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Abstract

We present a very general chaining method which allows one to con-
trol the supremum of the empirical process suph∈H |N−1

∑N
i=1 h

2(Xi)−
Eh2| in rather general situations. We use this method to establish two
main results. First, a quantitative (non asymptotic) version of the
classical Bai-Yin Theorem on the singular values of a random matrix
with i.i.d entries that have heavy tails, and second, a sharp estimate
on the quadratic empirical process when H = {

〈
t, ·
〉

: t ∈ T}, T ⊂ Rn

and µ is an isotropic, unconditional, log-concave measure.

1 Introduction

The main goal of this article is to obtain a non-asymptotic version of the
Bai-Yin Theorem [5] on the largest and smallest singular values of certain
random matrices. The Bai-Yin theorem asserts the following:

Theorem 1.1 Let A = AN,n be an N ×n random matrix with independent
entries, distributed according to a random variable ξ, for which

Eξ = 0, Eξ2 = 1 Eξ4 <∞.
1Department of Mathematics, Technion, I.I.T, Haifa 32000, Israel.
2Department of Mathematics, Texas A&M University, College Station, TX 77843-3368,

U.S.A.
3Part of this research was supported by the Centre for Mathematics and its Applica-

tions, The Australian National University, Canberra, ACT 0200, Australia. Additional
support was given by an Australian Research Council Discovery grant DP0559465, the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-2013) under ERC grant
agreement 203134, and by the Israel Science Foundation grant 900/10.

4Email: shahar@tx.technion.ac.il
5Email: grigoris@math.tamu.edu

1



If N,n→∞ and the aspect ratio n/N converges to β ∈ (0, 1], then

1√
N
smin(A)→ 1−

√
β,

1√
N
smax(A)→ 1 +

√
β,

almost surely, where smax and smin denote the largest and smallest singular
value of A.

Also, without the fourth moment assumption, smax(A)/
√
N is almost

surely unbounded.

The main result of this article is a quantitative version of the Bai-Yin The-
orem.

Quantitative Bai-Yin Theorem. For every q > 4 and L > 0, there
exist constants c1, c2, c3 and c4 that depend only on q and L for which
the following holds. For every integer n, β ∈ (0, 1] and N = n/β, let
A = AN,n = (ξi,j) be an N×n random matrix with independent, symmetric
entries, distributed according to a random variable ξ, satisfying Eξ2 = 1 and
E|ξ|q ≤ L. Then, for any n ≥ c1, with probability at least 1− c2/(βnc3),

1− c4

√
β ≤ 1√

N
smin(A) ≤ 1√

N
smax(A) ≤ 1 + c4

√
β.

The proof of this result is based on the analysis of a more general scenario
which has been studied extensively in recent years, in which the given matrix
has independent rows, selected according to a reasonable measure on Rn,
rather than a matrix with i.i.d. entries; and unlike the classical random ma-
trix theory approach, one is naturally interested in the non-asymptotic be-
havior of the largest and smallest singular values of Γ = N−1/2

∑N
i=1

〈
Xi, ·

〉
ei

as a function ofN and n. We refer the reader to the surveys [34, 28] and refer-
ences therein for the history and recent developments in the non-asymptotic
theory of random matrices.

We will focus on the following questions:

Question 1.2 Let µ be a symmetric measure on Rn and let (Xi)Ni=1 be se-
lected independently according to µ.

1. Let ΣN = 1
N

∑N
i=1Xi ⊗ Xi be the sample covariance matrix and Σ =

E(X ⊗X). Given ε > 0, is it true that with high probability, if N ≥ c(ε)n
then ‖ΣN − Σ‖2→2 ≤ ε?

2. If X is an isotropic vector (that is, E
〈
X,x

〉2 = ‖x‖2`n2 for every x ∈ Rn),
are there “canonical” high probability bounds on smax(Γ) and smin(Γ)? For
example, under what conditions on µ are smax(Γ) and smin(Γ) of the order
of 1± c

√
n/N – like in the Bai-Yin Theorem?
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Observe that the two questions are very similar. For example, it is
straightforward to verify that if µ is isotropic, then both parts can be re-
solved by estimating the supremum of the empirical process

sup
t∈Sn−1

∣∣∣∣∣ 1
N

N∑
i=1

〈
Xi, t

〉2 − E
〈
X, t

〉2

∣∣∣∣∣ . (1.1)

And, in view of the second part of Question 1.2, we will be especially in-
terested in the case N ∼ n, that is, while keeping the aspect ratio n/N
constant.

When studying measures on Rn in this context, it is natural to divide
the assumptions into two types: one on the `np norm of X and the other on
moments of linear functionals

〈
x, ·
〉
.

To formulate the moment assumption we will use here, recall that for
α ≥ 1, the ψα Orlicz norm of random variable Z is defined by

‖Z‖ψα = inf {c > 0 : E exp(|Z|α/cα) ≤ 2} ,

and there are obvious extensions for 0 < α < 1. It is standard to verify that
for every α > 0, ‖Z‖ψα is equivalent to supq≥1 ‖Z‖Lq/q1/α.

Assumption 1.3 For p, q ≥ 2, a symmetric measure µ satisfies a p-small
diameter, Lq moment assumption with constants κ1 and κ2, if a random
vector X distributed according to µ satisfies that

‖X‖`np ≤ κ1n
1/p a.s., and for every x ∈ Sn−1, ‖

〈
x, ·
〉
‖Lq ≤ κ2. (1.2)

µ satisfies a small diameter ψα moment assumption if the ψα norm replaces
the Lq one in (1.2).

One should note that with very few exceptions, both parts of Assumption
1.3 are needed if one wishes to address Question 1.2.

The p-small diameter component, i.e. that ‖X‖`np ≤ κ1n
1/p almost

surely, is rather standard. Although it does not hold as stated even for
a vector with i.i.d. gaussian entries, one may assume it without loss of
generality unless N is much larger than n. Indeed, in typical situations
Pr(‖X‖`np ≥ tn1/p) decays very quickly both in t and in n. Therefore,
maxi≤N ‖Xi‖`np /n

1/p is bounded with very high probability, unless N is con-
siderably larger than n (see Section 2 for more details). Hence, if N ∼ n,
which is the range we shall be interested in, a conditioning argument allows
one to make the p-small diameter assumption.
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Question 1.2 has been studied under the 2-small diameter assumption.
In [27], Rudelson showed that if ‖X‖`n2 ≤ κ1

√
n almost surely then for every

N ≥ c1n log n, with probability at least 0.99,

1− c2

√
n log n
N

≤ smin(Γ) ≤ smax(Γ) ≤ 1 + c2

√
n log n
N

, (1.3)

and c1, c2 are constants that depend only on κ1.
It is straightforward to verify that this bound is optimal by consider-

ing the uniform measure on the set of coordinate vectors {
√
ne1, ...,

√
nen},

which results in the coupon-collector problem. Thus, given ε > 0, one
requires at least c(ε)n log n random points to ensure that the sample covari-
ance matrix ε-approximates the true covariance. Of course, [27] does not
lead to a nontrivial estimate in the second part of Question 1.2, i.e. if the
aspect ratio n/N → β ∈ (0, 1] and n→∞, and in particular, (1.3) can not
yield a Bai-Yin type of bound. Any hope of getting the desired bounds in
Question (1.2) requires additional assumptions on X.

Turning to the moments component of Assumption 1.3, note that a
bound on the Lq moments of linear functionals means that ‖

〈
x, ·
〉
‖Lq .

‖x‖`n2 , and if, in addition, X is isotropic, the norms are equivalent. More-
over, in a similar fashion, a ψα assumption combined with isotropicity im-
plies that the ψα and `n2 norms are equivalent.

Consider a situation when one only assumes such a moment condition.
It is standard to verify that under a ψ2 assumption, in which linear function-
als exhibit a κ2-subgaussian tail behavior (i.e., Pr(|

〈
X,x

〉
| ≥ tκ2‖x‖`n2 ) ≤

2 exp(−t2/2)), then with probability at least 1− 2 exp(−c3n),

smin(Γ), smax(Γ) ∈ [1− c4

√
n/N, 1 + c4

√
n/N ]

Indeed, a Bernstein type inequality shows that for each x ∈ Sn−1 and
0 < t < 1/κ2, Pr(|N−1

∑N
i=1

〈
Xi, x

〉2 − E
〈
X,x

〉2| ≥ t) ≤ 2 exp(−c5Nt
2).

And, if one is to obtain an estimate on the empirical process (1.1), one has
to control a 1/2 net on the sphere, which is of cardinality ∼ exp(c6n). The
tradeoff between the complexity of the indexing set and the concentration at
hand shows that with the desired probability, supt∈Sn−1 |N−1

∑N
i=1

〈
Xi, t

〉2−
E
〈
X,x

〉2| .
√
n/N .

Unfortunately, when one has a weaker moment estimate than a ψ2 one,
the situation becomes considerably more difficult. The complexity of the
set one has to control remains the same, but the individual concentration
deteriorates, because N−1

∑〈
Xi, x

〉2 does not exhibit a strong enough con-
centration around its mean to balance the concentration-complexity tradeoff
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at the level of
√
n/N . Therefore, with a weaker moment assumption than a

ψ2 one, a combination of individual tail bounds and a “global” assumption,
like the small diameter information, is required in both parts of Question
1.2.

One situation in which the process (1.1) has been studied extensively in
the last 15 years is a small diameter, ψ1 moment assumption. The motiva-
tion for considering this situation comes from Asymptotic Geometric Anal-
ysis and the theory of log-concave measures, which are measures that have
a symmetric, log-concave density. They fit the framework at hand nicely,
because an isotropic, log concave vector X satisfies that ‖X‖`np ≤ c1n

1/p

with probability at least 1 − 2 exp(−c2n
1/p). Indeed, the case p = 2 was

proved in [24], while for p > 2 the result was recently established by Lata la
in [19]. Moreover, linear functionals exhibit a ψ1 behavior (see, e.g. [12] for
a survey on log-concavity).

Partial results in the isotropic, log-concave case have been obtain by
Bourgain [9], yielding an estimate on the covariance operator for N =
c(ε)n log3 n, which was improved by Rudelson [27] to N = c(ε)n log2 n. Sub-
sequent improvements were N = c(ε)n log n for unconditional convex bodies
in [13] and for general log-concave measures in [24]. Finally, the optimal esti-
mate of N = c(ε)n was obtained for an unconditional, log-concave measures
by Aubrun [4], and for an arbitrary log-concave measure in Adamczak et al.
[1, 2], where the following result was proved:

Theorem 1.4 There exist absolute constants c1 and c2 for which the fol-
lowing holds. If µ is an isotropic, log-concave measure, then with probability
at least 1− exp(−c1

√
n),

sup
t∈Sn−1

∣∣∣∣∣ 1
N

N∑
i=1

〈
Xi, t

〉2 − 1

∣∣∣∣∣ ≤ c2

√
n

N
.

Naturally, Question 1.2 becomes even harder when one assumes that
linear functionals have heavy tails, because sums of independent random
variable exhibit very limited concentration – far below the level required
for the proof of Theorem 1.4. Recently, Vershynin [35] proved the following
remarkable fact:

Theorem 1.5 For every q > 4, δ > 0 and constants κ1 and κ2, there exist
constants c1 and c2 that depend on q, δ and κ1, κ2 for which the following
holds.
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If µ satisfies a 2-small diameter, Lq moment assumption with constants
κ1 and κ2, then for every δ > 0, with probability at least 1− δ,

‖ΣN − Σ‖2→2 ≤ c1(log log n)2
( n
N

)1/2−2/q
.

In particular, if µ is isotropic then

1−c2

( n
N

)1/2−2/q
(log log n)2 ≤ smin(Γ) ≤ smax(Γ) ≤ 1+c2

( n
N

)1/2−2/q
(log log n)2.

Moreover, very recently Strivastava and Vershynin [29], obtained the follow-
ing result:

Theorem 1.6 For every η > 0, ε > 0 and κ > 0 there exists constants
c1, c2 and c3 = η

2η+2 for which the following holds. Let µ be an isotropic
measure, satisfying that for every projection P in Rn,

(∗) Pr{‖PX‖22 > t} ≤ κ

t1+η
, for t ≥ κ rank(P ).

If (Xi)Ni=1 are independent random vectors distributed according to µ then
for every N > c1n,

E‖ΣN − Id‖ 6 ε.

Moreover, only under a q-moment assumption,

1− c2

( n
N

)c3
≤ Esmin(Γ)

It should be noted that the boundedness assumption in Theorem 1.6 is
satisfied by a vector with independent components X = (ξi)ni=1, if ξ ∈ Lq
for q > 4, and thus both parts may be used in the i.i.d situation. However,
for any η > 0, c3 <

1
2 (1/2 being the power in the Bai-Yin Theorem).

Our main result gives a version of Theorem 1.5 for an unconditional
measure with “heavy tails”.
Theorem A. Let µ be an unconditional measure that satisfies the p-small
diameter, Lq moment assumption with constants κ1 and κ2 for some p > 2.

1. For every q > 4 and δ < 1/2 − 1/2(p − 1), there exist constants c0,
c1 and c2 that depend on q, p, κ1, κ2 and δ, such that, for every
n ≤ N ≤ exp(c0n

δ), with probability at least 1− exp(−c1n
δ),

sup
t∈Bn2

|N−1
N∑
i=1

〈
Xi, t

〉2 − E
〈
X, t

〉2| ≤ c2

( n
N

)1/2
.
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2. For every 2 < q ≤ 4, if p > (1− 2/q)−1 and δ < 1/2− 1/2(p− 1), there
exist constants c3 and c4 that depend on q, p, δ, κ1 and κ2, such that,
for every n ≤ N ≤ exp(c0n

δ), with probability at least 1−exp(−c3n
δ),

sup
t∈Bn2

|N−1
N∑
i=1

〈
Xi, t

〉2 − E
〈
X, t

〉2| ≤ c4

( n
N

)1−2/q
log(N/n).

In both cases, for every ε > 0, with probability at least 1 − 2 exp(−cnδ),
‖ΣN − Σ‖2→2 ≤ ε provided that N &q,p,δ,κ1,κ2 n. Moreover, if µ is isotropic
and q > 4, then

1− c2

( n
N

)1/2
≤ smin(Γ) ≤ smax(Γ) ≤ 1 + c2

( n
N

)1/2
,

and if 2 < q ≤ 4 then

1−c4

( n
N

)1−2/q
log(N/n) ≤ smin(Γ) ≤ smax(Γ) ≤ 1+c4

( n
N

)1−2/q
log(N/n).

Our quantitative version of the Bai-Yin Theorem follows from Theorem
A, because of the straightforward observation that if ξ ∈ Lq for q > 4
and is symmetric, then X = (ξi)ni=1 is unconditional, and there is some
p > 2 for which maxi≤N ‖X‖`np . n1/p with high enough probability. Thus,
conditioning µ to the unconditional body cn1/pBn

p yield the desired result.
The approach we take in the proof of Theorem A is very different from

all the previous results mentioned above, as those rely heavily on the fact
that the empirical process (1.1) is indexed by the sphere or by the Euclidean
ball, and that the underlying class of functions consists of linear function-
als. At the heart of the arguments are either the classical trace method
[4], a non-commutative Khintchine inequality [27] or sharp estimates on
max|I|=k ‖

∑
i∈I Xi‖`n2 [9, 1, 35]. As such, all these proofs are “Euclidean”

in nature and can not lead to bounds on the empirical process

sup
h∈H

∣∣∣∣∣ 1
N

N∑
i=1

h2(Xi)− Eh2

∣∣∣∣∣ (1.4)

for an arbitrary class of functions H – not even for HT = {
〈
t, ·
〉

: t ∈ T}
when T is not the sphere or close to the sphere in some sense.

One should note that process (1.4) is an interesting object in its own
right. For example, it has a key role in analyzing the uniform central limit
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Theorem [10]; and, when indexed by HT for T ⊂ Rn, it appear naturally
in Asymptotic Geometric Analysis, for example, when proving embedding
results or “low-M∗” estimates for various matrix ensembles (see [22] for a
more detailed discussion). Thus, understanding what governs (1.4), and in
particular, going beyond the case HBn2

is rather important.
The proof of Theorem A does just that, since it is based on a bound

on (1.4) in terms of a certain notion of “complexity” of the class H. It is
not tailored to the case HBn2

, nor does it relay on the fact that the indexing
class consists of linear functionals. Rather, the proof is based on a chain-
ing scheme which is much more general than the applications that will be
presented here.

The second application we chose to present as an illustration of the
potential this empirical processes based method has, is the following.

Let y1, ...yn be independent, standard exponential random variables (i.e.,
with density ∼ exp(−

√
2|t|), and for every T ⊂ Rn set

E(T ) = E sup
t∈T

n∑
i=1

tiyi, d2(T ) = sup
t∈T
‖t‖`n2 .

Theorem B. There exists absolute constants c1, c2 and c3 for which the
following holds. If µ is an isotropic, unconditional, log-concave measure
on Rn and T ⊂ Rn is centrally symmetric, then for every u ≥ c1, with
probability at least 1− 2 exp(−c2u

2),

sup
t∈T

∣∣∣∣∣ 1
N

N∑
i=1

〈
t,Xi

〉2 − ‖t‖2`n2

∣∣∣∣∣ ≤ c3u
3

(
E(T )√
N

+
(E(T ))2

N

)
. (1.5)

To put Theorem B in the right context, recall that a symmetric measure
ν on Rn (κ, L)-weakly dominates a symmetric measure µ if for every x ∈ Rn,
and every t > 0, Prµ(|

〈
x, ·
〉
| ≥ Lt) ≤ κPrν(|

〈
x, ·
〉
| ≥ t) [16]. For example,

if µ is an isotropic L-subgaussian measure and G = (g1, ..., gn) is a standard
gaussian vector in Rn then

Prµ(|
〈
x, ·
〉
| ≥ Lt) ≤ 2 exp(−t2/2‖x‖2`n2 ) = PrG(|

〈
x, ·
〉
| ≥ t),

and thus µ is weakly dominated by G.
By the Majorizing Measures Theorem (see, e.g., [32] and Section 2), it

follows that if µ is L-subgaussian, there is a constant c = c(L) satisfying
that for every T ⊂ Rn and every integer N ,

E sup
t∈T

〈 N∑
i=1

Xi, t
〉
≤ cE sup

t∈T

〈 N∑
i=1

Gi, t
〉
≡ c
√
NG(T ) (1.6)
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where (Xi)Ni=1 are independent copies of X, (Gi)Ni=1 are independent copies
of G and G(T ) = E supt∈T

〈
G, t

〉
.

Moreover, the results of [21, 22] show that if T is centrally symmetric
and µ is isotropic and L-subgaussian, then

E sup
t∈T

∣∣∣∣∣ 1
N

N∑
i=1

〈
t,Xi

〉2 − ‖t‖2`n2

∣∣∣∣∣ .L
G(T )√
N

+
(G(T ))2

N
. (1.7)

Hence, the fact that an L-subgaussian measure is weakly dominated by a
gaussian measure (with the same covariance structure) is exhibited by a
strong domination in (1.6) and in (1.7), that holds for every T ⊂ Rn.

Just like subgaussian vectors, isotropic, unconditional log-concave vec-
tors have a natural weakly dominating measure. By the Bobkov-Nazarov
Theorem [7] they are (κ, L)-weakly dominated by the vector Y = (y1, ..., yn),
and κ and L are absolute constants. In [18], Lata la showed that as in (1.6),
for every T ⊂ Rn, E supt∈T

〈∑N
i=1Xi, t

〉
. E supt∈T

〈∑N
i=1 Yi, t

〉
. Theorem

B shows that the quadratic strong domination, analogous to (1.7), is also
true in this case.

Theorem B has many standard applications, leading to embedding re-
sults of a similar nature to the Johnson-Lindenstrauss Lemma and to “low
M∗” estimates that hold for unconditional, log-concave ensembles. Deriving
these and other outcomes from Theorem B is standard and will not be pre-
sented here. One should also note that a log-concave Chevet type inequality,
i.e., upper estimates on the operator norm ‖Γ‖X→Y for finite dimensional
normed spaces X and Y has recently been established in [3].

In the next section we will present several preliminary facts and defini-
tions that will be used throughout this article. Then, in Section 3 we will
show that if V ⊂ RN can be decomposed in a certain way, the Bernoulli
process indexed by {(v2

i )
N
i=1 : v ∈ V } is well behaved. Section 4 is de-

voted to the observation that if H is a class of functions, then under mild
assumptions and with high probability, the random coordinate projection
PσH = {(h(Xi))Ni=1 : h ∈ H} can be decomposed in the sense of Section 3.
It turns out that the decomposition depends on the complexity of H and
on the decay of tails of functions in H. Finally, in Section 5 we will present
examples in which the complexity of H can be estimated, leading to the
proofs of Theorem A (and consequently, the quantitative Bai-Yin Theorem)
and of Theorem B.

9



2 Preliminaries

Throughout, all absolute constants are positive numbers, denoted by c, c0, c1, ...
and their value may change from line to line. κ0, κ1, ... denote constants
whose value will remain unchanged. By A ∼ B we mean that there are
absolute constants c and C such that cB ≤ A ≤ CB, and by A . B that
A ≤ CB. A ∼γ B (resp. A .γ B) denotes that the constants depend only
on γ.

For 1 ≤ p ≤ ∞, `np is Rn endowed with the `p norm, which we denote by
‖ ‖`np , and Bn

p is its unit ball. With a minor abuse of notation we write | |
both for the cardinality of a set and for the absolute value. Finally, if (an)
is a sequence, let (a∗n) be a non-increasing rearrangement of (|an|).

Next, let us turn to the complexity parameters that motivated our
method of analysis – Talagrand’s γ-functionals.

Definition 2.1 [32] For a metric space (T, d), an admissible sequence of
T is a collection of subsets of T , {Ts : s ≥ 0}, such that for every s ≥ 1,
|Ts| ≤ 22s and |T0| = 1. For β ≥ 1, define the γβ functional by

γβ(T, d) = inf sup
t∈T

∞∑
s=0

2s/βd(t, Ts),

where the infimum is taken with respect to all admissible sequences of T .
For an admissible sequence (Ts)s≥0 we denote by πst a nearest point to t in
Ts with respect to the metric d.

One should note that our chaining approach is based on a slightly less re-
strictive definition, giving one more freedom; for example, the cardinality of
the sets will not necessarily be 22s , the metric may change with s, etc. (see
Section 3).

When considered for a set T ⊂ L2, γ2 has close connections with proper-
ties of the canonical gaussian process indexed by T , and we refer the reader
to [10, 32] for detailed expositions on these connections. One can show that
under mild measurability assumptions, if {Gt : t ∈ T} is a centered gaussian
process indexed by a set T , then

c1γ2(T, d) ≤ E sup
t∈T

Gt ≤ c2γ2(T, d),

where c1 and c2 are absolute constants and for every s, t ∈ T , d2(s, t) =
E|Gs−Gt|2. The upper bound is due to Fernique [11] and the lower bound is
Talagrand’s Majorizing Measures Theorem [30]. Note that if T ⊂ Rn, (gi)ni=1
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are standard, independent gaussians and Gt =
∑n

i=1 giti then d(s, t) = ‖s−
t‖`n2 , and therefore

c1γ2(T, ‖ · ‖`n2 ) ≤ E sup
t∈T

n∑
i=1

giti ≤ c2γ2(T, ‖ · ‖`n2 ). (2.1)

A part of our discussion (Theorem B) will be devoted to isotropic, log-
concave measures on Rn.

Definition 2.2 A symmetric probability measure µ on Rn is isotropic if for
every y ∈ Rn,

∫
|
〈
x, y
〉
|2dµ(x) = ‖y‖2`n2 .

The measure µ is log-concave if for every 0 < λ < 1 and every nonempty
Borel measurable sets A,B ⊂ Rn, µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ.

A typical example of a log-concave measure on Rn is the volume measure of a
convex body in Rn, a fact that follows from the Brunn-Minkowski inequality
(see, e.g. [26]). Moreover, Borell’s inequality [8, 23] implies that there is an
absolute constant c such that if µ is an isotropic, log-concave measure on
Rn, then for every x ∈ Rn, ‖

〈
x, ·
〉
‖ψ1 ≤ c‖

〈
x, ·
〉
‖L2 = c‖x‖`n2 .

As mentioned in the introduction, if X is distributed according to an
isotropic, log-concave measure on Rn then ‖X‖`np decays quickly at scales
that are larger than n1/p. Thus, by conditioning, the main result in [24]
shows that a 2-small diameter assumption can be made without loss of
generality as long as N ≤ exp(c

√
n), and Lata la [19] proved the analogous

result for p > 2, as long as N ≤ exp(cn1/p).

3 Decomposition of sets

We begin with a description of the modified chaining procedure. Let (ηs)s≥0

be an increasing sequence which satisfies that for every s ≥ 0, 2ηs · 2ηs+1 ≤
10 · 2ηs+2 and for s ≥ 1, 1.1 ≤ ηs+1/ηs ≤ 10 (where 1.1 can be replaced by
1 + ε and 10 can be any suitably large constant). For example, η0 = 0 and
ηs = 2s for s ≥ 1 is the usual choice of a sequence that has been used in the
definition of Talagrand’s γ functionals. An admissible sequence of V ⊂ RN

relative to (ηs)s≥0 is a collection of subsets Vs ⊂ V for which |Vs| ≤ 2ηs . For
every s let πs : V → Vs, which usually will be a nearest point map relative
to some distance. We will denote πsv− πs−1v by ∆sv, and sometimes write
∆0v for π0v. Finally, ∆sV is the set {∆sv : v ∈ V }.

Let φ be an increasing function which will be chosen according to ad-
ditional information one will have on the given class. Examples that one

11



should have in mind are φβ(x) ∼β
√
x log1/β(eN/x), resulting from a bound

on the ψβ diameter of H, or φq,ε ∼q,ε N (1+ε)/qx1/2−(1+ε)/q for q > 2 and ε
in the right range, arising from an Lq moment assumption.

Assume that V ⊂ RN is endowed with a family of functionals θs and
a semi-norm ‖ ‖ (which, in our applications, will either arise from the Lq
norm or from the ψβ norm), and set d = supv∈V ‖v‖.

Definition 3.1 V ⊂ RN admits a decomposition with constants α and γ
if it has an admissible sequence (Vs)s≥0 relative to (ηs)s≥0 for which the
following holds.

1. supv∈V
(
θ0(π0v) +

∑
s>0 θs(∆sv)

)
≤ γ.

2. For every v ∈ V and every I ⊂ {1, ..., N},(∑
i∈I

v2
i

)1/2

≤ α (γ + dφ(|I|)) .

3. If ηs ≤ N then for every v ∈ V and every I ⊂ {1, ..., N}(∑
i∈I

(∆sv)2
i

)1/2

≤ α (θs(∆sv) + ‖∆sv‖φ(|I|)) ,

and if ηs ≥ N then for every v ∈ V and every I ⊂ {1, ..., N},(∑
i∈I

(∆sv)2
i

)1/2

≤ αθs(∆sv).

Although this definition seems artificial at first glance, we will show
that it captures the geometry of a typical coordinate projection PσH =
{(h(Xi))Ni=1 : h ∈ H}.

The main observation of this section is that one can use this type of
decomposition to bound the supremum of the Bernoulli process indexed by
V 2 = {(v2

i )
N
i=1 : v ∈ V }. Hence, if V = PσH, then a standard symmetriza-

tion argument leads to the desired bound on suph∈H |N−1
∑N

i=1 h
2(Xi) −

Eh2| (see section 5.3).
To formulate the estimate on the Bernoulli process, set

Φ =

(
N∑
i=1

φ4(i)
i2

)1/2

, Φs =

(
N−ηs∑
i=1

φ2(ηs + i)
ηs + i

· φ
2(i)
i

)1/2

12



for ηs ≤ N , put

A1 = sup
v∈V

∑
{s>0:ηs≤N}

φ(ηs)‖∆sv‖, A2 = sup
v∈V

∑
{s>0:ηs≤N}

φ2(ηs)‖∆sv‖,

and let
AΦ = sup

v∈V

∑
{s:ηs≤N}

Φsη
1/2
s ‖∆sv‖.

For 2 < q ≤ 4 and 0 ≤ ε < (q/2)− 1, let

Bq,ε = sup
v∈V

∑
{s:ηs≤N}

η1−2(1+ε)/q
s ‖∆sv‖.

As will become clearer, the most important of the Bq,ε parameters is

B4 ≡ B4,0 = sup
v∈V

∑
{s:ηs≤N}

η1/2
s ‖∆sv‖,

which, under the standard choice of η0 = 0 and ηs = 2s for s ≥ 1, corre-
sponds to γ2(V, ‖ ‖).

Theorem 3.2 There exist absolute constants c0, c1 and c2 for which the
following holds. If V ⊂ RN has a decomposition as in Definition 3.1, then
for every r ≥ c0, with probability at least 1− 2 exp(−c1r

2η0),

sup
v∈V

∣∣∣∣∣
N∑
i=1

εiv
2
i

∣∣∣∣∣ ≤ c2rα
2 (γ(γ + dφ(N) +A1) + d (A2 +AΦ))

Before presenting the proof, let us consider the two main examples which
will interest us, namely, the families φβ =

√
x log1/β(eN/x) for any β > 0

and φq,ε =
√
x(N/x)(1+ε)/q for any q > 2 (and for ε selected appropriately).

In both cases φ(N) ∼
√
N and for any β > 0, Φ ∼β

√
N . If q > 4 and

0 ≤ ε ≤ q/4 − 1, Φ ≤ (1 − 4(1 + ε)/q)−1/2
√
N , and since Φs ≤ Φ, then for

β > 0 or q > 4,

AΦ ≤ Φ sup
v∈V

∑
{s:ηs≤N}

η1/2
s ‖∆sv‖ .

√
NB4,

with the constant depending either on β or on q and ε as above.
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On the other hand, if 2 < q ≤ 4 and 0 < ε < q/2− 1 then

Φs =

(
N−ηs∑
i=1

φ2(ηs + i)
ηs + i

· φ
2(i)
i

)1/2

=

(
N−ηs∑
i=1

(
N

ηs + i

)2(1+ε)/q

·
(
N

i

)2(1+ε)/q
)1/2

.
N2(1+ε)/q

1− 2(1 + ε)/q
· η1/2−2(1+ε)/q
s .

Therefore, in that range

AΦ .
N2(1+ε)/q

1− 2(1 + ε)/q
· sup
v∈V

∑
{s:ηs≤N}

η1−2(1+ε)/q
s ‖∆sv‖ =

N2(1+ε)/q

1− 2(1 + ε)/q
Bq,ε.

Next, since (ηs)s≥0 increases exponentially, then for q > 2∑
{s:ηs≤N}

φ(ηs)‖∆sv‖ ≤ 2d
∑

{s:ηs≤N}

φ(ηs) . d
√
N, (3.1)

and the constant in (3.1) depends on β or on q and ε respectively. In
particular, if 2 < q ≤ 4 and 0 < ε < q/2− 1, then

∑
{s:ηs≤N}

φ(ηs) .

√
N

1− 2(1 + ε)/q

Finally, one has to control
∑
{s:ηs≤N} φ

2(ηs)‖∆sv‖. Note that if β > 0
or q > 4, then

∑
{s:ηs≤N}

φ2(ηs)‖∆sv‖ ≤

(
max
{s:ηs≤N}

φ2(ηs)

η
1/2
s

)
·
∑

{s:ηs≤N}

η1/2
s ‖∆sv‖

.
√
N

∑
{s:ηs≤N}

η1/2
s ‖∆sv‖ ∼

√
NB4,

and if 2 < q ≤ 4 and 0 < ε < q/2− 1 then∑
{s:ηs≤N}

φ2(ηs)‖∆sv‖ ≤ N2(1+ε)/q
∑

{s:ηs≤N}

η1−2(1+ε)/q
s ‖∆sv‖ = N2(1+ε)/qBq,ε.

We thus arrive to a more compact formulation of Theorem 3.2 in the cases
we will be interested in.
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Corollary 3.3 For any β > 0 or q > 4, with probability at least 1 −
2 exp(−c1r

2η0),

sup
v∈V

∣∣∣∣∣
N∑
i=1

εiv
2
i

∣∣∣∣∣ . rα2
(
γ2 + d

√
N(γ +B4)

)
,

with a constant that depends on β or on q and ε respectively.
Also, if 2 < q ≤ 4 and 0 < ε < q/2 − 1, then with probability at least

1− 2 exp(−c1r
2η0),

sup
v∈V

∣∣∣∣∣
N∑
i=1

εiv
2
i

∣∣∣∣∣ . α2r

1− 2(1 + ε)/q

(
γ2 + d

√
Nγ + dN2(1+ε)/qBq,ε

)
.

Proof of Theorem 3.2. For every ∆sv let i be the largest integer in
{1, ..., N} for which θs(∆sv) ≥ ‖∆sv‖φ(i). Throughout the proof we will
assume that such an integer exists, and if it does not, the necessary modi-
fications to the proof are obvious. Let is,v = max{i, ηs} and put Is,v to be
the set of the largest is,v coordinates of |∆sv|. Let ∆+

s v = PIs,v∆sv and
∆−s v = PIcs,v∆sv be the projections of ∆sv onto the set of coordinates Is,v
and Ics,v respectively. Also, let j be the largest integer in {1, ..., N} for which

γ ≥ dφ(j). Thus, for every v ∈ V ,
(∑j

i=1(v2
i )
∗
)1/2

≤ 2αγ and for every

` ≥ j, v∗` ≤ 2αdφ(`)/
√
`. If J is the set of the largest j coordinates of v ∈ V ,

let v+ = PJv and v− = PJcv.
Let w · v =

∑N
i=1wiviei, and since

v2 − (π0v)2 =
∑
s>0

(πsv)2 − (πs−1v)2 =
∑
s>0

(∆sv) · (πsv + πs−1v),

one has to control increments of the form
∑N

i=1 εi(∆sv)i(πsv + πs−1v)i.
Observe that if ηs ≥ N then with probability 1,

N∑
i=1

εi((∆sv) · (πsv + πs−1v))i ≤ ‖(∆sv) · (πsv + πs−1v)‖`N1

≤2‖∆sv‖`N2 sup
v∈V
‖v‖`N2 ≤ 2α2θs(∆sv)(γ + dφ(N)).

Next, if ηs ≤ N we will decompose the vectors one has to control according
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to the size of their coordinates, because, with probability 1− 2 exp(−r2/2),∣∣∣∣∣
N∑
i=1

εi(∆sv)i(πsv + πs−1v)i

∣∣∣∣∣ ≤ ‖(∆+
s v) · (πsv + πs−1v)‖`N1

+r‖(∆−s v) · ((πsv)+ + (πs−1v)+)‖`N2 + r‖(∆−s v) · ((πsv)− + (πs−1v)−)‖`N2 .
(3.2)

Consider the following two cases. If is,v = ηs then

‖(∆+
s v) · (πsv + πs−1v)‖`N1 ≤‖∆

+
s v‖`N2 ‖PIs,v(πsv + πs−1v)‖`N2

.α2‖∆sv‖φ(ηs) (γ + dφ(ηs)) .

Moreover,

‖∆−s v‖`N∞ ≤
‖∆+

s v‖`N2
|Is,v|1/2

≤ 2α‖∆sv‖
φ(ηs)

η
1/2
s

,

and thus, for every v ∈ V ,

η1/2
s ‖(∆−s v) · w+‖`N2 ≤ η

1/2
s ‖∆−s v‖`N∞‖w

+‖`N2 .α2 γφ(ηs)‖∆sv‖.

To estimate η1/2
s ‖(∆−s v) ·w−‖`N2 , observe that since (∆−s v)∗i .α ‖∆sv‖φ(ηs+

i)/
√
ηs + i, w∗i .α dφ(i)/

√
i and

∑
|aibi| ≤

∑
a∗i b
∗
i , then

η1/2
s ‖(∆−s v) · w−‖`N2 .α2 η1/2

s ‖∆sv‖d

(
N−ηs∑
i=1

φ2(i)
i
· φ

2(ηs + i)
ηs + i

)1/2

.α2 dη1/2
s Φs‖∆sv‖.

Therefore, summing the three terms over {s > 0 : ηs ≤ N},∑
{s>0:ηs≤N}

‖(∆+
s v) · (πsv + πs−1v)‖`N1

.α2γ
∑

{s>0:ηs≤N}

φ(ηs)‖∆sv‖+ d
∑

{s>0:ηs≤N}

φ2(ηs)‖∆sv‖,

∑
{s>0:ηs≤N}

η1/2
s ‖(∆−s v)·((πsv)++(πs−1v)+)‖`N2 .α2 γ

∑
{s>0:ηs≤N}

φ(ηs)‖∆sv‖,

and∑
{s>0:ηs≤N}

η1/2
s ‖(∆−s v)·((πsv)−+(πs−1v)−)‖`N2 .α2 d

∑
{s>0:ηs≤N}

η1/2
s Φs‖∆sv‖.
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Next, if is,v 6= ηs then ‖∆+
s v‖`N2 ≤ 2αθs(∆sv), and thus

‖(∆+
s v) · (πsv + πs−1v)‖`N1 ≤ 2α2θs(∆sv)(γ + dφ(N)).

Since |Is,v| ≥ ηs,

‖∆−s v‖`N∞ ≤ 2αθs(∆sv)/|Is,v|1/2 ≤ 2α
θs(∆sv)

η
1/2
s

,

then splitting each w ∈ V to w+ + w− as above,

η1/2
s ‖(∆−s v) · w+‖`N2 ≤ η

1/2
s ‖∆−s v‖`N∞‖w

+‖`N2 .α2 γθs(∆sv),

and
η1/2
s ‖(∆−s v) · w−‖`N2 .α2 dη1/2

s Φs‖∆sv‖.
Therefore,

(∗) =
∑

{s>0:ηs≤N}

‖(∆+
s v) · (πsv + πs−1v)‖`N1 + η1/2

s ‖(∆−s v)·((πsv)+ + (πs−1v)+)‖`N2

+η1/2
s ‖(∆−s v) · ((πsv)− + (πs−1v)−)‖`N2 ≤ (3) + (4) + (5),

where

(3) .α2 (γ + dφ(N))
∑

{s>0:ηs≤N}

θs(∆sv), (4) .α2 γ
∑

{s>0:ηs≤N}

θs(∆sv),

and
(5) .α2 d

∑
{s>0:ηs≤N}

η1/2
s Φs‖∆sv‖.

Recall that |∆sV |, |Vs| ≤ 10 · 2ηs+1 and that ηs+1 ≤ 10ηs. Given r ≥ c0,
then applying (3.2) for ts = 10rη1/2

s and summing over {s : ηs ≤ N}, it fol-
lows that supv∈V

∣∣∣∑N
i=1 εi(v

2 − (π0v)2)i
∣∣∣ is bounded by the desired quantity

with probability at least 1− 2 exp(−c1r
2η0).

Finally, for v ∈ V0, let i be the largest integer in {1, ..., N} for which
θ0(v) ≥ ‖v‖φ(i), and set I to be the set of the i-largest coordinates of v.
Thus,

∑
i∈I v

2
i ≤ 2α2θ0(v) ≤ 2α2γ2, and for ` ≥ i, v∗` ≤ α‖v‖φ(`)/

√
`. Since

|V0| ≤ 2η0 , then with probability at least 1− 2 exp(−c2r
2η0)∣∣∣∣∣

N∑
i=1

εiv
2
i

∣∣∣∣∣ .α2 γ2 + rdΦ0η
1/2
0 ‖v‖,

completing the proof.
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4 Coordinate projections of Function classes

The aim of this section is to show that under very mild assumptions, em-
pirical processes have well behaved coordinate projections in the sense of
Definition 3.1. A first result in this direction was established in [22], in
which the main observation, formulated in the language of Section 3, was
that if η0 = 0 and ηs = 2s for s ≥ 1, then for the choice of θs((h(Xi))Ni=1) =
2s/2‖h‖ψ2 , α =

√
u, ‖(h(Xi))Ni=1‖ = ‖h‖ψ1 and φ(x) ∼

√
x log(eN/x), the set

V = {(h(Xi))Ni=1 : h ∈ H} has a good decomposition with high probability.
Hence, the Bernoulli process indexed by V 2 satisfies the following:

Theorem 4.1 There exist absolute constants c1, c2 and c3 for which the
following holds. If H is a class of functions, then for every r, u ≥ c1, with
µN -probability at least 1− 2 exp(−c2u), V = PσH satisfies that

sup
v∈V

∣∣∣∣∣
N∑
i=1

εiv
2
i

∣∣∣∣∣ . ru2

(
γ2(H,ψ2) +

√
N sup

h∈H
‖h‖ψ1

)
· γ2(H,ψ2)

with probability at least 1−2 exp(−c3r
2) with respect to the Bernoulli random

variables.

Theorem 4.1 is rather restricted because the ψ2-based complexity param-
eter seems too strong in many situations, as does the assumption that H is
a bounded subset of Lψ1 . Here, we will try to impose as few assumptions as
possible on H.

Let H be a class of functions on (Ω, µ). For every u > 0 we will
define three events in the product space ΩN , which will be denoted by
Ω1,u, Ω2,u and Ω3,u. On the event Ω1,u ∩ Ω2,u ∩ Ω3,u, the random set
PσH = {(h(Xi))Ni=1 : h ∈ H} will be well behaved for the right choice
of functionals θs and φ. We will then study cases in which the event
Ω1,u ∩ Ω2,u ∩ Ω3,u has high probability.

Definition 4.2 For (ηs)s≥0 as above, set s0 ≥ 0 to be the first integer for
which ηs ≥ log(eN).

For every s ∈ {s : log(eN) ≤ ηs ≤ N}, let `s be the largest integer in
{1, ..., N} for which ηs ≥ ` log(eN/`), and if ηs ≤ log(eN), set `s = 1.

The motivation for this definition is the following. If Ek is the collection
of subsets of {1, ..., N} of cardinality k, s0 is the level above which one may
find k for which the cardinalities |Ek| and |Hs| are comparable. Indeed,
when s < s0, |E1| can be significantly larger than |Hs| = 2ηs , but when
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s ≥ s0, log |Hs| and log |E`s | are of the same order, and thus one may
simultaneously control every function in Hs and every subset in E`s at no
extra price. The main idea of the proofs in this section is to try and balance
these two quantities as much as possible.

Observe that since (ηs)∞s=0 grows exponentially, so does (`s)s≥s0 .

Definition 4.3 For an admissible sequence (Hs)s≥0 and a sequence of func-
tionals (θu,s)s≥s0, let Ω1,u be the event for which, for every h ∈ H, the
following holds:

1. for every log(eN) ≤ ηs ≤ N ,
(∑u`s+1

i=1 ((∆sh)2(Xi))∗
)1/2

≤ θu,s(∆sh),
(and if the u`s+1 > N then the sum terminates at N).

2. for every ηs > N ,
(∑N

i=1((∆sh)2(Xi))∗
)1/2

≤ θu,s(∆sh).

3.
(∑u`s0+1

i=1 ((πs0h)2(Xi))∗
)1/2

≤ θu,s0(πs0h).

The set Ω1,u is the subset of ΩN in which the functionals θu,s yield a good
bound on the `2 norm of the “relatively large” coordinates of each increment
when s ≥ s0. In contrast, on the set Ω2,u the smaller coordinates will be
controlled for s ≥ s0. One of the key points of the proof is finding an
estimate on the `n2 norm on these coordinates, but doing so without any
real concentration phenomenon for sums of i.i.d. random variables coming
to one’s aid.

Formally, to define the set Ω2,u, first fix a random variable Y , an integer
N and ε > 0. For every j ≤ N let δj = (j/eN)(1+ε), set

yj = inf{y : Pr(|Y | ≥ yj) ≤ δj},

and without loss of generality, we will assume that the infimum is attained.
For every 1 ≤ k ≤ N , let

fu(Y, k) = κ3

√
u

 ∑
{j:2j≤dk/ue}

2jy2
2j

1/2

,

where κ3 is a suitable chosen absolute constant.
The motivation for this definition is the following observation, showing

that with high probability, the “tail” of a sum of i.i.d random variables can
be controlled using f .
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Lemma 4.4 There exist absolute constants c1 and c2 for which the fol-
lowing holds. For every integer ` and u ≥ c1/ε, with probability at least
1− 2 exp(−c2uε` log(eN/`)), for every integer k > u`,

k∑
i=u`+1

(Y 2
i )∗ ≤ fu(Y, k)

Proof. Since Pr(|Y | ≥ yj) ≤ δj = (j/eN)1+ε then for u ≥ 1,

Pr(Y ∗uj ≥ yj) ≤
(
N

uj

)
δujj ≤ exp(uj log(eN/uj)− (1 + ε)uj log(eN/j))

≤ exp(−εuj log(eN/j)).

Thus, summing over {j = d` + 2i/ue : 2i ≤ k − u`}, it follows that with
probability at least 1− exp(−c1εu` log(eN/`)), if 2i ≤ k − u` then Y ∗

u`+2i
≤

yd`+2i/ue. Therefore,

k∑
j=u`+1

(Y 2
j )∗ ≤

∑
{i:2i≤k−u`}

2i(Y 2
u`+2i−1)∗ ≤

∑
{i:2i≤k−u`}

2iy2
`+2i−1/u

≤c2u
∑

{j:2j≤k/u}

2iy2
2i = f2(Y, k),

where the last inequality is evident by a change of variables.

We will also need the following “global” counterpart of the functional f .

Definition 4.5 Given a class of functions H, an integer N and ε > 0, set

zj = inf{z : sup
h∈H

Pr(|h| ≥ zj) ≤ (j/eN)1+ε}.

For every k ≤ N and u ≥ 1, let

Fu(k) = κ3

√
u

 ∑
{j:2j≤k/u}

2jz2
2j

1/2

Clearly, for every h ∈ H and every k, fu(h, k) ≤ Fu(k).

Definition 4.6 Let Ω2,u be the event on which, for every h ∈ H, every
s ≥ s0 and every j > u`s
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1.
(∑j

i=u`s+1((∆sh)2(Xi))∗
)1/2

≤ fu(∆sh, j),

2.
(∑j

i=u`s+1((πsh)2(Xi))∗
)1/2

≤ Fu(j).

The final set, Ω3,u is very close in nature to Ω2,u. It is needed to control
the coordinates of “very small” increments – when s < s0, if such an integer
exists.

Definition 4.7 If η0 < log(eN), let Ω3,u be the event on which for every
h ∈ H, every 0 ≤ s < s0 and 1 ≤ j ≤ N ,(

j∑
i=1

((∆sh)2(Xi))∗
)1/2

≤ fu(∆sh, j),

(
j∑
i=1

((πs0h)2(Xi))∗
)1/2

≤ Fu(j).

If η0 ≥ log(eN) set Ω3,u = ΩN .

It turns out that on the event Ω1,u ∩ Ω2,u ∩ Ω3,u, the set PσH is indeed
well behaved. Let

γu = inf sup
h∈H

∑
s>s0

θu,s(∆sh), (4.1)

with the infimum is taken with respect to all (ηs)-admissible sequences.
From here on we will assume that (Hs)s≥0 is an almost optimal (ηs)s≥0-
admissible sequence.

Lemma 4.8 There exists absolute constants c1 and c2 for which the fol-
lowing holds. Let (θu,s)s≥s0 be functionals, and for s < s0 set θu,s = 0.
For every u ≥ c1, on the event Ω1,u ∩ Ω2,u ∩ Ω3,u, for every h ∈ H and
I ⊂ {1, ..., N},

1. if ηs ≤ N then(∑
i∈I

(∆sh)2(Xi)

)1/2

≤ θu,s(∆sh) + fu(∆sh, |I|),

and if ηs > N , (∑
i∈I

(∆sh)2(Xi)

)1/2

≤ θu,s(∆sh).
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2. (∑
i∈I

h2(Xi)

)1/2

≤ γu +
∑

{i:2i≤|I|}

F (c2u2i) +Rs0(h, I),

where Rs0,I(h) = θu,0(π0h) if s0 = 0 and Rs0(h, I) = min{θu,s0(πs0h), Fu(|I|)}
otherwise.

Proof. First, assume that log(eN) ≤ ηs ≤ N (i.e. s ≥ s0) and recall that
`s is the largest integer for which ηs ≥ ` log(eN/`). If |I| ≤ u`s then the
claim follows from the definition of θu,s and the set Ω1,u. If |I| ≥ u`s, then

(∑
i∈I

(∆sh)2(Xi)

)1/2

≤

(
u`s∑
i=1

((∆sh)2(Xi))∗
)1/2

+

 |I|∑
i=u`s+1

((∆sh)2(Xi))∗

1/2

,

and the claim is evident from the definition of the function fu and the set
Ω2,u.

If, on the other hand, ηs < log(eN) then s0 > 0 and the assertion follows
from the definition of Ω3,u.

The second part of (1) follows from the definition of Ω1,u.
Turning to (2), we shall treat two cases. First, consider the case |I| ≥

u`s0 and observe that it suffices to estimate (
∑u`s+1

i=1 ((πsh)2(Xi))∗)1/2. In-
deed, let s be an integer for which u`s ≤ |I| < u`s+1. Since `s+1 is nonde-
creasing, then on Ω1,u,u`s+1∑

i=1

(h2(Xi))∗

1/2

≤
∑
j≥s+1

u`s+1∑
i=1

((∆jh)2(Xi))∗

1/2

+

u`s+1∑
i=1

((πsh)2(Xi))∗

1/2

≤
∑
j≥s+1

θu,j(∆jh) +

u`s+1∑
i=1

((πsh)2(Xi))∗

1/2

.

If J ⊂ I is the set of the largest u`s coordinates of ((πsh)(Xi))
N
i=1 in I,

then the coordinate projections satisfy that

PI((πsh)(Xi))Ni=1 = PJ((πs−1h)(Xi))Ni=1+PJ((∆sh)(Xi))Ni=1+PI\J((πsh)(Xi))Ni=1,
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and thus,(∑
i∈I

(πsh)2(Xi)

)1/2

≤

u`s+1∑
i=1

(
(πsh)2(Xi)

)∗1/2

≤ max
|I1|=u`s

∑
i∈I1

(πs−1h)2(Xi)

1/2

+ max
|I1|=u`s

∑
i∈I1

(∆sh)2(Xi)

1/2

+

 u`s+1∑
i=u`s+1

(
(πsh)2(Xi)

)∗1/2

.

Hence, if we set Uj,s(h) = max|I|=u`j+1

(∑
i∈I(πsh)2(Xi)

)1/2 then for every
s, and every h ∈ H

Us,s(h) ≤Us−1,s−1(h) + max
|I1|=u`s

∑
i∈I1

(∆sh)2(Xi)

1/2

+

 u`s+1∑
i=u`s+1

(
(πsh)2(Xi)

)∗1/2

≤Us−1,s−1(h) + θu,s(∆sh) + Fu(u`s+1).

Summing over all s > s0,

Us,s(h) ≤
s∑

j=s0+1

θu,j(∆jh) +
s+1∑

j=s0+1

Fu(u`j) + Us0,s0(h),

and thus, for every h ∈ H and every I ⊂ {1, ..., N},(∑
i∈I

h2(Xi)

)1/2

≤
∑
s>s0

θu,s(∆jh) +
∑

{s>s0:`s≤|I|}

Fu(u`s+1) + Us0,s0(h).

Next, one has to bound suph∈H max|I|≤u`s0+1

(∑
i∈I(πs0h)2(Xi)

)1/2. This
is at most θu,s0(πs0h) on Ω1,u and when s0 > 0, it is also bounded by
Fu(u`s0) ≤ Fu(|I|) on Ω3,u.

The claim in this case follows since `s grows exponentially for s ≥ s0,
and thus ∑

{s≥s0:`s≤|I|}

Fu(u`s+1) ≤
∑

{i:2i≤|I|}

Fu(cu2i)
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for a suitable absolute constant c.
Turning to the second case, if |I| ≤ u`s0 , note that(∑
i∈I

h2(Xi)

)1/2

≤
∑
s>s0

(∑
i∈I

(∆sh)2(Xi)

)1/2

+

(∑
i∈I

(πs0h)2(Xi)

)1/2

≤
∑
s>s0

θu,s(∆sh) + min{θu,s0(πs0h), Fu(|I|)}.

For Lemma 4.8 to have any meaning, one has to identify the functionals
fu, Fu and θu,s in the cases one is interested in. Our next goal is to study
the functions fu and Fu under various tail assumptions on functions in H,
and naturally, the two families of tail estimates we will be interested in are
when H has a bounded diameter in Lψβ or in Lq for q > 2.

If H ⊂ Lψβ , then for every h ∈ H, Pr(|h| ≥ y) ≤ exp(−(y/‖h‖ψβ )β).
Thus, for ε ≥ 1 and every j,

yj . ε‖h‖ψβ log1/β(eN/j), zj . ε sup
h∈H
‖h‖ψβ log1/β(eN/j).

Hence, if dψβ = suph∈H ‖h‖ψβ , then

Fu(i) . ε
√
u

log2 i∑
j=1

2jz2
2j

1/2

.β ε
√
udψβ

log2 i∑
j=1

2j log2/β(eN/2j)

1/2

.β ε
√
udψβ

√
i log1/β(eN/i) ∼β ε

√
udψβφβ(i),

and in a similar fashion,

fu(h, i) .β ε
√
u‖h‖ψβ

√
i log1/β(eN/i) ∼β ε

√
u‖h‖ψβφβ(i).

Using the same argument, if h ∈ Lq then Pr(|h| ≥ ‖h‖Lqy) ≤ 1/yq and
for any 0 < ε < q/2 − 1, yj = ‖h‖Lq(N/j)(1+ε)/q. If suph∈H ‖h‖Lq = dLq ,
q > 2 and cq,ε = 1− 2(1 + ε)/q then

Fu(i) .
√
udLq

log2 i∑
j=1

2j(N/2j)2(1+ε)/q

1/2

. c−1
q,ε

√
udLq

√
i

(
N

i

)(1+ε)/q

∼c−1
q,ε

√
udLqφq,ε(i),
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and

fu(h, i) . c−1
q,ε

√
u‖h‖Lq

√
i

(
N

i

)(1+ε)/q

∼ c−1
q,ε

√
u‖h‖Lqφq,ε(i).

Combining these observations with the estimates of Lemma 4.8 and noting
that if s0 > 0 then Rs0,I(h) .

√
udLqφq,ε(|I|), one reaches the following

corollary.

Corollary 4.9 Let (θu,s)s≥s0 be a sequence of functionals and for s < s0 let
θu,s = 0. If H is bounded in Lq for q > 2, then on Ω1,u ∩ Ω2,u ∩ Ω3,u, for
every h ∈ H and every I ⊂ {1, ..., N}

1. if ηs ≤ N ,(∑
i∈I

(∆sh)2(Xi)

)1/2

. θu,s(∆sh) + c−1
q,ε

√
u‖∆sh‖Lqφq,ε(|I|),

and if ηs > N then(∑
i∈I

(∆sh)2(Xi)

)1/2

. θu,s(∆sh).

2. (∑
i∈I

h2(Xi)

)1/2

.
∑
s≥0

θu,s(∆sh) + c−1
q,ε

√
udLqφq,ε(|I|).

A similar bound holds when H is bounded in Lψβ .

5 Estimates on Ωi,u and the choice of functionals

We will begin by showing that Ω2,u is a large set, almost regardless of any
assumptions on φ, an observation that is based on the same idea as Lemma
4.4.

Lemma 5.1 There exist absolute constants c1 and c2 such that, for every
ε > 0 and u ≥ c1/ε, Pr(Ω2,u) ≥ 1− 2 exp(−c2εuηs0).

Proof. Recall that by Lemma 4.4, for any random variable Y , with prob-
ability at least 1− 2 exp(−c1uε` log(eN/`)), for every integer k > u`,

k∑
i=u`+1

(Y 2
i )∗ ≤ fu(Y, k). (5.1)
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Let ` = `s0 , and since ηs ∼ `s log(eN/`s) and |∆sH| . 2ηs , then for u ≥
c3/ε, (5.1) holds uniformly for every h ∈ ∆sH with probability at least
1− 2 exp(−c4uεηs). The analogous claim holds for functions in Hs as well,
with the uniform bound of Fu replacing fu. Summing over all s ≥ s0 and
since (ηs) grows exponentially, the claim follows.

Since Ω2,u is always large, and since Ω3,u will behave in a very similar way
when s0 > 0, the crucial point in the construction of a good decomposition
of PσH is a correct choice of θu,s and estimates on Ω1,u.

The functionals θu,s capture the geometry of H, and thus have to be
selected according to the information one has on the class. We will present
two examples of such choices, each leading to one of our two main results.
The first one will be based on “global” structure like metric entropy, while
the second uses accurate estimates on each “chain”.

5.1 The ball Bn
2 – global estimates

Let µ be an unconditional measure on Rn, set H = {
〈
t, ·
〉

: t ∈ Bn
2 } to be

a class of linear functionals on (Rn, µ) – and from here on we will identify
the class {

〈
t, ·
〉

: t ∈ T} with its indexing set T . We will also assume that
µ satisfies the p-small diameter, Lq moment assumption for some p > 2
and q > 2; that is, µ is supported in κ1n

1/pBn
p , and for every x ∈ Rn,

‖
〈
x, ·
〉
‖Lq ≤ κ2‖x‖`n2 .

Let κ4 ≥ 10 be an absolute constant to be fixed later, set 2s1 ∼ nδ for
δ < 1/2− 1/2(p− 1), and put

ηs = κ42s+s1 max{log(en/2s+s1), 1}.

Note that s0 = 0 as long as η0 ∼ 2s1 log(en/2s1) ≥ log(eN), i.e., if nδ log(n) &
log(eN) - which we will assume is the case, since our main interest in when
N ∼ n.

If X = (x1, ..., xn) is distributed according to µ then for every 1 ≤
` ≤ n, set M` = ‖(

∑`
i=1(x2

i )
∗)1/2‖L∞ . Define the following functionals

(which, in this case, will be constants depending only on u and s): let θu,0 =
c
√
uη

1/2
0 n1/p2(s+s1)(1/2−1/p), if 2s+s1 ≤ n, set θu,s = c

√
uη

1/2
s n1/p2−(s+s1)/p

and if ηs ≥ n put θu,s = c
√
uη

1/2
s 2−2s/n, where c = c(κ1, p, δ).

Theorem 5.2 For every κ1, p > 2 and δ < 1/2 − 1/2(p − 1) there exist
constants c1, c2 and c3 that depend only on κ1, p and δ for which the following
holds. There is an (ηs)s≥0-admissible sequence of Bn

2 , for which, if u ≥ c1,
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then Pr(Ω1,u) ≥ 1− exp(−c2n
δ) and

sup
t∈Bn2

∑
s≥0

θu,s(
〈
∆st, ·

〉
) ≤ c3

√
u
√
n.

Observe that by the p-small diameter assumption, M` .p n
1/p`1/2−1/p. Also,

since µ is unconditional, then for every I ⊂ {1, ..., n} and v supported on I,

‖
〈
v, ·
〉
‖ψ2 . ‖v‖`I∞M|I|. (5.2)

Indeed, by the unconditionality of µ, (x1, ..., xn) has the same distribution
as (ε1x1, ..., εnxn). Hence, for every r ≥ 1

‖
〈
v, ·
〉
‖Lr ∼(EXEε|

∑
i∈I

εixivi|r)1/r .

(
EXrr/2(

∑
i∈I

v2
i x

2
i )
r/2

)1/r

.
√
r‖v‖`I∞M|I|.

We will also need a few ψ2 entropy estimates. Set Bψ2 = {v ∈ Rn :
‖
〈
v, ·
〉
‖ψ2 ≤ 1}, and for K,L ⊂ Rn denote by N(K,L) the minimal number

of translates of L needed to cover K.

Lemma 5.3 If I ⊂ {1, ..., n} then for every ε > 0, logN(BI
2 , εBψ2) .

M2
|I|/ε

2. Moreover, for ε ≤ 1, logN(Bn
2 , εBψ2) . n log(2/ε).

Proof. By the dual Sudakov inequality (see, e.g. [20]), if B‖ ‖ is a unit
ball of a norm on RI and G = (gi)i∈I is a standard Gaussian vector on
RI , then logN(Bn

2 , εB‖ ‖) . (E‖G‖)2/ε2. Since ‖f‖ψ2 ≤ E exp(f2) and
(
∑

i∈I x
2
i )

1/2 ≤M|I| almost surely, then by changing the order of integration,

E‖G/cM|I|‖ψ2 ≤ EXEG(exp((
∑
i∈I

gixi)2/c2M2
|I|)|X) ≤ 2

for a suitable absolute constant c, proving the first part.
For the second part, note thatN(Bn

2 , εBψ2) ≤ N(Bn
2 , Bψ2)·N(Bψ2 , εBψ2).

By the first part, logN(Bn
2 , Bψ2) . n, while a standard volumetric estimate

shows that N(Bψ2 , εBψ2) ≤ (5/ε)n.

Next, let us define the sets Ts. If 2s+s1 > n, let Ts be a maximal
εs separated subset of Bn

2 relative to the ψ2 norm and of cardinality 2ηs .
If 2s+s1 ≤ n, let Ts be a maximal εs separated subset of U2s+s1 = {x ∈
Bn

2 : |supp(x)| ≤ 2s+s1} with respect to the ψ2 norm, and of cardinality 2ηs .
Given a vector t ∈ Bn

2 , we will define the functions πs as follows. If 2s+s1 > n,
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πst is a best ψ2 approximation of t in Ts. For 2s+s1 ≤ n one combines
approximation and dimension reduction. Set s∗ to satisfy that 2s∗+s1 = n
(and without loss of generality we will assume that such an integer exists).
If v = πs∗t, let In/2 be the set of the largest n/2 coordinates of v, and put
πs∗−1t to be the best approximation of the coordinate projection PIn/2v in
Ts∗−1, and so on.

Lemma 5.4 There exists an absolute constant c such that for every t ∈ Bn
2 ,

if s > s∗ (i.e., if ηs > κ3n), then ‖
〈
∆st, ·

〉
‖ψ2 ≤ c2−2s+s1/n, and if 0 < s ≤ s∗

then ‖
〈
∆st, ·

〉
‖ψ2 ≤ c2−(s+s1)/2M2s+s1 .

Proof. First consider s > s∗. Note that ‖
〈
∆st, ·

〉
‖ψ2 ≤ ‖

〈
t − πst, ·

〉
‖ψ2 +

‖
〈
t − πs−1t, ·

〉
‖ψ2 ≤ εs + εs−1, and by the covering numbers estimate from

Lemma 5.3, in that range εs . 2−2s+s1/n.
In the range s ≤ s∗, ∆st = u + w, where w consists of the small-

est 2s+s1−1 coordinates of πst ∈ BI
2 for some |I| = 2s+s1 , and u is an

εs−1-approximation of the largest 2s+s1−1 coordinates of πst. Therefore,
‖
〈
∆st, ·

〉
‖ψ2 ≤ ‖

〈
w, ·
〉
‖ψ2 + εs−1. Recall that for every such s, U2s+s1 is a

union of
(

n
2s+s1

)
balls of dimension 2s+s1 , then

logN(U2s+s1 , εBψ2) ≤2s+s1 log(en/2s+s1) + max
|J |=2s+s1

logN(BJ
2 , εBψ2)

.2s+s1 log(en/2s+s1) +M2
2s+s1/ε

2.

Note that for a suitable choice of κ4, log |Ts| ≥ 2·2s+s1 log(en/2s+s1). There-
fore, εs ≤ 2−(s+s1)/2M2s+s1 , and applying (5.2), ‖

〈
w, ·
〉
‖ψ2 . ‖w‖`I∞M|I| .

2−(s+s1)/2M2s+s1 .

Proof of Theorem 5.2. Observe that ‖Y ‖2ψ2
= ‖Y 2‖ψ1 , and thus, by a

standard application of Bernstein’s inequality, for every integer m,

Pr

(
m∑
i=1

Y 2
i ≥ m‖Y ‖2ψ2

t2

)
≤ 2 exp(−cmmin{t2, t4}).

Therefore, if w is large enough, then

Pr

(
u`s∑
i=1

(Y 2
i )∗ ≥ w2‖Y ‖2ψ2

· u`s log(eN/u`s)

)

≤
(
N

u`s

)
· 2 exp(−cw2u`s log(eN/u`s)) ≤ 2 exp(−c1w

2u`s log(eN/u`s)).
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Moreover, u`s log(eN/u`s) . uηs, and for u ≥ 1, u`s log(eN/u`s) & ηs,
implying that with probability at least 1− 2 exp(−c2w

2ηs),(
u`s∑
i=1

(Y 2
i )∗
)1/2

. wu1/2‖Y ‖ψ2η
1/2
s .

Also, with probability at least 1− 2 exp(−c2w
2ηs), if ηs ≥ N then(

N∑
i=1

(Y 2
i )∗
)1/2

. wu1/2‖Y ‖ψ2η
1/2
s .

Using Lemma 5.4 and summing the probability estimates, it is evident that
with probability at least 1− 2 exp(−c3w

2η0), the following holds: if ηs ≥ N
then

sup
t∈Bn2

(
N∑
i=1

(
〈
∆st,Xi

〉2)∗
)1/2

. wu1/2η1/2
s 2−2s+s1/n,

if κ4n ≤ ηs < N , then

sup
t∈Bn2

(
u`s∑
i=1

(
〈
∆st,Xi

〉2)∗
)1/2

. wu1/2η1/2
s 2−2s+s1/n,

and if s > 0 and ηs ≤ κ4n then

sup
t∈Bn2

(
u`s∑
i=1

(
〈
∆st,Xi

〉2)∗
)1/2

. wu1/2η1/2
s 2−(s+s1)/2M2s+s1 .

Finally, since η0 = κ42s1 log(en/2s1) then `0 . 2s1 . Moreover, |supp(π0t)| ≤
2s1 and by (5.2), ‖

〈
π0t, ·

〉
‖ψ2 ≤ M2s1 . Hence, with probability at least

1− 2 exp(−c4w
2η0),

sup
t∈Bn2

(
u`s∑
i=1

(
〈
π0t,Xi

〉2)∗
)1/2

. wu1/2η
1/2
0 M2s1 .

SinceM` .p n
1/p`1/2−1/p, then Pr(Ω1,u) ≥ 1−2 exp(−c5η0) = 1−2 exp(−c52s1)

for the desired functionals θu,s. It remains to choose s1 and estimate
∑

s≥0 θu,s.
Note that if 2s1 ∼ nδ for δ < 1/2− 1/2(p− 1), then

θ0 ∼ η1/2
0 M2s1 ∼κ1,p 2s1/2 log1/2(en/2s1)n1/p2s1(1/2−1/p) ≤ c6(κ1, p, δ)

√
n.

(5.3)
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Also, ∑
{s>0:ηs≤κ3n}

θs .
∑

{s:ηs≤κ3n}

η1/2
s 2−(s+s1)/2M2s+s1

.κ1,p,δn
1/p

∑
{s:2s+s1≤n}

2(s1+s)(1/2−1/p) log1/2(en/2s+s1) ≤ c6(κ1, p, δ)
√
n,

(5.4)

and ∑
{s:ηs>κ3n}

θs .κ1,κ3,p

∑
{s:ηs>κ3n}

2(s+s1)/22−2s+s1/n ≤ c6(κ1, p, δ)
√
n. (5.5)

Corollary 5.5 There exist absolute constants c1, c2 and c3 and c4 that de-
pend on κ1, κ2, p, δ, for which the following holds. If µ is as above and ε > 0,
then Bn

2 has an (ηs)s≥0-admissible sequence (Ts)s≥0 for which, for u ≥ c1/ε,
with probability at least 1− 2 exp(−c2εun)− 2 exp(−c3n

δ), for every t ∈ Bn
2

and every I ⊂ {1, ..., N},

1. if ηs ≤ N ,(∑
i∈I

(
〈
∆st,Xi

〉
)2

)1/2

≤ c4θu,s + c−1
q,ε

√
u‖∆st‖`n2φq,ε(|I|),

and if ηs > N then(∑
i∈I

(
〈
∆st,Xi

〉
)2

)1/2

≤ c4θu,s.

2. (∑
i∈I

(
〈
t,Xi

〉
)2

)1/2

≤c4

∑
s

θu,s + c−1
q,ε

√
uφq,ε(|I|)

.
√
u
√
n+ c−1

q,ε

√
uφq,ε(|I|).

We will separate our treatment to the cases q > 4 and 2 < q ≤ 4. First, if
q > 4, let ε = (q/4 − 1)/2 and note that cq,ε ≥ 1/2. Also, since ‖t‖`n2 ∼κ2
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‖
〈
t, ·
〉
‖Lq .κ2 ‖

〈
t, ·
〉
‖ψ2 , then by the same computation as in (5.3), (5.4)

and (5.5),
B4 = sup

t∈Bn2

∑
s≥0

η1/2
s ‖∆st‖Lq .κ1,κ2,p,δ

√
n.

We thus have:

Theorem 5.6 For every κ1, κ2, q > 4, p > 2 and δ < 1/2 − 1/2(p − 1),
there exist constants c0, c1, c2 and c3 which depend on κ1, κ2, p, q and δ,
and an absolute constant c4 for which the following holds. If µ is as above,
and N ≤ exp(c0n

δ), then for every u ≥ c1, with µN -probability at least
1− 2 exp(−c2n

δ), Pσ(Bn
2 ) satisfies that

sup
t∈Bn2

∣∣∣∣∣ 1
N

N∑
i=1

εi
〈
Xi, t

〉2

∣∣∣∣∣ ≤ c3ru

(√
n

N
+
n

N

)
,

with probability at least 1− 2 exp(−c4nr
2) relative to the Bernoulli random

variables.

Turning to the case 2 < q ≤ 4, recall that for 0 < ε < q/2 − 1, Bq,ε =∑
{s:ηs≤N} η

1−2(1+ε)/q
s ‖∆sv‖Lq . Assume that µ is as above and satisfies the

p-small diameter assumption for p > q/(q/2 − 1). Then, for 0 < ε <
q/2− 1− q/p (i.e. if 1− (2(1 + ε)/q)− 1/p > 0),

Bq,ε .
∑

{s:2s+s1≤n}

(2s+s1 log(en/2s+s1))1−2(1+ε)/q2−(s+s1)/2n1/p2(s+s1)(1/2−1/p)

+
∑

{s:2s+s1>n}

2(s+s1)(1−2(1+ε)/q)2−2(s+s1)/n
.

n1−2(1+ε)/q

1− 2(1 + ε)/q − 1/p
.

Therefore, one has

Theorem 5.7 Let 2 < q ≤ 4, p > (1−2/q)−1 and 0 < ε < 2/q−1− q/p. If
µ and δ are as above, u & 1/ε, and N . exp(c0n

δ), then with µN probability
at least 1− 2 exp(−c1εun)− 2 exp(−c2n

δ), Pσ(Bn
2 ) satisfies that

sup
t∈Bn2

∣∣∣∣∣ 1
N

N∑
i=1

εi
〈
Xi, t

〉2

∣∣∣∣∣ .κ1,κ2,p,δ
ru

(1− 2(1 + ε)/q)2

(( n
N

)1−(2/q)−2ε/q
+
√
n

N
+
n

N

)
.

with probability at least 1− 2 exp(−c3nr
2) relative to the Bernoulli random

variables.
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In particular, taking ε ∼ 1/ log(eN/n), then for every such N satisfying
that N &κ1,κ2,q,p n, and any u ≥κ1,κ2,q,p log(eN/n),

sup
t∈Bn2

∣∣∣∣∣ 1
N

N∑
i=1

εi
〈
Xi, t

〉2

∣∣∣∣∣ .κ1,κ2,q,p ru
( n
N

)1−2/q
.

5.2 Unconditional log-concave measures

We will now present a different way of bounding Ω1,u (and Ω3,u if needed) by
estimating the moments of the increments ∆sh, and selecting the functionals
θu,s accordingly.

For every s ≥ 0 and h ∈ H, set

Z2
s (h) =

min{u`s+1,N}∑
i=1

((∆sh)2(Xi))∗, Z2
s0(h) =

min{u`s0+1,N}∑
i=1

((πs0h)2(Xi))∗.

In light of Theorem B, we will assume that H is a bounded subset of Lψ1

(although what we do here can be extended to other moment assumptions),
and thus one may control Ω2,u using φβ for β = 1 and ε which will be
selected later.

Lemma 5.8 There exist absolute constants c1, c2 and c3 for which the fol-
lowing holds. For u ≥ c1, with probability at least 1 − 2 exp(−c1uηs0), for
every s ≥ s0 and every h ∈ H, Zs(h) ≤ e‖Zs(h)‖L2uηs+1

.

Proof. If Z is a nonnegative random variable then Pr(Z ≥ e‖Z‖Lq) ≤
exp(−q). Thus, for a fixed s and every h ∈ H, Zs(h) ≤ e‖Zs(h)‖L2uηs+1

with probability at least 1 − exp(−2uηs+1). Since log |∆sH| . ηs+1 and
because there are at most exp(u`s+1 log(eN/u`s+1)) ≤ exp(uηs+1) subsets of
{1, ..., N} of cardinality u`s+1, the same probability estimate holds uniformly
for every h ∈ H (with a different constant). Summing the probabilities for
every s ≥ s0 and repeating the same argument for Hs0 concludes the proof.

Next, one has to control the moments appearing in Lemma 5.8, which is
based on the following result, due to Lata la [17].

Theorem 5.9 Let X1, ..., Xm be independent, distributed according to a
nonnegative random variable X. Then for every p ≥ 1,

‖
m∑
i=1

Xi‖Lp ∼

{
p

r

(
m

p

)1/r

‖X‖Lr : max{1, p/m} ≤ r ≤ p

}
.
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Definition 5.10 If X is a random variable, for every p ≥ 1 set

‖X‖(p) = sup
1≤q≤p

‖X‖Lq√
q

.

The (p)-norms are a local version of the ψ2 norm, and clearly ‖X‖(p) .
‖X‖ψ2 . Using those norms one may obtain a more compact expression for
the required moments.

Lemma 5.11 There exist an absolute constant c such that for every h ∈ H,
every s > s0 and every u > 0,

‖Zs(h)‖L2uηs+1
≤ c
√
uη

1/2
s+1‖∆sh‖(2uηs+1)

and
‖Zs0(h)‖L2uηs0+1

≤ c
√
uη

1/2
s0+1‖πs0h‖(2uηs0+1).

Proof. Let Yi = h(Xi) and observe that for every m, ‖(
∑m

i=1 Y
2
i )1/2‖Lp =

‖
∑m

i=1 Y
2
i ‖

1/2
Lp/2

. Since m = u`s+1 and p = 2uηs+1 then p/2 ≥ m. Also, for
every r ≤ p, ‖Y ‖Lr ≤

√
r‖Y ‖(p), and applying Theorem 5.9,

‖
m∑
i=1

Y 2
i ‖Lp/2 . ‖Y 2‖(p/2) sup

2≤r≤p

p√
r

(
m

p

)1/r

. ‖Y 2‖(p/2)
p√

log(p/m)
.

Hence, for our choice of p and m,

‖
m∑
i=1

Y 2
i ‖

1/2
Lp/2

.
√
uη

1/2
s+1‖Y

2‖1/2(uηs+1) =
√
uη

1/2
s+1‖Y ‖(2uηs+1).

Corollary 5.12 There exist absolute constants c1 and c2 for which the fol-
lowing holds. If, for s > s0,

θu,s(∆sh) = c1

√
uη

1/2
s+1‖∆sh‖(2uηs+1)

and
θu,s0(πs0h) = c1

√
uη

1/2
s0+1‖πs0h‖(2uηs0+1),

then Pr(Ω1,u) ≥ 1− 2 exp(−c2uηs0).

Next, assume that s0 > 0, and thus one has to bound Pr(Ω3,u).
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Lemma 5.13 There exists absolute constants c1, c2 and c3 such that, for
every u ≥ c1, with probability at least 1 − 2 exp(−c2u logN), for every 0 ≤
s < s0 and every h ∈ H,(

j∑
i=1

((∆sh)2(Xi))∗
)1/2

≤ c3u‖∆sh‖ψ1

√
j log(eN/j) ∼ u‖∆sh‖ψ1φ1(j),

and a similar bound holds for πs0h.

Proof. Recall that for a fixed ε > 0 and every i, Pr(Y ∗i ≥ yi) ≤ exp(−εi log(eN/i)).
Let ε ∼ u ≥ 1 and observe that if Y ∈ Lψ1 , then yi . u‖Y ‖ψ1 log(eN/i) and

Pr(∃i ≤ N : Y ∗i ≥ yi) ≤ exp(−c1u logN). (5.6)

Since the cardinality of the set ∪s<s0∆sH is at most
∑

s<s0
2ηs+1 . N c2 ,

(5.6) holds uniformly with probability at least 1−exp(−c3u logN) for u ≥ c4.
Therefore, on that event, for every 0 ≤ s < s0 and every j,(

j∑
i=1

((∆sh)2(Xi))∗
)1/2

≤ c5u‖∆sh‖ψ1

√
j log(eN/j).

An identical argument holds for
(∑j

i=1((πs0h)2(Xi))∗
)1/2

.

Therefore, the event Ω1,u ∪ Ω2,u ∪ Ω3,u has high probability, leading to
the following decomposition result.

Corollary 5.14 There exist absolute constants c1 and c2 for which the fol-
lowing holds. For every u ≥ c1, with probability at least 1−2 exp(−c2u logN),
for every h ∈ H and every I ⊂ {1, ..., N},

1. if ηs ≤ N ,(∑
i∈I

((∆sh)2(Xi))∗
)1/2

.
√
uη

1/2
s+1‖∆sh‖(2uηs+1) + u‖∆sh‖ψ1φ1(|I|),

and if ηs > N then(∑
i∈I

((∆sh)2(Xi))∗
)1/2

.
√
uη

1/2
s+1‖∆sh‖(2uηs+1).
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2. (∑
i∈I

(h2(Xi))∗
)1/2

.
√
u
∑
s>s0

η
1/2
s+1‖∆sh‖(2uηs+1)+udψ1φ1(|I|)+Rs0(h),

where Rs0(h) .
√
uη1‖π0h‖(2uη1) if s0 = 0 and Rs0(h) . udψ1φ1(|I|) other-

wise.

Remark 5.15 Note that ‖∆sh‖(2uηs+1) . ‖∆sh‖ψ2, and thus one may take

θu,s ∼
√
uη

1/2
s+1‖∆sh‖ψ2. If η0 = 0 and ηs = 2s for s ≥ 1, then for an almost

optimal admissible sequence,∑
s>s0

η
1/2
s+1‖∆sh‖(2uηs+1) . γ2(H,ψ2).

Although this estimate leads to an alternative proof of Theorem 4.1, it is
not sharp enough to prove Theorem B, as the latter requires more accurate
bounds on ‖∆sh‖(2uηs+1).

From here on we will assume that η0 = 0 and that ηs = 2s for s ≥ 1. If
s ≥ s0 ∼ logN , set θu,s(∆st) =

√
uη

1/2
s+1‖∆sh‖(2uηs+1).

Theorem 5.16 There exist absolute constants c1 and c2 for which the fol-
lowing holds. If µ is an isotropic, unconditional log-concave measure, HT =
{
〈
t, ·
〉

: t ∈ T} and (Ts)s≥0 is an admissible sequence of T , then for every
u ≥ c1,

θu,s(
〈
∆st, ·

〉
) ≤ c2u

(
2s‖∆st‖`n∞ + 2s/2‖∆st‖`n2

)
.

Proof. Let T ⊂ Rn, and identify it with the class of linear functionals
HT = {

〈
t, ·
〉

: t ∈ T} on (Rn, µ). By Borell’s inequality [8], the ψ1 and L2

norms are c1-equivalent on Rn, where c1 is an absolute constant, and since µ
is isotropic, then ‖

〈
t, ·
〉
‖L2 = ‖t‖`n2 . Moreover, there is an absolute constant

c2 such that for every p ≥ q and t ∈ Rn,

‖
〈
t, ·
〉
‖Lp ≤ c2

p

q
‖
〈
t, ·
〉
‖Lq .

Hence, for every t ∈ Rn and every r ≥ 1,

‖
〈
t, ·
〉
‖(rq) ≤ sup

q≤`≤rq

‖
〈
t, ·
〉
‖L`√
`

+ ‖
〈
t, ·
〉
‖(q) ≤ c2 sup

q≤`≤rq

`

q

‖
〈
t, ·
〉
‖Lq√
`

+ ‖
〈
t, ·
〉
‖(q)

≤ (c2

√
r + 1)‖

〈
t, ·
〉
‖(q).
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Also, for any t ∈ Rn and any p ≥ n, ‖
〈
t, ·
〉
‖(p) ≤ 2c2

√
p
n‖
〈
t, ·
〉
‖(n). There-

fore, if u ≥ 1 and ηs = 2s ≤ n then

√
uη

1/2
s+1‖

〈
∆st, ·

〉
‖(2uηs+1) . u2s/2‖

〈
∆st, ·

〉
‖(2s),

and if 2s > n then

√
uη

1/2
s+1‖

〈
∆st, ·

〉
‖(2uηs+1) .

√
u

2s

n
‖
〈
∆st, ·

〉
‖(n).

Note ([6] or [25], Proposition 3.4) that there is an isotropic convex body K
such that for every t ∈ Rn and any 1 ≤ p ≤ n, ‖

〈
t, ·
〉
‖Lp(µ) ≤ c3‖

〈
t, ·
〉
‖Lp(K).

Moreover, since µ is unconditional, K is also unconditional and using the
Bobkov-Nazarov Theorem [7] we get that

‖
〈
t, ·
〉
‖Lp(µ) ≤ c3‖

〈
t, ·
〉
‖Lp(K) 6 c4‖

〈
t, ·
〉
‖Lp(K1),

where K1 is an isotropic image of Bn
1 .

The moments of every linear functional
〈
t, ·
〉

relative to the volume mea-
sure of an isotropic position ofBn

1 are well known [15]: namely, for 1 ≤ p ≤ n,

‖
〈
t, ·
〉
‖Lp(K1) ∼ p‖t‖∞ +

√
p

 n∑
i=p+1

(t2i )
∗

1/2

.

Combining the two estimates, for p ≤ n and any t ∈ Rn,

‖
〈
t, ·
〉
‖(p) ≤ sup

q≤p

‖
〈
t, ·
〉
‖Lq(K1)√
q

∼ sup
q≤p

√q‖t‖∞ +

 n∑
i=q+1

(t2i )
∗

1/2


≤ √p‖t‖`n∞ + ‖t‖`n2 .

Thus, for 2s ≤ n,

2s/2‖
〈
∆st, ·

〉
‖(2s) ≤ 2s‖∆st‖`n∞ + 2s/2‖∆st‖`n2 ,

and if 2s > n,
2s√
n
‖
〈
∆st, ·

〉
‖(n) ≤ 2s‖∆st‖`n∞ .
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Note that for an almost optimal admissible sequence,∑
s≥0

2s‖∆st‖`n∞ + 2s/2‖∆st‖`n2 . γ1(T, `n∞) + γ2(T, `n2 ).

It turns out that γ1(T, `n∞) + γ2(T, `n2 ) can be completely characterized by
the following beautiful result due to Talagrand [31, 32].

Theorem 5.17 There exist absolute constants c and C for which the follow-
ing holds. Let (yi)ni=1 be independent, standard exponential variables. Then,
for every T ⊂ Rn,

cE sup
t∈T

n∑
i=1

yiti ≤ γ1(T, `∞) + γ2(T, `2) ≤ CE sup
t∈T

n∑
i=1

yiti.

Recall that if (yi)ni=1 are standard exponential random variables and T ⊂
Rn, then we denote E(T ) = E supt∈T

∑n
i=1 yiti and d2(T ) = supt∈T ‖t‖2.

Combining the estimates above, it follows that on Ω1,u∩Ω2,u∩Ω3,u, PσT
satisfies Definition 3.1 with θs = 2s‖ · ‖`n∞ + 2s/2‖ · ‖`n2 for s ≥ s0 and θs = 0
otherwise, γ . E(T ), φ ∼ φ1, ‖(

〈
Xi, t

〉
)Ni=1‖ = ‖

〈
t, ·
〉
‖ψ1 ∼ ‖t‖`n2 and α ∼ u.

Therefore, B4 . γ2(T, `2) . E(T ).

Theorem 5.18 There exist absolute constants c1, c2, c3 and c4 for which
the following holds. For every u ≥ c1, With µN -probability at least 1 −
2 exp(−c2u logN), the set V = PσT satisfies that

sup
v∈V

∣∣∣∣∣
N∑
i=1

εiv
2
i

∣∣∣∣∣ ≤ c3ru
2
(
d2(T )

√
NE(T ) + (E(T ))2

)
with probability at least 1−2 exp(−c4r

2) with respect to the Bernoulli random
variables.

5.3 Proofs of Theorems A and B

The final step we need for the proofs of Theorem A and Theorem B is a
version of the Ginè-Zinn symmetrization Theorem (see, e.g. [14, 33]), which
enables one to pass from the Bernoulli process indexed by random coordinate
projections of a class of functions, to the empirical process indexed by the
class.
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Theorem 5.19 Let F be a class of functions and for every x > 0, set
βN (x) = inff∈F Pr(|

∑N
i=1 f(Xi)− Ef | > x/2). Then

βN (x)PrX

(
sup
f∈F

∣∣∣∣∣
N∑
i=1

f(Xi)− Ef

∣∣∣∣∣ > x

)
≤ 2PrX⊗ε

(
sup
f∈F

∣∣∣∣∣
N∑
i=1

εif(Xi)

∣∣∣∣∣ > x/4

)
.

To apply Theorem 5.19, one has to identify the right value x for which
βN (x) ≥ 1/2. In our case, F = H2, and thus one has to show that if x is
large enough, then suph∈H Pr(|

∑N
i=1 h

2(Xi)− Eh2| > x/2) ≤ 1/2.

Lemma 5.20 Let H be a class of functions which is bounded in Lq and
consider the empirical process indexed by F = {h2 : h ∈ H}. If q ≥ 4
and x & d2

Lq

√
N then βN (x) ≥ 1/2 and the same holds if 2 < q < 4 and

x &q d
2
Lq
N2/q.

Proof. The first part of the claim follows from an application of Cheby-
shev’s inequality, and is omitted. For the second part, fix r > 0, set
V = (h2(Xi))Ni=1, and since Pr(|h2(X)| ≥ d2

Lq
(rN/i)2/q) ≤ i/(rN) then

Pr
(
V ∗i ≥ d2

Lq(rN/i)
2/q
)

.

(
N

i

)
· (i/rN)i ≤ exp(−i log(er)) = (er)−i.

(5.7)
Moreover, for r0 ∼ c2, Pr(∃i : |h2(Xi)| ≥ r0d

2
Lq
N2/q) ≤ 1/10. Hence, a

truncation argument shows that without loss of generality we may assume
that ‖h2‖L∞ ≤ r0d

2
Lq
N2/q. Applying the L∞ estimate for the largest two

coordinates of V and (5.7) for the rest, it follows that

Pr(‖V ‖`N2 ≥ cq(r0 + r)d2
LqN

2/q) .
N∑
i=3

r−i . r−2.

Hence, under the truncation assumption,

E|
N∑
i=1

h2(Xi)− Eh2| .EXEε|
N∑
i=1

εih
2(Xi)| . EX(

N∑
i=1

h4(Xi))1/2 = E‖V ‖`N2

.qr0d
2
LqN

2/q,

showing that it suffices to take x ∼q d2
Lq
N2/q as claimed.
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Since x/N is well within our range, one may complete the proofs of
Theorem A and Theorem B.
Proof of Theorem A. For q > 4, let ρr,u ∼κ1,κ2,q ru(

√
n/N + n/N) for

u &κ1,κ2,q c1, and r ≥ c2. If 2 < q < 4 set ρr,u ∼κ1,κ2,q ru(n/N)1−2/q for
u &κ1,κ2,q log(eN/n) and r ≥ c3. Then,

PrX

(
sup

t∈Sn−1

| 1
N

N∑
i=1

〈
t,Xi

〉2 − E
〈
t,X

〉2| ≥ ρr,u

)

≤4EXPrε

(
| 1
N

N∑
i=1

εi
〈
t,Xi

〉2| ≥ ρr,u/4

)

.PrX((Ω1,u ∩ Ω2,u ∩ Ω3,u)c) + Prε

(
| 1
N

N∑
i=1

εi
〈
t,Xi

〉2| > ρr,u/4
∣∣∣Ω1,u ∩ Ω2,u ∩ Ω3,u

)
. exp(−c4n).

Proof of the quantitative Bai-Yin Theorem.
To prove the quantitative version of the Bai-Yin Theorem one has to

combine Theorem A with a conditioning argument. Consider the vector
X = (ξ1, ..., ξn) with ξ ∈ Lq for some q > 4, and let ν be the measure on
Rn given by ν = X|cn1/pBn

p ; that is, ν is given by the conditioning of X to
the unconditional body cn1/pBn

p for a suitable choice of c and p. Clearly, ν
is unconditional and satisfies the p-small diameter Lq moment assumption,
and thus, falls within the realm of Theorem A. Therefore, if the event A =
{maxi≤N ‖Xi‖`np ≤ cn1/p} has high enough probability, the quantitative
version of the Bai-Yin Theorem follows from Theorem A, because for every
event B,

Pr((Xi)Ni=1 ∈ B) ≤ Pr((Xi)Ni=1 ∈ B|X1, ..., XN ∈ cn1/pBn
p )Pr(A) + Pr(Ac).

Hence, the final step in the proof of our version of the Bai-Yin Theorem is
to show that if ξ ∈ Lq for q > 2, there is some p > 2 for which A has a large
measure.

Recall that for every v ∈ Rn, ‖v‖`np,∞ = maxi≤n v∗k/k
1/p, and since `nr ⊂

`np,∞ ⊂ `np for every r < p, it suffices to show that maxi≤N ‖X‖`np,∞ . n1/p

for some p > 2 with high enough probability.

Lemma 5.21 For every q > 4 and 2 < p < q, there exist constants c1

and c2 that depend on q and p for which the following holds. If ξ ∈ Lq,
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X = (ξ1, ..., ξn) and X1, ..., XN are independent copies of X, then

Pr( max
1≤i≤N

‖Xi‖`np,∞ ≥ c1‖ξ‖Lqn1/p) ≤ c2N

n
q
p
−1
.

Proof. If A = ‖ξ‖Lq then Pr(|ξ| ≥ At) ≤ t−q, and for every 1 ≤ k ≤ n,
Pr(ξ∗k ≥ t) ≤

(
n
k

)
(Pr(|ξ| ≥ t))k. Therefore, if p < q and y > e then

Pr(ξ∗k ≥ A(ny/k)1/p) ≤ exp(k log(en/k)− k(q/p) log(ny/k))

≤ exp(−k(
q

p
− 1) log(ny/k)).

Using this estimate for every k = 2j and summing the probabilities, it follows
that for every q and p there is a constant cq,p for which ‖X‖`np,∞ . n1/p with
probability at least 1−cq,pn1−q/p, and in particular, Pr(maxi≤N ‖Xi‖`np,∞ ≥
cn1/p) ≤ cq,pN/n(q/p)−1, as claimed.

Combining Lemma 5.21 with Theorem A concludes the proof of the
quantitative Bai-Yin Theorem.

Proof of Theorem B. If r ∼ u, with probability at least 1− 2 exp(−c3u
2)

with respect to the Bernoulli random variables,

sup
v∈PσT

∣∣∣∣∣ 1
N

N∑
i=1

εiv
2
i

∣∣∣∣∣ .u3 d2(T )
E(T )√
N

+
E2(T )
N

.

Since d2(T )E(T )/
√
N is a “legal” choice in the Giné-Zinn symmetrization

theorem, the proof is concluded.
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