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Abstract

We prove that for any p > 2 and every n-dimensional subspace X of Lp, the

Euclidean space ℓk
2
can be (1 + ε)-embedded into X with k ≥ cp min{ε2n, (εn)2/p},

where cp > 0 is a constant depending only on p.

1 Introduction

In the present note we discuss the classical result of A. Dvoretzky in almost spherical

sections of normed spaces in the case for subspace of Lp, 2 < p < ∞. Dvoretzky gave

an affirmative answer in a question of Grothendieck which was motivated by the well

known Dvoretzky-Rogers lemma from [6]. In particular, Grothendieck asked if any

finite-dimensional normed spaces has lower dimensional subspace which is almost

Euclidean and the dimension grows with respect to the dimension of the ambient

space. Dvoretzky proved in [5] that: Given k positive integer and ε ∈ (0, 1) there ex-

ists N = N(k, ε) with the following property: For every n ≥ N and any n-dimensional

normed space X there exists k-dimensional subspace F which (1 + ε)-isomorphic to

ℓk
2
, the Euclidean space of dimension k. In modern functional analytic language this

means that every infinite-dimensional Banach space contains ℓn
2
’s uniformly. Dvoret-

zky’s proof was providing N(k, ε) ≥ exp(cε−2k2 logk), for some absolute constant c > 0

(here and elsewhere in this paper c and C denote positive absolute constants). How-

ever, the aforementioned estimate is not optimal. The optimal dependence on the

dimension, was proved later by V. Milman in his groundbreaking work [15]. The

estimate obtained is N(k, ε) ≥ exp(ckε−2 log 1
ε
). Equivalently, this states that for any

ε ∈ (0, 1) there exists a function c(ε) > 0 with the following property: for every

n-dimensional normed space X there exists k ≥ c(ε) logn and linear map T : ℓk
2
→ X

with ‖x‖2 ≤ ‖T x‖X ≤ (1+ ε)‖x‖2 for all x ∈ ℓk
2
– we say that ℓk

2
can be (1+ ε)-embedded

into X and we write: ℓk
2

1+ε
→֒ X.

The example of X = ℓn
∞ shows that this result is best possible with respect to n

(see [2] for the details). The approach of [15] is probabilistic in nature and provides
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that the vast majority of subspaces (in terms of the Haar probability measure on

the Grassmannian manifold Gn,k) are (1 + ε)-Euclidean, as long as k ≤ c(ε)k(X),
where k(X) is the critical dimension of X. Nowadays this is customary addressed

as the randomized Dvoretzky theorem or random version of Dvoretzky’s theorem.

V. Milman in this work revealed the significance of the concentration of measure

as a basic tool for the understanding of the high-dimensional structures. That was

the starting point for many applications of the concentration of measure method

in high-dimensional phenomena. The last five decades has been applied to various

fields: quantum information, combinatorics, random matrices, compressed sensing,

theoretical computer science, high-dimensional geometry of probability measures and

more.

Another remarkable fact of V. Milman’s approach is that the critical quantity

k(X) can be described in terms of the global parameters of the space. In particular,

k(X) := E‖g‖2/b2(X) where g is standard gaussian random vector in X and b(X) =
maxθ∈S n−1 ‖θ‖X . Then, one can find a good position of the unit ball of X for which k(X)
is large enough with respect to n (see [16] for further details). It has been proved in

[17] that this formulation is optimal with respect to the dimension k(X) in the sense

that the k-dimensional subspaces which are 4-Euclidean with probability greater than
n

n+k cannot exceed Ck(X).
The proof of [15] gave the estimate c(ε) ≥ cε2/ log 1

ε
and this was improved

to c(ε) ≥ cε2 by Gordon in [9] and later, adopting the methods of V. Milman, by

Schechtman in [20]. This dependence is known to be optimal (see the survey [23]).

The recent works of Schectman in [22] and Tikhomirov in [26] established that the

dependence on ε in the randomized Dvoretzky for ℓn
∞ is of the order ε/ log 1

ε
and this

is best possible. Bounds on c(ε) in the randomized Dvoretzky for ℓn
p, 1 ≤ p ≤ ∞ have

appeared in [18].

As far as the dependence on ε in the “existential version" of Dvoretzky’s theorem

is concerned, Schechtman proved in [21] that one can always (1 + ε)-embed ℓk
2
in

any n-dimensional normed space X with k ≥ cε logn/(log 1
ε
)2. Tikhomirov in [26]

proved that for 1-symmetric space X we may have k ≥ c logn/ log 1
ε
and this was

subsequently extended by Fresen in [8] for permutation invariant spaces. For more

detailed information on the subject, explicit statements and historical remarks the

reader is consulted in the recent monograph [2].

The purpose of this note is to study the dependence on ε in Dvoretzky’s theorem

for finite-dimensional subspaces of Lq, 2 < q < ∞. The case of subspaces of Lp, 1 ≤
p < ∞ have been previously studied in the classical article [7] by Figiel, Lindenstrauss

and V. Milman in 1977. The authors use V. Milman’s techniques in randomized

Dvoretzky from [15]. They select John’s position for the unit ball of the underlying

space and combine the cotype property with the classical Dvoretzky-Rogers Lemma,

in order to (1 + ε)-embed ℓk
2
with k ≥ c(q)ε2n2/q, where c(q) > 0 depends only on q

(see [7] for the details).

Let us recall that for 2 ≤ q < ∞ the q-cotype constant of a normed space X in n
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vectors, denoted by Cq(X, n) is defined as the smallest constant C > 0 which satisfies:
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∥

∥

∥

∥

∥

∥

X

,(1.1)

for any n vectors z1, . . . , zn ∈ X. Then, the q-cotype constant of X is defined as

Cq(X) := supn Cq(X, n). Following the terminology of G. Pisier, cotype is a super-

property (that is it depends only on the finite dimensional subspaces of the space). It

is also isomorphic invariant and the spaces Lp, 1 ≤ p < ∞ are of cotype q = max{2, p}
with Cq(Lq) = O(q1/2) (see [1] for a proof). Therefore, for any finite-dimensional X
of Lq, q > 2 we have Cq(X) ≤ C

√
q and we may show for any finite dimensional

normed space with cotype q, in John’s position satisfies k(X) ≥ cC−2q (X)(dimX)2/q.

It follows that there exists an almost isometric linear embedding ℓk
2

1+ε
→֒ X with k ≥

cq−1ε2(dimX)2/q. Moreover, the above argument also provides k(X) ≥ cn for any n-
dimensional subspace X of Lp with 1 ≤ p < 2, and thus ℓk

2
can be (1 + ε)-embedded

into X with k ≥ cε2n which is best possible. For the range 2 < p < ∞ our approach

is different and yields the following:

Theorem 1.1. For any p > 2 there exists a constant c(p) > 0 with the following

property: for any n-dimensional subspace X of Lp and for any ε ∈ (0, 1) there exists

k ≥ c(p) min{ε2n, (εn)2/p} so that ℓk
2
can be (1 + ε)-embedded into X.

The core of the proof still lies on the concentration of measure phenomenon,

but the main tool is a variant of an inequality due to Pisier from [19]. Our method

depends on this gaussian functional analytic inequality rather than the spherical

isoperimetric inequality that is used in the classical framework. The advantage of the

argument is based on the fact that we may take into account the order of magnitude

of the Euclidean norm of the gradient of the norm instead of the Lipschitz constant

which is involved in the spherical concentration inequality. The idea of sufficiently

estimating averages of the Euclidean norm of the gradient of a function in order

to get sharp concentration results seems to be only recently applied and was also

successfully exploited in [18]. Moreover, the selection of the position of the unit ball

of the space is different. Instead of using John’s position we use Lewis’ position for

the unit ball of finite-dimensional subspaces of Lp. This permits us to express the

norm in an integral form, with respect to some isotropic measure on the sphere, and

therefore to use the aforementioned inequality. Further information is also provided

in this position. We show that the concentration result one obtains for this type

of norms is best possible as the example of ℓp norms shows (see [18] for the exact

formulation). As a result, the random version of Dvoretzky’s theorem we prove for

this position (or for this type of norms) is best possible in the sense that in the case

of ℓn
p spaces the corresponding critical dimension is optimal. In other words the ℓn

p
spaces occur as the extremal structure in this study.

The novelty of the result is not only observed in the techniques used but also

in the content of the main theorem. It is clear that the dimension k(ε, n, p) =
min{ε2n, (εn)2/p} one can find almost Euclidean subspaces is always better than the
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previously known ε2n2/p. In addition, the new estimate of k(ε, n, p) also yields “new

dimensions" of almost Euclidean sections in the following sense: The previous setting

was only permitting almost isometric embeddings of distortion 1 + ε with ε ≫ n−1/p

in order to achieve non-trivial dimensions. Now this phenomenon admits a striking

improvement and one can find (1 + ε)-linear embeddings with ε ≫ n−1/2.
The rest of the paper is organized as follows: In Section 2 we introduce the

notation, some background material on isotropic measures on the n-dimensional

Euclidean sphere and finally we give the proof of the aforementioned Gaussian

inequality. In Section 3 we prove concentration results for the family of the Lq-

bodies associated to an isotropic measure on the n-dimensional Euclidean sphere. In

Section 4 we provide the proof of our main result. Finally, in Section 5 we conclude

with some further remarks.

2 Background material and auxiliary results

We work in Rn equipped with the standard Euclidean structure 〈·, ·〉. The n-dimensional

Euclidean sphere is defined as S n−1 := {x ∈ Rn : 〈x, x〉 = 1}. The ℓp norm is defined

as: ‖x‖p := (
∑n

i=1 |xi|p)1/p for x = (x1, . . . , xn) ∈ Rn. We set ℓn
p = (Rn, ‖ · ‖p) and let

Bn
p its unit ball. More generally, for any centrally symmetric convex body K on Rn

we write ‖ · ‖K for the norm induced by K. The n-dimensional Lebesgue measure

(volume) of a body A is denoted by |A|. The space Lp(Ω,E, µ), 1 ≤ p < ∞ consists of

all E-measurable functions f : Ω→ R so that
∫

Ω
| f |p dµ < ∞, equipped with the norm

‖ f ‖Lp (µ) := (
∫

Ω
| f |p dµ)1/p.

The n-dimensional (standard) Gaussian measure is denoted by γn and its density is:

dγn(x) := (2π)−n/2e−‖x‖
2
2
/2dx.(2.1)

More generally, let dγn,σ(x) := (2πσ2)−n/2e−‖x‖
2
2
/(2σ2)dx for σ > 0. Random vectors

distributed according to γn usually denoted by X, Y, Z, . . . or g = (g1, . . . , gn). The

notation E(·) is used for the expectation. The moments of norms with respect to γn

whose unit ball is the body K are denoted by:

Ir(γn,K) :=
(

E‖X‖rK
)1/r
=

(∫

Rn
‖x‖rK dγn(x)

)1/r

(2.2)

and more generally, for an arbitrary probability measure ν as Ir(ν,K). Recall the pth
moment σp of a standard gaussian random variable g1:

σ
p
p := E|g1|p =

2p/2

√
π
Γ

(

p + 1

2

)

∼
√

2/e

(

p + 1

e

)p/2

, p→ ∞,(2.3)

where f ∼ g means f (t)/g(t) → 1 as t → ∞. We write f . g when there exists

absolute constant C > 0 such that f ≤ Cg. We write f ≃ g if f . g and g . f ,
whereas the notation f .p g means that the involved constant depends only on p.
The letters C, c,C1, c0, . . . are frequently used throughout the text in order to denote

absolute constants which may differ from line to line.
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The formulation of Dvoretzky’s theorem due to V. Milman from [15] (for the

optimal dependence on ε see [9] and [20]) is given below:

Theorem 2.1. Let X = (Rn, ‖ · ‖) be normed space. Define the critical dimension of X
as the quantity:

k(X) :=
E‖g‖2

b2(X)
,(2.4)

where b(X) := maxθ∈S n−1 ‖θ‖. Then, for every ε ∈ (0, 1) and for any k ≤ cε2k(X) there

exists k-dimensional subspace of X which is (1 + ε)-Euclidean.

2.1 Logarithmic Sobolev inequality

Let ν be a Borel probability measure on Rn which satisfies log-Sobolev inequality

with constant ρ > 0:

Entν( f 2) :=
∫

f 2 log f 2 dν −
∫

f 2 dν log

(∫

f 2 dν

)

≤ 2

ρ

∫

Rn
‖∇ f ‖22 dν,(2.5)

for all smooth (or locally Lipschitz) functions f : Rn → R. The n-dimensional

Gaussian measure satisfies log-Sobolev inequality with ρ = 1 (see [12]).

Lemma 2.2. Let ν be Borel probability measure on Rn which satisfies log-Sobolev

inequality with constant ρ. Then, for any smooth function f : Rn → R we have:

‖ f ‖2Lq(ν) − ‖ f ‖
2
Lp (ν) ≤

1

ρ

∫ q

p

∥

∥

∥ ‖∇ f ‖2
∥

∥

∥

2

Ls(ν)
ds,(2.6)

for all 2 ≤ p ≤ q. Moreover, if f is Lipschitz continuous, then we have:

‖ f ‖2Lq (ν) − ‖ f ‖
2
Lp(ν) ≤

‖ f ‖2Lip
ρ

(q − p).(2.7)

In particular, we obtain:

‖ f ‖Lq (ν)

‖ f ‖L2 (ν)
≤

√

1 +
q − 2

ρk( f )
,(2.8)

for q ≥ 2, where k( f ) := ‖ f ‖2L2(ν)/‖ f ‖
2
Lip.

Proof. For p ≥ 2 we define I(p) := ‖ f ‖Lp . Differentiation with respect to p yields:

dI
dp
=

Entν(| f |p)
p2I(p)p−1 .(2.9)

Applying log-Sobolev for g = | f |p/2 we obtain:

dI
dp
≤ 1

2ρI(p)p−1

∫

Rn
| f |p−2‖∇ f ‖22 dν ≤ 1

2ρI(p)p−1 I(p)p−2
∥

∥

∥‖∇ f ‖2
∥

∥

∥

2

Lp(ν)
,(2.10)

by Hölder’s inequality. This shows that (I(p)2)′ ≤ 1
ρ

∥

∥

∥‖∇ f ‖2
∥

∥

∥

2

Lp(ν)
, thus integration over

the interval [p, q] proves (2.6). �
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2.2 Lewis’ position

Given any finite Borel measure µ on S n−1 and any 1 ≤ p < ∞ we can equip Rn with

the norm

‖x‖µ,p :=

(
∫

S n−1
|〈x, θ〉|p dµ(θ)

)1/p

(2.11)

and then the space X = (Rn, ‖ · ‖) can be naturally embedded into Lp(S n−1, µ) via the

linear isometry U : X → Lp(S n−1, µ) with Ux := 〈x, ·〉.
The fundamental result of Lewis’ from [13] states that essentially the converse is

true under a suitable change of density (see also [24] for an alternative proof which

extends to the whole range 0 < p < ∞ and arises as a solution of an optimization

problem). The formulation we use here follows the exposition from [14]:

Theorem 2.3 (Lewis). Let 1 ≤ p < ∞ and let X be n-dimensional subspace of Lp.

Then, there exists even Borel measure µ on S n−1 which satisfies:

‖x‖22 =
∫

S n−1
|〈x, θ〉|2dµ(θ),(2.12)

for all x ∈ Rn and the normed space (Rn, ‖ · ‖µ,p) is isometric to X.

Let us mention that property (2.12) is called isotropic condition and the measures

satisfying it isotropic measures. It is also clear that taking into account this repre-

sentation of any finite-dimensional subspace of Lp, the problem of embedding ℓk
2
in

subspaces of Lp is reduced to spaces (Rn, ‖ · ‖p,µ) with µ isotropic on S n−1. Hence, the

next paragraph is devoted to the study of these measures.

2.3 Isotropic measures on the sphere

An even Borel measure µ on S n−1 it is said to be isotropic if it satisfies the condition:

‖x‖22 =
∫

S n−1
|〈x, θ〉|2 dµ(θ),(2.13)

for all x ∈ Rn. Equivalently, for all linear transformations T : Rn → Rn we have:

trace(T ) =
∫

S n−1
〈θ, Tθ〉 dµ(θ).(2.14)

For any such measure we may define the following family of centrally symmetric

convex bodies Bq(µ) with associated norms:

x 7→ ‖x‖Bq(µ) := ‖〈x, ·〉‖Lq(µ) =

(∫

S n−1
|〈x, z〉|q dµ(z)

)1/q

, 1 ≤ q < ∞.(2.15)

The corresponding spaces whose unit ball is Bq(µ) will be denoted by Xq(µ). Under

this terminology and notation, Lewis’ theorem reads as follows:

6



Theorem 2.4. Let 1 ≤ p < ∞ and let X be n-dimensional subspace of Lp. Then, there

exists isotropic Borel measure µ on S n−1 and linear isometry S : Xp(µ)→ X.

Next simple lemma collects several properties for the bodies Bp(µ).

Lemma 2.5. Let µ be Borel isotropic measure on S n−1. Then, we have the following

properties:

i. E‖g‖qBq(µ) = σ
q
qµ(S n−1).

ii. µ(S n−1) = n.

iii. For p ≥ 2 we have: ‖x‖Bp(µ) ≤ ‖x‖2 and for 1 ≤ p < q < ∞ we have: ‖x‖Bp(µ) ≤
n1/p−1/q‖x‖Bq(µ), for all x ∈ Rn.

iv. (K. Ball) For every 1 ≤ p < ∞ we have: |Bp(µ)| ≤ |Bn
p|.

v. For the body Bq(µ), q ≥ 1 we have k(Bq(µ)) ≥ cnmin{1,2/q}.

vi. There exists an absolute constant c > 0 such that for all 2 ≤ q ≤ c logn, one has:

(E‖g‖2Bq(µ))
1/2 ≃ q1/2n1/q. In particular, for those q’s one has: k(Bq(µ)) ≥ cqn2/q.

Proof. For the first assertion we use Fubini’s theorem and the rotation invariance of

the Gaussian measure to write:

E‖g‖qBq(µ) =

∫

Rn
‖x‖qBq(µ) dγn(x) =

∫

S n−1

∫

Rn
|〈x, z〉|q dγn(x) dµ(z) = σq

qµ(S n−1).

The second assertion follows from the above formula applied for q = 2 and employing

the isotropic condition. For the third one, note that for all u ∈ S n−1 we have:

‖u‖pBp(µ) =

∫

S n−1
|〈u, z〉|p dµ(z) ≤

∫

S n−1
|〈u, z〉|2 dµ(z) = 1,(2.16)

while for the right-hand side estimate we apply Hölder’s inequality:

‖x‖Bp(µ) =

(∫

S n−1
|〈x, z〉|p dµ(z)

)1/p

≤ µ(S n−1)
1
p−

1
q

(∫

S n−1
|〈x, z〉|q dµ(z)

)1/q

.

iv. This result was essentially proved by K. Ball in [3]. A sketch of his very elegant

proof is reproduced below for the sake of completeness: Without loss of generality

we may assume that µ is discrete, i.e. µ =
∑m

i=1 ciδui , for some vectors (ui) in S n−1 and
positive numbers (ci) with I =

∑m
i=1 ciui ⊗ ui. Now we use the formula, which holds

true for any centrally symmetric convex body K on Rn:

|K| = (Γ(1 + n/p))−1
∫

Rn
e−‖z‖

p
K dz,(2.17)

to get:

|Bp(µ)| = 1

Γ(1 + n
p )

∫

Rn

m
∏

i=1

fi(〈z, ui〉)ci dz,(2.18)

7



where fi(t) = exp(−|t|p). The result follows by the Brascamp-Lieb inequality.

v. First consider the case 2 < q < ∞. For the critical dimension of the space

Xq(µ) := (Rn, ‖ · ‖Bq(µ)), note that k(Xq(µ)) = E‖g‖2Bq(µ)/b
2(Bq(µ)) ≥ n2/q by the third

assertion.

Now we turn in the range 1 ≤ q ≤ 2. Using Hölder’s inequality we may write:

(

E‖g‖2Bq(µ)

)1/2
≥ n1/2

( |Bn
2
|

|Bq(µ)|

)1/n

≥ n1/2

( |Bn
2
|

|Bn
q|

)1/n

≃ n1/q,(2.19)

where in the last step we have used Ball’s volumetric estimate (iv). The result follows

once we recall that b(Bq(µ)) ≤ n1/q−1/2 for 1 ≤ q ≤ 2.

vi. We define the parameter:

q0 ≡ q0(µ) := max
{

q ∈ [2, n] : k(Bp(µ)) ≥ p, ∀p ∈ [2, q]
}

.(2.20)

By the continuity of the map p 7→ k(Bp(µ)) and the fact that k(Bq(µ)) ≤ n for all q ≥ 2,

while k(B2(µ)) = n we get: q0 = k(Bq0
(µ)). Lemma 2.2 shows that

(

E‖g‖q0

Bq0 (µ)

)1/q0

≤

c1
(

E‖g‖2Bq0 (µ)

)1/2

, so we may write:

q0 = k(Bq0
(µ)) =

E‖g‖2Bq0 (µ)

b2(Bq0
(µ))
≥ c−21 (E‖g‖q0

Bq0(µ))
2/q0 = c−21 σ

2
q0

n2/q0 =⇒ q0 ≥ c2 logn.

Therefore, by the definition of q0 we have k(Bq(µ)) ≥ q for all 2 ≤ q ≤ q0 and by

Lemma 2.2 again, we get:

σqn1/q
=

(

E‖g‖qBq(µ)

)1/q
≤ c1

(

E‖g‖2Bq(µ)

)1/2
.

Moreover, we have:

k(Bq(µ)) =
E‖g‖2Bq(µ)

b2(Bq(µ))
≥ c−21 (E‖g‖qBq(µ))

2/q
= c−21 σ

2
qn2/q ≥ c3qn2/q.

This can be interpreted as k(Bq(µ)) ≥ ck(ℓn
q), provided that 2 ≤ q ≤ c logn for some

absolute constant c > 0. �

Lemma 2.6. Let µ be Borel isotropic measure on S n−1. For q ≥ 2 and for all r ≥ 1 we

have:

Irq(γn, Bq(µ))/Iq(γn, Bq(µ)) ≤
√

1 +
q(r − 1)
σ2

qn2/q
≤

√

1 +
c(r − 1)

n2/q
,(2.21)

where c > 0 is an absolute constant.

Proof. Note that Lemma 2.5 (iii) implies
∣

∣

∣‖x‖Bq(µ) − ‖y‖Bq(µ)

∣

∣

∣ ≤ ‖x− y‖2 for all x, y ∈ Rn.

Hence, if we use Lemma 2.2 we obtain:
(

Irq

Iq

)2

≤ 1 +
q(r − 1)

I2q
= 1 +

q(r − 1)
σ2

qn2/q
.(2.22)

where the last estimate follows from Lemma 2.5. Finally, using the fact that σq ≃
√

q
we conclude the second estimate. �
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2.4 A Gaussian inequality

Next inequality is due to Pisier (for a proof see [19]).

Theorem 2.7. Let φ : R → R be convex function and let f : Rn → R be C1-smooth.

Then, if X, Y are independent copies of a Gaussian random vector, then we have:

Eφ ( f (X) − f (Y)) ≤ Eφ
(

π

2
〈∇ f (X), Y〉

)

.(2.23)

Here we prove a generalization of this inequality in the context of Gaussian

processes generated by the action of a random matrix with i.i.d standard gaussian

entries on a fixed vector in S n−1:

Theorem 2.8. Let φ : R→ R be convex function and let f : Rn → R be C1-smooth. If

G = (gi j)
n,k
i, j=1 is Gaussian matrix and a, b ∈ S k−1, then we have:

Eφ ( f (Ga) − f (Gb)) ≤ Eφ
(

π

2
‖a − b‖2〈∇ f (X), Y〉

)

,(2.24)

where X, Y are independent copies of a standard Gaussian n-dimensional random

vector.

Proof. If a = b then, there is nothing to prove. If a = −b then, by setting F(x) =
f (x) − f (−x) we may write:

Eφ ( f (Ga) − f (Gb)) = Eφ(F(X)) ≤ Eφ(F(X) − F(Y)),(2.25)

for X, Y independent copies of a standard Gaussian random vector, where we have

used the fact EF(X) = 0 and Jensen’s inequality. Then, a direct application of

Theorem 2.7 yields:

Eφ(F(X) − F(Y)) ≤ Eφ
(

π〈∇ f (X), Y〉 + π〈∇ f (−X), Y〉
2

)

≤ Eφ(π〈∇ f (X), Y〉) + φ(π〈∇ f (−X), Y〉)
2

= Eφ(π〈∇ f (X), Y〉),

by the convexity of φ.

In the general case, fix a, b ∈ S k−1 with a , ±b and define p := a+b
2
. Note that

since ‖a‖2 = ‖b‖2 we have that the vector u := a − p is perpendicular to p. Set

X := G(u) and Z := G(p) and note that X, Z are independent random vectors in Rn

with X ∼ N(0, ‖u‖2
2
In), Z ∼ N(0, ‖p‖2

2
In) and G(a) = Z + X while G(b) = Z − X. Thus,

we may write:

Eφ ( f (Ga) − f (Gb)) = EZEXφ ( f (Z + X) − f (Z − X)) .

Define F(x, z) := f (z + x) − f (z − x) and using this notation we may write:

Eφ( f (Ga) − f (Gb)) =
"

φ(F(x, z)) dγn,σ1
(x) dγn,σ2

(z),
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where σ1 = ‖u‖2 > 0, σ2 = ‖p‖2 > 0. For fixed z we may apply the Theorem 2.7 to the

function x 7→ F(x, z) (note that
∫

F(x, z) dγn,σ1
(x) = 0) to get:

∫

φ(F(x, z)) dγn,σ1
(x) ≤

"
φ

(

π

2
〈∇xF(x, z), y〉

)

dγn,σ1
(x) dγn,σ1

(y)

≤
"

φ(π〈∇ f (x + z), y〉) + φ(π〈∇ f (z − x), y〉)
2

dγn,σ1
(x) dγn,σ1

(y)

=

"
φ (π〈∇ f (x + z), y〉) dγn,σ1

(x) dγn,σ1
(y),

by the convexity of φ. Integration with respect to γn,σ2
over z provides:

"
φ(F(x, z)) dγn,σ1

(x)dγn,σ2
(z) ≤

∫ ["
φ (π〈∇ f (x + z), y〉) dγn,σ1

(x)dγn,σ2
(z)

]

dγn,σ1
(y)

=

∫ [∫

φ (π〈∇ f (u), y〉) d(γn,σ1
∗ γn,σ2

)(u)

]

dγn,σ1
(y)

=

"
φ (πσ1〈∇ f (u), y〉) dγn(u) dγn(y),

where we have used the fact that γn,σ1
∗γn,σ2

= γn,σ2
1
+σ2

2
≡ γn, since σ

2
1
+σ2

2
= ‖a‖2

2
= 1.

The result follows. �

Remark 2.9. 1. Applying this for φ(t) = |t|r, r ≥ 1 and taking into account the

invariance of Gaussian measure under orthogonal transformations we derive the

next (r, r)-Poincaré inequalities:

(E| f (Ga) − f (Gb)|r)1/r ≤ C
√

r‖a − b‖2
(

E‖∇ f (X)‖r2
)1/r

,(2.26)

for a, b ∈ S k−1, where X is standard Gaussian random vector.

2. Assuming further that f is L-Lipschitz we may apply Theorem 2.8 for φ(t) =
eλt, λ > 0 to get:

E exp(λ ( f (Ga) − f (Gb))) ≤ E exp

(

λ2
π2

2
‖a − b‖22‖∇ f (X)‖22

)

≤ exp

(

λ2
π2

2
‖a − b‖22L2

)

.

(2.27)

Then Markov’s inequality yields Schechtman’s distributional inequality from [20]:

Prob (| f (Ga) − f (Gb)| > t) ≤ C exp
(

−ct2/(‖a − b‖2L2)
)

,(2.28)

for all t > 0, where a, b ∈ S k−1. Let us note that (2.27) for f being a norm, has also

appeared in [25].

3. For a, b ∈ S k−1 with 〈a, b〉 = 0 the matrix G generates the vectors X = Ga
and Y = Gb which are independent copies of a standard n-dimensional Gaussian

random vector. For example, inequality (2.28) reduces to the classical concentration

inequality:

Prob
(∣

∣

∣ f (X) − f (Y)
∣

∣

∣ > t
)

≤ C exp
(

−ct2/L2
)

,(2.29)

for all t > 0.
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3 Gaussian concentration for Bp(µ) bodies

A direct application of the Gaussian concentration inequality (2.29) for the bodies

Bp(µ), p > 2 implies:

P
(∣

∣

∣‖X‖Bp(µ) − I1
∣

∣

∣ > tI1
)

≤ C exp(−ct2I21 ) ≤ Ce−ct2n2/p
,(3.1)

for all t > 0, where I1 ≡ I1(γn, Bp(µ)). It is known (see [18]) that the large deviation

estimate (t ≥ 1) the inequality (2.29) provides is sharp (up to constants).

In this paragraph we prove that for p > 2 and µ isotropic Borel measure on S n−1,

the bodies Bp(µ) exhibit better concentration (0 < t < 1) than the one implied by the

Gaussian concentration inequality on Rn in terms of the Lipschitz constant. Later,

this will be used to prove the announced dependence on ε in Dvoretzky’s theorem for

any subspace of Lp. Our main tool is the probabilistic inequality proved in Theorem

2.8 and as was formulated further in Remark 2.9.1.

We apply inequality (2.26) for f (x) = ‖x‖p =
∫

|〈x, θ〉|p dµ(θ). To this end we have

to compute the gradient. Note that:

‖∇ f (x)‖22 = p2

n
∑

i=1

∣

∣

∣

∣

∣

∫

S n−1
θi|〈x, θ〉|p−1 sgn(〈x, θ〉) dµ(θ)

∣

∣

∣

∣

∣

2

.(3.2)

We also have the following:

Claim. For almost every x ∈ Rn we have:

‖∇ f (x)‖22 ≤ p2‖x‖2p−2
B2p−2(µ).(3.3)

Proof of Claim. Let bi ≡ bi(x) :=
∫

S n−1 |〈x, z〉|p−1 sgn(〈x, z〉)zi dµ(z). Using duality we

may write:

n
∑

i=1

(∫

S n−1
|〈x, z〉|p−1 sgn(〈x, z〉)zi dµ(z)

)2

= max
θ∈S n−1

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

biθi

∣

∣

∣

∣

∣

∣

∣

2

= max
θ∈S n−1

∣

∣

∣

∣

∣

∫

S n−1
|〈x, z〉|p−1 sgn(〈x, z〉)〈z, θ〉 dµ(z)

∣

∣

∣

∣

∣

2

≤
∫

S n−1
|〈x, z〉|2p−2 dµ(z),

where we have used Cauchy-Schwarz inequality and the isotropic condition. �

Therefore, using the Claim and the inequality (2.26) we get for every a, b ∈ S k−1:

(E| f (Ga) − f (Gb)|r)1/r ≤ Cpr1/2‖a − b‖2
(

E‖X‖r(p−1)
B2p−2(µ)

)1/r
,(3.4)
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for all r ≥ 1. By employing Lemma 2.6 we find:

(E| f (Ga) − f (Gb)|r)1/r ≤ Cpr1/2‖a − b‖2
(

E‖X‖2p−2
B2p−2(µ)

)1/2



















1 +
(r − 2)(p − 1)

σ2
2p−2n

1
p−1



















p−1
2

< Cpr1/2‖a − b‖2σp−1
2p−2n1/2



















1 +
r(p − 1)

σ2
2p−2n

1
p−1



















p−1
2

< Cp‖a − b‖2σp−1
2p−2n1/22

p−1
2 max



















r1/2,
rp/2(p − 1)

p−1
2

σ
p−1
2p−2n1/2



















,

for all r ≥ 2. We define

α(n, p, r) := max



















r1/2,
rp/2(p − 1)

p−1
2

σ
p−1
2p−2n1/2



















, r > 0(3.5)

and we summarize the above discussion to the following:

Proposition 3.1. Let 2 < p < ∞ and let µ be Borel isotropic measure on S n−1. If

G = (gi j)
n,k
i, j=1 is Gaussian matrix and a, b ∈ S k−1, then we have:

(

E

∣

∣

∣‖Ga‖pBp(µ) − ‖Gb‖pBp(µ)

∣

∣

∣

r)1/r ≤ Cp‖a − b‖2σp−1
2p−2n1/22

p−1
2 α(n, p, r),(3.6)

for all r ≥ 2, where α(n, p, ·) is defined in (3.5)

We are now ready to prove the main result of this Section:

Theorem 3.2. Let 2 < p < ∞ and let µ Borel isotropic measure on S n−1 with n > ep.

Then, we have

P
(∣

∣

∣‖X‖Bp(µ) − (E‖X‖pBp(µ))
1/p

∣

∣

∣ ≥ ε(E‖X‖pBp(µ))
1/p

)

≤ C exp(−cψ(n, p, ε)),(3.7)

for every ε > 0, where ψ(n, p, ·) is defined as:

ψ(n, p, t) := min

{

t2n
p4p

, (tn)2/p

}

, t > 0(3.8)

and C, c > 0 are absolute constants.

Proof. Using Proposition 3.1 for a, b ∈ S k−1 with 〈a, b〉 = 0 and applying Jensen’s

inequality we obtain:

(

E

∣

∣

∣‖X‖pBp(µ) − E‖X‖
p
Bp(µ)

∣

∣

∣

r)1/r ≤ Cpσp−1
2p−2n1/22p/2α(n, p, r),(3.9)
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for all r ≥ 2. Therefore Markov’s inequality yields:

P
(∣

∣

∣‖X‖pBp(µ) − E‖X‖
p
Bp(µ)

∣

∣

∣ > ε
)

≤
















Cpσp−1
2p−2n1/22p/2α(n, p, r)

ε

















r

.(3.10)

note that:

α−1(n, p, s) = min























s2,
s2/pn1/pσ

2p−2
p

2p−2

(p − 1)
p−1
p























, s > 0,(3.11)

thus we may choose rε ≥ 2 such that α(n, p, rε) = ε

eCpσp−1
2p−2n1/22p/2

, as long as the

range of ε > 0 satisfies α(n, p, rε) ≥ α(n, p, 2). Otherwise α(n, p, rε) < α(n, p, 2) ≃
max{1, (ep/n)1/2} ≃ 1 provided that n is large enough with respect to p. Thus, we get:

P
(∣

∣

∣‖X‖pBp(µ) − E‖X‖
p
Bp(µ)

∣

∣

∣ > ε
)

≤ C1 exp

















−α−1
















n, p,
ε

eCpσp−1
2p−2n1/22p/2

































,(3.12)

for all ε > 0. We may check that:

α−1

















n, p,
ε

eCpσp−1
2p−2n1/22p/2

















≃ min



















ε2

np22pσ
2p−2
2p−2

,
ε2/p

p



















,(3.13)

thus, we arrive at:

P
(∣

∣

∣‖X‖pBp(µ) − E‖X‖
p
Bp(µ)

∣

∣

∣ > ε
)

≤ C1 exp



















−c1 min



















ε2

np22pσ
2p−2
2p−2

,
ε2/p

p





































,(3.14)

for every ε > 0. It follows that:

P
(∣

∣

∣‖X‖pBp(µ) − E‖X‖
p
Bp(µ)

∣

∣

∣ > εE‖X‖pBp(µ)

)

≤ C1 exp



















−c1 min



















ε2nσ2p
p

p22pσ
2p−2
2p−2

,
(εn)2/pσ2

p

p





































,

(3.15)

for every ε > 0. The asymptotic estimate (2.3) implies that σ
2p
p /σ

2p−2
2p−2 ≃ p2−p and that

σp ≃ p1/2, thus we conclude:

P
(∣

∣

∣‖X‖pBp(µ) − E‖X‖
p
Bp(µ)

∣

∣

∣ > εE‖X‖pBp(µ)

)

≤ C1 exp

(

−c′1 min

{

ε2n
p4p

, (εn)2/p

})

,(3.16)

for all ε > 0. This further implies that:

P
(

∣

∣

∣‖X‖Bp(µ) −
(

E‖X‖pBp(µ)

)1/p ∣

∣

∣ > ε
(

E‖X‖pBp(µ)

)1/p
)

≤ 2C1 exp

(

−c′1 min

{

ε2n
p4p

, (εn)2/p

})

,

(3.17)
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for all ε > 0. In order to verify that we write as follows:

P
(

‖X‖Bp(µ) > (1 + ε)
(

E‖X‖pBp(µ)

)1/p
)

≤ P
(

‖X‖pBp(µ) > (1 + ε)E‖X‖pBp(µ)

)

≤ C1 exp

(

−c′1 min

{

ε2n
p4p

, (εn)2/p

})

,

for all ε > 0 by the estimate (3.16). We argue similarly for the other case. �

Remark. By the well known symmetrization argument for any random variable ξ:

P(|ξ −med(ξ)| > t) ≤ 4 inf
α∈R

P(|ξ − α| > t/2), t > 0,(3.18)

we may replace (E‖X‖pBp(µ))
1/p by a median of x 7→ ‖x‖Bp(µ) (or the expected value

E‖X‖Bp(µ)) with respect to the Gaussian measure γn (see also [16, Appendix V]).

4 Embedding ℓk
2
in subspaces of Lp for p > 2

In this paragraph we prove the main result of the note:

Theorem 4.1. Let 2 < p < ∞. Then for every n-dimensional subspace X of Lp and

any 0 < ε < 1 there exists k ≥ cpψ(n, p, ε) and linear map T : ℓk
2
→ X such that

‖x‖2 ≤ ‖T x‖X ≤ (1 + ε)‖x‖2 for all x ∈ ℓk
2
, where cp > 0 is constant depending only on p

and ψ(n, p, ·) is given by (3.8).

We shall need the next variant of Theorem 3.2:

Theorem 4.2. Let 2 < p < ∞ and let µ be a Borel isotropic probability measure on S n−1

with n > ep. If (gi j)
n,k
i, j=1 are i.i.d standard Gaussian random variables and a, b ∈ S k−1,

then:

P
(∣

∣

∣‖Ga‖pBp(µ) − ‖Gb‖pBp(µ)

∣

∣

∣ > tE‖X‖pBp(µ)

)

≤ C exp

(

−cψ

(

n, p,
t

‖a − b‖2

))

,(4.1)

for all t > 0.

Proof. The proof is similar to the proof of Theorem 3.2. We omit the details. �

Now we turn in the proof of the main result:

Proof of Theorem 4.1. Let 2 < p < ∞ and let X be n-dimensional normed space of Lp.

Then, Theorem 2.4 yields the existence of an isotropic Borel measure µ on S n−1 and
a linear isometry S : Xp(µ) → X. The next step is to establish an almost isometric

embedding G : ℓk
2
→ Xp(µ) with k as large as possible. Let {gi j(ω)}n,ki, j=1 be i.i.d.

standard normals in some probability space (Ω, P) and consider the random gaussian

operator Gω = (gi j(ω))n,k
i, j=1 : ℓk

2
→ Xp(µ). We are going to show that with positive

probability the operator G is (1+ε)-isomorphic embedding when k is sufficiently large.

To this end, we employ Proposition 4.2 and a chaining argument from [20]: For each
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j = 1, 2, . . . consider δ j-nets N j on S k−1 with cardinality |N j| ≤ (3/δ j)k (see [16, Lemma

2.6]). Note that for any θ ∈ S k−1 and for all j there exist u j ∈ N j with ‖θ − u j‖2 ≤ δ j

and by triangle inequality it follows that ‖u j − u j−1‖2 ≤ δ j + δ j−1. Moreover, if we

assume that δ j → 0 as j → ∞ and (t j) is sequence of numbers with t j ≥ 0 and
∑

j t j ≤ 1 then, for any ε > 0 we have the next:

Claim. If we define the following sets:

A :=
{

ω | ∃θ ∈ S k−1 :
∣

∣

∣‖Gω(θ)‖pBp(µ) − Ip
p

∣

∣

∣ > εIp
p

}

,(4.2)

A1 :=
{

ω | ∃u1 ∈ N1 :
∣

∣

∣‖Gω(u1)‖pBp(µ) − Ip
p

∣

∣

∣ > t1εIp
p

}

and for j ≥ 2

A j :=
{

ω | ∃u j ∈ N j, u j−1 ∈ N j−1 :
∣

∣

∣

∣

‖Gω(u j)‖pBp(µ) − ‖Gω(u j−1)‖pBp(µ)

∣

∣

∣

∣

> t jεIp
p

}

,(4.3)

where Ip ≡ Ip(γn, Bp(µ)), then the following inclusion holds:

A ⊆
∞
⋃

j=1

A j.(4.4)

Proof of Claim. If ω <
⋃∞

j=1 A j then for any j and any u j ∈ N j we have:

∣

∣

∣‖Gω(u1)‖pBp(µ) − Ip
p

∣

∣

∣ ≤ t1I
p
p and

∣

∣

∣

∣

‖Gω(u j)‖pBp(µ) − ‖Gω(u j−1)‖pBp(µ)

∣

∣

∣

∣

≤ t jI
p
p , j = 2, 3, . . . .

For any θ there exist θ j ∈ N j such that ‖θ − θ j‖2 < δ j for j = 1, 2, . . .. Hence, for any

N ≥ 2 we may write:

∣

∣

∣‖Gω(θ)‖pBp(µ) − Ip
p

∣

∣

∣ ≤
∣

∣

∣Ip
p − ‖Gω(θ1)‖pBp(µ)

∣

∣

∣ +

N
∑

j=2

∣

∣

∣

∣

‖Gω(θ j−1)‖pBp(µ) − ‖Gω(θ j)‖pBp(µ)

∣

∣

∣

∣

+

+

∣

∣

∣‖Gω(θN)‖pBp(µ) − ‖Gω(θ)‖pBp(µ)

∣

∣

∣

≤
N

∑

j=1

εt jI
p
p + 2p · δN · ‖Gω‖p−12→X ,

which proves the assertion, since N is arbitrary.

Fix 0 < ε < 1. Choose δ j = e− j, t j = jp/2e− j/S p with S p :=
∑∞

j=1 jp/2e− j (thus,
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∑

j t j ≤ 1). Then, according to the previous Claim we may write:

P(A) ≤ C|N1| exp(−c1ψ(n, p, εt1)) +C
∞
∑

j=2

|N j−1| · |N j| exp(−c1ψ(n, p, εt je
j/4))

≤ C
∞
∑

j=1

(3e j)2k exp
(

−c′1ψ
(

n, p, ε jp/2S −1p

))

≤ C
∞
∑

j=1

exp
(

c2 jk − c′2S −2p ψ
(

n, p, ε jp/2
))

≤ C
∞
∑

j=1

exp
(

c2 jk − c′2S −2p jψ(n, p, ε)
)

≤ C
∞
∑

j=1

exp(−c3(2e/p)p jψ(n, p, ε)) ≤ C′ exp(−c3(2e/p)pψ(n, p, ε)) .

as long as k . (2e/p)pψ(n, p, ε). Therefore, there exists ω ∈ Ω with the following

property:

(1 − ε)1/pIp ≤ ‖Gω(θ)‖Bp(µ) ≤ (1 + ε)1/pIp,(4.5)

for all θ ∈ S k−1. Then, the mapping T = Tε : ℓk
2
→ X defined as T := (1− ε)−1/pI−1p S Gω

satisfies:

‖x‖2 ≤ ‖T x‖X ≤
(

1 + ε

1 − ε

)1/p

‖x‖2,(4.6)

for all x ∈ ℓk
2
, as required. �

Note. Let us note that if n−
p−2

2(p−1) .p ε < 1 then we get k ≤ C(εn)2/p/p by taking into

account the form of ψ(n, p, ·).

5 Further remarks

1. Optimality of the result. If the isotropic measure µ on S n−1 is the one supported

on ±ei’s i.e. Xp(µ) ≡ ℓn
p, then Theorem 3.2 is optimal (up to constants depending on

p) as was proved in [18]. Moreover, Theorem 4.1 is optimal, in the sense that if the

typical k-dimensional subspace of ℓn
p is (1 + ε)-spherical, then k ≤ Cp(εn)2/p for some

absolute constant C > 0 (see [18]). We should mention that it is known, that for

concrete values of p one can embed ℓk
2
into ℓn

p even isometrically (see [11] for details).

However, this is not a typical subspace. Let us note that once we have established

the concentration estimate of Theorem 3.2, then the standard net argument yields

the result with an extra logarithmic on ε term. Section 4 serves exactly the purpose

of removing this term: We utilize Theorem 2.8, to prove the distributional inequality

of Theorem 4.2. Then we use this inequality along with the chaining method to
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conclude the logarithmic-free dependence on ε in our main result. This approach

has been inspired by [20]. In probabilistic terms Theorem 4.2 says that the process

(‖Gθ‖pBp(µ) − Ip
p)θ∈S k−1 has two-level tail behavior described by ψ(n, p, ·).

2. Selection of randomness. Embeddings of ℓk
2
into Lq, q > 2 under different

randomness have appeared in the literature in [4]. The authors there consider large

random matrices with independent Rademacher entries in order to K(q)-embed ℓk
2

into ℓN
q with N ≃ kq/2, where K(q) > 0 depends only on q. Then, they use this

result in order to prove that for any 1 < p < 2 there exists uncomplemented subspace

of Lp which is isomorphic to Hilbert space. It is worth mentioning, that one can

prove a concentration result similar to that of Theorem 3.2 using other randomness

than Gaussian. In particular, if ν is isotropic Borel probability measure on Rn which

satisfies log-Sobolev inequality with constant ρ > 0 then we may prove the following:

Theorem 5.1. Let 2 < p < ∞ let µ be Borel isotropic measure on S n−1 and let ν be

isotropic Borel probability measure on Rn which satisfies log-Sobolev inequality with

constant ρ > 0. Then, we have:

("
∣

∣

∣‖x‖pBp(µ) − ‖y‖
p
Bp(µ)

∣

∣

∣

r
dν(x)dν(y)

)1/r

≤ C(p, ρ)Ip
p(ν, Bp(µ)) max

{

( r
n

)1/2

,
rp/2

n

}

,(5.1)

for all r ≥ 2, where C(p, ρ) > 0 is constant depending only on p and ρ.

Having proved Theorem 5.1, we apply Markov’s inequality as in Section 3 to get

the corresponding concentration inequality. For the proof of Theorem 5.1 we argue

as follows: Consider the function f (x) = ‖x‖pBp(µ) and define F = f − Eν f . Then, a

direct application of Lemma 2.2 yields:

‖F‖2Lr (ν) ≤ ‖F‖
2
L2(ν) +

1

ρ

∫ r

2

∥

∥

∥‖∇ f ‖2
∥

∥

∥

2

Ls(ν)
ds,(5.2)

for all r ≥ 2. Recall the known fact (e.g. see [12]) that if a measure ν satisfies

log-Sobolev with ρ, also satisfies Poincaré with ρ:

‖h − Eνh‖2L2(ν)
≤ 1

ρ

∫

Rn
‖∇h‖22 dν =

1

ρ

∥

∥

∥‖∇h‖2
∥

∥

∥

2

L2(ν)
,(5.3)

for any smooth function h. Therefore, (5.2) becomes:

‖F‖2Lr (ν) ≤
2

ρ

∫ r

2

∥

∥

∥‖∇ f ‖2
∥

∥

∥

2

Ls(ν)
ds ≤

2r
ρ

∥

∥

∥‖∇ f ‖2
∥

∥

∥

2

Lr (ν)
,(5.4)

for all r ≥ 3, where we have used the fact that s 7→ ‖h‖Ls is non-decreasing function.

Taking into account the Claim in Section 4 we get:

‖F‖2Lr (ν) ≤
2p2r
ρ

(∫

Rn
‖x‖r(p−1)

B2p−2(µ) dν(x)

)2/r

, r ≥ 3.(5.5)
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Again, Lemma 2.2 implies that:

(∫

Rn
‖x‖r(p−1)

B2p−2(µ) dν(x)

)2/r

≤ I2p−2
2p−2 (ν, B2p−2(µ))















1 +
r − 2

ρI2
2p−2(ν, B2p−2(µ))















p−1

,(5.6)

for r ≥ 2. Plug this back in (5.5) we obtain:

‖F‖Lr (ν) <

(

2p2

ρ

)1/2

r1/2Ip−1
2p−2(ν, B2p−2(µ))















1 +
r − 2

ρI2
2p−2(ν, B2p−2(µ))















p−1
2

,(5.7)

for all r ≥ 3. Note that the isotropicity and Lemma 2.2 for x 7→ 〈x, θ〉 imply

n ≤ Ip
p (ν, Bp(µ)) ≤

(

1 +
p − 2

ρ

)p/2

n,

for all p ≥ 2. Taking into account these estimates, we argue as in Section 3 to

complete the proof. The details are left to the reader.

3. The variance in Lewis’ position. Let us point out that our method also provides

upper estimate for the variance of the norm of any finite dimensional subspace of

Lp in Lewis’ position. We should mention that the following estimate turns out to

be optimal (up to the constant C) as the example of ℓn
p shows (see [18, Section 3] for

details).

Theorem 5.2. Let 1 ≤ p < ∞. Then, for any n-dimensional subspace X of Lp there

exists position B̃ of the unit ball BX of X such that:

Var‖g‖B̃ ≤ Cpn
2
p−1,(5.8)

where C > 0 is an absolute constant.

Sketch of Proof. It suffices to prove the assertion for 2 < p < ∞. If B̃ is Lewis’

position, we may identify X with Xp(µ) for some Borel isotropic measure µ on S n−1.
Then, we may write:

Var‖g‖Bp(µ) = E(‖g‖Bp(µ) − ‖g′‖Bp(µ))2 ≤
1

p2
E



















‖g‖pBp(µ) − ‖g
′‖pBp(µ)

min{‖g‖p−1Bp(µ), ‖g′‖
p−1
Bp(µ)}



















2

,(5.9)

where we have use the numerical inequality |ap − bp| ≥ p|a − b|min{ap−1, bp−1} for
a, b > 0 and p > 1. Thus, Cauchy-Schwarz inequality implies:

√

Var‖g‖Bp(µ) ≤
2

p

(

E

∣

∣

∣

∣
‖g‖pBp(µ) − ‖g

′‖pBp(µ)

∣

∣

∣

∣

4
)1/4

Ip−1
−4(p−1)(γn, Bp(µ))

.(5.10)

The numerator is estimated by Proposition 3.1 while for the denominator we employ

the main result of [10] along with the fact that k(Bp(µ)) ≥ c1pn2/p for n ≥ eC1 p. Putting

them all together we arrive at the desired estimate. �
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