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Abstract

We prove a central limit theorem for the volume of projections of the
cube [-1, l]N onto a random subspace of dimension n, when 7 is fixed and
N — co. Randomness in this case is with respect to the Haar measure on
the Grassmannian manifold.

1 Main result

The focus of this paper is the volume of random projections of
the cube BY =[-1,1]N in RN, To fix the notation, let # > 1 be an
integer and for N > n, let Gy, denote the Grassmannian mani-
fold of all n-dimensional linear subspaces of RN. Equip Gy ,, with
the Haar probability measure vy ,, which is invariant under the
action of the orthogonal group. Suppose that (E(N))y>, is a se-
quence of random subspaces with E(N) distributed according to
VN,n- We consider the random variables

Zn = P B, (1.1)

where Pg(y) denotes the orthogonal projection onto E(N) and [
is n-dimensional volume, when 7 is fixed and N — co. We show
that Zy satisfies the following central limit theorem.
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Theorem 1.1.

5 N(0,1)as N — oo. (1.2)

Here 4 denotes convergence in distribution and N (0, 1) a stan-
dard Gaussian random variable with mean 0 and variance 1. Our
choice of scaling for the cube is immaterial as the quantity in (1.2)
is invariant under scaling and translation of [-1,1]N.

Gaussian random matrices play a central role in the proof of
Theorem 1.1, as is often the case with results about random pro-
jections onto subspaces E € Gy ,,. Specifically, we let G be an nxN
random matrix with independent columns gy,...,gy distributed
according to standard Gaussian measure y,, on R", i.e.,

dy(x) = (210) 2 M2/2

We view G as a linear operator from RN to R". If C ¢ RV is any
convex body, then

IGC| = det (GG*)?|P:C), (1.3)

where E = Range(G") is distributed uniformly on Gy ,. Moreover,

det(GG*)l/2 and |PgC| are independent. The latter fact under-
lies the Gaussian representation of intrinsic volumes, as proved
by B. Tsirelson in [23] (see also [27]); it is also used in R. Vi-
tale’s probabilistic derivation of the Steiner formula [26]. Passing
between Gaussian vectors and random orthogonal projections is
useful in a variety of contexts, e.g., [12], [15], [1], [5], [6], [13],
[8], [17]. As we will show, however, it is a delicate matter to
use (1.3) to prove limit theorems, especially with the normaliza-
tion required in Theorem 1.1. Our path will involve analyzing
asymptotic normality of |GBY| before dealing with the quotient

|GBN|/det (GG*)"2.

The set
N
GBY = {Z/\ig,- <1, = 1,...,N}
=1

is a random zonotope, i.e., a Minkowski sum of the random seg-
ments [—g;,¢;] = {Ag; : [A| < 1}. By the well-known zonotope vol-
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ume formula (e.g. [14]), Xy = |GBY| satisfies

Xy=2" ) |det[g, gl (1.4)

1<11 <...<in<N

where det[g; ---g; ]is the determinant of the matrix with columns
gi,»--+»&i - The quantity

1
Uv=— ) ldet[g gl

( n ) 1<ii<.<iy, <N

is a U-statistic and central limit theorems for U-statistics go back
to W. Hoeffding [11]. In fact, formula (1.4) for Xy is simply a
special case of Minkowski’s theorem on mixed volumes of con-
vex sets (see §2). In [25], R. Vitale proved a central limit theorem
for Minkowski sums of more general random convex sets, using
mixed volumes and U-statistics (discussed in detail below). In
particular, it follows from Vitale’s results that X satisfies a cen-
tral limit theorem, namely,

XN - EXN d

. — N(0,1), (1.5)

where sy ,, is a certain conditional standard deviation (see Theo-
rem 3.3). Using Vitale’s result and a more recent randomization
inequality for U-statistics [7, Chapter 3], we show in §4 that Xy
satisfies a central limit theorem with the canonical normalization:

MiN(O,l)asNem. (1.6)
var(Xy)

It is tempting to think that the latter central limit theorem for
Xy easily yields Theorem 1.1. However, for a family of convex
bodies C = Cy C RN, N=nn+1,..., asymptotic normality of
|GC| is not sufficient to conclude that |PgC| is asymptotically
normal. For example, if C = BY, then |GBIZ\]| = det(GG*)1/2|B’21| is
asymptotically normal (e.g., [2, Theorems 4.2.3, 7.5.3]), however
|PE(N)B12V| is constant.

In fact, as we show in Proposition 4.4, both Xy and det(GG")
contribute to asymptotic normality of Zy = |PE(N)B£\IO|, a technical
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difficulty that requires careful analysis. In particular, the afore-
mentioned randomization inequality from [7, Chapter 3] is in-
voked again to deal with the canonical normalization for Zy in
Theorem 1.1. As a by-product, we also obtain the limiting behav-
ior of the variance of Zy as N — oo.

We mention that when n = 1, Theorem 1.1 implies that if (Oy)
is a sequence of random vectors with Oy distributed uniformly
on the sphere SN~!, then the £;-norm ||-||; (the support function
of the cube) satisfies

1Ol —EllOnIh 4
var([|On/l1)

N(0,1) as N — oo.

The central limit theorem for Xy in (1.6) can be seen as a
counter-part to a recent result of I. Barany and V. Vu [4] for convex
hulls of Gaussian vectors. In particular, when n > 2 the quantity
Vy =|conv{gy,...,gn}| satisfies

VN—EVN d
—_—

N(0,1) as N — oo;
var(Vy)

see the latter article for the corresponding Berry-Esseen type es-
timate. The latter result is one of several recent deep central
limit theorems in stochastic geometry concerning random con-
vex hulls, e.g., [19], [28], [3]. The techniques used in this paper
are different and the main focus here is to understand the Grass-
mannian setting.

Lastly, for a thorough exposition of the properties of the cube,
see [29].

2 Preliminaries

The setting is R" with the usual inner-product (:,-) and Euclidean
norm ||-||; n-dimensional Lebesgue measure is denoted by |-|. For
sets A,B C R" and scalars a,f € R, we define aA + B by usual
scalar multiplication and Minkowski addition: a A+BB = {aa+pb:
aeAbeB)}.



2.1 Mixed volumes

The mixed volume V(Kj,...,K,) of compact convex sets Ky, ..., K,
in R" is defined by

1 . n+j
= — ) . .
V(Kl,...,Kn)_n! E (-1) | E .‘K11+...+K1]..
j=1 i1 <. <

By a theorem of Minkowski, if ¢;,...,fy are non-negative real num-
bers then the volume of K = ;K +... + t5y Ky can be expressed as

|K|: Z ZV(Kil""’Kin)til“.tin' (21)

N N
=1 i,=1

The coefficients V(K ,...,K; ) are non-negative and invariant un-
der permutations of their arguments. When the K;’s are origin-
symmetric line segments, say K; = [-x;,x;] = {Ax; : [A| < 1}, for
some x1,...,%, € R", we simplify the notation and write

V(x1,.ox,) = V([=x1,x1 )0 [=X0 X1 ])- (2.2)
We will make use of the following properties:

(i) V(Ky,...,K,)> 0if and only if there are line segments L; C K;
with linearly independent directions.

(ii) If xq,...,x, € R", then
n!V(xy,...,x,) = 2"|det[x; - x,]|, (2.3)

where det[x;---x,] denotes the determinant of the matrix
with columns xy,...,x,,.

(iii) V(Ky,...,K,) is increasing in each argument (with respect to
inclusion).

For further background we refer the reader to [21, Chapter 5] or
[10, Appendix A].

A zonotope is a Minkowski sum of line segments. If xq,..., x5
are vectors in R”, then

N

N
Z[—xi,xi]:{ /\ix,-:l/\,-|<1,i:1,...,N}.
=1

i=1 i
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Alternatively, a zonotope can be seen as a linear image of the cube
B{)\’o = [—1,1]N. If xq,...,xy € R", one can view the n x N matrix
X = [x;---xy] as a linear operator from RN to R"; in this case,
XBS’O = f\il[—xi,xi].

By (2.1) and properties (i) and (ii) of mixed volumes, the vol-
ume of Zf\il [—x;, x;] satisfies

N
‘Z[_xi'xi]
im1

Note that for x4,...,x, € R”,

= 2" Z et [x;, ---x; ]I (2.4)

1< <...<i, <N

det [x; -, ]l = i lollPrxallo - 1Pes xallo, (2.5)

where Fy = span{xy,...,x;} for k=1,...,n—1 (which can be proved
using Gram-Schmidt orthogonalization, e.g., [2, Theorem 7.5.1]).

We will also use the Cauchy-Binet formula. Let xy,..., x5 € R”
and let X be the n x N matrix with columns xy,...,xy, i.e., X =
[x1---xn]. Then

det(XX*)% = Z det[x;, ---xin]2; (2.6)
1<i<..<i, <N

for a proof, see, e.g., [9, §3.2].

2.2 Slutsky’s theorem

We will make frequent use of Slutsky’s theorem on convergence
of random variables (see, e.g., [22, §1.5.4]).

Theorem 2.1. Let (Xy) and (ay) be sequences of random variables.

d P . ..
Suppose that X — X and ay — ag, where « is a finite constant.
Then

XN +an i Xo+ ag
and
anXn 5 aXo.

Slutsky’s theorem also applies when the Xy ’s take values in
R¥ and satisfy Xy 4, X and (Ay) is a sequence of m x k random
matrices such that Ay 5 Ay and the entries of A; are constants.
In this case, Ay Xy 4 ApXop.



3 U-statistics

In this section, we give the requisite results from the theory of
U-statistics needed to prove asymptotic normality of Xy and Zy
stated in the introduction. For further background on U-statistics,
see e.g. [22], [20], [7].

Let X, X>,... be a sequence of i.i.d. random variables with val-
ues in a measurable space (S,S). Let h: S™ — R be a measurable
function. For N > m, the U-statistic of order m with kernel h is
defined by

UN:UN(h):w Y hXie X)) (1)

where

I]’\]”:{(il,...,im):ij eN,1<i;

<N =g if j = k).

When h is symmetric, i.e., h(x1,..., Xy,) = h(Xg(1),- .-, X5 (m)) fOr every

permutation o of m elements, we can write

1
Un = U(Xp,.0 Xn) = <~ Z WX, X; ) (3.2)

(m) 1<ij<...<ip, <N

here the sum is taken over all (z) subsets {ij,...,1,,} of {1,...,N}.
Using the latter notation, we state several well-known results,
due to Hoeffding (see, e.g., [22, Chapter 5]).

Theorem 3.1. For N > m, let Uy be a statistic with kernel h: S™ —
R. Set C =var(E[h(Xy,..., X,u)IX1]).

(1) The variance of Uy satisfies
m>C

var(Uy) = - 1 O(N7?)as N — co.

(2) IfEh(X1,..., Xp)| < oo, then Uy S EUy as N — co.
(3) IfEh*(Xy,...,X,,) < co and C > 0, then

W(L\%UI\])&N(O,IMSN—)%.
m



The corresponding Berry-Esseen type bounds are also avail-
able (see, e.g,. [22, page 193]), stated here in terms of the function

t
D(t) = \/%_nf e 5724,

Theorem 3.2. With the preceding notation, suppose that & = E|h(Xy,..., X,,)]? <

oo and
C= Var(E[h(Xl,...,Xm)le]) > 0.
Then
Uy -EU c&
P W(u)gt)—®t‘<—3,
sup (VN[22 <) o <t

where ¢ > 0 is an universal constant.

3.1 U-statistics and mixed volumes

Let C,, denote the class of all compact, convex sets in R". A topol-
ogy on Cy is induced by the Hausdorff metric

oH(K,L)=inf(6>0:K c L+6B% L C K +6Bj),

where B, is the Euclidean ball of radius one. A random convex set
is a Borel measurable map from a probability space into C,,. A key
ingredient in our proof is the following theorem for Minkowski
sums of random convex sets due to R. Vitale [25]; we include the
proof for completeness.

Theorem 3.3. Let n > 1 be an integer. Suppose that Ki,Kj,... are
i.i.d. random convex sets in R" such that EsupxeKlllxllz < co. Set

VN = |Zfi1 K;| and suppose that EV(K,...,K,)? < co and further-
more that C =var(E[V(Ky,...,K,)|K;]) > 0. Then

VN—EVN d
N{———— 0,1 N ,

V_( <N>nnﬁ)ﬁN( Jas N = o0
where (N),, = -

(N=n)!"

Proof. Taking h : (C,)" — R to be h(Kjy,...,K,) = V(Ky,...,K,) and
using (2.1), we have

(N)u



where

and J = {1,...,N}"\I§. Note that |[J|/(N), = O(%) and thus the
second term on the right-hand side of (3.3) tends to zero in prob-
ability. Applying Theorem 3.1(3) and Slutsky’s theorem leads to
the desired conclusion. O

In the special case when the K;’s are line segments, say K; =
[-X;, X;] where X, X5,,... are i.i.d. random vectors in R”, the as-
sumptions in the latter theorem can be readily verified by us-
ing (2.3). Furthermore, if the X;’s are rotationally-invariant, the
assumptions simplify further as follows (essentially from [25],
stated here in a form that best serves our purpose).

Corollary 3.4. Let X = RO be a random vector such that O is uni-

formly distributed on the sphere S™™! and R > 0 is independent of

O and satisfies ER?> < co and var(R) > 0. For each i = 1,2,..., let

X; = R;0; be independent copies of X. Let D,, =|det [0, ---0,]| and set
¢y = 4"var(R)E*"VURE’D,.

Then Vy = |Zﬁ1[—XZ-,X,-]| satisfies

Vy —EVy
YTy

Proof. Plugging X; =R;0;,i=1,...,n, into (2.3) gives
n'V(Xy,...,X,) =2"Ry---R,D,. (3.4)

—>N(O,1)LZSN—>00.

By (2.5),
Dy, =101 1121Pg, - O2ll2 -+ [|Per Ol (3.5)

with Fy =span{60y,...,0¢} for k =1,...,n—1. In particular, D, <1
and thus (3.4) implies

411

np2
(n!)ZE R* < o0.

EV(Xy,...,X,)* <

Using (3.4) once more, together with (3.5), we have

nE[V(Xy,...,X,)|X;] = 2"R,ER, ---ER ,ED,; (3.6)
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here we have used the fact that E[|Pr,+ 0,/ depends only on the
dimension of Fj; (which is equal to k a.s.) and that ||6;]|, = 1 a.s.
By (3.6) and our assumption var(R) > 0, we can apply Theorem
3.3 with .

1

(n!)?

where (; is defined in the statement of the corollary. O

C =var(E[V(X,,...,X,)|X;]) = >0,

For further information on Theorem 3.3, including a CLT for
the random sets themselves, or the case when C = 0, see [25] or
[16, Pg 232]; see also [24].

Corollary 3.4 implies the first central limit theorem for Xy
stated in the introduction (1.5). However, to recover the central
limit theorem for Xy in (1.6), involving the variance var(Xy) and
not a conditional variance, some additional tools are needed.

3.2 Randomization

In this subsection, we discuss a randomization inequality for U-
statistics. It will be used for variance estimates, the proof of the
central limit theorem for Xy in (1.6) and it will also play a crucial
role in the proof of Theorem 1.1.

Using the notation at the beginning of §3, suppose that h :
(RM)™ — R satisfies E|h(X1,...,X,,)] < oo and let 1 < r < m. Fol-
lowing [7, Definition 3.5.1], we say that h is degenerate of order
r—1if

EXr """ th(xl,...,xr_l,XT,...,Xm) :Eh(Xl,...,Xm)
for all xq,...,x,_; € R", and the function
S"s(xy,ex) > Ex o x h(xg, X, X, Xop)

is non-constant. If / is not degenerate of any positive order r, we
say it is non-degenerate or degenerate of order 0. We will make
use of the following randomization theorem, which is a special
case of [7, Theorem 3.5.3].

Theorem 3.5. Let 1 <r < mandp > 1. Suppose that h: S™ — R is
degenerate of order r — 1 and E|h(Xy,..., X,,)IP < co. Set

f(x1,.0x) = h(xy,...,x,) —Eh(Xy,..., X,)-

10



Let €1,...,&N denotei.i.d. Rademacher random variables, independent
of Xq,...,XyN. Then

:m,p IE| Z € ”'eirf(Xil""’Xim)|p'

Here A =, , Bmeans C;, ,A < B < C,, ,A, where C;, , and C;, ,
are constants that depend only on m and p.

Corollary 3.6. Let u be probability measure on R", absolutely con-
tinuous with respect to Lebesgue measure. Suppose that Xy,..., Xy
are i.i.d. random vectors distributed according tou. Let p > 2 and
suppose Eldet [X; --- X,,]|IP < 00. Define f : (R")" - R by

f(x1,...,x,) =|det[xq ---x, ]| — E|det [X; --- X, ]I.
Then

E| Z F X X

1<ii<.<iy, <N

< Cpp NP DEIF (X, X, P,

where C,, , is a constant that depends on n and p.

Proof. Since yu is absolutely continuous, dim(span{Xl, ,Xkh) =k
a.s. fork =1,...,n. Moreover, f(axy,...,x,) =|alf(x1,...,x,) for any
a € R, hence f is non-degenerate (cf. ( )) Thus we may apply
Theorem 3.5 with r = 1:

Bl Y |

1<y <...<i, <N (i1

1
e
™

—
:N

Suppose now that X,...,X)y are fixed. Taking expectation in ¢ =
(€1,...,en) and appling Khintchine’s inequality and then Holder’s

11




inequality twice, we have

P
Es Z Eilf(Xil""'Xin)‘
(i1,mrin) €l
N P
= EY & Y f(Xil,...,Xin)‘
i1=1 (19)eeeriy)
(i1,0riy)ELy
X
(T o)
11—1 (12 ..... in)
(11 ..... IH)EI;\ZI
p
2

/A

Ao (b o

where C is an absolute constant. Taking expectation in the X;’s
gives

p-2

((Zz:ll)(n - 1)!)% ((ZZ)H!)T (ZZ)n!E|f(X1,...,Xn)|p,

The proposition follows as stated by using the estimate (IZ ) <
(eN/n)". O

4 Proof of Theorem 1.1

As explained in the introduction, our first step is identity (1.3),
the proof of which is included for completeness.

Proposition 4.1. Let N > n and let G be an n x N random matrix
with i.i.d. standard Gaussian entries. Let C C RN be a convex body.
Then .

|GC| =det(GG")? |P;C], (4.1)

12



where E = Range(G~). Moreover, E is distributed uniformly on Gy,
and det(GG*)% and |PgC| are independent.

Proof. 1dentity (4.1) follows from polar decomposition; see, e.g.,
[17, Theorem 2.1(iii)]. To prove that the two factors are indepen-
dent, we note that if U is an orthogonal transformation, we have
det(GG*)? = det((GU)(GU)*)"/?; moreover, G and GU have the
same distribution. Thus if U is a random orthogonal transfor-
mation distributed according to the Haar measure, we have for
s,t >0,

P®7/n (det(GG*)l/z < 5f|PRange(G*)C| < t)
= Pg,, ® Py (det(GG")" < 5, |Prange(ua) Cl < t)

= E®7’n (]]'{det(GG*)l/zgs}EU]l{lpU*Range(G*)Clgt})
=Py, (det(GG)> < s) vy (E € Gy, : [PECI < 1).

Taking C = BY in (4.1), we set

Xy=|GBY|=2" ) I|det[g, g (4.2)

1<ii<.<i, <N

(cf. (2.4)),

1
7
Yy = det(GG*)% = Z det[g;, ---gim]2 (4.3)
1<ii<..<iy, <N
(cf. (2.6)), and
Zn = |pEB{>\’O , (4.4)

where E is distributed according to vy, on Gy,. Then Xy =
YNnZyn, where Yy and Zy are independent. In order to prove The-
orem 1.1, we start with several properties of Xy and Yy.

Proposition 4.2. Let Xy be as defined in (4.2).
(1) Foreachp > 2,

E|Xy - EXylP < C,, ,NP-2),
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(2) The variance of Xy satisfies

where c,, is a positive constant that depends only on n.
(3) Xy is asymptotically normal; i.e.,
Xy —EXy d

— N(0,1) as N — co.
var(Xy)

Proof. Statement (1) follows from Corollary 3.6. To prove (2), let
g be a random vector distributed according to y,,. Then Corollary
3.4 with C; = 4" var(||g|,)E>"V||¢|,E*>D, yields

N { Xy —EXy
GInVTT
On the other hand, by part (1) we have

E| Xy - EXy|*
N4n—2

i)N(O,l)asN—nxx (4.5)

<Cup

This implies that the sequence (Xy —EXN)/N”_% is uniformly in-
tegrable, hence

M—)lasl\]—)oo

_1
N2 ()nvVe,
Part (3) now follows from (4.5) and Slutsky’s theorem. ]
We now turn to Yy = det (GG*)%. It is well-known that
YN = XNXN-1"-" XN-n+1s (4.6)

where xj = ,/)(,% and the )(,%’s are independent chi-squared ran-

dom variables with k degrees of freedom, k = N,...,N —n+1 (see,
e.g., [2, Chapter 7]). Consequently,

| _
Ey2 = N' _nnfro L)oo,
N7 (N -n)! N N

Additionally, we will use the following basic properties of Yy.
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Proposition 4.3. Let Yy be as defined in (4.3).
(1) Foreachp > 2,

E|Y2 —-EYZ]P < C, ,NP2),
(2) The variance of Yy satisfies

var(¥Yy) N n as N — oo.
Nn-1 2

(3) Y]\zj is asymptotically normal; i.e.,

Y2
W(N—ﬁ—l)iN(O,Zn)asNeoo.

Proof. To prove part (1), we apply Corollary 3.6 to Y.

To prove part (2), we use (4.6) and define Yy , by Yy, =Yy =
XNXN-1°---*XN-n+1 and procede by induction on n. Suppose first
that n = 1 so that Yy ; = xy. By the concentration of Gaussian
measure (e.g., [18, Remark 4.8]), there is an absolute constant c;
such that E|xy — Exy|* < ¢; for all N, which implies that the se-
quence (xy —Exn)n is uniformly integrable. By the law of large
numbers xn/VN — 1 a.s. and hence Exy/VN — 1, by uniform
integrability. Note that

xx —E*xn
XN +Exn
VN XIZ\I_N+ VN  N-E2xy
xN+Exn VN aNn+Exy VN

xn—Exy =

By Slutsky’s theorem and the classical central limit theorem,

N 2_N 41
VN Xy — =N(0,2) as N — oo,
XN +ExN N

N

while
VN N-E?xy .
xn+Exny VN

0 (a.s.) as N — oo,
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since var(xy) = N —E?xy < c/%. Thus
xn—Exn 4 %N(O,2) = N(O,%) as N — co.
Appealing again to uniform integrability of (xy—Exn)n, we have
var(Yy 1) = Bl ~ Exyl’ = 5 as N — oo

Assume now that
var(Yn_1,4-1) n-1
H
N2 2

as N — oo.

Note that
var(Yn,) = BEAREYS . ; —~E2xnE* YN 101
= E(Xzz\] - EZXN)EYJ\ZI_1,n_1 + EZXN(EYJ\ZI_1,n_1 - IEZYN—l,n—l)
= var(xn)EYg_y 1 + E2xn var(Yy_1,-1).
We conclude the proof of part (2) with
Var(XN)EY]\%_Ln_l 1
H p—

Nn-1
and, using the inductive hypothesis,

E2xnvar(Yy_i,-1) n-1
—
NG 2
Lastly, statement (3) is well-known (see, e.g., [2, §7.5.3]). O

The next proposition is the key identity for Zy. To state it we
will use the following notation:

AZ,p = Eldet[gl o gn“p (47)
Explicit formulas for Afl,p are well-known and follow from iden-
tity (2.5); see, e.g., [2, pg 269].

Proposition 4.4. Let Xy, Yy and Zy be as above (cf. (4.2) - (4.4)).
Then

ZN-EZy Xy -EXy i -EY?

N
n—1 OCN;” 1 N,n 1 - 6N,Tl’ (48)
=z N2 N2

where
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. a.s.
(i) any, — 1 as N — oo;
. 211—1An’1

.. a.s.
(ii) BNy — Pn = 7 as N — oo;
n,2

(iii) Oy p — 0as N — co.
Moreover, forall p > 1,

sup maX(ElaN,nlp;ElﬁN,nlp;EléN,nlp) < Cn,p-
NZ>n+4p-1

The latter proposition is the first step in passing from the quo-
tient Zy = Xj/Yy to the normalization required in Theorem 1.1.

The fact that N2 appears in both of the denominators on the
right-hand side of (4.8) indicates that both Xy and YI\2, must be
accounted for in order to capture the asymptotic normality of Zy.

Proof. Write

Zn-EZy = v _EXy
Yy EYy
Xy -EXy (EXy EXy
- Y (EYN T Yy )
. Xy-EXy (Y3 -EYJ +var(Yy))EXy
N Yy = Yy(Yy+EYy)EYy
. Xy-EXy (Y -EYJ)EXy var(Yy)EXy
N Yy  YN(YN+EYNEYy Yn(Yn+EYN)EYN
Thus
Zn-EZy Xy -EXy Y3 -EY]
— 1 ~ONmn (#) ~ PN,n (#) - 5N,n’
N N" 2 n-z
which shows that (4.8) holds with
3 N2 NIEXy var(Yy)

- - , SN = PN a—

Using the factorization of Yy in (4.6) and applying the SLLN for
each y;x (k=N,...,N—-n+1), we have
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and hence

By the Cauchy-Binet forumula (2.6) and the SLLN for U-statistics
(Theorem 3.1(2)), we have

]. a.s.
TYI\ZI —>A%2asN—>oo.

n

Thus

2’1(11\1’)An,1 Nn/Z 65)- 2nAn,1

= as N — oo.
Yi(1+ 50 EYy 247,

/3N,n

S.

By Proposition 4.3(2) and Slutsky’s theorem, we also have oy , =
0 as N — oo. To prove the last assertion, we note that for 1 < p <
(N-n+1)/2,

n\p
N2
=[] <
where C, , is a constant that depends on 7 and p only (see, e.g.,
[17, Lemma 4.2]). O

Proof of Theorem 1.1. To simplify the notation, for I = {iy,...,i,} C
{1,...,N}, write d; = |det[g; ---g; |l. Applying Proposition 4.4, we
can write
Zn-EZy ()
T = — 1(Un—EUN)+ AN =By = 0Ny
N7~ N" 2

where
1

Uy == ) _(2"di=pud}),
(n) |I|=n

Xy —EX

ANy = (an, — 1)(N—1N),

N" 2

and , ,
Y:-EY

BN,n = (ﬁN,n - ﬁn)(N—lN)

n—z

Set Iy ={1,...,n}. Applying Theorem 3.1(3) with
C = var(E[(2"dy, - B,d}, )Ig1)), (4.9)

18



yields

W(UN ﬁUN) — N(0,1) as N — co.
n

By Proposition 4.4, ay , 3, BN.n 3 By and oy 3 0; more-
over, each of the latter sequences is uniformly integrable. Thus
by Holder’s inequality and Proposition 4.2(1)

ElAN,nl < (ElaN,n - 1|2)1/2Cn — 0as N — co.
Similarly, using Proposition 4.3(1),
ElBN,nl < (ElﬁN,n - ﬁnlz)l/ZCn —0as N — 0.

By Slutsky’s theorem and the fact that (IZ)/N” — 1/nl'as N — oo,
we have

(Zny—-EZ
MEN ZBZN) 4, 5r(0,1) as N - oo, (4.10)
N7 n\C
To conclude the proof of the theorem, it is sufficient to show that
n! Z
—ﬁgﬂiﬂ—+th—»m. (4.11)
N7 nVC

Once again we appeal to uniform integrability: by Proposition
4.4,

|Zn - EZNl
n—1 \ | N,n |
N7

Xy — EXy] Y3 -EYZ|
u |/3an7 +[ON ul-
2

By Holder’s inequality and Propositions 4.2(1), 4.3(1) and 4.4,

Zn-Ezy [

n-1 < C
N7

sup
NZ>n+8p-1

n,p’

which, combined with (4.10), implies (4.11). O

Acknowledgements

It is our pleasure to thank R. Vitale for helpful comments on an
earlier version of this paper.

19



References

[1] F. Affentranger and R. Schneider, Random projections of reg-
ular simplices, Discrete Comput. Geom. 7 (1992), no. 3, 219-
226. MR 1149653 (92k:52008)

[2] T. W. Anderson, An introduction to multivariate statistical
analysis, third ed., Wiley Series in Probability and Statistics,
Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2003.
MR 1990662 (2004¢:62001)

3] I. Barany and M. Reitzner, Poisson polytopes, Ann. Probab. 38
y potytop
(2010), no. 4, 1507-1531. MR 2663635 (2011£:60021)

[4] I. Barany and V. Vu, Central limit theorems for Gaussian
polytopes, Ann. Probab. 35 (2007), no. 4, 1593-1621. MR
2330981 (2008g:60030)

[5] Y. M. Baryshnikov and R. A. Vitale, Regular simplices and
Gaussian samples, Discrete Comput. Geom. 11 (1994), no. 2,
141-147. MR 1254086 (94j:60017)

[6] K. Boroczky, Jr. and M. Henk, Random projections of regular
polytopes, Arch. Math. (Basel) 73 (1999), no. 6, 465-473. MR
1725183 (2001b:52004)

[7] V. H. de la Pena and E. Giné, Decoupling, Probability and its
Applications (New York), Springer-Verlag, New York, 1999,
From dependence to independence, Randomly stopped pro-

cesses. U-statistics and processes. Martingales and beyond.
MR 1666908 (99k:60044)

[8] D. L. Donoho and ]. Tanner, Counting the faces of randomly-
projected hypercubes and orthants, with applications, Discrete
Comput. Geom. 43 (2010), no. 3, 522-541. MR 2587835
(2011b:60037)

[9] L. C. Evans and R. F. Gariepy, Measure theory and fine prop-
erties of functions, Studies in Advanced Mathematics, CRC
Press, Boca Raton, FL, 1992. MR 1158660 (93f:28001)

[10] R. J. Gardner, Geometric Tomography, second ed., Encyclo-
pedia of Mathematics and its Applications, vol. 58, Cam-

20



bridge University Press, Cambridge, 2006. MR 2251886
(2007i:52010)

[11] W. Hoeffding, A class of statistics with asymptotically normal
distribution, Ann. Math. Statistics 19 (1948), 293-325. MR
0026294 (10,134g)

[12] A. T. James, Normal multivariate analysis and the orthogonal
group, Ann. Math. Statistics 25 (1954), 40-75. MR 0060779
(15,726b)

[13] P. Mankiewicz and N. Tomczak-Jaegermann, Geometry of
families of random projections of symmetric convex bodies,
Geom. Funct. Anal. 11 (2001), no. 6, 1282-1326. MR
1878321 (2003a:46020)

[14] P. McMullen, Volumes of projections of unit cubes, Bull. Lon-
don Math. Soc. 16 (1984), no. 3, 278-280. MR 738519
(85§:52019)

[15] R. E. Miles, Isotropic random simplices, Advances in Appl.
Probability 3 (1971), 353-382. MR 0309164 (46 #8274)

[16] I. Molchanov, Theory of random sets, Probability and its Ap-
plications (New York), Springer-Verlag London Ltd., London,
2005. MR 2132405 (2006b:60004)

[17] G. Paouris and P. Pivovarov, Small-ball probabilities for
the volume of random convex sets, preprint, available at
http://www.math.tamu.edu/~grigoris.

[18] G. Pisier, The volume of convex bodies and Banach space ge-
ometry, Cambridge Tracts in Mathematics, vol. 94, Cam-
bridge University Press, Cambridge, 1989. MR 1036275
(91d:52005)

[19] M. Reitzner, Central limit theorems for random polytopes,
Probab. Theory Related Fields 133 (2005), no. 4, 483-507.
MR 2197111 (2007d:52005)

[20] H. Rubin and R. A. Vitale, Asymptotic distribution of sym-
metric statistics, Ann. Statist. 8 (1980), no. 1, 165-170. MR
557561 (81a:62018)

21


http://www.math.tamu.edu/~grigoris

[21]

[22]

[23]

[24]

[25]

[27]

(28]

[29]

R. Schneider, Convex bodies: the Brunn-Minkowski theory,
Encyclopedia of Mathematics and its Applications, vol. 44,
Cambridge University Press, Cambridge, 1993. MR 1216521
(94d:52007)

R. J. Serfling, Approximation theorems of mathematical statis-
tics, John Wiley & Sons Inc., New York, 1980, Wiley Se-
ries in Probability and Mathematical Statistics. MR 595165
(82a:62003)

B. S. Tsirelson, A geometric approach to maximum likelihood es-
timation for an infinite-dimensional Gaussian location. I, Teor.
Veroyatnost. i Primenen. 30 (1985), no. 4, 772-779, English
translation: Theory Probab. Appl. 30 (1985), no 4, 820-827.
MR 816291 (87i:62152)

R. A. Vitale, Asymptotic area and perimeter of sums of random
plane convex sets, University of Wisconsin-Madison, Mathe-
matics Research Center (1977), no. 1770.

, Symmetric statistics and random shape, Proceedings
of the 1st World Congress of the Bernoulli Society, Vol. 1
(Tashkent, 1986) (Utrecht), VNU Sci. Press, 1987, pp. 595-
600. MR 1092403

, On the volume of parallel bodies: a probabilistic deriva-
tion of the Steiner formula, Adv. in Appl. Probab. 27 (1995),
no. 1, 97-101. MR 1315580 (96a:52006)

, On the Gaussian representation of intrinsic volumes,
Statist. Probab. Lett. 78 (2008), no. 10, 1246-1249. MR
2441470 (2009k:60090)

V. Vu, Central limit theorems for random polytopes in a smooth
convex set, Adv. Math. 207 (2006), no. 1, 221-243. MR
2264072 (2007k:60039)

C. Zong, The cube: a window to convex and discrete geometry,
Cambridge Tracts in Mathematics, vol. 168, Cambridge Uni-
versity Press, Cambridge, 2006. MR 2221660 (2007a:52016)

22



Grigoris Paouris: grigoris@math.tamu.edu
Department of Mathematics, Texas A&M University
College Station, TX, 77843-3368

Peter Pivovarov: pivovarovp@missouri.edu
Mathematics Department, University of Missouri
Columbia, MO, 65211

Joel Zinn: jzinn@math. tamu.edu
Department of Mathematics, Texas A&M University
College Station, TX, 77843-3368

23



	1 Main result
	2 Preliminaries
	2.1 Mixed volumes
	2.2 Slutsky's theorem

	3 U-statistics
	3.1 U-statistics and mixed volumes
	3.2 Randomization

	4 Proof of Theorem ??

