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A central limit theorem for projections of the

cube
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Abstract

We prove a central limit theorem for the volume of projections of the
cube [−1,1]N onto a random subspace of dimension n, when n is fixed and
N →∞. Randomness in this case is with respect to the Haar measure on
the Grassmannian manifold.

1 Main result

The focus of this paper is the volume of random projections of
the cube BN

∞ = [−1,1]N in R
N . To fix the notation, let n > 1 be an

integer and for N > n, let GN,n denote the Grassmannian mani-
fold of all n-dimensional linear subspaces of RN . Equip GN,n with
the Haar probability measure νN,n, which is invariant under the
action of the orthogonal group. Suppose that (E(N ))N>n is a se-
quence of random subspaces with E(N ) distributed according to
νN,n. We consider the random variables

ZN = |PE(N )B
N
∞|, (1.1)

where PE(N ) denotes the orthogonal projection onto E(N ) and |·|
is n-dimensional volume, when n is fixed and N →∞. We show
that ZN satisfies the following central limit theorem.
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†The second-named authorwas supported by a Postdoctoral Fellowship award from the Natural
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Texas A&M University.
‡The third-named author was partially supported by NSF grant DMS-1208962.
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Theorem 1.1.

ZN −EZN
√

var(ZN )

d→N (0,1) as N →∞. (1.2)

Here
d→ denotes convergence in distribution andN (0,1) a stan-

dard Gaussian random variable with mean 0 and variance 1. Our
choice of scaling for the cube is immaterial as the quantity in (1.2)
is invariant under scaling and translation of [−1,1]N .

Gaussian random matrices play a central role in the proof of
Theorem 1.1, as is often the case with results about random pro-
jections onto subspaces E ∈ GN,n. Specifically, we let G be an n×N
random matrix with independent columns g1, . . . ,gN distributed
according to standard Gaussian measure γn on R

n, i.e.,

dγn(x) = (2π)−n/2e−‖x‖
2
2/2dx.

We view G as a linear operator from R
N to R

n. If C ⊂ R
N is any

convex body, then

|GC | = det (GG∗)
1
2 |PEC |, (1.3)

where E = Range(G∗) is distributed uniformly on GN,n. Moreover,

det(GG∗)1/2 and |PEC | are independent. The latter fact under-
lies the Gaussian representation of intrinsic volumes, as proved
by B. Tsirelson in [23] (see also [27]); it is also used in R. Vi-
tale’s probabilistic derivation of the Steiner formula [26]. Passing
between Gaussian vectors and random orthogonal projections is
useful in a variety of contexts, e.g., [12], [15], [1], [5], [6], [13],
[8], [17]. As we will show, however, it is a delicate matter to
use (1.3) to prove limit theorems, especially with the normaliza-
tion required in Theorem 1.1. Our path will involve analyzing
asymptotic normality of |GBN

∞| before dealing with the quotient

|GBN
∞|/ det (GG∗)1/2.
The set

GBN
∞ =















N
∑

i=1

λigi : |λi |6 1, i = 1, . . . ,N















is a random zonotope, i.e., a Minkowski sum of the random seg-
ments [−gi ,gi] = {λgi : |λ| 6 1}. By the well-known zonotope vol-
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ume formula (e.g. [14]), XN = |GBN
∞| satisfies

XN = 2n
∑

16i1<...<in6N

|det[gi1 · · ·gin]|, (1.4)

where det [gi1 · · ·gin] is the determinant of thematrix with columns
gi1 , . . . ,gin . The quantity

UN =
1

(N
n

)

∑

16i1<...<in6N

|det[gi1 · · ·gin]|

is a U-statistic and central limit theorems for U-statistics go back
to W. Hoeffding [11]. In fact, formula (1.4) for XN is simply a
special case of Minkowski’s theorem on mixed volumes of con-
vex sets (see §2). In [25], R. Vitale proved a central limit theorem
for Minkowski sums of more general random convex sets, using
mixed volumes and U-statistics (discussed in detail below). In
particular, it follows from Vitale’s results that XN satisfies a cen-
tral limit theorem, namely,

XN −EXN

sN,n

d→N (0,1), (1.5)

where sN,n is a certain conditional standard deviation (see Theo-
rem 3.3). Using Vitale’s result and a more recent randomization
inequality for U-statistics [7, Chapter 3], we show in §4 that XN

satisfies a central limit theorem with the canonical normalization:

XN −EXN
√

var(XN )

d→N (0,1) as N →∞. (1.6)

It is tempting to think that the latter central limit theorem for
XN easily yields Theorem 1.1. However, for a family of convex
bodies C = CN ⊂ R

N , N = n,n + 1, . . ., asymptotic normality of
|GC | is not sufficient to conclude that |PE(N )C | is asymptotically

normal. For example, if C = BN
2 , then |GBN

2 | = det(GG∗)1/2|Bn
2| is

asymptotically normal (e.g., [2, Theorems 4.2.3, 7.5.3]), however
|PE(N )B

N
2 | is constant.

In fact, as we show in Proposition 4.4, bothXN and det(GG∗)1/2

contribute to asymptotic normality of ZN = |PE(N )B
N
∞|, a technical
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difficulty that requires careful analysis. In particular, the afore-
mentioned randomization inequality from [7, Chapter 3] is in-
voked again to deal with the canonical normalization for ZN in
Theorem 1.1. As a by-product, we also obtain the limiting behav-
ior of the variance of ZN as N →∞.

We mention that when n = 1, Theorem 1.1 implies that if (θN )
is a sequence of random vectors with θN distributed uniformly
on the sphere SN−1, then the ℓ1-norm ‖·‖1 (the support function
of the cube) satisfies

‖θN‖1 −E‖θN‖1
√

var(‖θN‖1)
d→N (0,1) as N →∞.

The central limit theorem for XN in (1.6) can be seen as a
counter-part to a recent result of I. Bárány and V. Vu [4] for convex
hulls of Gaussian vectors. In particular, when n > 2 the quantity
VN = |conv {g1, . . . ,gN }| satisfies

VN −EVN
√

var(VN )

d→N (0,1) as N →∞;

see the latter article for the corresponding Berry-Esseen type es-
timate. The latter result is one of several recent deep central
limit theorems in stochastic geometry concerning random con-
vex hulls, e.g., [19], [28], [3]. The techniques used in this paper
are different and the main focus here is to understand the Grass-
mannian setting.

Lastly, for a thorough exposition of the properties of the cube,
see [29].

2 Preliminaries

The setting is Rn with the usual inner-product 〈·, ·〉 and Euclidean
norm ‖·‖2; n-dimensional Lebesgue measure is denoted by |·|. For
sets A,B ⊂ R

n and scalars α,β ∈ R, we define αA + βB by usual
scalar multiplication andMinkowski addition: αA+βB = {αa+βb :
a ∈ A,b ∈ B}.
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2.1 Mixed volumes

The mixed volume V (K1, . . . ,Kn) of compact convex sets K1, . . . ,Kn

in R
n is defined by

V (K1, . . . ,Kn) =
1

n!

n
∑

j=1

(−1)n+j
∑

i1<...<ij

∣

∣

∣

∣
Ki1 + . . .+Kij

∣

∣

∣

∣
.

By a theorem ofMinkowski, if t1, . . . , tN are non-negative real num-
bers then the volume of K = t1K1 + . . .+ tNKN can be expressed as

|K | =
N
∑

i1=1

· · ·
N
∑

in=1

V (Ki1 , . . . ,Kin)ti1 · · · tin . (2.1)

The coefficients V (Ki1 , . . . ,Kin) are non-negative and invariant un-
der permutations of their arguments. When the Ki ’s are origin-
symmetric line segments, say Ki = [−xi ,xi] = {λxi : |λ| 6 1}, for
some x1, . . . ,xn ∈ Rn, we simplify the notation and write

V (x1, . . . ,xn) = V ([−x1,x1], . . . , [−xn,xn]). (2.2)

We will make use of the following properties:

(i) V (K1, . . . ,Kn) > 0 if and only if there are line segments Li ⊂ Ki

with linearly independent directions.

(ii) If x1, . . . ,xn ∈ Rn, then

n!V (x1, . . . ,xn) = 2n|det[x1 · · ·xn]|, (2.3)

where det[x1 · · ·xn] denotes the determinant of the matrix
with columns x1, . . . ,xn.

(iii) V (K1, . . . ,Kn) is increasing in each argument (with respect to
inclusion).

For further background we refer the reader to [21, Chapter 5] or
[10, Appendix A].

A zonotope is a Minkowski sum of line segments. If x1, . . . ,xN
are vectors in R

n, then

N
∑

i=1

[−xi ,xi ] =














N
∑

i=1

λixi : |λi |6 1, i = 1, . . . ,N















.
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Alternatively, a zonotope can be seen as a linear image of the cube
BN
∞ = [−1,1]N . If x1, . . . ,xN ∈ R

n, one can view the n ×N matrix
X = [x1 · · ·xN ] as a linear operator from R

N to R
n; in this case,

XBN
∞ =

∑N
i=1[−xi ,xi ].

By (2.1) and properties (i) and (ii) of mixed volumes, the vol-

ume of
∑N

i=1[−xi ,xi ] satisfies
∣

∣

∣

∣

N
∑

i=1

[−xi ,xi]
∣

∣

∣

∣
= 2n

∑

16i1<...<in6N

|det [xi1 · · ·xin]|. (2.4)

Note that for x1, . . . ,xn ∈ Rn,

|det [x1 · · ·xn]| = ‖x1‖2‖PF⊥1 x2‖2 · · · ‖PF⊥n−1xn‖2, (2.5)

where Fk = span{x1, . . . ,xk} for k = 1, . . . ,n−1 (which can be proved
using Gram-Schmidt orthogonalization, e.g., [2, Theorem 7.5.1]).

We will also use the Cauchy-Binet formula. Let x1, . . . ,xN ∈ Rn

and let X be the n ×N matrix with columns x1, . . . ,xN , i.e., X =
[x1 · · ·xN ]. Then

det (XX∗)
1
2 =

∑

16i1<...<in6N

det[xi1 · · ·xin]
2; (2.6)

for a proof, see, e.g., [9, §3.2].

2.2 Slutsky’s theorem

We will make frequent use of Slutsky’s theorem on convergence
of random variables (see, e.g., [22, §1.5.4]).

Theorem 2.1. Let (XN ) and (αN ) be sequences of random variables.

Suppose that XN
d→ X0 and αN

P→ α0, where α0 is a finite constant.
Then

XN +αN
d→ X0 +α0

and

αNXN
d→ α0X0.

Slutsky’s theorem also applies when the XN ’s take values in

R
k and satisfy XN

d→ X0 and (AN ) is a sequence of m × k random

matrices such that AN
P→ A0 and the entries of A0 are constants.

In this case, ANXN
d→ A0X0.
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3 U-statistics

In this section, we give the requisite results from the theory of
U-statistics needed to prove asymptotic normality of XN and ZN

stated in the introduction. For further background onU-statistics,
see e.g. [22], [20], [7].

Let X1,X2, . . . be a sequence of i.i.d. random variables with val-
ues in a measurable space (S,S ). Let h : Sm → R be a measurable
function. For N > m, the U-statistic of order m with kernel h is
defined by

UN =UN (h) =
(N −m)!

N !

∑

(i1,...,im)∈ImN

h(Xi1 , . . . ,Xim), (3.1)

where

ImN =
{

(i1, . . . , im) : ij ∈ N,16 ij 6N,ij , ik if j , k
}

.

When h is symmetric, i.e., h(x1, . . . ,xm) = h(xσ(1), . . . ,xσ(m)) for every
permutation σ of m elements, we can write

UN =U (X1, . . . ,XN ) =
1

(N
m

)

∑

16i1<...<im6N

h(Xi1 , . . . ,Xim); (3.2)

here the sum is taken over all
(N
m

)

subsets {i1, . . . , im} of {1, . . . ,N }.
Using the latter notation, we state several well-known results,

due to Hoeffding (see, e.g., [22, Chapter 5]).

Theorem 3.1. For N >m, let UN be a statistic with kernel h : Sm→
R. Set ζ = var(E[h(X1, . . . ,Xm)|X1]).

(1) The variance of UN satisfies

var(UN ) =
m2ζ

N
+O(N−2) as N →∞.

(2) If E|h(X1, . . . ,Xm)| <∞, then UN
a.s.→ EUN as N →∞.

(3) If Eh2(X1, . . . ,Xm) <∞ and ζ > 0, then

√
N

(

UN −EUN

m
√
ζ

)

d→N (0,1) as N →∞.
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The corresponding Berry-Esseen type bounds are also avail-
able (see, e.g,. [22, page 193]), stated here in terms of the function

Φ(t) =
1√
2π

∫ t

−∞
e−s

2/2ds.

Theorem3.2. With the preceding notation, suppose that ξ = E|h(X1, . . . ,Xm)|3 <
∞ and

ζ = var(E[h(X1, . . . ,Xm)|X1]) > 0.

Then

sup
t∈R

∣

∣

∣

∣

∣

∣

P

(√
N

(

UN −EUN

m
√
ζ

)

6 t

)

−Φ(t)

∣

∣

∣

∣

∣

∣

6
cξ

(m2ζ)
3
2

√
N
,

where c > 0 is an universal constant.

3.1 U-statistics and mixed volumes

Let Cn denote the class of all compact, convex sets in R
n. A topol-

ogy on CN is induced by the Hausdorff metric

δH(K,L) = inf{δ > 0 : K ⊂ L+ δBn
2,L ⊂ K + δBn

2},
where Bn

2 is the Euclidean ball of radius one. A random convex set
is a Borel measurable map from a probability space into Cn. A key
ingredient in our proof is the following theorem for Minkowski
sums of random convex sets due to R. Vitale [25]; we include the
proof for completeness.

Theorem 3.3. Let n > 1 be an integer. Suppose that K1,K2, . . . are
i.i.d. random convex sets in R

n such that Esupx∈K1
‖x‖2 < ∞. Set

VN = |∑N
i=1Ki | and suppose that EV (K1, . . . ,Kn)

2 < ∞ and further-
more that ζ = var(E[V (K1, . . . ,Kn)|K1]) > 0. Then

√
N

(

VN −EVN

(N )nn
√
ζ

)

d→N (0,1) as N →∞,

where (N )n =
N !

(N−n)! .

Proof. Taking h : (Cn)n → R to be h(K1, . . . ,Kn) = V (K1, . . . ,Kn) and
using (2.1), we have

1

(N )n
VN =UN +

1

(N )n

∑

(i1,...,in)∈J
V (Ki1 , . . . ,Kin) (3.3)
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where

UN =
1

(N )n

∑

(i1,...,in)∈InN

V (Ki1 , . . . ,Kin),

and J = {1, . . . ,N }n\InN . Note that |J |/(N )n = O( 1N ) and thus the
second term on the right-hand side of (3.3) tends to zero in prob-
ability. Applying Theorem 3.1(3) and Slutsky’s theorem leads to
the desired conclusion.

In the special case when the Ki ’s are line segments, say Ki =
[−Xi ,Xi ] where X1,X2, . . . are i.i.d. random vectors in R

n, the as-
sumptions in the latter theorem can be readily verified by us-
ing (2.3). Furthermore, if the Xi ’s are rotationally-invariant, the
assumptions simplify further as follows (essentially from [25],
stated here in a form that best serves our purpose).

Corollary 3.4. Let X = Rθ be a random vector such that θ is uni-
formly distributed on the sphere Sn−1 and R > 0 is independent of
θ and satisfies ER2 < ∞ and var(R) > 0. For each i = 1,2, . . ., let
Xi = Riθi be independent copies of X. Let Dn = |det[θ1 · · ·θn]| and set

ζ1 = 4n var(R)E2(n−1)RE2Dn.

Then VN = |∑N
i=1[−Xi ,Xi ]| satisfies
√
N













VN −EVN
(N
n

)

n
√
ζ1













→N (0,1) as N →∞.

Proof. Plugging Xi = Riθi , i = 1, . . . ,n, into (2.3) gives

n!V (X1, . . . ,Xn) = 2nR1 · · ·RnDn. (3.4)

By (2.5),
Dn = ‖θ1‖2‖PF1⊥θ2‖2 · · · ‖PF⊥n−1θn‖2, (3.5)

with Fk = span{θ1, . . . ,θk} for k = 1, . . . ,n − 1. In particular, Dn 6 1
and thus (3.4) implies

EV (X1, . . . ,Xn)
2
6

4n

(n!)2
E
nR2 <∞.

Using (3.4) once more, together with (3.5), we have

n!E[V (X1, . . . ,Xn)|X1] = 2nR1ER2 · · ·ERnEDn; (3.6)

9



here we have used the fact that E‖PFk⊥θk+1‖2 depends only on the
dimension of Fk (which is equal to k a.s.) and that ‖θ1‖2 = 1 a.s.
By (3.6) and our assumption var(R) > 0, we can apply Theorem
3.3 with

ζ = var(E[V (X1, . . . ,Xn)|X1]) =
ζ1
(n!)2

> 0,

where ζ1 is defined in the statement of the corollary.

For further information on Theorem 3.3, including a CLT for
the random sets themselves, or the case when ζ = 0, see [25] or
[16, Pg 232]; see also [24].

Corollary 3.4 implies the first central limit theorem for XN

stated in the introduction (1.5). However, to recover the central
limit theorem for XN in (1.6), involving the variance var(XN ) and
not a conditional variance, some additional tools are needed.

3.2 Randomization

In this subsection, we discuss a randomization inequality for U-
statistics. It will be used for variance estimates, the proof of the
central limit theorem for XN in (1.6) and it will also play a crucial
role in the proof of Theorem 1.1.

Using the notation at the beginning of §3, suppose that h :
(Rn)m → R satisfies E|h(X1, . . . ,Xm)| < ∞ and let 1 < r 6 m. Fol-
lowing [7, Definition 3.5.1], we say that h is degenerate of order
r − 1 if

EXr ,...,Xm
h(x1, . . . ,xr−1,Xr , . . . ,Xm) = Eh(X1, . . . ,Xm)

for all x1, . . . ,xr−1 ∈ Rn, and the function

Sr ∋ (x1, . . . ,xr) 7→ EXr+1,...,Xm
h(x1, . . . ,xr ,Xr+1, . . . ,Xm)

is non-constant. If h is not degenerate of any positive order r, we
say it is non-degenerate or degenerate of order 0. We will make
use of the following randomization theorem, which is a special
case of [7, Theorem 3.5.3].

Theorem 3.5. Let 1 6 r 6m and p > 1. Suppose that h : Sm→ R is
degenerate of order r − 1 and E|h(X1, . . . ,Xm)|p <∞. Set

f (x1, . . . ,xm) = h(x1, . . . ,xm)−Eh(X1, . . . ,Xm).

10



Let ε1, . . . ,εN denote i.i.d. Rademacher random variables, independent
of X1, . . . ,XN . Then

E

∣

∣

∣

∑

(i1,...,im)∈ImN

f (Xi1 , . . . ,Xim)
∣

∣

∣

p

≃m,p E

∣

∣

∣

∑

(i1,...,im)∈ImN

εi1 · · ·εir f (Xi1 , . . . ,Xim)
∣

∣

∣

p
.

Here A ≃m,p B means C ′m,pA 6 B 6 C ′′m,pA, where C ′m,p and C ′′m,p
are constants that depend only on m and p.

Corollary 3.6. Let µ be probability measure on R
n, absolutely con-

tinuous with respect to Lebesgue measure. Suppose that X1, . . . ,XN

are i.i.d. random vectors distributed according to µ. Let p > 2 and
suppose E|det [X1 · · ·Xn]|p <∞. Define f : (Rn)n→ R by

f (x1, . . . ,xn) = |det [x1 · · ·xn]| −E|det[X1 · · ·Xn]|.

Then

E

∣

∣

∣

∑

16i1<...<in6N

f (Xi1 , . . . ,Xin)
∣

∣

∣

p
6 Cn,pN

p(n− 1
2 )E|f (X1, . . . ,Xn)|p,

where Cn,p is a constant that depends on n and p.

Proof. Since µ is absolutely continuous, dim(span{X1, . . . ,Xk}) = k
a.s. for k = 1, . . . ,n. Moreover, f (ax1, . . . ,xn) = |a|f (x1, . . . ,xn) for any
a ∈ R, hence f is non-degenerate (cf. (2.5)). Thus we may apply
Theorem 3.5 with r = 1:

E

∣

∣

∣

∣

∑

16i1<...<in6N

n!f (Xi1 , . . . ,Xin)
∣

∣

∣

∣

p
= E

∣

∣

∣

∣

∑

(i1,...,in)∈InN

f (Xi1 , . . . ,Xin)
∣

∣

∣

∣

p

6 Cn,pE

∣

∣

∣

∣

∑

(i1,...,in)∈InN

εi1f (Xi1 , . . . ,Xin)
∣

∣

∣

∣

p
.

Suppose now that X1, . . . ,XN are fixed. Taking expectation in ε =
(ε1, . . . ,εN ) and appling Khintchine’s inequality and then Hölder’s

11



inequality twice, we have

Eε

∣

∣

∣

∣

∑

(i1,...,in)∈InN

εi1f (Xi1 , . . . ,Xin)
∣

∣

∣

∣

p

= Eε

∣

∣

∣

∣

N
∑

i1=1

εi1

∑

(i2,...,in)
(i1,...,in)∈InN

f (Xi1 , . . . ,Xin)
∣

∣

∣

∣

p

6 C
∣

∣

∣

∣

N
∑

i1=1

(
∑

(i2,...,in)
(i1,...,in)∈InN

f (Xi1 , . . . ,Xin)
)2∣

∣

∣

∣

p
2

6 C

((

N − 1
n − 1

)

(n − 1)!
)
p
2 ∣
∣

∣

∣

∑

(i1,...,in)∈InN

f (Xi1 , . . . ,Xin)
2
∣

∣

∣

∣

p
2

6 C

((

N − 1
n − 1

)

(n − 1)!
)
p
2
((

N

n

)

n!

)
p−2
2 ∑

(i1,...,in)∈InN

|f (Xi1 , . . . ,Xin)|
p ,

where C is an absolute constant. Taking expectation in the Xi ’s
gives

E

∣

∣

∣

∣

∑

(i1,...,in)∈InN

εi1f (Xi1 , . . . ,Xin)
∣

∣

∣

∣

p

6

((

N − 1
n − 1

)

(n − 1)!
)
p
2
((

N

n

)

n!

)
p−2
2

(

N

n

)

n!E|f (X1, . . . ,Xn)|p.

The proposition follows as stated by using the estimate
(N
n

)

6

(eN/n)n.

4 Proof of Theorem 1.1

As explained in the introduction, our first step is identity (1.3),
the proof of which is included for completeness.

Proposition 4.1. Let N > n and let G be an n ×N random matrix
with i.i.d. standard Gaussian entries. Let C ⊂ R

N be a convex body.
Then

|GC | = det(GG∗)
1
2 |PEC | , (4.1)

12



where E = Range(G∗). Moreover, E is distributed uniformly on GN,n

and det(GG∗)
1
2 and |PEC | are independent.

Proof. Identity (4.1) follows from polar decomposition; see, e.g.,
[17, Theorem 2.1(iii)]. To prove that the two factors are indepen-
dent, we note that if U is an orthogonal transformation, we have
det(GG∗)1/2 = det((GU )(GU )∗)1/2; moreover, G and GU have the
same distribution. Thus if U is a random orthogonal transfor-
mation distributed according to the Haar measure, we have for
s, t > 0,

P⊗γn
(

det(GG∗)1/2 6 s, |PRange(G∗)C |6 t
)

= P⊗γn ⊗PU

(

det(GG∗)1/2 6 s, |PRange(U ∗G∗)C |6 t
)

= E⊗γn
(

1{det(GG∗)1/26s}EU1{|PU∗Range(G∗)C|6t}
)

= P⊗γn
(

det(GG∗)1/2 6 s
)

νN,n
(

E ∈ GN,n : |PEC |6 t
)

.

Taking C = BN
∞ in (4.1), we set

XN =
∣

∣

∣GBN
∞
∣

∣

∣ = 2n
∑

16i1<...<in6N

|det[gi1 · · ·gin]| (4.2)

(cf. (2.4)),

YN = det(GG∗)
1
2 =

















∑

16i1<...<in6N

det[gi1 · · ·gim]
2

















1
2

(4.3)

(cf. (2.6)), and
ZN =

∣

∣

∣PEB
N
∞
∣

∣

∣ , (4.4)

where E is distributed according to νN,n on GN,n. Then XN =
YNZN , where YN and ZN are independent. In order to prove The-
orem 1.1, we start with several properties of XN and YN .

Proposition 4.2. Let XN be as defined in (4.2).

(1) For each p > 2,

E|XN −EXN |p 6 Cn,pN
p(n− 1

2 ).

13



(2) The variance of XN satisfies

var(XN )

N2n−1 → cn as N →∞,

where cn is a positive constant that depends only on n.

(3) XN is asymptotically normal; i.e.,

XN −EXN
√

var(XN )

d→N (0,1) as N →∞.

Proof. Statement (1) follows from Corollary 3.6. To prove (2), let
g be a random vector distributed according to γn. Then Corollary

3.4 with ζ1 = 4n var(‖g‖2)E2(n−1)‖g‖2E2Dn yields

√
N













XN −EXN
(N
n

)

n
√
ζ1













d→N (0,1) as N →∞. (4.5)

On the other hand, by part (1) we have

E|XN −EXN |4
N4n−2 6 Cn,p.

This implies that the sequence (XN −EXN )/N
n− 1

2 is uniformly in-
tegrable, hence

√

var(XN )

N−
1
2
(N
n

)

n
√
ζ1
→ 1 as N →∞.

Part (3) now follows from (4.5) and Slutsky’s theorem.

We now turn to YN = det(GG∗)
1
2 . It is well-known that

YN = χNχN−1 · . . . ·χN−n+1, (4.6)

where χk =
√

χ2
k and the χ2

k ’s are independent chi-squared ran-

dom variables with k degrees of freedom, k =N,. . . ,N −n+1 (see,
e.g., [2, Chapter 7]). Consequently,

EY 2
N =

N !

(N − n)! =Nn
(

1− 1

N

)

· · ·
(

1− n − 1
N

)

.

Additionally, we will use the following basic properties of YN .

14



Proposition 4.3. Let YN be as defined in (4.3).

(1) For each p > 2,

E|Y 2
N −EY 2

N |p 6 Cn,pN
p(n− 1

2 ).

(2) The variance of YN satisfies

var(YN )

Nn−1 →
n

2
as N →∞.

(3) Y 2
N is asymptotically normal; i.e.,

√
N

(

Y 2
N

Nn
− 1

)

d→N (0,2n) as N →∞.

Proof. To prove part (1), we apply Corollary 3.6 to Y 2
N .

To prove part (2), we use (4.6) and define YN,n by YN,n = YN =
χNχN−1 · . . . ·χN−n+1 and procede by induction on n. Suppose first
that n = 1 so that YN,1 = χN . By the concentration of Gaussian
measure (e.g., [18, Remark 4.8]), there is an absolute constant c1
such that E|χN −EχN |4 < c1 for all N , which implies that the se-
quence (χN −EχN )N is uniformly integrable. By the law of large

numbers χN /
√
N → 1 a.s. and hence EχN /

√
N → 1, by uniform

integrability. Note that

χN −EχN =
χ2
N −E2χN

χN +EχN

=

√
N

χN +EχN

χ2
N −N√
N

+

√
N

χN +EχN

N −E2χN√
N

.

By Slutsky’s theorem and the classical central limit theorem,

√
N

χN +EχN

χ2
N −N√
N

d→ 1

2
N (0,2) as N →∞,

while √
N

χN +EχN

N −E2χN√
N

→ 0 (a.s.) as N →∞,

15



since var(χN ) =N −E2χN < c1/21 . Thus

χN −EχN
d→ 1

2
N (0,2) =N (0,

1

2
) as N →∞.

Appealing again to uniform integrability of (χN −EχN )N , we have

var(YN,1) = E|χN −EχN |2→
1

2
as N →∞.

Assume now that

var(YN−1,n−1)

Nn−2 → n − 1
2

as N →∞.

Note that

var(YN,n) = Eχ2
NEY

2
N−1,n−1 −E2χNE

2YN−1,n−1

= E(χ2
N −E2χN )EY

2
N−1,n−1 +E

2χN (EY
2
N−1,n−1 −E2YN−1,n−1)

= var(χN )EY
2
N−1,n−1 +E

2χN var(YN−1,n−1).

We conclude the proof of part (2) with

var(χN )EY
2
N−1,n−1

Nn−1 → 1

2
,

and, using the inductive hypothesis,

E
2χN var(YN−1,n−1)

Nn−1 → n − 1
2

.

Lastly, statement (3) is well-known (see, e.g., [2, §7.5.3]).

The next proposition is the key identity for ZN . To state it we
will use the following notation:

∆
p
n,p = E|det[g1 · · ·gn]|p . (4.7)

Explicit formulas for ∆
p
n,p are well-known and follow from iden-

tity (2.5); see, e.g., [2, pg 269].

Proposition 4.4. Let XN ,YN and ZN be as above (cf. (4.2) - (4.4)).
Then

ZN −EZN

N
n−1
2

= αN,n
XN −EXN

Nn− 1
2

− βN,n

Y 2
N −EY 2

N

Nn− 1
2

− δN,n, (4.8)

where

16



(i) αN,n
a.s.→ 1 as N →∞;

(ii) βN,n
a.s.→ βn =

2n−1∆n,1

∆
2
n,2

as N →∞;

(iii) δN,n
a.s.→ 0 as N →∞.

Moreover, for all p > 1,

sup
N>n+4p−1

max(E|αN,n|p,E|βN,n |p,E|δN,n|p)6 Cn,p.

The latter proposition is the first step in passing from the quo-
tient ZN = XN /YN to the normalization required in Theorem 1.1.

The fact that Nn− 1
2 appears in both of the denominators on the

right-hand side of (4.8) indicates that both XN and Y 2
N must be

accounted for in order to capture the asymptotic normality of ZN .

Proof. Write

ZN −EZN =
XN

YN
− EXN

EYN

=
XN −EXN

YN
−
(

EXN

EYN
− EXN

YN

)

=
XN −EXN

YN
− (Y

2
N −EY 2

N +var(YN ))EXN

YN (YN +EYN )EYN

=
XN −EXN

YN
− (Y 2

N −EY 2
N )EXN

YN (YN +EYN )EYN
− var(YN )EXN

YN (YN +EYN )EYN
.

Thus

ZN −EZN

N
n−1
2

= αN,n

(

XN −EXN

Nn− 1
2

)

− βN,n

(

Y 2
N −EY 2

N

Nn− 1
2

)

− δN,n,

which shows that (4.8) holds with

αN,n =
N

n
2

YN
, βN,n =

N
n
2EXN

YN (YN +EYN )EYN
, δN,n = βN,n

var(YN )

Nn− 1
2

.

Using the factorization of YN in (4.6) and applying the SLLN for
each χk (k =N,. . . ,N − n+1), we have

YN
√

N !
(N−n)!

a.s.→ 1 as N →∞,
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and hence

αN,n =
Nn/2

YN

a.s.→ 1 as N →∞.

By the Cauchy-Binet forumula (2.6) and the SLLN for U-statistics
(Theorem 3.1(2)), we have

1
(N
n

)
Y 2
N

a.s.→ ∆
2
n,2 as N →∞.

Thus

βN,n =
2n

(N
n

)

∆n,1

Y 2
N (1 +

EYN
YN

)

Nn/2

EYN

a.s.→ 2n∆n,1

2∆2
n,2

as N →∞.

By Proposition 4.3(2) and Slutsky’s theorem, we also have δN,n
a.s.→

0 as N →∞. To prove the last assertion, we note that for 1 6 p 6

(N − n+1)/2,

E

(

N
n
2

YN

)p

6 Cn,p,

where Cn,p is a constant that depends on n and p only (see, e.g.,
[17, Lemma 4.2]).

Proof of Theorem 1.1. To simplify the notation, for I = {i1, . . . , in} ⊂
{1, . . . ,N }, write dI = |det[gi1 · · ·gin]|. Applying Proposition 4.4, we
can write

ZN −EZN

N
n−1
2

=

(N
n

)

Nn− 1
2

(UN −EUN ) +AN,n −BN,n − δN,n,

where

UN =
1

(N
n

)

∑

|I |=n
(2ndI − βnd2I ),

AN,n = (αN,n − 1)
(

XN −EXN

Nn− 1
2

)

,

and

BN,n = (βN,n − βn)
(

Y 2
N −EY 2

N

Nn− 1
2

)

.

Set I0 = {1, . . . ,n}. Applying Theorem 3.1(3) with

ζ = var(E[(2ndI0 − βnd
2
I0
)|g1]), (4.9)

18



yields
√
N

(

UN −EUN

n
√
ζ

)

d→N (0,1) as N →∞.

By Proposition 4.4, αN,n
a.s.→ 1, βN,n

a.s.→ βn and δN,n
a.s.→ 0; more-

over, each of the latter sequences is uniformly integrable. Thus
by Hölder’s inequality and Proposition 4.2(1)

E|AN,n| ≤ (E|αN,n − 1|2)1/2Cn→ 0 as N →∞.

Similarly, using Proposition 4.3(1),

E|BN,n| ≤ (E|βN,n − βn|2)1/2Cn→ 0 as N →∞.

By Slutsky’s theorem and the fact that
(N
n

)

/Nn→ 1/n! as N →∞,
we have

n!(ZN −EZN )

N
n−1
2 n
√
ζ

d→N (0,1) as N →∞. (4.10)

To conclude the proof of the theorem, it is sufficient to show that

n!
√

var(ZN )

N
n−1
2 n
√
ζ
→ 1 as N →∞. (4.11)

Once again we appeal to uniform integrability: by Proposition
4.4,

|ZN −EZN |
N

n−1
2

6 2n|αN,n|
|XN −EXN |

Nn− 1
2

+ |βN,n|
|Y 2

N −EY 2
N |

Nn− 1
2

+ |δN,n|.

By Hölder’s inequality and Propositions 4.2(1), 4.3(1) and 4.4,

sup
N>n+8p−1

∣

∣

∣

∣

∣

∣

ZN −EZN

N
n−1
2

∣

∣

∣

∣

∣

∣

p

6 Cn,p,

which, combined with (4.10), implies (4.11).
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