

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 342 (2006) 179-182

http://france.elsevier.com/direct/CRASS1/

Functional Analysis

Concentration of mass on isotropic convex bodies

Grigoris Paouris 1

Department of Mathematics, University of Athens, Panepistimiopolis 157 84, Athens, Greece
Received 9 November 2005; accepted 16 November 2005

Available online 20 December 2005

Presented by Gilles Pisier

Abstract

We establish sharp concentration of mass for isotropic convex bodies: there exists an absolute constant c > 0 such that if K is an isotropic convex body in \mathbb{R}^n , then

$$Prob(\{x \in K : ||x||_2 \geqslant c\sqrt{n}L_K t\}) \leqslant \exp(-\sqrt{n}t)$$

for every $t \ge 1$, where L_K denotes the isotropic constant. *To cite this article: G. Paouris, C. R. Acad. Sci. Paris, Ser. I 342 (2006).* © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Concentration de masse pour les corps convexes isotropes. Nous démontrons qu'il existe une constante absolue c > 0, telle que, si K est un corps convexe isotrope, alors

$$Prob(\{x \in K : ||x||_2 \geqslant c\sqrt{n} L_K t\}) \leqslant \exp(-\sqrt{n} t)$$

pour tout $t \ge 1$, où L_K désigne la constante d'isotropie. Pour citer cet article : G. Paouris, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

A convex body K in \mathbb{R}^n , with volume equal to 1 and center of mass at the origin, is called isotropic if its inertia matrix is a multiple of the identity. Equivalently, if there exists a positive constant L_K such that $\int_K \langle x, \theta \rangle^2 dx = L_K^2$ for every $\theta \in S^{n-1}$. The starting point of this paper is the following concentration estimate of Alesker [1]: if K is an isotropic convex body in \mathbb{R}^n then, for every $t \geqslant 1$ we have

$$\operatorname{Prob}(\left\{x \in K \colon \|x\|_2 \geqslant c\sqrt{n} L_K t\right\}) \leqslant 2 \exp(-t^2).$$

Throughout this note, we write B_2^n for the Euclidean unit ball and $\|\cdot\|_2$ for the Euclidean norm; c, c_1, c_2 etc. will denote absolute positive constants.

E-mail address: grigoris_paouris@yahoo.co.uk (G. Paouris).

Research supported in part by the European Network PHD, FP6 Marie Curie Actions, RTN, Contract MCRN-511953 and by the EPEAEK program "Pythagoras II".

Bobkov and Nazarov (see [2,3]) have obtained a striking strengthening of Alesker's estimate for the class of 1-unconditional isotropic convex bodies: in this case,

$$\operatorname{Prob}(\left\{x \in K \colon \|x\|_2 \geqslant c\sqrt{n}L_K t\right\}) \leqslant \exp(-\sqrt{n}t)$$

for every $t \ge 1$. Strong dimension dependent volume concentration was recently confirmed in [5] for the unit balls of the Schatten trace classes as well.

The purpose of this Note is to establish the fact that the 'Bobkov-Nazarov estimate' holds true in full generality.

Theorem 1.1. If K is an isotropic convex body in \mathbb{R}^n then, for every $t \ge 1$ we have that

$$\operatorname{Prob}(\left\{x \in K \colon \|x\|_2 \geqslant c\sqrt{n}L_K t\right\}) \leqslant \exp(-\sqrt{n}t).$$

2. Sketch of the proof

Let K be an isotropic convex body in \mathbb{R}^n . For any $q \ge 1$, we define $I_q(K) := (\int_K \|x\|_2^q dx)^{1/q}$. As observed in [11], in order to prove Theorem 1.1 it is enough to show that

$$I_{c_1\sqrt{n}}(K) \leqslant c_2 I_2(K). \tag{1}$$

For every $q \ge 1$ we define the L_q -centroid body $Z_q(K)$ of K by its support function $h_{Z_q(K)}(y) := (\int_K |\langle x, y \rangle|^q dx)^{1/q}$. Under a different normalization these bodies were introduced in [8]. The family $\{Z_q(K): q \ge 1\}$ increases to the body $Z_\infty(K) = \text{conv}\{K, -K\}$. Since K is isotropic, we have $Z_2(K) = L_K B_2^n$. We will use the following facts:

(i) Let C be a symmetric convex body in \mathbb{R}^n and let $w_q(C) := (\int_{S^{n-1}} h_C^q(\phi) \, d\sigma(\phi))^{1/q}$ be the q-th mean width of C. It is easily checked that

$$w_q(Z_q(K)) \simeq \sqrt{\frac{q}{q+n}} I_q(K).$$
 (2)

(ii) In [6] it is proved that if $k_*(C)$ is the largest positive integer for which $\mu_{n,k}\{F \in G_{n,k}: \frac{1}{2}w_1(C)\|x\|_2 \leqslant h_C(x) \leqslant 2w_1(C)\|x\|_2$ for all $x \in F\} \geqslant 1 - \frac{k}{n+k}$, then

$$w_1(C) \simeq w_q(C) \tag{3}$$

for every $q \leq k_*(C)$. Here $G_{n,k}$ is the Grassmann manifold of k-dimensional subspaces of \mathbb{R}^n equipped with the Haar probability measure $\mu_{n,k}$. Recall that the critical dimension k_* is completely determined by the mean width $w_1(C)$ and the circumradius R(C) of C; in [10] it is shown that $k_*(C) \simeq n \frac{w_1(C)^2}{R(C)^2}$.

(iii) **Definition.** Let K be a convex body of volume 1 in \mathbb{R}^n . We define

$$q_* := q_*(K) := \max\{q \in \mathbb{N}: k_*(Z_q^{\circ}(K)) \geqslant q\},$$

where $Z_q^{\circ}(K)$ is the polar body of $Z_q(K)$. A related parameter was introduced in [12], where the following lower bound for $q_*(K)$ was also proved.

Proposition 2.1. If K is an isotropic convex body in \mathbb{R}^n then

$$q_*(K) \geqslant c\sqrt{n}. \tag{4}$$

From the above discussion it becomes clear that (1), and hence Theorem 1.1, will follow if we show that

$$w_{q_*}(Z_{q_*}(K)) \leqslant c\sqrt{q_*} L_K$$
 or, equivalently, $w_1(Z_{q_*}(K)) \leqslant c\sqrt{q_*} L_K$. (5)

By the definition of $q_*(K)$ there exists $F \in G_{n,q_*}$ such that $\frac{1}{2}w_1(Z_{q_*}(K)) \leqslant h_{Z_{q_*}(K)}(\theta) \leqslant 2w_1(Z_{q_*}(K))$ for all $\theta \in S_F := S^{n-1} \cap F$. The following proposition completes the proof:

Proposition 2.2. Let K be an isotropic convex body in \mathbb{R}^n . For every integer $q \geqslant 1$ and every $F \in G_{n,q}$ there exists $\theta \in S_F$ such that

$$h_{Z_q(K)}(\theta) \leqslant c\sqrt{q} L_K.$$
 (6)

Sketch of the proof. Fix $F \in G_{n,q}$ and write E for the orthogonal subspace of F and P_F for the orthogonal projection onto F. For every $\phi \in S_F$ we define $E^+(\phi) = \{x \in \text{span}\{E, \phi\}: \langle x, \phi \rangle \ge 0\}$.

Let $q \ge 0$ and write $B_q(K, F)$ for the convex body in F defined by the gauge function

$$\phi \mapsto \|\phi\|_2^{1+q/(q+1)} \left(\int\limits_{K \cap E^+(\phi)} \left| \langle x, \phi \rangle \right|^q \mathrm{d}x \right)^{-1/(q+1)}$$

(see [9] for details and references). Integration in polar and cylindrical coordinates shows that

$$P_F(Z_q(K)) = (2q)^{1/q} |B_{2q-1}(K,F)|^{2/q} Z_q(\overline{B}_{2q-1}(K,F)), \tag{7}$$

where \bar{A} denotes the homothet $A/|A|^{1/n}$ of volume 1 of a convex body A. Using well known Khintchine type inequalities for log-concave functions (see [9] for details and references) we get

$$|B_{2q-1}(K,F)|^{2/q} \leqslant cL_K.$$
 (8)

Therefore,

$$P_F(Z_q(K)) \subseteq c_1 L_K Z_q(\overline{B}_{2q-1}(K,F)) \subseteq c_2 L_K Z_\infty(\overline{B}_{2q-1}(K,F)). \tag{9}$$

Taking volumes in (9) and estimating the volume of $Z_{\infty}(\overline{B}_{2q-1}(K,F))$ by a standard use of the Rogers–Shephard inequality, we complete the proof. \square

It is interesting to note that the estimate of Theorem 1.1 is sharp in both n and t; the ℓ_1^n -ball B_1^n is the extremal isotropic convex body in the following sense: For every isotropic convex body K in \mathbb{R}^n and for every $2 \le q \le \infty$,

$$\frac{I_q(K)}{I_2(K)} \leqslant c \frac{I_q(\overline{B_1^n})}{I_2(\overline{B_1^n})}.$$

3. Further results

3.1. Reverse L_q -affine isoperimetric inequality

Lutwak, Yang and Zhang proved in [7] that if K is a convex body of volume 1 in \mathbb{R}^n , then

$$\left|Z_q(K)\right|^{1/n} \geqslant \left|Z_q(\overline{B_2^n})\right|^{1/n} \geqslant c\sqrt{q/n}$$

for every $1 \le q \le n$, where c > 0 is an absolute constant. Our analysis of the L_q -centroid bodies leads to the following reverse inequality.

Theorem 3.1. Let K be a convex body in \mathbb{R}^n , with volume 1 and center of mass at the origin. For every $1 \leq q \leq n$ we have that

$$\left|Z_q(K)\right|^{1/n} \leqslant c\sqrt{q/n}\,L_K,$$

where c > 0 is a universal constant.

3.2. Random points in isotropic convex bodies

Let $\varepsilon \in (0, 1)$ and consider N independent random points x_1, \ldots, x_N uniformly distributed in an isotropic convex body K in \mathbb{R}^n . A question of Kannan, Lovász and Simonovits is to find N_0 , as small as possible, for which the following holds true: if $N \geqslant N_0$ then with probability greater than $1 - \varepsilon$ one has $\|\operatorname{Id} - \frac{1}{NL_K^2} \sum_{i=1}^N x_i \otimes x_i\| \leqslant \varepsilon$. Bourgain in [4] proved that one can choose $N_0 \simeq c(\varepsilon) n(\log n)^3$; this was improved to $N_0 \simeq c(\varepsilon) n(\log n)^2$ by Rudelson [13]. Theorem 1.1 allows us to remove one more logarithmic term.

Theorem 3.2. Let $\varepsilon \in (0,1)$ and let K be an isotropic convex body in \mathbb{R}^n . If $N \ge c(\varepsilon) n \log n$, and if x_1, \ldots, x_N are independent random points uniformly distributed in K, then with probability greater than $1 - \varepsilon$ we have

$$(1-\varepsilon)L_K^2 \leqslant \frac{1}{N} \sum_{i=1}^N \langle x_i, \theta \rangle^2 \leqslant (1+\varepsilon)L_K^2$$

for every $\theta \in S^{n-1}$.

3.3. Concluding remark

All the results of this note remain valid if we replace Lebesgue measure on an isotropic convex body by an arbitrary isotropic log-concave measure. Detailed references, proofs and various extensions of the results of this note will appear elsewhere.

Acknowledgements

I thank M. Fradelizi, A. Giannopoulos, O. Guédon and A. Pajor for helpful discussions.

References

- [1] S. Alesker, ψ_2 -estimate for the Euclidean norm on a convex body in isotropic position, in: X. Lindenstrauss, V.D. Milman (Eds.), Geom. Aspects of Funct. Analysis, in: Oper. Theory Adv. Appl., vol. 77, Birkhäuser, Basel, 1995, pp. 1–4.
- [2] S.G. Bobkov, F.L. Nazarov, On convex bodies and log-concave probability measures with unconditional basis, in: V.D. Milman, G. Schechtman (Eds.), Geom. Aspects of Funct. Analysis, in: Lecture Notes in Math., vol. 1807, Springer, 2003, pp. 53–69.
- [3] S.G. Bobkov, F.L. Nazarov, Large deviations of typical linear functionals on a convex body with unconditional basis, in: Stochastic Inequalities and Applications, in: Progr. Probab., vol. 56, Birkhäuser, Basel, 2003, pp. 3–13.
- [4] J. Bourgain, Random points in isotropic convex bodies, in: Convex Geometric Analysis, Berkeley, CA, 1996, in: Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 53–58.
- [5] O. Guédon and G. Paouris, Concentration of mass on the Schatten classes, Preprint.
- [6] A. Litvak, V.D. Milman, G. Schechtman, Averages of norms and quasi-norms, Math. Ann. 312 (1998) 95-124.
- [7] E. Lutwak, D. Yang, G. Zhang, L^p affine isoperimetric inequalities, J. Differential Geom. 56 (2000) 111–132.
- [8] E. Lutwak, G. Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997) 1–16.
- [9] V.D. Milman, A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed *n*-dimensional space, in: X. Lindenstrauss, V.D. Milman (Eds.), Geom. Aspects of Funct. Analysis, in: Lecture Notes in Math., vol. 1376, Springer, 1989, pp. 64–104.
- [10] V.D. Milman, G. Schechtman, Global versus local asymptotic theories of finite-dimensional normed spaces, Duke Math. J. 90 (1997) 73–93.
- [11] G. Paouris, Concentration of mass and central limit properties of isotropic convex bodies, Proc. Amer. Math. Soc. 133 (2) (2005) 565-575.
- [12] G. Paouris, On the Ψ_2 -behavior of linear functionals on isotropic convex bodies, Studia Math. 168 (3) (2005) 285–299.
- [13] M. Rudelson, Random vectors in the isotropic position, J. Funct. Anal. 164 (1999) 60–72.