Sections and projections of the outer and inner
regularizations of a convex body

Natalia Tziotziou

Abstract

We establish new geometric inequalities comparing the volumes of sections and projections of a
convex body, whose barycenter or Santalé point is at the origin, with those of its inner and outer
regularizations. We also provide functional extensions of these inequalities to the setting of log-concave
functions. Our approach relies on the recent optimal M-estimate of Bizeul and Klartag for isotropic
convex bodies.

1 Introduction

The purpose of this work is to establish new geometric inequalities comparing the volumes of sections and
projections of a convex body—whose barycenter or Santal6é point lies at the origin—with those of its inner
and outer regularizations. Our method highlights the role of isotropic normalization as a unifying tool
bridging symmetric and general convex bodies. These results extend naturally to the functional setting,
yielding analogous inequalities for log-concave functions that satisfy volume-type bounds similar to those for
convex bodies. A key ingredient in our approach is the recent optimal M-estimate of Bizeul and Klartag for
isotropic convex bodies, which provides the quantitative foundation for our main results.

Throughout, let K be a convex body in R with 0 € int(K). We define the outer and inner reqularizations
of K by

Koy = conv(K,—K) and K;,=KnN(—K).

Clearly, K;, € K C Koyut, and both Kot and Kj, are origin-symmetric. We shall frequently use the duality
relations

(11) (Kout)o = (Ko>in and (Kin)o = (Ko)ou‘m
which follow from the identities
(conv(AUB))°=A°NB° and (ANB)°=conv(A°U B°)

valid for convex bodies A, B with 0 € int(A N B). Here A° denotes the polar body of A.
We write bar(A) for the barycenter

1
bar(A) = VO1n<14)/AIdx

of a convex body A C R", and vrad(A) for its volume radius,

vrad(A) = <\%>Un,

where B3 denotes the Euclidean unit ball and vol,, stands for n-dimensional volume.

Our first result compares the volumes of the projections of K, and Kj, onto a k-dimensional subspace
H of R".



Theorem 1.1. Let K be a convex body in R™ with either bar(K) = 0 or bar(K°) = 0. Then, for every
1<k<n—-1and any H € Gy 1,

ng(n)

Vrad(PH(KOut)) < A

vrad( Py (Kin)),

where g(n) < C(lnn)3.

A related estimate was obtained by Vritsiou in [43] Corollary 11], who proved that if bar(K) = 0 then
5
wrad(Pyr(Kou)) < () (tn(en/k))? vrad (P (Kin)

forall 1 <k <n—1and H € G, . Theorem thus yields an estimate that is nearly linear in n/k.

Our second result concerns sections of Ky and Kj, by a k-dimensional subspace H C R".

Theorem 1.2. Let K be a convex body in R™ with either bar(K) = 0 or bar(K°) = 0. Then, for every
1<k<n—1and any H € Gy 1,

ng(n)
k

vrad(Kou N H) < vrad(Ki, N H),
where g(n) < C(Inn)3.

It is instructive to compare Theorem with an inequality due to Rudelson [38], who showed that if K
is a convex body in R", then for all 1 <k <n—1and all H € G, 1,

vrad((K — K) N H) < ¢ min{n/k, Vk} max vrad(K N (z + H)),

where ¢ > 0 is an absolute constant. Fradelizi further proved in [I5] that

1
mep vrad (K () (@ + H)) < 75 viad (K 1 (bax(K) + H) /"

Combining these results yields
nA 2
(1.2) vrad((K — K) N H) < ¢ (E) vrad(K N (bar(K) + H))

foralll1<k<n-—1and H € G, . Since Kj, C K and K — K C 2K, Theorem immediately implies
a version of ([1.2)) with improved dependence on n/k.

Combining Theorems and yields the following Blaschke—Santalé type inequality for projections
of possibly non-symmetric convex bodies.

Theorem 1.3. Let K be a convex body in R™ such that either bar(K) = 0 or bar(K°) = 0. Then, for every
1<k<n—-1and H € G, 3,
ng(n)

vrad(Py (K)) vrad(K° N H) < o

where g(n) < C(Inn)3.

We include the proof in Section [5] to highlight that the three theorems above are closely related. A
stronger version of Theorem [1.3| was proved by Vritsiou [43], who established that

cn

(1.3) vrad(Py (K)) vrad(K° N H) < -



for some absolute constant ¢ > 0. Moreover, ([1.3]) is sharp: as shown in [43], if S,, is a regular simplex of
edge length v/2 with barycenter at the origin, then the affine hull of any k of its vertices, together with the
average of the remaining n 4+ 1 — k vertices, forms a subspace Hj, € G,, ;; for which

n

vrad(Pp,, (S;)) vrad(S, N Hy) = =

For the proofs of the above theorems, we may assume without loss of generality that K (or K°) is
isotropic (see below and in Section [2| for precise definitions and background). Under this assumption,
stronger estimates can be obtained for a random subspace H € G, 1.

Theorem 1.4. Let K be an isotropic convex body in R™. Then, for any 1 < k <n—1, a random subspace
H € Gy, satisfies

(1.4) vrad(Kous N H) < v, vrad(Ki, N H),

with probability greater than 1 — e™*, where 7, < C(Inn)%. Moreover, with the same probability, one also
has

(1.5) vrad(Kous N H) < 0, vrad(Ki, N H),

where §,, < Clnn.

We also establish functional analogues of Theorems [1.2|and [1.1] for the class L™ of geometric log-concave
integrable functions. These are the centered log-concave functions f : R™ — [0, c0) satisfying f(0) = || f]co
and 0 < [ f < oo. For any f € L", define

Aout f(z) = sup{ flz)f(—22) 1z = %(xl + mg)} and A, f(z) = min{f(z), f(—x)}.

If f = 1k for some convex body K, then Ao f = ]l% k—r) and Ay f = Tgn— k). Moreover, for every
x € R™, one has A, f(z) < f(z) and Aj, f(x) < Aguef(z). The following theorem extends Theorem to
this functional setting.

Theorem 1.5. For any f € L, any 1 < k<n—1, and any H € G, ,

(1.6) (/HAoutf(x)d:c>l/k C(n/k)?g (/ A f(z dx)l/k,

and

1/k 1/k

(1.7) c (/ f(x) dx) < (/ Agut f () da:) ,
H H

where ¢ > 0 and C > 1 are absolute constants.

Given a nonnegative measurable function g : R® — [0,00) and H € G, x, the orthogonal projection of g
onto H is defined by

(Prg)(z) =sup{g(y +2) 1y € H}.
With this definition, we obtain the following functional analogue of Theorem

Theorem 1.6. For any f € L”, any 1 <k <n—1, and any H € G, 1,

(18) ( / PH(Aoutfxx)dx)l/k<c<n/k>29<n> ( / PH<Ainf><x>dx)1/k,

where C > 0 is an absolute constant.



To prove Theorems and we employ the family of K. Ball’s bodies K,(f) associated with a log-
concave function f, allowing us to transfer the problem to the setting of convex bodies and apply Theorems|L.2

and [T.1] accordingly.

The foundation of our results lies in recent advances concerning isotropic convex bodies and, in particular,
in the sharp M M*-estimate. We denote by px(z) = inf{t > 0 : € tK} the Minkowski functional of K,
and by hi(y) = max{(z,y) : « € K} its support function. The parameters

M(K) = /S () do(r) and () = /S i () do (),

n—1

where o denotes the rotationally invariant probability measure on the unit sphere S™"~!, play a central role
in the asymptotic theory of finite-dimensional normed spaces. It is well known that M (K)M*(K) > 1 for
every convex body K with 0 € int(K).

A classical result of Figiel-Tomczak-Jaegermann [I4], Lewis [23], and Pisier [32] asserts that for any
symmetric convex body K C R"™ there exists T' € GL,, such that

M(TK)M*(TK) < clnn,
where ¢ > 0 is an absolute constant. Without assuming symmetry, it is natural to consider
E(K)=inf M(TK)M*(TK),

where the infimum runs over all invertible affine transformations T of R™ satisfying 0 € int(TK). It turns
out that the isotropic position yields a sharp upper bound for E(K).

A convex body K C R™ is called isotropic if it has volume 1, its barycenter is at the origin, and there
exists a constant Lg > 0 such that

/ (x,6)>dr = L3 for all € € S" 1,
K

Every convex body K admits an isotropic affine image, unique up to orthogonal transformations (see [28]).
Using this canonical position, one defines the isotropic constant Ly, an affine invariant of K.

A central question in asymptotic convex geometry, posed by Bourgain [§], asked whether there exists an
absolute constant C' > 0 such that

L, := max{L : K isotropic convex body in R"} < C

for all n > 1. This was recently resolved affirmatively by Klartag and Lehec [21], following major progress
by Guan [18], and soon afterward an alternative proof was given by Bizeul [5].
E. Milman proved in [25] that if K is isotropic in R™, then

(1.9) M*(K) < Cv/n(lnn)?Li < eiv/n(lnn)?,

where the second inequality uses the boundedness of L,,. The dependence on n is optimal up to the loga-
rithmic term.

The dual estimate for M (K) in the isotropic position was obtained recently by Bizeul and Klartag [6],
who showed that

logn

N

(1.10) M(K) < s

Combining (1.9)) and (1.10) gives
(1.11) B(K) < c3(lnn)?



for every convex body K C R™. Since M(K)M*(K) > 1 holds universally, provides a sharp upper
bound for E(K) up to a factor of (Inn)3.

In Section [2] we review these results in more detail, and in Section [3| we collect classical geometric
inequalities relevant to our setting.

Our approach exploits these refined M- and M *-estimates to derive strong regularity estimates for
covering numbers of isotropic convex bodies. These, in turn, allow a careful comparison of sections and
projections of the inner and outer symmetrizations Kj, and K., leading directly to Theorems and
In particular, the isotropic position serves not only as a convenient normalization but also as a tool for
transferring results from the symmetric to the general, non-symmetric setting. This strategy underpins the
functional extensions presented in Theorems [I.5] and [I.6] showing that the geometric inequalities naturally
extend to the broader class of log-concave functions.

2 Notation and background

We work in R", equipped with the standard inner product (-,-). The corresponding Euclidean norm is
denoted by |- |, the Euclidean unit ball by BY, and the unit sphere by S"~!. Volume in R" is denoted by
vol,,, while w,, = vol,,(BY) stands for the volume of the Euclidean unit ball.

We denote by o the rotationally invariant probability measure on S”~! and by v the Haar measure on
O(n). The Grassmann manifold G,, j of k-dimensional subspaces of R” is equipped with the Haar probability
measure v, ;. For each integer 1 < k < n—1 and every H € G,, 1, we denote by Py the orthogonal projection
from R™ onto H, and set

By := By NH, Sg:=S""1NH.

The letters ¢, c,c1,ca,... denote absolute positive constants whose value may change from line to line.
Whenever we write a =~ b, we mean that there exist absolute constants cq,cy > 0 such that cia < b < coa.
Similarly, for convex bodies K,C C R", we write K =~ C if there exist absolute constants c¢i,cy > 0 such
that e K C C C oK.

A convez body in R™ is a compact convex subset K with nonempty interior. We say that K is symmetric
if K = —K, and centered if its barycenter bar(K) is at the origin.
The radial function of a convex body K with 0 € int(K) is

pr(z) =max{t > 0:tx € K}, z € R™\ {0},
and the support function of K is defined for y € R™ by
hi(y) = max{(z,y) : © € K}.

The radius of K is R(K) = max{|z| : z € K}, and the volume radius is

vrad(K) = <v01n(35)

The polar body K° of a convex body K with 0 € int(K) is given by
K°={zxeR":(z,y) <1lforally € K}.
An absolutely continuous Borel probability measure p on R" is called log-concave if its density f, is of
the form f, = e™% with ¢ : R - RU {400} convex. The uniform probability measure on any convex body

is log-concave.
The barycenter of y is

bar(u) := /Rn xfu(x)de,

5



and its isotropic constant is the affine-invariant quantity

(Ml NF oot
.) L= () deco

Cov(y) = /x@zdu(az) - </zdu(az)) ® (/:cdu(m)

is the covariance matrix of u. A log-concave probability measure p on R™ is called isotropic if bar(u) = 0 and
Cov(u) = I,. A convex body K of volume 1 is isotropic if and only if the log-concave probability measure
with density L1k, is isotropic.

where

K. Ball [3] showed that, in every dimension n,

sup L, < Csup Lk,
“w K

where the suprema are taken over all log-concave probability measures p and all convex bodies K C R™,
respectively. Around 1985-86 (published in 1990), Bourgain [J] obtained the bound L,, < c¢n'/4Inn, later
improved by Klartag [19] to L, < cn'/%. These estimates remained the best known until 2020. In a
breakthrough, Chen [I2] proved that for every e > 0, one has L, < n° for all sufficiently large n. This
development initiated a series of works culminating in the final affirmative solution of Bourgain’s problem
by Klartag and Lehec [21], following an important contribution by Guan [I8]. Shortly thereafter, Bizeul [5]
provided another proof of the conjecture.

The study of F(K) in the non-symmetric case began with the work of Banaszczyk, Litvak, Pajor, and
Szarek [4], who showed that if K is a convex body in R™ in John’s position (i.e., its maximal-volume inscribed
ellipsoid is the Euclidean unit ball), then

M*(K) < ev/nVInn.

Since K 2 BY in John’s position, we also have the trivial bound M(K) < M(B%) = 1, hence E(K) <
¢v/nVInn. Rudelson [39] improved this to

E(K) < en'3(nn)®

for some absolute constant b > 0. This remained the best known bound until the recent work of Bizeul and
Klartag.

After earlier estimates of order n3/* Ly for M*(K) in the isotropic position (see [II, Chapter 9]), E. Mil-
man [25] proved that if K is a symmetric isotropic convex body in R", then

M*(K) < e1v/n(lnn)? L,

and the same bound extends to non-symmetric isotropic convex bodies. For the dual problem, estimating
M(K) in isotropic position, the first nontrivial results appeared in [I7]. The best known bound in the
symmetric case, due to Giannopoulos and E. Milman [16], was

C(nlnn)'/?

—
while in the non-symmetric case, Vritsiou [43] obtained the estimate
en®/11 (In n)/22
vn

For background on isotropic convex bodies and log-concave measures, we refer to [I1]; for general infor-
mation on the local theory of normed spaces, see [1, 2] [34].

M(K) <

M(K) <



3 Geometric inequalities

In this section, we review several classical geometric inequalities that will be used in the sequel, beginning
with the Blaschke—Santal6 inequality.

Let K be a convex body in R™. The function vol, (K)vol,((K — z)°), defined on int(K), is strictly
convex and attains a unique minimum at the Santald point s(K) of K. The Blaschke-Santalé inequality
asserts that

vol,, (K) vol,, (K — s(K))°) < w?.
Moreover, if bar(K) = 0, then s(K°) = 0. Since (K°)° = K, we obtain
vol,, (K) vol,,(K°) = vol,, ((K° — s(K°))°) vol,, (K°) < w?.
Hence we have the following classical result.

Theorem 3.1 (Blaschke—Santald). Let K be a convex body in R™ such that either bar(K) =0 or s(K) = 0.
Then,
vol,, (K) vol, (K°) < w?.

A refinement of this inequality was given by Meyer and Pajor [24]. For A € (0, 1), a hyperplane
F={zeR":{(x,ur) =ar},
where up € R™\ {0} and ap € R, is said to be A-separating for K if
vol,({z € K : (z,up) > ar}) = Avol,(K).
Note that a A-separating hyperplane necessarily intersects the interior of K.

Theorem 3.2 (Meyer—Pajor). Let K be a convezx body in R™ and F a A-separating hyperplane for K, where
A € (0,1). Then, there exists z € int(K) N F such that

2
Wn

vol, (K) vol, (K — 2)°) < N
Moreover, z is the unique point in int(K) N F such that
bar((K — 2)°) € {tup : t € R}.
In the opposite direction, the Bourgain—-Milman inequality [10] provides a universal lower bound.
Theorem 3.3 (Bourgain—V. Milman). Let K be a convex body in R™ with 0 € int(K). Then,
vol,, (K) vol,, (K°) = vol, (K)vol, (K — s(K))°) > ¢"w?,
where ¢ > 0 is an absolute constant.

Classical results of Rogers—Shephard [35] and V. Milman-Pajor [29] compare the volume of a convex
body with those of its inner and outer regularizations.

Theorem 3.4 (Rogers—Shephard / V. Milman—Pajor). Let K be a convex body in R™. Then,
2
2™vol,, (K) < vol, (K — K) < ( ") vol,, (K) < 4"vol, (K).
n

Moreover, if 0 € int(K), then
vol, (Kout) = voly, (conv(K, —K)) < 2"vol, (K),

and if bar(K) = 0, then
vol, (Kin) = vol, (K N (=K)) = 27 "vol, (K).



If s(K) =0, then bar(K°) = 0, and since (Kin)°® = (K°)out, the Bourgain-Milman inequality yields
2"vol,, (Kin) vol, (K°) = vol, (Kin) vol, ((K®)eut) = c"w? > ¢"vol,, (K ) vol, (K°),

and hence
vol, (Kin) = (¢/2)"vol,, (K),

an observation due to Rudelson [39].
The following inequality estimates the product of the volumes of a projection of a convex body and the
corresponding orthogonal section (see [36] for the first and [41] for the second claim).

Theorem 3.5 (Rogers—Shephard / Spingarn). Let K be a convex body in R™ with 0 € int(K). Then, for
everyl <k<n—1and any H € G, 1,
voly, (P (K)) vol,_ (K N HY) < (Z) vol, (K).
If bar(K) = 0, then also
vol, (K) < vol(Pg (K))vol, (K N H?L).

Rudelson’s inequality [38] compares the volume of a central section of K — K with that of the maximal
corresponding section of K.

Theorem 3.6 (Rudelson). Let K be a convex body in R™. Then, for every 1 <k <n—1 and any H € G, 1,
volp (K — K)n H)Y* < cmin{\/E, %} max voly (K N (z + H))'*.
xeR™

An inequality of Fradelizi [I5] compares the maximal section of a convex body with the section passing
through its barycenter.

Theorem 3.7 (Fradelizi). Let K be a convex body in R™. Then, for every 1 <k <n—1 and any H € G, i,

1
max voly (K M (z + H)/* < 02 vol, (K N (bar(K) + H))*.
rER™ k+1
Combining these two results yields
1/k n 2 1/k
(3.1) volp (K — K) N H)Y* < ¢ (%) volg (K N (bar(K) + H))

for every 1 <k <n—1and H € G, ;. A direct proof of (3.1]) with improved dependence on n/k will be

given in Theorem [I.2] (Section [5).

Let K be a convex body in R” with 0 € int(K). Recall that for 1 < k < n—1 and H € G, x, the
projection Py (K) is the polar body of K° N H in H. If K is symmetric, then Py (K) and K°N H are polar
symmetric convex bodies in H, so that

vrad(Py (K))vrad(K°NH) < 1
by the Blaschke—-Santal$ inequality. Vritsiou [43] extended this to non-symmetric convex bodies.
Theorem 3.8 (Vritsiou). Let K be a convex body in R™ such that either bar(K) = 0 or s(K) = 0. Then,
foreveryl <k<n—1and any H € Gy, ,

vrad(Py (K))vrad(K°NH) < ¢ %,

where ¢ > 0 is an absolute constant.

The proof of Theorem combines the Meyer—Pajor refinement of the Blaschke—Santal6 inequality
(Theorem with Griinbaum-type inequalities due to Stephen, Zhang, and Myroshnychenko [42] [30].



4 Covering numbers of isotropic convex bodies

Recall that if A and B are two convex bodies in R"™, the covering number N (A, B) of A by B is the least
integer N for which there exist N translates of B whose union covers A:

N
N(A,B):min{NEN:Ele,...,xNER"suchthat ij+B}

The Sudakov and dual Sudakov inequalities (see [I, Chapter 4]) state that if K is a symmetric convex
body in R™, then for every t > 0,

N(K,tBY) < exp(enM*(K)?/t?) and N(BY,tK) < exp(enM(K)?/t?),
where ¢ > 0 is an absolute constant.

V. Milman proved in [27] that there exists an absolute constant 5 > 0 such that every centered convex body
A C R admits a linear image A satisfying vol,,(A4) = vol,,(B}) and

(4.1) max{N(4, By), N(By, A), N(A°, B}), N(By, A°) } < exp(6n).

A convex body A satisfying this estimate is said to be in M -position with constant f.
Pisier [33] proposed a different approach, allowing one to construct an entire family of M-positions and
to obtain more precise quantitative information on the corresponding covering numbers.

Theorem 4.1 (Pisier). For every 0 < o < 2 and every symmetric convex body A C R", there exists a linear
image A of A such that

max{N(A,th), N(BE,tA), N(A°, tB), N(B;L,tflo)} < exp(c(a)n/t®)

for every t > c(a)t/<, where ¢(a) depends only on o and satisfies c(a) = O((2 — a)~*/?) as a — 2.

A convex body A satisfying the estimate in Theorem [{.1] is said to be in a-regular M-position with
constant ¢(«).

The following proposition, a simple consequence of the M™* estimate and the M estimate , shows
—1/n,

bl

that every isotropic convex body K C R™ is (almost) in 2-regular M p051t10n Below, we set r, = wp,
note that r,, =~ /n.

Proposition 4.2. Let K be an isotropic convex body in R™. Then, for every t > 0,

n n (o) ’Y’I’L
(4.2) max{ N(K, tro B}), N(Bj, truK°) } < exp( 23" 2 ),
n o n 5271
(4.3) max{ N(ra By 1K), N(raK°,tB3) } < exp(%57),

where v, < c1(Inn)? and 5, < colnn.
Proof. Let Kj, and Ky, denote the inner and outer regularizations of K. Observe that

(4.4 M(Kun) = M ((K)ous) < M*(K° = K°) = 20* (K°) = 2M(K),
(45) M*(Kout)gM*(KfK)ZQM*(K)

Since Kiy C K C Koy, it is clear that M (Kou) < M(K) and M*(Ki,) < M*(K).



The Sudakov inequality, combined with , gives

(4.6) N(K,tr,BY) < N(Kou, traBY) < exp(enM* (Kou)?/(rat)?)
< exp(denM*(K)?/(rpt)?) < exp(y2n/t?).

Similarly, using we obtain

(4.7) N(roK°,tB3) < N(rp(Kin)°, tBy) < exp(cnri M* ((Kin)°)?/t%)
= exp(cnri M(Kiy)? /t?) < exp(denri M(K)?/t?) < exp(dan/t?).

Applying the dual Sudakov inequality and yields

(4.8) N(r,BY,tK) < N(r,BY,tKy,) < exp(enri M (Kiy,)? /t2)
< exp(denr: M(K)?/t?) < exp(dan/t?),
and, using , we similarly have
(4.9) N(BY, tr,K°) < N(BY,trn(Kou)®) < exp(enM ((Kou)°)?/ (rnt)?)
< exp(enM*(Kout)?/(rnt)?) = exp(4enM*(K)?/(rnt)?) < exp(yon/t?).
Combining 7 completes the proof. O

5 Projections and sections of the outer and inner regularizations

In this section we compare the volumes of sections and projections of a convex body with those of its inner
and outer regularizations. We begin with the proof of Theorem

Proof of Theorem[I.1 Assume first that bar(K) = 0. Since T(Kin) = (TK )in and T(Kout) = (TK)out for
every T € GL,, we may assume that K is isotropic. From (4.6) we know that N; = N(Kout,tr,BY) <
exp(y2n/t?) for every t > 0. Thus, there exist z1,...,zy, such that

N

Kout g U(xz + t'f‘nt)
=1

Projecting onto a k-dimensional subspace H, we obtain

Ny
PH(Kout) g U(PH(Il) + tT‘nBH),

i=1

where By denotes the Euclidean unit ball in H. Hence,
voly, (P (Kout)) < Ny volg(tr,Br) < exp(v2n/t?)(trn)*w
Choosing t = yn\/n/ik' minimizes the right-hand side and gives
voli (Prr (Kout)) < €Xrfnk (n/k)* 2wy,
and therefore,

(5.1) vrad(Pr (Kout)) < erpynyv/n/k.

On the other hand, (4.8) shows that N, = N(r,BY, tKi,) < exp(62n/t?) for every t > 0. Proceeding in
the same way, we obtain

voly, (1, Brr) < N voly,(tPr (Kin)) < exp(62n/t3)t*voly( Py (Kiy)).

10



Choosing t = d,\/n/k, we get
rEvoly(By) < ekéﬁ(n/k)kmvolk(PH(Kin)),

and hence,

(5.2) o < €0p/n/k vrad(Py(Kiy)).
Combining and , we find that

(5.3) vrad(Py (Kout)) < 26,70 (n/k)vrad( Py (Kiy)).

The first claim of the theorem follows with g(n) = €28,v, < c(lnn)3.
Next, assume that bar(K°) = 0, in which case s(K) = 0. We may assume that K° is isotropic. Replacing

K by K° in and using , we get
N (rpKous, tBY) < exp(62n/t?).
Applying the argument of the first part of the proof, we obtain
(5.4) ravrad(Py (Kow)) < €6ny/n/k-.
Replacing K by K° in and using again (L.I), we find that N(BY,tr,Ki,) < exp(y2n/t?), and by the

same reasoning,

(5.5) 1 < erpyny/n/kvrad(Py (Kin)).

Combining and , we obtain

(5.6) vrad( Py (Kout)) < €20, (n/k)vrad( Py (Kin)),

and the second claim of the theorem follows with g(n) = 26,7, < c(Inn)3. O

Theorem [T.2] follows easily from Theorem [T.1

Proof of Theorem[1.2] Since Py ((K°)in) is symmetric and its polar body in H is Koy N H, the Blaschke—
Santald inequality implies

(5.7) vrad(Kous N H) vrad(Py ((K°)in)) < 1.

Similarly, since Py ((K°)out) is symmetric and its polar body in H is Ki,NH, the Bourgain—Milman inequality
gives

(5.8) c1 < vrad(Kin N H) vrad( Py ((K°)out))-
Assuming that either bar(K) = 0 or bar(K°) = 0, we may apply Theorem to K° and obtain

vrad (P ((K®)out)) < c2 ”gli”) vrad(Py ((K°)im)).

Combining this estimate with (5.7) and (5.8)), we get
¢y < vrad(Kiy, N H) vrad(Py ((K°)out))

< ”glin) vrad (K, N H) vrad(Py ((K°)in))
< e "g]i”) vrad(Kin N H) vrad(Kow N H) L
Hence,
vrad(Kou N H) < ¢3 ng]in) vrad(K;, N H),
where ¢3 = ¢3/c1. O
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We now turn to the proof of Theorem

Proof of Theorem[1.3] We have vrad(Py(K)) < vrad(Py(Kou)), and by the Blaschke-Santalé inequality
applied to Py (Kj,) in H,

vrad(K° N H) < vrad((Ki,)° N H) < vrad(Pg(Kin)) ™!

Therefore,
vrad(Py (Kout)) . ng(n)
vrad(Py (Ki)) k'’

in view of Theorem [L.1] O

vrad(Py (K)) vrad(K° N H) <

In the case where K is isotropic, we can show that for a random k-dimensional subspace of R™, the
volume radii of the corresponding sections or projections of K,y and Kj, are of the same order, up to a
logarithmic factor in the dimension.

Proof of Theorem[I.4] Let K be an isotropic convex body in R". Paouris and Pivovarov [3I] proved that
for every symmetric convex body C C R™ and every 1 <k <n—1,

(5.9) ®,(C) := vol, (C)~ /" (/G volg(Pg (C))™" dl/mk.(H)) h > Cl\/Z’

where ¢; > 0 is an absolute constant. Moreover, E. Milman and Yehudayoff [26] established the sharp lower
bound @4 (BY) < @, (C), together with a characterization of equality: ellipsoids are the only local minimizers
with respect to the Hausdorff metric, for all 1 <k <n — 1.

From and Markov’s inequality, it follows that

vrad(Py(C)) = ¢t~ y/nvol, (C)/"

with probability greater than 1 — ¢t~*". Applying this result to Kj, and taking into account the inequality
of V. Milman and Pajor, which ensures that vol,, (/,)*™ > vol, (K)Y/™ = 1, we obtain

(5.10) vrad(Py (Kiy)) = cav/n

with probability greater than 1 — e™*", where ¢ > 0 is an absolute constant.
Next, we use a well-known consequence of the Aleksandrov inequalities (see [40, Section 6.4]). For every
convex body C' C R™, the sequence

1/k
Qk(C) = (1/6; Volk(PH(C))dl/mk(H))

Wi
is decreasing in k. In particular, for any 1 < k < n — 1,

Qr(C) < Q1(0),

which can be written equivalently as

1/k
<1 / volk(PH(C))dun,k(H)> < M*(C),
Gn,k

Wi

Applying this to Koy and using that M*(Kyy) < 2M*(K) < ¢y/n(lnn)? by E. Milman’s inequality, we
obtain

(5.11) vrad(Pr (Kout)) < YV

12



with probability greater than 1 —e~2% where v,, < c3(Inn)2. Combining (5.10) and (5.11]), we conclude that
vrad(Py (Kout)) < Y vrad(Py (Kin))

with probability greater than 1 — e,
We now turn to the proof of (L.5)). Repeating the above reasoning for the polar body K°, we obtain

(5.12) vrad(Py ((K°®)in)) = cav/nvol, (K°)Y/"
and
(5.13) vrad(Pp(K°)ou)) < 2M*(K°) = 2M(K) < jﬁ

for a random H € G, j, where 6,, < ¢ Inn. It follows that
vrad(Py ((K°)out)) < 0 vrad(Py ((K°)in))

with probability greater than 1 — e,
Finally, repeating the proof of Theorem[I.2] and using the Blaschke—Santal$ inequality for the symmetric
convex bodies K, NH and K;,NH (whose polars are Py ((K°)in) and Py ((K°)out), respectively), we obtain

vrad(Kous N H) < 0, vrad(Ki, N H)

for every H € G,, i, satisfying (5.12]) and (5.13)). O

6 Functional inequalities

We consider the class L™ of geometric log-concave integrable functions: these are the centered log-concave
functions f : R™ — RT that satisfy f(0) = ||f]l and 0 < [f < co. We say that f is centered if
Jaf(z)dz =0. For any f,g € L™ we define

(f *g)(x) = sup{f(z1)g(x2) : 21,22 € R", & =1 + 22}

Roysdon [37] obtained a functional version of Rudelson’s theorem on the sections of the difference body. He
considered f(z) = f(—x) and defined Agf = f « f, i.e.

(Do f)(x) = sup{f(z1)f(22) : 21,22 € R", @ = 21 — 22}

Note that if f = 1 for some convex body K C R"™, then Agf = 1x_g. Thus, Agf may be viewed as a
functional analogue of the difference body. With this definition, Roysdon’s inequality reads as follows.

Theorem 6.1 (Roysdon). For any f € L™, any 1 <k <n—1, and any H € G, we have

(6.1) (/H Aof(x) daz)l/k < cmax{ﬁ,%} sup (1 f(z) d:c)l/k,

yER™ Hf‘y+HHoo y+H

where f|y+u denotes the restriction of f to y+ H. Moreover,

c(/H (@) dx)l/k < (/HAOf(x) dm)l/k,

where ¢ > 0 and C > 1 are absolute constants.
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For any f € L™ we define the functions Aqy f and Ay, f by

Aous f(z) = sup{ flx)f(—z2) :x = %(:El + xg)} , Aip f(z) = min{ f(x), f(—x)}.

This definition is consistent with the notion of the a-difference function A, f of a function f, introduced by
Colesanti in [13] for any f : R™ — [0, 00] and any a € [—00,0]. It is shown in [I3] that if f is a-concave, then
A, f is also a-concave. Difference functions have been studied as functional analogues of the difference body
in a number of works; see, e.g., [I3| 20, [7]. One can easily check that the functions Ayt f and Ay, f considered
here coincide with Agf and A_. f, respectively. In particular, if f € L™, then Ay f is log-concave and
A, f is quasi-concave.

Note that if f = 1 for some convex body K C R", then Aouf = ]l%(K_K) and Apf = Tgn(—k)-
Moreover, it is clear that A, f(2) < f(z) and Ay, f(2) < Aoue f () for every x € R™; for the latter inequality
we choose 11 = 2 = x and note that Ague f(z) = +/f(2) f(—2) = min{f(z), f(—x)}.

We now establish the following functional version of Theorem (1.2

Theorem 6.2. For any f € L™, any 1 <k <n—1, and any H € G, ;, we have
1/k

(62) (f Aoutﬂx)dw)l/k<c<n/k>2g<n> (/ Susa)ar)

and

(6.3) c ( /H F(x) dx)l/k < ( /H Aoe () d:c)l/k,

where ¢ > 0 and C > 1 are absolute constants.

For the proof we employ two families of convex bodies associated with each f € L£™. The first, introduced
by K. Ball [3], is given for every p > 0 by

K,(f) = {xER" : /Ooorf’—lf(m)dr> ffno)}.

From the definition it follows that the radial function of K, (f) satisfies

1 o] 1/1’
(6.4) ok, (f)(T) = (f(())/o pr?= L f(rx) dr) for x #£ 0.
Moreover, for every 0 < p < q one has
r 1/p
(6:5) T Klh) € K l) € Ko,

A proof of these inclusions is given in [I1} Proposition 2.5.7]. We also consider the family {R,(f)},>1 defined
by

Ry(f) ={z € R": f(z) 2 eV f(0)}.
We will use several relations between these two families; their proofs are provided in Subsection
Lemma [6.5] shows that

(6.6) cal,(f) C Rp(f) C 1 Kp(f)
for all p > 2, where c¢1,co > 0 are absolute constants. Furthermore, Lemma states that
(6.7) Kp(Aourf) = Kp(flour and  Ky(Ainf) =~ Kp(f)in
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for all p > 2

Since (6.2)) is homogencous, we may assume that f(0) = ||f|lcc = 1. It is well known that for any
H e Gn,lm

/ f(z) dx = voli (Kx(f) N H).
H

Indeed, integrating in polar coordinates gives

PE () (&)
VOlk(Kk(f)ﬂH):/ Tk, (p) / / rF=Ldr de
H n—1NH
)"

1 1 *
- prn(©@de =1 [k [T g drag

/f?”

Proof of Theorem[6.2l We begin with the convex body Kj(Aoutf). Note that Aguf(0) = [|[Aoutf]lee =
[[flloc = 1. We have

/H Aout f(z) dr = volg (K (Aout f) N H) < volg (Kpy1(Aous f) N H),

since Ki(Aoutf) C Knt1(Aoutf). By Lemma
KnJrl(Aoutf) g CKnJrl(f)out

for some absolute constant ¢ > 0. As K,,11(f) is centered, we deduce that

k
ng(n
(68) VOlk( n+1(f)0ut N H) < <gk(:)> VOlk (Kn—i-l(f)in N H)
Moreover,
cn
Kn1(f)in € - K (f)ins
and hence

en\k
VOlk(Kn+1(f)in n H) < (?) VOlk(Kk(f)in M H)
Lemma implies that K (A f) ~ Ki(f)in, therefore

/k
(vole (K (f)in NH)) ¥ & (voli(Ki(Ain f) M H))* = (/ Awnf(z dx> .

Combining the above estimates gives

(/H Aout f () dm)l/k < (n/k)2g(n) (/H Anf(2) dx)l/k,

which completes the proof of (6.2)).

For (6.3)), observe first that
Ky (fla) € er(Ki(f) N H)

for some absolute constant ¢; > 0. Indeed,
Ky (fla) € c2Re(flm) = cofw € H : f(x) = (flm)(0)e” "7V}
=cf{reH: f(x) > e_(k_l)} = 02({1‘ eR™: f(z) > e_(k_l)} N H)
= c2(Rr(f) N H) € er(Kp(f) N H),
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by . Then, combining Lemma with the Brunn—Minkowski inequality, we obtain
(6.9) volg (K (flr)) < civoly (Ki(f) N H) < § 27 voly, (Ki(f)ow N H)

< cgvolk(Kk(Aoutf) NH)= c§/ Agut f () da.
H

Thus,
[ 1@ s < [ Bof@)a,
H H
and taking kth roots completes the proof of (6.3)). O

Next, we establish a functional analogue of Theorem [1.1
Theorem 6.3. For any f € L", any 1 <k <n—1, and any H € G, 1, we have
1/k 1/k
(6.10) </ Py (Aout f)(z) dac) < C(n/k)?g(n) </ Py (A f)(z) dm) ,
H H
where C' > 0 is an absolute constant.

Proof. Recall that if g : R™ — [0,00) is a nonnegative measurable function and H € G, , the orthogonal
projection of g onto H is the function Pgg: H — [0,00) defined by

(Prg)(z) =sup{g(y +2) 1y € H™}.
It is straightforward to verify that
R, (Prg) = Pa(Ry(g)) for every p > 1.

Moreover, if g = 1 for some compact set K C R", then Pyg = 1p, (k).
We shall also use the fact that if g(0) = ||g|lcc = 1, then

I1Pugll = /HPHg(x) dx = /0 voly({x € H : Ppg(z) > t})dt

= / e~ P Vvoly({x € H: Pyg(x) > e PV} dp
1

_ / e P=Vyol, (R, (Prrg)) dp = / e Vyoly (Py (Ry(9))) dp.
1 1

Let f € £ with f(0) = || f||c = 1. By the right-hand side inclusion of Lemma [6.5] we have

(6.11) /H P (Aoue f)(z) do = /1 - e~ P Dvoly (P (Ry(Aout f))) dp

N

\c’f/ e_(p_l)volk(PH(KI,(Aoutf)))dp.
1

From (6.5) we know that K,(Aouf) € Kpt1(Aowf) for all 1 < p < n+ 1, and we also know that
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Kp(Aout f) C nc—flKnH(Aoutf) for all p > n + 1. Therefore,
n+1
(6.12) / Prr(Dout f)(x) da < cf ( / e~ P voly (Py (Kpni1 (Aowe f))) dp
H 1

i /:o (C2p> ' e~ P Vvl (P (Kni1(Aout f))) dp)

+1\n+t1

n+1 o) c k
= ¢ voly Py (K (Bon ) ( [ as [T () g
n+

oo k oo
< e} voly (P (Kpt1 (Aout f))) </ e~V dp + 2 - / pke? dp)
1 (n+1)F Jg

eckk!

< e voly (Pt (K1 (Bows ) (1 » ks

) < C§ Volk(PH(Kn-t,-l(Aoutf)))'

On the other hand,
(6.13) /HPH(Ainf)(x) dﬂﬁ:/lm ~ P Dvoly, (P (Ry(Ainf))) dp
>cfj/ e~ P Dvoly (P (Ky(Ainf))) dp

2

& ’I’L+1 (p 1) C5k k
2 o n+l 1 P n in
C4/max{k,2}6 <n+1> voly (P (Knt1(Ainf))) dp
Cgk k
> (357) b P @)

Since K,,41(f) is centered, Theorem [L.1] gives

voly,(Prr (K1 (Bou /)™ < er(n/k)g(n)voly (P (K1 (Ainf))) "
Combining this estimate with (6.12]) and (6.13)) yields

2k
[ Pu@as)@)ds < (8” ng(”)> [ Pu@nn@ s
H H

or equivalently,

(/ pHmoutf)(x)dx)”k es(o/ (o) ([ Pa(onf)a >dx)1/k.

This completes the proof. O

6.1 Auxiliary lemmas
In this subsection we present variants of several technical lemmas from [22] (see also [37]).

Lemma 6.4. Let g : [0,+00) — [0,+00) be an increasing convex function with g(0) = 0. For any p > 1
define
M, = sup{e 9W~1 . ¢ > 0},

and let t, > 0 denote the unique point satisfying M, = e_g(tp)tg_l. Then,

(6.14) @ < / tpfle*g(t) dt <c Mptp 7
D 0 vp—1
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where ¢ > 0 is an absolute constant. Moreover,

(6.15) g(2ty) Z2p—12g(tp).

Proof. Since ¢ is increasing, we have

00 t t —g(tp)¢p
/ P19 gp > / Y190 gt 5 o-9lts) / Tptgp = O Mty
0 0 0 p p

For the upper bound, set ¢(t) = g(¢t) — (p — 1) Int. Note that ¢ is convex and has a unique critical point
at t,. Since ¢’ (t,) <0 < ¢/, (t,), it follows that

p—1

P

g(t) = g(tp,) + (t—tp) forallt>0.

Hence,

o) oo (p—1)t
/ tpflefg(t) dt < 6(1’*1)*9(%)/ e % dt
0 0

p o]
_ Dty ( ty > / Lt g
p—1 0

o—9(tp) pflepil(P_l)! tp ~ M tp )
Poo(p-Drtp—1 0 T Pp—1

Finally, if 0 <t < t, then ¢, (t) < (p — 1)/t,, which implies

thp 1

dt=p—1,

ﬂm<wm+/

0 P

while

p—1
P

This completes the proof. O

9(2ty) = g(tp) + (2t, —t,) > p—1.

Lemma 6.5. Let f € L™ with f(0) = ||f|lcc = 1. For any p > 2 we have
aKp(f) C Ry(f) C e2Kp(f),
where c1,co > 0 are absolute constants. The right-hand side inclusion holds for all p > 1.

Proof. Fix ¢ € S"~! and consider the convex function g(t) = —In f(t£). Let M, = sup{e 9~1 : ¢ > 0},
and suppose that e=9(t»)tp=1 = f(t,)t0=1 = M,,. Then, by Lemma

Mty

Mt >
Aiﬁs/.mw*ﬁ<c -
p 0 p—1

By the definition of K,(f), this implies

1/p
cp
(Mptp)l/p < QKp(f) (5) < (Mptp)l/p (p—l) < Cl(Mptp)l/p

for all p > 2, where ¢; > 0 is an absolute constant. The left-hand side inequality holds for all p > 1.
Since Myt, = f(t,§)th < b, and from Lemma (6.4 we have g(t,) < p — 1, it follows that

Myt, = f(tpg)tg_ltp > 6_(p_1)t£ > e Pb.
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Thus,
Cgtp < QKp(f)(g) < Cltp.

Moreover, since g(t,) < p — 1 < g(2t,), we also have f(2t,¢) < e~ ®=1 < f(t,£), implying
tp < or,(1)(§) < 2t
Combining these estimates yields the desired inclusion. O
Lemma 6.6. Let f € L™ with f(0) = ||f|lcc = 1. For any p > 2 we have
Kp(Dout f) = Kp(f)out Kp(Ainf) = Kp(f)in-

Proof. Let x € K,(Aoutf). By Lemma a1z € Ry(Aoutf). Hence there exist z1,22 € R™ such that
a1 = 3(zy + 22) and f(21)f(—z2) = e 2PV, Since | f|lo = 1, we obtain f(z1) > e 2*~Y and f(—a3) >
e=2(P=V) that is, 21 € Rap_1(f) and @2 € Rop_1(f). Applying Lemma again gives

GRS %(RQP—l(f) + Rzp—l(?)) C e (K2;D—1(f) - K?p—l(f)) ~ K2p—1(f)put ~ Kp(f)out7
where we also used K,(f) = —K,(f) and (6.5). Thus,

KP(AOUtf) g C3Kp(f)out-

Conversely, if z1, 72 € K,(f), then c1z1 € R,(f) and —c122 € R,(f). Hence,

(Aouwf)(e1(z1 — x2)) = /Flerzr) fF(—craz) = e P71,

which implies
T1 — T2 S CflRp(Aoutf) g (CQ/Cl)Kp(Aoutf)'

Therefore,
Kp(flows € Kp(f) — Kp(f) C caKp(Dout f)-

For the second assertion, observe that

Ry(Ainf) = {z : min{f(z), f(z)} > e~ PV}
={z: @) = 0 e T @) 2 eV = Ry() 0 By (),

and thus, by Lemma
Kp(Ainf) = Kp(f) N Kp(f) = Kp(f) N (=Kp(f)) = Kp(f)in-
O
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