A central limit theorem for projections of the cube

Grigoris Paouris * Peter Pivovarov ${ }^{\dagger}$ J. Zinn ${ }^{\ddagger}$

December 2, 2012

Abstract

We prove a central limit theorem for the volume of projections of the cube $[-1,1]^{N}$ onto a random subspace of dimension n, when n is fixed and $N \rightarrow \infty$. Randomness in this case is with respect to the Haar measure on the Grassmannian manifold.

1 Main result

The focus of this paper is the volume of random projections of the cube $B_{\infty}^{N}=[-1,1]^{N}$ in \mathbb{R}^{N}. To fix the notation, let $n \geqslant 1$ be an integer and for $N \geqslant n$, let $G_{N, n}$ denote the Grassmannian manifold of all n-dimensional linear subspaces of \mathbb{R}^{N}. Equip $G_{N, n}$ with the Haar probability measure $v_{N, n}$, which is invariant under the action of the orthogonal group. Suppose that $(E(N))_{N \geqslant n}$ is a sequence of random subspaces with $E(N)$ distributed according to $v_{N, n}$. We consider the random variables

$$
\begin{equation*}
Z_{N}=\left|P_{E(N)} B_{\infty}^{N}\right|, \tag{1.1}
\end{equation*}
$$

where $P_{E(N)}$ denotes the orthogonal projection onto $E(N)$ and $|\cdot|$ is n-dimensional volume, when n is fixed and $N \rightarrow \infty$. We show that Z_{N} satisfies the following central limit theorem.

[^0]Theorem 1.1.

$$
\begin{equation*}
\frac{Z_{N}-\mathbb{E} Z_{N}}{\sqrt{\operatorname{var}\left(Z_{N}\right)}} \xrightarrow{d} \mathcal{N}(0,1) \text { as } N \rightarrow \infty . \tag{1.2}
\end{equation*}
$$

Here \xrightarrow{d} denotes convergence in distribution and $\mathcal{N}(0,1)$ a standard Gaussian random variable with mean 0 and variance 1 . Our choice of scaling for the cube is immaterial as the quantity in (1.2) is invariant under scaling and translation of $[-1,1]^{N}$.

Gaussian random matrices play a central role in the proof of Theorem 1.1, as is often the case with results about random projections onto subspaces $E \in G_{N, n}$. Specifically, we let G be an $n \times N$ random matrix with independent columns g_{1}, \ldots, g_{N} distributed according to standard Gaussian measure γ_{n} on \mathbb{R}^{n}, i.e.,

$$
d \gamma_{n}(x)=(2 \pi)^{-n / 2} e^{-\|x\|_{2}^{2} / 2} d x
$$

We view G as a linear operator from \mathbb{R}^{N} to \mathbb{R}^{n}. If $C \subset \mathbb{R}^{N}$ is any convex body, then

$$
\begin{equation*}
|G C|=\operatorname{det}\left(G G^{*}\right)^{\frac{1}{2}}\left|P_{E} C\right|, \tag{1.3}
\end{equation*}
$$

where $E=\operatorname{Range}\left(G^{*}\right)$ is distributed uniformly on $G_{N, n}$. Moreover, $\operatorname{det}\left(G G^{*}\right)^{1 / 2}$ and $\left|P_{E} C\right|$ are independent. The latter fact underlies the Gaussian representation of intrinsic volumes, as proved by B. Tsirelson in [23] (see also [27]); it is also used in R. Vitale's probabilistic derivation of the Steiner formula [26]. Passing between Gaussian vectors and random orthogonal projections is useful in a variety of contexts, e.g., [12], [15], [1], [5], [6], [13], [8], [17]. As we will show, however, it is a delicate matter to use (1.3) to prove limit theorems, especially with the normalization required in Theorem 1.1. Our path will involve analyzing asymptotic normality of $\left|G B_{\infty}^{N}\right|$ before dealing with the quotient $\left|G B_{\infty}^{N}\right| / \operatorname{det}\left(G G^{*}\right)^{1 / 2}$.

The set

$$
G B_{\infty}^{N}=\left\{\sum_{i=1}^{N} \lambda_{i} g_{i}:\left|\lambda_{i}\right| \leqslant 1, i=1, \ldots, N\right\}
$$

is a random zonotope, i.e., a Minkowski sum of the random segments $\left[-g_{i}, g_{i}\right]=\left\{\lambda g_{i}:|\lambda| \leqslant 1\right\}$. By the well-known zonotope vol-
ume formula (e.g. [14]), $X_{N}=\left|G B_{\infty}^{N}\right|$ satisfies

$$
\begin{equation*}
X_{N}=2^{n} \sum_{1 \leqslant i_{1}<\ldots<i_{n} \leqslant N}\left|\operatorname{det}\left[g_{i_{1}} \cdots g_{i_{n}}\right]\right|, \tag{1.4}
\end{equation*}
$$

where $\operatorname{det}\left[g_{i_{1}} \cdots g_{i_{n}}\right]$ is the determinant of the matrix with columns $g_{i_{1}}, \ldots, g_{i_{n}}$. The quantity

$$
U_{N}=\frac{1}{\binom{N}{n}} \sum_{1 \leqslant i_{1}<\ldots<i_{n} \leqslant N}\left|\operatorname{det}\left[g_{i_{1}} \cdots g_{i_{n}}\right]\right|
$$

is a U-statistic and central limit theorems for U-statistics go back to W. Hoeffding [11]. In fact, formula (1.4) for X_{N} is simply a special case of Minkowski's theorem on mixed volumes of convex sets (see §2). In [25], R. Vitale proved a central limit theorem for Minkowski sums of more general random convex sets, using mixed volumes and U-statistics (discussed in detail below). In particular, it follows from Vitale's results that X_{N} satisfies a central limit theorem, namely,

$$
\begin{equation*}
\frac{X_{N}-\mathbb{E} X_{N}}{s_{N, n}} \xrightarrow{d} \mathcal{N}(0,1), \tag{1.5}
\end{equation*}
$$

where $s_{N, n}$ is a certain conditional standard deviation (see Theorem 3.3). Using Vitale's result and a more recent randomization inequality for U-statistics [7, Chapter 3], we show in $\S 4$ that X_{N} satisfies a central limit theorem with the canonical normalization:

$$
\begin{equation*}
\frac{X_{N}-\mathbb{E} X_{N}}{\sqrt{\operatorname{var}\left(X_{N}\right)}} \xrightarrow{d} \mathcal{N}(0,1) \text { as } N \rightarrow \infty . \tag{1.6}
\end{equation*}
$$

It is tempting to think that the latter central limit theorem for X_{N} easily yields Theorem 1.1. However, for a family of convex bodies $C=C_{N} \subset \mathbb{R}^{N}, N=n, n+1, \ldots$, asymptotic normality of $|G C|$ is not sufficient to conclude that $\left|P_{E(N)} C\right|$ is asymptotically normal. For example, if $C=B_{2}^{N}$, then $\left|G B_{2}^{N}\right|=\operatorname{det}\left(G G^{*}\right)^{1 / 2}\left|B_{2}^{n}\right|$ is asymptotically normal (e.g., [2, Theorems 4.2.3, 7.5.3]), however $\left|P_{E(N)} B_{2}^{N}\right|$ is constant.

In fact, as we show in Proposition 4.4, both X_{N} and $\operatorname{det}\left(G G^{*}\right)^{1 / 2}$ contribute to asymptotic normality of $Z_{N}=\left|P_{E(N)} B_{\infty}^{N}\right|$, a technical
difficulty that requires careful analysis. In particular, the aforementioned randomization inequality from [7, Chapter 3] is invoked again to deal with the canonical normalization for Z_{N} in Theorem 1.1. As a by-product, we also obtain the limiting behavior of the variance of Z_{N} as $N \rightarrow \infty$.

We mention that when $n=1$, Theorem 1.1 implies that if $\left(\theta_{N}\right)$ is a sequence of random vectors with θ_{N} distributed uniformly on the sphere S^{N-1}, then the ℓ_{1}-norm $\|\cdot\|_{1}$ (the support function of the cube) satisfies

$$
\frac{\left\|\theta_{N}\right\|_{1}-\mathbb{E}\left\|\theta_{N}\right\|_{1}}{\sqrt{\operatorname{var}\left(\left\|\theta_{N}\right\|_{1}\right)}} \xrightarrow{d} \mathcal{N}(0,1) \text { as } N \rightarrow \infty .
$$

The central limit theorem for X_{N} in (1.6) can be seen as a counter-part to a recent result of I. Bárány and V. Vu [4] for convex hulls of Gaussian vectors. In particular, when $n \geqslant 2$ the quantity $V_{N}=\left|\operatorname{conv}\left\{g_{1}, \ldots, g_{N}\right\}\right|$ satisfies

$$
\frac{V_{N}-\mathbb{E} V_{N}}{\sqrt{\operatorname{var}\left(V_{N}\right)}} \xrightarrow{d} \mathcal{N}(0,1) \text { as } N \rightarrow \infty ;
$$

see the latter article for the corresponding Berry-Esseen type estimate. The latter result is one of several recent deep central limit theorems in stochastic geometry concerning random convex hulls, e.g., [19], [28], [3]. The techniques used in this paper are different and the main focus here is to understand the Grassmannian setting.

Lastly, for a thorough exposition of the properties of the cube, see [29].

2 Preliminaries

The setting is \mathbb{R}^{n} with the usual inner-product $\langle\cdot, \cdot\rangle$ and Euclidean norm $\|\cdot\|_{2} ; n$-dimensional Lebesgue measure is denoted by $|\cdot|$. For sets $A, B \subset \mathbb{R}^{n}$ and scalars $\alpha, \beta \in \mathbb{R}$, we define $\alpha A+\beta B$ by usual scalar multiplication and Minkowski addition: $\alpha A+\beta B=\{\alpha a+\beta b$: $a \in A, b \in B\}$.

2.1 Mixed volumes

The mixed volume $V\left(K_{1}, \ldots, K_{n}\right)$ of compact convex sets K_{1}, \ldots, K_{n} in \mathbb{R}^{n} is defined by

$$
V\left(K_{1}, \ldots, K_{n}\right)=\frac{1}{n!} \sum_{j=1}^{n}(-1)^{n+j} \sum_{i_{1}<\ldots<i_{j}}\left|K_{i_{1}}+\ldots+K_{i_{j}}\right|
$$

By a theorem of Minkowski, if t_{1}, \ldots, t_{N} are non-negative real numbers then the volume of $K=t_{1} K_{1}+\ldots+t_{N} K_{N}$ can be expressed as

$$
\begin{equation*}
|K|=\sum_{i_{1}=1}^{N} \cdots \sum_{i_{n}=1}^{N} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) t_{i_{1}} \cdots t_{i_{n}} . \tag{2.1}
\end{equation*}
$$

The coefficients $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ are non-negative and invariant under permutations of their arguments. When the K_{i} 's are originsymmetric line segments, say $K_{i}=\left[-x_{i}, x_{i}\right]=\left\{\lambda x_{i}:|\lambda| \leqslant 1\right\}$, for some $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$, we simplify the notation and write

$$
\begin{equation*}
V\left(x_{1}, \ldots, x_{n}\right)=V\left(\left[-x_{1}, x_{1}\right], \ldots,\left[-x_{n}, x_{n}\right]\right) \tag{2.2}
\end{equation*}
$$

We will make use of the following properties:
(i) $V\left(K_{1}, \ldots, K_{n}\right)>0$ if and only if there are line segments $L_{i} \subset K_{i}$ with linearly independent directions.
(ii) If $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$, then

$$
\begin{equation*}
n!V\left(x_{1}, \ldots, x_{n}\right)=2^{n}\left|\operatorname{det}\left[x_{1} \cdots x_{n}\right]\right| \tag{2.3}
\end{equation*}
$$

where $\operatorname{det}\left[x_{1} \cdots x_{n}\right]$ denotes the determinant of the matrix with columns x_{1}, \ldots, x_{n}.
(iii) $V\left(K_{1}, \ldots, K_{n}\right)$ is increasing in each argument (with respect to inclusion).

For further background we refer the reader to [21, Chapter 5] or [10, Appendix A].

A zonotope is a Minkowski sum of line segments. If x_{1}, \ldots, x_{N} are vectors in \mathbb{R}^{n}, then

$$
\sum_{i=1}^{N}\left[-x_{i}, x_{i}\right]=\left\{\sum_{i=1}^{N} \lambda_{i} x_{i}:\left|\lambda_{i}\right| \leqslant 1, i=1, \ldots, N\right\}
$$

Alternatively, a zonotope can be seen as a linear image of the cube $B_{\infty}^{N}=[-1,1]^{N}$. If $x_{1}, \ldots, x_{N} \in \mathbb{R}^{n}$, one can view the $n \times N$ matrix $X=\left[x_{1} \cdots x_{N}\right]$ as a linear operator from \mathbb{R}^{N} to \mathbb{R}^{n}; in this case, $X B_{\infty}^{N}=\sum_{i=1}^{N}\left[-x_{i}, x_{i}\right]$.

By (2.1) and properties (i) and (ii) of mixed volumes, the volume of $\sum_{i=1}^{N}\left[-x_{i}, x_{i}\right]$ satisfies

$$
\begin{equation*}
\left|\sum_{i=1}^{N}\left[-x_{i}, x_{i}\right]\right|=2^{n} \sum_{1 \leqslant i_{1}<\ldots<i_{n} \leqslant N}\left|\operatorname{det}\left[x_{i_{1}} \cdots x_{i_{n}}\right]\right| . \tag{2.4}
\end{equation*}
$$

Note that for $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\left|\operatorname{det}\left[x_{1} \cdots x_{n}\right]\right|=\left\|x_{1}\right\|_{2}\left\|P_{F_{1}^{\perp}} x_{2}\right\|_{2} \cdots\left\|P_{F_{n-1}^{\perp}} x_{n}\right\|_{2} \tag{2.5}
\end{equation*}
$$

where $F_{k}=\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$ for $k=1, \ldots, n-1$ (which can be proved using Gram-Schmidt orthogonalization, e.g., [2, Theorem 7.5.1]).

We will also use the Cauchy-Binet formula. Let $x_{1}, \ldots, x_{N} \in \mathbb{R}^{n}$ and let X be the $n \times N$ matrix with columns x_{1}, \ldots, x_{N}, i.e., $X=$ [$x_{1} \cdots x_{N}$]. Then

$$
\begin{equation*}
\operatorname{det}\left(X X^{*}\right)^{\frac{1}{2}}=\sum_{1 \leqslant i_{1}<\ldots<i_{n} \leqslant N} \operatorname{det}\left[x_{i_{1}} \cdots x_{i_{n}}\right]^{2} ; \tag{2.6}
\end{equation*}
$$

for a proof, see, e.g., $[9, \S 3.2]$.

2.2 Slutsky's theorem

We will make frequent use of Slutsky's theorem on convergence of random variables (see, e.g., [22, §1.5.4]).
Theorem 2.1. Let $\left(X_{N}\right)$ and $\left(\alpha_{N}\right)$ be sequences of random variables. Suppose that $X_{N} \xrightarrow{d} X_{0}$ and $\alpha_{N} \xrightarrow{\mathbb{P}} \alpha_{0}$, where α_{0} is a finite constant. Then

$$
X_{N}+\alpha_{N} \xrightarrow{d} X_{0}+\alpha_{0}
$$

and

$$
\alpha_{N} X_{N} \xrightarrow{d} \alpha_{0} X_{0} .
$$

Slutsky's theorem also applies when the X_{N} 's take values in \mathbb{R}^{k} and satisfy $X_{N} \xrightarrow{d} X_{0}$ and $\left(A_{N}\right)$ is a sequence of $m \times k$ random matrices such that $A_{N} \xrightarrow{\mathbb{P}} A_{0}$ and the entries of A_{0} are constants. In this case, $A_{N} X_{N} \xrightarrow{d} A_{0} X_{0}$.

3 U-statistics

In this section, we give the requisite results from the theory of U-statistics needed to prove asymptotic normality of X_{N} and Z_{N} stated in the introduction. For further background on U-statistics, see e.g. [22], [20], [7].

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables with values in a measurable space (S, \mathcal{S}). Let $h: S^{m} \rightarrow \mathbb{R}$ be a measurable function. For $N \geqslant m$, the U-statistic of order m with kernel h is defined by

$$
\begin{equation*}
U_{N}=U_{N}(h)=\frac{(N-m)!}{N!} \sum_{\left(i_{1}, \ldots, i_{m}\right) \in I_{N}^{m}} h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) \tag{3.1}
\end{equation*}
$$

where

$$
I_{N}^{m}=\left\{\left(i_{1}, \ldots, i_{m}\right): i_{j} \in \mathbb{N}, 1 \leqslant i_{j} \leqslant N, i_{j} \neq i_{k} \text { if } j \neq k\right\} .
$$

When h is symmetric, i.e., $h\left(x_{1}, \ldots, x_{m}\right)=h\left(x_{\sigma(1)}, \ldots, x_{\sigma(m)}\right)$ for every permutation σ of m elements, we can write

$$
\begin{equation*}
U_{N}=U\left(X_{1}, \ldots, X_{N}\right)=\frac{1}{\binom{N}{m}} \sum_{1 \leqslant i_{1}<\ldots<i_{m} \leqslant N} h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) ; \tag{3.2}
\end{equation*}
$$

here the sum is taken over all $\binom{N}{m}$ subsets $\left\{i_{1}, \ldots, i_{m}\right\}$ of $\{1, \ldots, N\}$.
Using the latter notation, we state several well-known results, due to Hoeffding (see, e.g., [22, Chapter 5]).

Theorem 3.1. For $N \geqslant m$, let U_{N} be a statistic with kernel $h: S^{m} \rightarrow$ $\mathbb{R} . \operatorname{Set} \zeta=\operatorname{var}\left(\mathbb{E}\left[h\left(X_{1}, \ldots, X_{m}\right) \mid X_{1}\right]\right)$.
(1) The variance of U_{N} satisfies

$$
\operatorname{var}\left(U_{N}\right)=\frac{m^{2} \zeta}{N}+O\left(N^{-2}\right) \text { as } N \rightarrow \infty .
$$

(2) If $\mathbb{E}\left|h\left(X_{1}, \ldots, X_{m}\right)\right|<\infty$, then $U_{N} \xrightarrow{\text { a.s. }} \mathbb{E} U_{N}$ as $N \rightarrow \infty$.
(3) If $\mathbb{E} h^{2}\left(X_{1}, \ldots, X_{m}\right)<\infty$ and $\zeta>0$, then

$$
\sqrt{N}\left(\frac{U_{N}-\mathbb{E} U_{N}}{m \sqrt{\zeta}}\right) \xrightarrow{d} \mathcal{N}(0,1) \text { as } N \rightarrow \infty .
$$

The corresponding Berry-Esseen type bounds are also available (see, e.g.. [22, page 193]), stated here in terms of the function

$$
\Phi(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-s^{2} / 2} d s
$$

Theorem 3.2. With the preceding notation, suppose that $\xi=\mathbb{E}\left|h\left(X_{1}, \ldots, X_{m}\right)\right|^{3}<$ ∞ and

$$
\zeta=\operatorname{var}\left(\mathbb{E}\left[h\left(X_{1}, \ldots, X_{m}\right) \mid X_{1}\right]\right)>0 .
$$

Then

$$
\sup _{t \in \mathbb{R}}\left|\mathbb{P}\left(\sqrt{N}\left(\frac{U_{N}-\mathbb{E} U_{N}}{m \sqrt{\zeta}}\right) \leqslant t\right)-\Phi(t)\right| \leqslant \frac{c \xi}{\left(m^{2} \zeta\right)^{\frac{3}{2}} \sqrt{N}}
$$

where $c>0$ is an universal constant.

3.1 U-statistics and mixed volumes

Let \mathcal{C}_{n} denote the class of all compact, convex sets in \mathbb{R}^{n}. A topology on \mathcal{C}_{N} is induced by the Hausdorff metric

$$
\delta^{H}(K, L)=\inf \left\{\delta>0: K \subset L+\delta B_{2}^{n}, L \subset K+\delta B_{2}^{n}\right\}
$$

where B_{2}^{n} is the Euclidean ball of radius one. A random convex set is a Borel measurable map from a probability space into \mathcal{C}_{n}. A key ingredient in our proof is the following theorem for Minkowski sums of random convex sets due to R. Vitale [25]; we include the proof for completeness.
Theorem 3.3. Let $n \geqslant 1$ be an integer. Suppose that K_{1}, K_{2}, \ldots are i.i.d. random convex sets in \mathbb{R}^{n} such that $\mathbb{E} \sup _{x \in K_{1}}\|x\|_{2}<\infty$. Set $V_{N}=\left|\sum_{i=1}^{N} K_{i}\right|$ and suppose that $\mathbb{E} V\left(K_{1}, \ldots, K_{n}\right)^{2}<\infty$ and furthermore that $\zeta=\operatorname{var}\left(\mathbb{E}\left[V\left(K_{1}, \ldots, K_{n}\right) \mid K_{1}\right]\right)>0$. Then

$$
\sqrt{N}\left(\frac{V_{N}-\mathbb{E} V_{N}}{(N)_{n} n \sqrt{\zeta}}\right) \xrightarrow{d} \mathcal{N}(0,1) \text { as } N \rightarrow \infty
$$

where $(N)_{n}=\frac{N!}{(N-n)!}$.
Proof. Taking $h:\left(\mathcal{C}_{n}\right)^{n} \rightarrow \mathbb{R}$ to be $h\left(K_{1}, \ldots, K_{n}\right)=V\left(K_{1}, \ldots, K_{n}\right)$ and using (2.1), we have

$$
\begin{equation*}
\frac{1}{(N)_{n}} V_{N}=U_{N}+\frac{1}{(N)_{n}} \sum_{\left(i_{1}, \ldots, i_{n}\right) \in J} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \tag{3.3}
\end{equation*}
$$

where

$$
U_{N}=\frac{1}{(N)_{n}} \sum_{\left(i_{1}, \ldots, i_{n}\right) \in I_{N}^{n}} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right),
$$

and $J=\{1, \ldots, N\}^{n} \backslash I_{N}^{n}$. Note that $|J| /(N)_{n}=O\left(\frac{1}{N}\right)$ and thus the second term on the right-hand side of (3.3) tends to zero in probability. Applying Theorem 3.1(3) and Slutsky's theorem leads to the desired conclusion.

In the special case when the K_{i} 's are line segments, say $K_{i}=$ $\left[-X_{i}, X_{i}\right]$ where X_{1}, X_{2}, \ldots are i.i.d. random vectors in \mathbb{R}^{n}, the assumptions in the latter theorem can be readily verified by using (2.3). Furthermore, if the X_{i} 's are rotationally-invariant, the assumptions simplify further as follows (essentially from [25], stated here in a form that best serves our purpose).

Corollary 3.4. Let $X=R \theta$ be a random vector such that θ is uniformly distributed on the sphere S^{n-1} and $R \geqslant 0$ is independent of θ and satisfies $\mathbb{E} R^{2}<\infty$ and $\operatorname{var}(R)>0$. For each $i=1,2, \ldots$, let $X_{i}=R_{i} \theta_{i}$ be independent copies of X. Let $D_{n}=\left|\operatorname{det}\left[\theta_{1} \cdots \theta_{n}\right]\right|$ and set

$$
\zeta_{1}=4^{n} \operatorname{var}(R) \mathbb{E}^{2(n-1)} R \mathbb{E}^{2} D_{n} .
$$

Then $V_{N}=\left|\sum_{i=1}^{N}\left[-X_{i}, X_{i}\right]\right|$ satisfies

$$
\sqrt{N}\left(\frac{V_{N}-\mathbb{E} V_{N}}{\binom{N}{n} n \sqrt{\zeta_{1}}}\right) \rightarrow \mathcal{N}(0,1) \text { as } N \rightarrow \infty .
$$

Proof. Plugging $X_{i}=R_{i} \theta_{i}, i=1, \ldots, n$, into (2.3) gives

$$
\begin{equation*}
n!V\left(X_{1}, \ldots, X_{n}\right)=2^{n} R_{1} \cdots R_{n} D_{n} \tag{3.4}
\end{equation*}
$$

By (2.5),

$$
\begin{equation*}
D_{n}=\left\|\theta_{1}\right\|_{2}\left\|P_{F_{1}} \perp \theta_{2}\right\|_{2} \cdots\left\|P_{F_{n-1}^{\perp}} \theta_{n}\right\|_{2}, \tag{3.5}
\end{equation*}
$$

with $F_{k}=\operatorname{span}\left\{\theta_{1}, \ldots, \theta_{k}\right\}$ for $k=1, \ldots, n-1$. In particular, $D_{n} \leqslant 1$ and thus (3.4) implies

$$
\mathbb{E} V\left(X_{1}, \ldots, X_{n}\right)^{2} \leqslant \frac{4^{n}}{(n!)^{2}} \mathbb{E}^{n} R^{2}<\infty .
$$

Using (3.4) once more, together with (3.5), we have

$$
\begin{equation*}
n!\mathbb{E}\left[V\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}\right]=2^{n} R_{1} \mathbb{E} R_{2} \cdots \mathbb{E} R_{n} \mathbb{E} D_{n} ; \tag{3.6}
\end{equation*}
$$

here we have used the fact that $\mathbb{E}\left\|P_{F_{k}} \perp \theta_{k+1}\right\|_{2}$ depends only on the dimension of F_{k} (which is equal to k a.s.) and that $\left\|\theta_{1}\right\|_{2}=1$ a.s. By (3.6) and our assumption $\operatorname{var}(R)>0$, we can apply Theorem 3.3 with

$$
\zeta=\operatorname{var}\left(\mathbb{E}\left[V\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}\right]\right)=\frac{\zeta_{1}}{(n!)^{2}}>0
$$

where ζ_{1} is defined in the statement of the corollary.
For further information on Theorem 3.3, including a CLT for the random sets themselves, or the case when $\zeta=0$, see [25] or [16, Pg 232]; see also [24].

Corollary 3.4 implies the first central limit theorem for X_{N} stated in the introduction (1.5). However, to recover the central limit theorem for X_{N} in (1.6), involving the variance $\operatorname{var}\left(X_{N}\right)$ and not a conditional variance, some additional tools are needed.

3.2 Randomization

In this subsection, we discuss a randomization inequality for U statistics. It will be used for variance estimates, the proof of the central limit theorem for X_{N} in (1.6) and it will also play a crucial role in the proof of Theorem 1.1.

Using the notation at the beginning of §3, suppose that h : $\left(\mathbb{R}^{n}\right)^{m} \rightarrow \mathbb{R}$ satisfies $\mathbb{E}\left|h\left(X_{1}, \ldots, X_{m}\right)\right|<\infty$ and let $1<r \leqslant m$. Following [7, Definition 3.5.1], we say that h is degenerate of order $r-1$ if

$$
\mathbb{E}_{X_{r}, \ldots, X_{m}} h\left(x_{1}, \ldots, x_{r-1}, X_{r}, \ldots, X_{m}\right)=\mathbb{E} h\left(X_{1}, \ldots, X_{m}\right)
$$

for all $x_{1}, \ldots, x_{r-1} \in \mathbb{R}^{n}$, and the function

$$
S^{r} \ni\left(x_{1}, \ldots, x_{r}\right) \mapsto \mathbb{E}_{X_{r+1}, \ldots, X_{m}} h\left(x_{1}, \ldots, x_{r}, X_{r+1}, \ldots, X_{m}\right)
$$

is non-constant. If h is not degenerate of any positive order r, we say it is non-degenerate or degenerate of order 0 . We will make use of the following randomization theorem, which is a special case of [7, Theorem 3.5.3].

Theorem 3.5. Let $1 \leqslant r \leqslant m$ and $p \geqslant 1$. Suppose that $h: S^{m} \rightarrow \mathbb{R}$ is degenerate of order $r-1$ and $\mathbb{E}\left|h\left(X_{1}, \ldots, X_{m}\right)\right|^{p}<\infty$. Set

$$
f\left(x_{1}, \ldots, x_{m}\right)=h\left(x_{1}, \ldots, x_{m}\right)-\mathbb{E} h\left(X_{1}, \ldots, X_{m}\right) .
$$

Let $\varepsilon_{1}, \ldots, \varepsilon_{N}$ denote i.i.d. Rademacher random variables, independent of X_{1}, \ldots, X_{N}. Then

$$
\begin{aligned}
& \mathbb{E}\left|\sum_{\left(i_{1}, \ldots, i_{m}\right) \in I_{N}^{m}} f\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right|^{p} \\
& \left.\left.\quad \simeq_{m, p} \mathbb{E}\right|_{\left(i_{1}, \ldots, i_{m}\right) \in I_{N}^{m}} \varepsilon_{i_{1}} \cdots \varepsilon_{i_{r}} f\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right|^{p} .
\end{aligned}
$$

Here $A \simeq_{m, p} B$ means $C_{m, p}^{\prime} A \leqslant B \leqslant C_{m, p}^{\prime \prime} A$, where $C_{m, p}^{\prime}$ and $C_{m, p}^{\prime \prime}$ are constants that depend only on m and p.

Corollary 3.6. Let μ be probability measure on \mathbb{R}^{n}, absolutely continuous with respect to Lebesgue measure. Suppose that X_{1}, \ldots, X_{N} are i.i.d. random vectors distributed according to μ. Let $p \geqslant 2$ and suppose $\mathbb{E}\left|\operatorname{det}\left[X_{1} \cdots X_{n}\right]\right|^{p}<\infty$. Define $f:\left(\mathbb{R}^{n}\right)^{n} \rightarrow \mathbb{R}$ by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left|\operatorname{det}\left[x_{1} \cdots x_{n}\right]\right|-\mathbb{E}\left|\operatorname{det}\left[X_{1} \cdots X_{n}\right]\right| .
$$

Then

$$
\mathbb{E}\left|\sum_{1 \leqslant i_{1}<\ldots<i_{n} \leqslant N} f\left(X_{i_{1}}, \ldots, X_{i_{n}}\right)\right|^{p} \leqslant C_{n, p} N^{p\left(n-\frac{1}{2}\right)} \mathbb{E}\left|f\left(X_{1}, \ldots, X_{n}\right)\right|^{p},
$$

where $C_{n, p}$ is a constant that depends on n and p.
Proof. Since μ is absolutely continuous, $\operatorname{dim}\left(\operatorname{span}\left\{X_{1}, \ldots, X_{k}\right\}\right)=k$ a.s. for $k=1, \ldots, n$. Moreover, $f\left(a x_{1}, \ldots, x_{n}\right)=|a| f\left(x_{1}, \ldots, x_{n}\right)$ for any $a \in \mathbb{R}$, hence f is non-degenerate (cf. (2.5)). Thus we may apply Theorem 3.5 with $r=1$:

$$
\begin{aligned}
\left.\left.\mathbb{E}\right|_{1 \leqslant i_{1}<\ldots<i_{n} \leqslant N} n!f\left(X_{i_{1}}, \ldots, X_{i_{n}}\right)\right|^{p} & =\mathbb{E}\left|\sum_{\left(i_{1}, \ldots, i_{n}\right) \in I_{N}^{n}} f\left(X_{i_{1}}, \ldots, X_{i_{n}}\right)\right|^{p} \\
& \leqslant C_{n, p} \mathbb{E}\left|\sum_{\left(i_{1}, \ldots, i_{n}\right) \in I_{N}^{n}} \varepsilon_{i_{1}} f\left(X_{i_{1}}, \ldots, X_{i_{n}}\right)\right|^{p} .
\end{aligned}
$$

Suppose now that X_{1}, \ldots, X_{N} are fixed. Taking expectation in $\varepsilon=$ $\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)$ and appling Khintchine's inequality and then Hölder's
inequality twice, we have

$$
\begin{aligned}
& \left.\mathbb{E}_{\varepsilon}\right|_{\left(i_{1}, \ldots, i_{n}\right) \in I_{N}^{n}} \varepsilon_{i_{1}} f\left(\left.X_{\left.i_{1}, \ldots, X_{i_{n}}\right)}\right|^{p}\right. \\
& =\mathbb{E}_{\varepsilon}\left|\sum_{i_{1}=1}^{N} \varepsilon_{i_{1}} \sum_{\substack{\left(i_{2}, \ldots, i_{i}\right) \\
\left(i_{1}, \ldots, i_{n}\right) \in I_{N}^{n}}} f\left(X_{i_{1}}, \ldots, X_{i_{n}}\right)\right|^{p} \\
& \leqslant C\left|\sum_{i_{1}=1}^{N}\left(\sum_{\substack{\left.\left(i_{2}, \ldots, i_{n}\right) \\
\left(i_{1}, \ldots, i_{n}\right)\right) I_{N}^{n}}} f\left(X_{i_{1}}, \ldots, X_{i_{n}}\right)\right)^{2}\right|^{\frac{p}{2}} \\
& \leqslant C\left(\binom{N-1}{n-1}(n-1)!\right)^{\frac{p}{2}}\left|\sum_{\left(i_{1}, \ldots, i_{n}\right) \in I_{N}^{n}} f\left(X_{i_{1}}, \ldots, X_{i_{n}}\right)^{2}\right|^{\frac{p}{2}} \\
& \leqslant C\left(\binom{N-1}{n-1}(n-1)!\right)^{\frac{p}{2}}\left(\binom{N}{n} n!\right)^{\frac{p-2}{2}} \sum_{\left(i_{1}, \ldots, i_{n}\right) \in I_{N}^{n}}\left|f\left(X_{i_{1}}, \ldots, X_{i_{n}}\right)\right|^{p},
\end{aligned}
$$

where C is an absolute constant. Taking expectation in the X_{i} 's gives

$$
\begin{aligned}
& \mathbb{E}\left.\sum_{\left(i_{1}, \ldots, i_{n}\right) \in I_{N}^{n}} \varepsilon_{i_{1}} f\left(X_{i_{1}}, \ldots, X_{i_{n}}\right)\right|^{p} \\
& \leqslant\left(\binom{N-1}{n-1}(n-1)!\right)^{\frac{p}{2}}\left(\binom{N}{n} n!\right)^{\frac{p-2}{2}}\binom{N}{n} n!\mathbb{E}\left|f\left(X_{1}, \ldots, X_{n}\right)\right|^{p} .
\end{aligned}
$$

The proposition follows as stated by using the estimate $\binom{N}{n} \leqslant$ $(e N / n)^{n}$.

4 Proof of Theorem 1.1

As explained in the introduction, our first step is identity (1.3), the proof of which is included for completeness.
Proposition 4.1. Let $N \geqslant n$ and let G be an $n \times N$ random matrix with i.i.d. standard Gaussian entries. Let $C \subset \mathbb{R}^{N}$ be a convex body. Then

$$
\begin{equation*}
|G C|=\operatorname{det}\left(G G^{*}\right)^{\frac{1}{2}}\left|P_{E} C\right|, \tag{4.1}
\end{equation*}
$$

where $E=\operatorname{Range}\left(\mathrm{G}^{*}\right)$. Moreover, E is distributed uniformly on $G_{N, n}$ and $\operatorname{det}\left(G G^{*}\right)^{\frac{1}{2}}$ and $\left|P_{E} C\right|$ are independent.

Proof. Identity (4.1) follows from polar decomposition; see, e.g., [17, Theorem 2.1(iii)]. To prove that the two factors are independent, we note that if U is an orthogonal transformation, we have $\operatorname{det}\left(G G^{*}\right)^{1 / 2}=\operatorname{det}\left((G U)(G U)^{*}\right)^{1 / 2}$; moreover, G and $G U$ have the same distribution. Thus if U is a random orthogonal transformation distributed according to the Haar measure, we have for $s, t \geqslant 0$,

$$
\begin{aligned}
& \mathbb{P}_{\otimes \gamma_{n}}\left(\operatorname{det}\left(G G^{*}\right)^{1 / 2} \leqslant s,\left|P_{\text {Range }\left(G^{*}\right)} C\right| \leqslant t\right) \\
& \quad=\mathbb{P}_{\otimes \gamma_{n}} \otimes \mathbb{P}_{U}\left(\operatorname{det}\left(G G^{*}\right)^{1 / 2} \leqslant s,\left|P_{\text {Range }\left(U^{*} G^{*}\right)} C\right| \leqslant t\right) \\
& \quad=\mathbb{E}_{\otimes \gamma_{n}}\left(\mathbb{1}_{\left\{\operatorname{det}\left(G G^{*}\right)^{1 / 2} \leqslant s\right\}} \mathbb{E}_{U} \mathbb{1}_{\left\{\mid P_{U^{*}} \text { Range(} G^{*}\right)} C \mid \leqslant t\right\} \\
& \quad=\mathbb{P}_{\otimes \gamma_{n}}\left(\operatorname{det}\left(G G^{*}\right)^{1 / 2} \leqslant s\right) v_{N, n}\left(E \in G_{N, n}:\left|P_{E} C\right| \leqslant t\right) .
\end{aligned}
$$

Taking $C=B_{\infty}^{N}$ in (4.1), we set

$$
\begin{equation*}
X_{N}=\left|G B_{\infty}^{N}\right|=2^{n} \sum_{1 \leqslant i_{1}<\ldots<i_{n} \leqslant N}\left|\operatorname{det}\left[g_{i_{1}} \cdots g_{i_{n}}\right]\right| \tag{4.2}
\end{equation*}
$$

(cf. (2.4)),

$$
\begin{equation*}
Y_{N}=\operatorname{det}\left(G G^{*}\right)^{\frac{1}{2}}=\left(\sum_{1 \leqslant i_{1}<\ldots<i_{n} \leqslant N} \operatorname{det}\left[g_{i_{1}} \cdots g_{i_{m}}\right]^{2}\right)^{\frac{1}{2}} \tag{4.3}
\end{equation*}
$$

(cf. (2.6)), and

$$
\begin{equation*}
Z_{N}=\left|P_{E} B_{\infty}^{N}\right|, \tag{4.4}
\end{equation*}
$$

where E is distributed according to $v_{N, n}$ on $G_{N, n}$. Then $X_{N}=$ $Y_{N} Z_{N}$, where Y_{N} and Z_{N} are independent. In order to prove Theorem 1.1, we start with several properties of X_{N} and Y_{N}.
Proposition 4.2. Let X_{N} be as defined in (4.2).
(1) For each $p \geqslant 2$,

$$
\mathbb{E}\left|X_{N}-\mathbb{E} X_{N}\right|^{p} \leqslant C_{n, p} N^{p\left(n-\frac{1}{2}\right)}
$$

(2) The variance of X_{N} satisfies

$$
\frac{\operatorname{var}\left(X_{N}\right)}{N^{2 n-1}} \rightarrow c_{n} \text { as } N \rightarrow \infty
$$

where c_{n} is a positive constant that depends only on n.
(3) X_{N} is asymptotically normal; i.e.,

$$
\frac{X_{N}-\mathbb{E} X_{N}}{\sqrt{\operatorname{var}\left(X_{N}\right)}} \xrightarrow{d} \mathcal{N}(0,1) \text { as } N \rightarrow \infty .
$$

Proof. Statement (1) follows from Corollary 3.6. To prove (2), let g be a random vector distributed according to γ_{n}. Then Corollary 3.4 with $\zeta_{1}=4^{n} \operatorname{var}\left(\|g\|_{2}\right) \mathbb{E}^{2(n-1)}\|g\|_{2} \mathbb{E}^{2} D_{n}$ yields

$$
\begin{equation*}
\sqrt{N}\left(\frac{X_{N}-\mathbb{E} X_{N}}{\binom{N}{n} n \sqrt{\zeta_{1}}}\right) \xrightarrow{d} \mathcal{N}(0,1) \text { as } N \rightarrow \infty . \tag{4.5}
\end{equation*}
$$

On the other hand, by part (1) we have

$$
\frac{\mathbb{E}\left|X_{N}-\mathbb{E} X_{N}\right|^{4}}{N^{4 n-2}} \leqslant C_{n, p} .
$$

This implies that the sequence $\left(X_{N}-\mathbb{E} X_{N}\right) / N^{n-\frac{1}{2}}$ is uniformly integrable, hence

$$
\frac{\sqrt{\operatorname{var}\left(X_{N}\right)}}{N^{-\frac{1}{2}\binom{N}{n} n \sqrt{\zeta_{1}}} \rightarrow 1 \text { as } N \rightarrow \infty}
$$

Part (3) now follows from (4.5) and Slutsky's theorem.
We now turn to $Y_{N}=\operatorname{det}\left(G G^{*}\right)^{\frac{1}{2}}$. It is well-known that

$$
\begin{equation*}
Y_{N}=\chi_{N} \chi_{N-1} \cdot \ldots \cdot \chi_{N-n+1}, \tag{4.6}
\end{equation*}
$$

where $\chi_{k}=\sqrt{\chi_{k}^{2}}$ and the $\chi_{k}^{2 \prime}$ s are independent chi-squared random variables with k degrees of freedom, $k=N, \ldots, N-n+1$ (see, e.g., [2, Chapter 7]). Consequently,

$$
\mathbb{E} Y_{N}^{2}=\frac{N!}{(N-n)!}=N^{n}\left(1-\frac{1}{N}\right) \cdots\left(1-\frac{n-1}{N}\right) .
$$

Additionally, we will use the following basic properties of Y_{N}.

Proposition 4.3. Let Y_{N} be as defined in (4.3).
(1) For each $p \geqslant 2$,

$$
\mathbb{E}\left|Y_{N}^{2}-\mathbb{E} Y_{N}^{2}\right|^{p} \leqslant C_{n, p} N^{p\left(n-\frac{1}{2}\right)}
$$

(2) The variance of Y_{N} satisfies

$$
\frac{\operatorname{var}\left(Y_{N}\right)}{N^{n-1}} \rightarrow \frac{n}{2} \text { as } N \rightarrow \infty .
$$

(3) Y_{N}^{2} is asymptotically normal; i.e.,

$$
\sqrt{N}\left(\frac{Y_{N}^{2}}{N^{n}}-1\right) \xrightarrow{d} \mathcal{N}(0,2 n) \text { as } N \rightarrow \infty \text {. }
$$

Proof. To prove part (1), we apply Corollary 3.6 to Y_{N}^{2}.
To prove part (2), we use (4.6) and define $Y_{N, n}$ by $Y_{N, n}=Y_{N}=$ $\chi_{N} \chi_{N-1} \cdot \ldots \cdot \chi_{N-n+1}$ and procede by induction on n. Suppose first that $n=1$ so that $Y_{N, 1}=\chi_{N}$. By the concentration of Gaussian measure (e.g., [18, Remark 4.8]), there is an absolute constant c_{1} such that $\mathbb{E}\left|\chi_{N}-\mathbb{E} \chi_{N}\right|^{4}<c_{1}$ for all N, which implies that the sequence $\left(\chi_{N}-\mathbb{E} \chi_{N}\right)_{N}$ is uniformly integrable. By the law of large numbers $\chi_{N} / \sqrt{N} \rightarrow 1$ a.s. and hence $\mathbb{E} \chi_{N} / \sqrt{N} \rightarrow 1$, by uniform integrability. Note that

$$
\begin{aligned}
\chi_{N}-\mathbb{E} \chi_{N} & =\frac{\chi_{N}^{2}-\mathbb{E}^{2} \chi_{N}}{\chi_{N}+\mathbb{E} \chi_{N}} \\
& =\frac{\sqrt{N}}{\chi_{N}+\mathbb{E} \chi_{N}} \frac{\chi_{N}^{2}-N}{\sqrt{N}}+\frac{\sqrt{N}}{\chi_{N}+\mathbb{E} \chi_{N}} \frac{N-\mathbb{E}^{2} \chi_{N}}{\sqrt{N}} .
\end{aligned}
$$

By Slutsky's theorem and the classical central limit theorem,

$$
\frac{\sqrt{N}}{\chi_{N}+\mathbb{E} \chi_{N}} \frac{\chi_{N}^{2}-N}{\sqrt{N}} \xrightarrow{d} \frac{1}{2} \mathcal{N}(0,2) \text { as } N \rightarrow \infty,
$$

while

$$
\frac{\sqrt{N}}{\chi_{N}+\mathbb{E} \chi_{N}} \frac{N-\mathbb{E}^{2} \chi_{N}}{\sqrt{N}} \rightarrow 0 \text { (a.s.) as } N \rightarrow \infty
$$

since $\operatorname{var}\left(\chi_{N}\right)=N-\mathbb{E}^{2} \chi_{N}<c_{1}^{1 / 2}$. Thus

$$
\chi_{N}-\mathbb{E} \chi_{N} \xrightarrow{d} \frac{1}{2} \mathcal{N}(0,2)=\mathcal{N}\left(0, \frac{1}{2}\right) \text { as } N \rightarrow \infty .
$$

Appealing again to uniform integrability of $\left(\chi_{N}-\mathbb{E} \chi_{N}\right)_{N}$, we have

$$
\operatorname{var}\left(Y_{N, 1}\right)=\mathbb{E}\left|\chi_{N}-\mathbb{E} \chi_{N}\right|^{2} \rightarrow \frac{1}{2} \text { as } N \rightarrow \infty .
$$

Assume now that

$$
\frac{\operatorname{var}\left(Y_{N-1, n-1}\right)}{N^{n-2}} \rightarrow \frac{n-1}{2} \text { as } N \rightarrow \infty .
$$

Note that

$$
\begin{aligned}
\operatorname{var}\left(Y_{N, n}\right) & =\mathbb{E} \chi_{N}^{2} \mathbb{E} Y_{N-1, n-1}^{2}-\mathbb{E}^{2} \chi_{N} \mathbb{E}^{2} Y_{N-1, n-1} \\
& =\mathbb{E}\left(\chi_{N}^{2}-\mathbb{E}^{2} \chi_{N}\right) \mathbb{E} Y_{N-1, n-1}^{2}+\mathbb{E}^{2} \chi_{N}\left(\mathbb{E} Y_{N-1, n-1}^{2}-\mathbb{E}^{2} Y_{N-1, n-1}\right) \\
& =\operatorname{var}\left(\chi_{N}\right) \mathbb{E} Y_{N-1, n-1}^{2}+\mathbb{E}^{2} \chi_{N} \operatorname{var}\left(Y_{N-1, n-1}\right) .
\end{aligned}
$$

We conclude the proof of part (2) with

$$
\frac{\operatorname{var}\left(\chi_{N}\right) \mathbb{E} Y_{N-1, n-1}^{2}}{N^{n-1}} \rightarrow \frac{1}{2}
$$

and, using the inductive hypothesis,

$$
\frac{\mathbb{E}^{2} \chi_{N} \operatorname{var}\left(Y_{N-1, n-1}\right)}{N^{n-1}} \rightarrow \frac{n-1}{2} .
$$

Lastly, statement (3) is well-known (see, e.g., [2, §7.5.3]).
The next proposition is the key identity for Z_{N}. To state it we will use the following notation:

$$
\begin{equation*}
\Delta_{n, p}^{p}=\mathbb{E}\left|\operatorname{det}\left[g_{1} \cdots g_{n}\right]\right|^{p} \tag{4.7}
\end{equation*}
$$

Explicit formulas for $\Delta_{n, p}^{p}$ are well-known and follow from identity (2.5); see, e.g., [2, pg 269].
Proposition 4.4. Let X_{N}, Y_{N} and Z_{N} be as above (cf. (4.2) - (4.4)). Then

$$
\begin{equation*}
\frac{Z_{N}-\mathbb{E} Z_{N}}{N^{\frac{n-1}{2}}}=\alpha_{N, n} \frac{X_{N}-\mathbb{E} X_{N}}{N^{n-\frac{1}{2}}}-\beta_{N, n} \frac{Y_{N}^{2}-\mathbb{E} Y_{N}^{2}}{N^{n-\frac{1}{2}}}-\delta_{N, n}, \tag{4.8}
\end{equation*}
$$

where
(i) $\alpha_{N, n} \xrightarrow{\text { a.s. }} 1$ as $N \rightarrow \infty$;
(ii) $\beta_{N, n} \xrightarrow{\text { a.s. }} \beta_{n}=\frac{2^{n-1} \Delta_{n, 1}}{\Delta_{n, 2}^{2}}$ as $N \rightarrow \infty$;
(iii) $\delta_{N, n} \xrightarrow{\text { a.s. }} 0$ as $N \rightarrow \infty$.

Moreover, for all $p \geqslant 1$,

$$
\sup _{N \geqslant n+4 p-1} \max \left(\mathbb{E}\left|\alpha_{N, n}\right|^{p}, \mathbb{E}\left|\beta_{N, n}\right|^{p}, \mathbb{E}\left|\delta_{N, n}\right|^{p}\right) \leqslant C_{n, p} .
$$

The latter proposition is the first step in passing from the quotient $Z_{N}=X_{N} / Y_{N}$ to the normalization required in Theorem 1.1. The fact that $N^{n-\frac{1}{2}}$ appears in both of the denominators on the right-hand side of (4.8) indicates that both X_{N} and Y_{N}^{2} must be accounted for in order to capture the asymptotic normality of Z_{N}.
Proof. Write

$$
\begin{aligned}
Z_{N}-\mathbb{E} Z_{N} & =\frac{X_{N}}{Y_{N}}-\frac{\mathbb{E} X_{N}}{\mathbb{E} Y_{N}} \\
& =\frac{X_{N}-\mathbb{E} X_{N}}{Y_{N}}-\left(\frac{\mathbb{E} X_{N}}{\mathbb{E} Y_{N}}-\frac{\mathbb{E} X_{N}}{Y_{N}}\right) \\
& =\frac{X_{N}-\mathbb{E} X_{N}}{Y_{N}}-\frac{\left(Y_{N}^{2}-\mathbb{E} Y_{N}^{2}+\operatorname{var}\left(Y_{N}\right)\right) \mathbb{E} X_{N}}{Y_{N}\left(Y_{N}+\mathbb{E} Y_{N}\right) \mathbb{E} Y_{N}} \\
& =\frac{X_{N}-\mathbb{E} X_{N}}{Y_{N}}-\frac{\left(Y_{N}^{2}-\mathbb{E} Y_{N}^{2}\right) \mathbb{E} X_{N}}{Y_{N}\left(Y_{N}+\mathbb{E} Y_{N}\right) \mathbb{E} Y_{N}}-\frac{\operatorname{var}\left(Y_{N}\right) \mathbb{E} X_{N}}{Y_{N}\left(Y_{N}+\mathbb{E} Y_{N}\right) \mathbb{E} Y_{N}} .
\end{aligned}
$$

Thus

$$
\frac{Z_{N}-\mathbb{E} Z_{N}}{N^{\frac{n-1}{2}}}=\alpha_{N, n}\left(\frac{X_{N}-\mathbb{E} X_{N}}{N^{n-\frac{1}{2}}}\right)-\beta_{N, n}\left(\frac{Y_{N}^{2}-\mathbb{E} Y_{N}^{2}}{N^{n-\frac{1}{2}}}\right)-\delta_{N, n},
$$

which shows that (4.8) holds with

$$
\alpha_{N, n}=\frac{N^{\frac{n}{2}}}{Y_{N}}, \quad \beta_{N, n}=\frac{N^{\frac{n}{2}} \mathbb{E} X_{N}}{Y_{N}\left(Y_{N}+\mathbb{E} Y_{N}\right) \mathbb{E} Y_{N}}, \quad \delta_{N, n}=\beta_{N, n} \frac{\operatorname{var}\left(Y_{N}\right)}{N^{n-\frac{1}{2}}} .
$$

Using the factorization of Y_{N} in (4.6) and applying the SLLN for each $\chi_{k}(k=N, \ldots, N-n+1)$, we have

$$
\frac{Y_{N}}{\sqrt{\frac{N!}{(N-n)!}}} \stackrel{\text { a.s. }}{\rightarrow} 1 \text { as } N \rightarrow \infty,
$$

and hence

$$
\alpha_{N, n}=\frac{N^{n / 2}}{Y_{N}} \xrightarrow{\text { a.s. }} 1 \text { as } N \rightarrow \infty .
$$

By the Cauchy-Binet forumula (2.6) and the SLLN for U-statistics (Theorem 3.1(2)), we have

$$
\frac{1}{\binom{N}{n}} Y_{N}^{2} \xrightarrow{\text { a.s. }} \Delta_{n, 2}^{2} \text { as } N \rightarrow \infty .
$$

Thus

$$
\beta_{N, n}=\frac{2^{n}\binom{N}{n} \Delta_{n, 1}}{Y_{N}^{2}\left(1+\frac{\mathbb{E} Y_{N}}{Y_{N}}\right)} \frac{N^{n / 2}}{\mathbb{E} Y_{N}} \xrightarrow{\text { a.s. }} \frac{2^{n} \Delta_{n, 1}}{2 \Delta_{n, 2}^{2}} \text { as } N \rightarrow \infty .
$$

By Proposition 4.3(2) and Slutsky's theorem, we also have $\delta_{N, n} \xrightarrow{\text { a.s. }}$ 0 as $N \rightarrow \infty$. To prove the last assertion, we note that for $1 \leqslant p \leqslant$ $(N-n+1) / 2$,

$$
\mathbb{E}\left(\frac{N^{\frac{n}{2}}}{Y_{N}}\right)^{p} \leqslant C_{n, p}
$$

where $C_{n, p}$ is a constant that depends on n and p only (see, e.g., [17, Lemma 4.2]).

Proof of Theorem 1.1. To simplify the notation, for $I=\left\{i_{1}, \ldots, i_{n}\right\} \subset$ $\{1, \ldots, N\}$, write $d_{I}=\mid \operatorname{det}\left[g_{i_{1}} \cdots g_{i_{n}}\right]$. Applying Proposition 4.4, we can write

$$
\frac{Z_{N}-\mathbb{E} Z_{N}}{N^{\frac{n-1}{2}}}=\frac{\binom{N}{n}}{N^{n-\frac{1}{2}}}\left(U_{N}-\mathbb{E} U_{N}\right)+A_{N, n}-B_{N, n}-\delta_{N, n},
$$

where

$$
\begin{aligned}
U_{N} & =\frac{1}{\binom{N}{n}} \sum_{|I|=n}\left(2^{n} d_{I}-\beta_{n} d_{I}^{2}\right), \\
A_{N, n} & =\left(\alpha_{N, n}-1\right)\left(\frac{X_{N}-\mathbb{E} X_{N}}{N^{n-\frac{1}{2}}}\right),
\end{aligned}
$$

and

$$
B_{N, n}=\left(\beta_{N, n}-\beta_{n}\right)\left(\frac{Y_{N}^{2}-\mathbb{E} Y_{N}^{2}}{N^{n-\frac{1}{2}}}\right)
$$

Set $I_{0}=\{1, \ldots, n\}$. Applying Theorem 3.1(3) with

$$
\begin{equation*}
\zeta=\operatorname{var}\left(\mathbb{E}\left[\left(2^{n} d_{I_{0}}-\beta_{n} d_{I_{0}}^{2}\right) \mid g_{1}\right]\right), \tag{4.9}
\end{equation*}
$$

yields

$$
\sqrt{N}\left(\frac{U_{N}-\mathbb{E} U_{N}}{n \sqrt{\zeta}}\right) \xrightarrow{d} \mathcal{N}(0,1) \text { as } N \rightarrow \infty .
$$

By Proposition 4.4, $\alpha_{N, n} \xrightarrow{\text { a.s. }} 1, \beta_{N, n} \xrightarrow{\text { a.s. }} \beta_{n}$ and $\delta_{N, n} \xrightarrow{\text { a.s. }} 0$; moreover, each of the latter sequences is uniformly integrable. Thus by Hölder's inequality and Proposition 4.2(1)

$$
\mathbb{E}\left|A_{N, n}\right| \leq\left(\mathbb{E}\left|\alpha_{N, n}-1\right|^{2}\right)^{1 / 2} C_{n} \rightarrow 0 \text { as } N \rightarrow \infty .
$$

Similarly, using Proposition 4.3(1),

$$
\mathbb{E}\left|B_{N, n}\right| \leq\left(\mathbb{E}\left|\beta_{N, n}-\beta_{n}\right|^{2}\right)^{1 / 2} C_{n} \rightarrow 0 \text { as } N \rightarrow \infty
$$

By Slutsky's theorem and the fact that $\binom{N}{n} / N^{n} \rightarrow 1 / n!$ as $N \rightarrow \infty$, we have

$$
\begin{equation*}
\frac{n!\left(Z_{N}-\mathbb{E} Z_{N}\right)}{N^{\frac{n-1}{2}} n \sqrt{\zeta}} \xrightarrow{d} \mathcal{N}(0,1) \text { as } N \rightarrow \infty . \tag{4.10}
\end{equation*}
$$

To conclude the proof of the theorem, it is sufficient to show that

$$
\begin{equation*}
\frac{n!\sqrt{\operatorname{var}\left(Z_{N}\right)}}{N^{\frac{n-1}{2}} n \sqrt{\zeta}} \rightarrow 1 \text { as } N \rightarrow \infty . \tag{4.11}
\end{equation*}
$$

Once again we appeal to uniform integrability: by Proposition 4.4,

$$
\frac{\left|Z_{N}-\mathbb{E} Z_{N}\right|}{N^{\frac{n-1}{2}}} \leqslant 2^{n}\left|\alpha_{N, n}\right| \frac{\left|X_{N}-\mathbb{E} X_{N}\right|}{N^{n-\frac{1}{2}}}+\left|\beta_{N, n}\right| \frac{\left|Y_{N}^{2}-\mathbb{E} Y_{N}^{2}\right|}{N^{n-\frac{1}{2}}}+\left|\delta_{N, n}\right| .
$$

By Hölder's inequality and Propositions 4.2(1), 4.3(1) and 4.4,

$$
\sup _{N \geqslant n+8 p-1}\left|\frac{Z_{N}-\mathbb{E} Z_{N}}{N^{\frac{n-1}{2}}}\right|^{p} \leqslant C_{n, p},
$$

which, combined with (4.10), implies (4.11).

Acknowledgements

It is our pleasure to thank R. Vitale for helpful comments on an earlier version of this paper.

References

[1] F. Affentranger and R. Schneider, Random projections of regular simplices, Discrete Comput. Geom. 7 (1992), no. 3, 219226. MR 1149653 (92k:52008)
[2] T. W. Anderson, An introduction to multivariate statistical analysis, third ed., Wiley Series in Probability and Statistics, Wiley-Interscience [John Wiley \& Sons], Hoboken, NJ, 2003. MR 1990662 (2004c:62001)
[3] I. Bárány and M. Reitzner, Poisson polytopes, Ann. Probab. 38 (2010), no. 4, 1507-1531. MR 2663635 (2011f:60021)
[4] I. Bárány and V. Vu, Central limit theorems for Gaussian polytopes, Ann. Probab. 35 (2007), no. 4, 1593-1621. MR 2330981 (2008g:60030)
[5] Y. M. Baryshnikov and R. A. Vitale, Regular simplices and Gaussian samples, Discrete Comput. Geom. 11 (1994), no. 2, 141-147. MR 1254086 (94j:60017)
[6] K. Böröczky, Jr. and M. Henk, Random projections of regular polytopes, Arch. Math. (Basel) 73 (1999), no. 6, 465-473. MR 1725183 (2001b:52004)
[7] V. H. de la Peña and E. Giné, Decoupling, Probability and its Applications (New York), Springer-Verlag, New York, 1999, From dependence to independence, Randomly stopped processes. U-statistics and processes. Martingales and beyond. MR 1666908 (99k:60044)
[8] D. L. Donoho and J. Tanner, Counting the faces of randomlyprojected hypercubes and orthants, with applications, Discrete Comput. Geom. 43 (2010), no. 3, 522-541. MR 2587835 (2011b:60037)
[9] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660 (93f:28001)
[10] R. J. Gardner, Geometric Tomography, second ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cam-
bridge University Press, Cambridge, 2006. MR 2251886 (2007i:52010)
[11] W. Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Statistics 19 (1948), 293-325. MR 0026294 (10,134g)
[12] A. T. James, Normal multivariate analysis and the orthogonal group, Ann. Math. Statistics 25 (1954), 40-75. MR 0060779 $(15,726 b)$
[13] P. Mankiewicz and N. Tomczak-Jaegermann, Geometry of families of random projections of symmetric convex bodies, Geom. Funct. Anal. 11 (2001), no. 6, 1282-1326. MR 1878321 (2003a:46020)
[14] P. McMullen, Volumes of projections of unit cubes, Bull. London Math. Soc. 16 (1984), no. 3, 278-280. MR 738519 (85j:52019)
[15] R. E. Miles, Isotropic random simplices, Advances in Appl. Probability 3 (1971), 353-382. MR 0309164 (46 \#8274)
[16] I. Molchanov, Theory of random sets, Probability and its Applications (New York), Springer-Verlag London Ltd., London, 2005. MR 2132405 (2006b:60004)
[17] G. Paouris and P. Pivovarov, Small-ball probabilities for the volume of random convex sets, preprint, available at http://www.math.tamu.edu/~grigoris.
[18] G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275 (91d:52005)
[19] M. Reitzner, Central limit theorems for random polytopes, Probab. Theory Related Fields 133 (2005), no. 4, 483-507. MR 2197111 (2007d:52005)
[20] H. Rubin and R. A. Vitale, Asymptotic distribution of symmetric statistics, Ann. Statist. 8 (1980), no. 1, 165-170. MR 557561 (81a:62018)
[21] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521 (94d:52007)
[22] R. J. Serfling, Approximation theorems of mathematical statistics, John Wiley \& Sons Inc., New York, 1980, Wiley Series in Probability and Mathematical Statistics. MR 595165 (82a:62003)
[23] B. S. Tsirelson, A geometric approach to maximum likelihood estimation for an infinite-dimensional Gaussian location. II, Teor. Veroyatnost. i Primenen. 30 (1985), no. 4, 772-779, English translation: Theory Probab. Appl. 30 (1985), no 4, 820-827. MR 816291 (87i:62152)
[24] R. A. Vitale, Asymptotic area and perimeter of sums of random plane convex sets, University of Wisconsin-Madison, Mathematics Research Center (1977), no. 1770.
[25] , Symmetric statistics and random shape, Proceedings of the 1st World Congress of the Bernoulli Society, Vol. 1 (Tashkent, 1986) (Utrecht), VNU Sci. Press, 1987, pp. 595600. MR 1092403
[26] _ On the volume of parallel bodies: a probabilistic derivation of the Steiner formula, Adv. in Appl. Probab. 27 (1995), no. 1, 97-101. MR 1315580 (96a:52006)
[27] , On the Gaussian representation of intrinsic volumes, Statist. Probab. Lett. 78 (2008), no. 10, 1246-1249. MR 2441470 (2009k:60090)
[28] V. Vu, Central limit theorems for random polytopes in a smooth convex set, Adv. Math. 207 (2006), no. 1, 221-243. MR 2264072 (2007k:60039)
[29] C. Zong, The cube: a window to convex and discrete geometry, Cambridge Tracts in Mathematics, vol. 168, Cambridge University Press, Cambridge, 2006. MR 2221660 (2007a:52016)

Grigoris Paouris: grigoris@math.tamu.edu Department of Mathematics, Texas A\&M University College Station, TX, 77843-3368

Peter Pivovarov: pivovarovp@missouri.edu Mathematics Department, University of Missouri Columbia, MO, 65211

Joel Zinn: jzinn@math.tamu.edu
Department of Mathematics, Texas A\&M University College Station, TX, 77843-3368

[^0]: *The first-named author is supported by the A. Sloan Foundation, BSF grant 2010288 and the US National Science Foundation, grants DMS-0906150 and CAREER-1151711.
 ${ }^{\dagger}$ The second-named author was supported by a Postdoctoral Fellowship award from the Natural Sciences and Engineering Research Council of Canada and the Department of Mathematics at Texas A\&M University.
 \ddagger The third-named author was partially supported by NSF grant DMS-1208962.

