f||_{\infty} = 1$. For any $p \ge 2$ we have

$$c_1K_n(f) \subseteq R_n(f) \subseteq c_2K_n(f)$$
,

where $c_1, c_2 > 0$ are absolute constants. The right-hand side inclusion holds for all p > 1.

Proof. Fix $\xi \in S^{n-1}$ and consider the convex function $g(t) = -\ln f(t\xi)$. Let $M_p = \sup\{e^{-g(t)}t^{p-1} : t > 0\}$, and suppose that $e^{-g(t_p)}t_p^{p-1} = f(t_p)t_p^{p-1} = M_p$. Then, by Lemma 6.4,

$$\frac{M_p t_p}{p} \leqslant \int_0^\infty f(t) t^{p-1} dt \leqslant c \frac{M_p t_p}{\sqrt{p-1}}.$$

By the definition of $K_p(f)$, this implies

$$(M_p t_p)^{1/p} \leqslant \varrho_{K_p(f)}(\xi) \leqslant (M_p t_p)^{1/p} \left(\frac{cp}{\sqrt{p-1}}\right)^{1/p} \leqslant c_1 (M_p t_p)^{1/p}$$

for all $p \ge 2$, where $c_1 > 0$ is an absolute constant. The left-hand side inequality holds for all p > 1. Since $M_p t_p = f(t_p \xi) t_p^p \le t_p^p$, and from Lemma 6.4 we have $g(t_p) \le p - 1$, it follows that

$$M_p t_p = f(t_p \xi) t_p^{p-1} t_p \geqslant e^{-(p-1)} t_p^p \geqslant e^{-p} t_p^p.$$

Thus,

$$c_2 t_p \leqslant \varrho_{K_n(f)}(\xi) \leqslant c_1 t_p.$$

Moreover, since $g(t_p) \leqslant p-1 \leqslant g(2t_p)$, we also have $f(2t_p\xi) \leqslant e^{-(p-1)} \leqslant f(t_p\xi)$, implying

$$t_p \leqslant \varrho_{R_p(f)}(\xi) \leqslant 2t_p.$$

Combining these estimates yields the desired inclusion.

Lemma 6.6. Let $f \in \mathcal{L}^n$ with $f(0) = ||f||_{\infty} = 1$. For any $p \ge 2$ we have

$$K_p(\Delta_{\text{out}}f) \approx K_p(f)_{\text{out}}$$
 $K_p(\Delta_{\text{in}}f) \approx K_p(f)_{\text{in}}$.

Proof. Let $x \in K_p(\Delta_{\text{out}} f)$. By Lemma 6.5, $c_1 x \in R_p(\Delta_{\text{out}} f)$. Hence there exist $x_1, x_2 \in \mathbb{R}^n$ such that $c_1 x = \frac{1}{2}(x_1 + x_2)$ and $f(x_1)f(-x_2) \geqslant e^{-2(p-1)}$. Since $||f||_{\infty} = 1$, we obtain $f(x_1) \geqslant e^{-2(p-1)}$ and $f(-x_2) \geqslant e^{-2(p-1)}$, that is, $x_1 \in R_{2p-1}(f)$ and $x_2 \in R_{2p-1}(\overline{f})$. Applying Lemma 6.5 again gives

$$c_1 x \in \frac{1}{2} (R_{2p-1}(f) + R_{2p-1}(\overline{f})) \subseteq c_2 (K_{2p-1}(f) - K_{2p-1}(f)) \approx K_{2p-1}(f)_{\text{put}} \approx K_p(f)_{\text{out}},$$

where we also used $K_p(\overline{f}) = -K_p(f)$ and (6.5). Thus,

$$K_p(\Delta_{\text{out}} f) \subseteq c_3 K_p(f)_{\text{out}}.$$

Conversely, if $x_1, x_2 \in K_p(f)$, then $c_1x_1 \in R_p(f)$ and $-c_1x_2 \in R_p(\overline{f})$. Hence,

$$(\Delta_{\text{out}} f)(c_1(x_1 - x_2)) \geqslant \sqrt{f(c_1 x_1) f(-c_1 x_2)} \geqslant e^{-(p-1)},$$

which implies

$$x_1 - x_2 \in c_1^{-1} R_p(\Delta_{\text{out}} f) \subseteq (c_2/c_1) K_p(\Delta_{\text{out}} f).$$

Therefore,

$$K_p(f)_{\text{out}} \subseteq K_p(f) - K_p(f) \subseteq c_4 K_p(\Delta_{\text{out}} f).$$

For the second assertion, observe that

$$R_p(\Delta_{\text{in}} f) = \{x : \min\{f(x), \overline{f}(x)\} \ge e^{-(p-1)}\}$$

= $\{x : f(x) \ge e^{-(p-1)}\} \cap \{x : \overline{f}(x) \ge e^{-(p-1)}\} = R_p(f) \cap R_p(\overline{f}),$

and thus, by Lemma 6.5,

$$K_p(\Delta_{\mathrm{in}}f) \approx K_p(f) \cap K_p(\overline{f}) = K_p(f) \cap (-K_p(f)) = K_p(f)_{\mathrm{in}}.$$

Acknowledgement. The author acknowledges support by a PhD scholarship from the National Technical University of Athens.

References

- [1] S. Artstein-Avidan, A. Giannopoulos and V. D. Milman, Asymptotic Geometric Analysis, Vol. I, Mathematical Surveys and Monographs, 202. American Mathematical Society, Providence, RI, 2015. xx+451 pp.
- [2] S. Artstein-Avidan, A. Giannopoulos and V. D. Milman, Asymptotic Geometric Analysis, Vol. II, Mathematical Surveys and Monographs., 261. American Mathematical Society, Providence, RI, 2021. xxxvii+645 pp.
- [3] K. M. Ball, Logarithmically concave functions and sections of convex sets in \mathbb{R}^n , Studia Math. 88 (1988), 69–84.
- [4] W. Banaszczyk, A. E. Litvak, A. Pajor and S. J. Szarek, The flatness theorem for non-symmetric convex bodies via the local theory of Banach spaces, Math. Oper. Res. 24 (1999), no. 3, 728–750.
- [5] P. Bizeul, The slicing conjecture via small ball estimates, Preprint (https://arxiv.org/abs/2501.06854).
- [6] P. Bizeul and B. Klartag, Distances between non-symmetric convex bodies: optimal bounds up to polylog, Preprint (https://arxiv.org/abs/2510.20511).
- [7] S. G. Bobkov, A. Colesanti and I. Fragalà, Quermassintegrals of quasi-concave functions and generalized Prékopa-Peindler inequalities, Manuscr. Math. 143 (2014), no. 1-2, 131-169.
- [8] J. Bourgain, On high dimensional maximal functions associated to convex bodies, Amer. J. Math. 108 (1986), 1467-1476.
- [9] J. Bourgain, On the distribution of polynomials on high dimensional convex sets, Geometric aspects of functional analysis (1989-90), 127–137, Lecture Notes in Math., 1469, Springer, Berlin, 1991.
- [10] J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in \mathbb{R}^n , Invent. Math. 88 (1987), no. 2, 319–340.
- [11] S. Brazitikos, A. Giannopoulos, P. Valettas and B-H. Vritsiou, *Geometry of isotropic convex bodies*, Mathematical Surveys and Monographs, 196. American Mathematical Society, Providence, RI, 2014. xx+594 pp.
- [12] Y. Chen, An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture, Geom. Funct. Anal. 31 (2021), 34–61.
- [13] A. Colesanti, Functional inequalities related to the Rogers-Shephard inequality, Mathematika 53 (2006), no. 1, 81–101.
- [14] T. Figiel and N. Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33 (1979), 155–171.
- [15] M. Fradelizi, Sections of convex bodies through their centroid, Arch. Math. (Basel) 69 (1997), no. 6, 515–522.
- [16] A. Giannopoulos and E. Milman, M-estimates for isotropic convex bodies and their L_q-centroid bodies, Geometric aspects of functional analysis, 159–182, Lecture Notes in Math., 2116, Springer, Cham, 2014.
- [17] A. Giannopoulos, P. Stavrakakis, A. Tsolomitis and B-H. Vritsiou, Geometry of the L_q-centroid bodies of an isotropic log-concave measure, Trans. Amer. Math. Soc. 367 (2015), no. 7, 4569–4593.
- [18] Q. Y. Guan, A note on Bourgain's slicing problem, Preprint (https://arxiv.org/abs/2412.09075).
- [19] B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal. 16 (2006), 1274–1290.
- [20] B. Klartag, Marginals of geometric inequalities, Geometric aspects of functional analysis, 133–166, Lecture Notes in Math., 1910, Springer, Berlin, 2007.
- [21] B. Klartag and J. Lehec, Affirmative resolution of Bourgain's slicing problem using Guan's bound, Geom. Funct. Anal. (GAFA), vol. 35, (2025), 1147–1168.
- [22] B. Klartag and V. D. Milman, Geometry of log-concave functions and measures, Geom. Dedicata 112 (2005), 169–182.
- [23] D. R. Lewis, Ellipsoids defined by Banach ideal norms, Mathematika 26 (1979), 18–29.
- [24] M. Meyer and A. Pajor, On the Blaschke-Santaló inequality, Arch. Math. 55 (1990) 82–93.
- [25] E. Milman, On the mean width of isotropic convex bodies and their associated L_p-centroid bodies, Int. Math. Res. Not. IMRN (2015), no. 11, 3408–3423.
- [26] E. Milman and A. Yehudayoff, Sharp Isoperimetric Inequalities for Affine Quermassintegrals, J. Amer. Math. Soc. 36 (2023), no. 4, 1061—1101.

- [27] V. D. Milman, Inegalité de Brunn-Minkowski inverse et applications à la théorie locale des espaces normés, C.R. Acad. Sci. Paris 302 (1986), 25–28.
- [28] V. D. Milman and A. Pajor, *Isotropic position and interia ellipsoids and zonoids of the unit ball of a normed n-dimensional space*, Geometric aspects of functional analysis (1987–88), 64–104, Lecture Notes in Math., 1376, Springer, Berlin, 1989.
- [29] V. D. Milman, A. Pajor, Entropy and Asymptotic Geometry of Non-Symmetric Convex Bodies, Adv. in Math. 152 (2000), 314–335.
- [30] S. Myroshnychenko, M. Stephen and N. Zhang, Grünbaum's inequality for sections, J. Funct. Anal. 275 (2018), no. 9, 2516–2537.
- [31] G. Paouris and P. Pivovarov, Small-ball probabilities for the volume of random convex sets, Discrete Comput. Geom. 49 (2013), 601-646.
- [32] G. Pisier, Holomorphic semi-groups and the geometry of Banach spaces, Annals of Math. 115 (1982), 375–392.
- [33] G. Pisier, A new approach to several results of V. Milman, J. Reine Angew. Math. 393 (1989), 115–131.
- [34] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, 94. Cambridge University Press, Cambridge, 1989. xvi+250 pp.
- [35] C. A. Rogers and G. C. Shephard, The difference body of a convex body, Arch. Math. 8 (1957), 220–233.
- [36] C. A. Rogers and G. C. Shephard, Convex bodies associated with a given convex body, J. London Math. Soc. 33 (1958), 270–281.
- [37] M. Roysdon, Rogers-Shephard type inequalities for sections, J. Math. Anal. Appl. 487 (2020), 123958.
- [38] M. Rudelson, Sections of the difference body, Discrete Comput. Geom. 23 (2000), no. 1, 137–146.
- [39] M. Rudelson, Distances between non-symmetric convex bodies and the MM*-estimate, Positivity 4 (2000), 161–178.
- [40] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Second expanded edition. Encyclopedia of Mathematics and its Applications, 151. Cambridge University Press, Cambridge, 2014. xxii+736 pp.
- [41] J. Spingarn, An inequality for sections and projections of a convex set, Proc. Amer. Math. Soc. 118 (1993), 1219-1224.
- [42] M. Stephen and N. Zhang, Grünbaum's inequality for projections, J. Funct. Anal. 272 (2017), 2628–2640.
- [43] B.-H. Vritsiou, Regular ellipsoids and a Blaschke-Santalo-type inequality for projections of non-symmetric convex bodies, J. Funct. Anal. 286 (2024), no. 11, Article 110414.

Keywords: convex bodies, sections and projections, isotropic position, MM^* -estimate, log-concave functions. **2020 MSC:** Primary 52A23; Secondary 46B06, 52A40, 26B25.

NATALIA TZIOTZIOU: School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Department of Mathematics, Zografou Campus, GR-157 80, Athens, Greece.

 $E ext{-}mail:$ nataliatz99@gmail.com