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Abstract

We prove a randomized version of the generalized Urysohn inequality
relating mean-width to the other intrinsic volumes. To do this, we intro-
duce a stochastic approximation procedure that sees each convex body K
as the limit of intersections of Euclidean balls of large radii and centered
at randomly chosen points. The proof depends on a new isoperimetric in-
equality for the intrinsic volumes of such intersections. If the centers are
i.i.d. and sampled according to a bounded continuous distribution, then
the extremizingmeasure is uniform on a Euclidean ball. If one additionally
assumes that the centers have i.i.d. coordinates, then the uniform measure
on a cube is the extremizer. We also discuss connections to a randomized
version of the extended isoperimetric inequality and symmetrization tech-
niques.

1 Introduction

We prove a new randomized version of a classical inequality for
intrinsic volumes. For context, we start by recalling two such
inequalities and a known randomized version of one of them.
The intrinsic volumes V1, . . . ,Vn are functionals on convex bod-
ies which can be defined via the Steiner formula: for any convex
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body K ⊆ R
n and ε > 0,

|K + εB| =
n

∑

j=0

ωn−jVj(K)εn−j ,

where |·| denotes n-dimensional Lebesgue measure, B = Bn
2 is the

unit Euclidean ball in R
n, ωn−j is the volume of B

n−j
2 , and V0 ≡ 1;

V1 is a multiple of the mean-width, 2Vn−1 is the surface area and
Vn = |·| is the volume. The Vj ’s satisfy the extended isoperimetric
inequality: for 1 6 j < n,

(

Vn(K)

Vn(B)

)1/n

6

(

Vj(K)

Vj(B)

)1/j

; (1.1)

as well as the generalized Urysohn inequality: for 1 < j 6 n,

(

Vj(K)

Vj (B)

)1/j

6
V1(K)

V1(B)
. (1.2)

The classical isoperimetric inequality corresponds to j = n − 1 in
(1.1); Urysohn’s inequality to j = n in (1.2) (or j = 1 in (1.1)). The
Alexandrov-Fenchel inequality for mixed volumes (e.g. [21]) im-
plies both (1.1) and (1.2). Alternatively, symmetrization methods
can be used. For example, Steiner symmetrization, which pre-
serves Vn(K) and decreases Vj(K) (j < n), can be used to prove
(1.1); a general framework for such inequalities, building on work
of Rogers and Shephard [20], is discussed by Campi and Gronchi
in [6]. On the other hand, Minkowski symmetrization, which
fixes V1(K) but increases Vj(K) (1 < j 6 n), can be used to prove
(1.2) (§2 contains definitions of these symmetrizations; here “de-
crease” and “increase” are meant in the non-strict sense).

A known randomized version of (1.1) is due to the first-named
author and Hartzoulaki [12]. In a slightly more general form, us-
ing [17], the latter can be stated as follows. Assume that |K | = |B|
and sample independent random vectors X1, . . . ,XN according to
the uniform density 1

|K |1K , i.e., P (Xi ∈ A) =
1
|K |

∫

A
1K (x)dx for Borel

sets A ⊂ R
n. Additionally, sample independent random vectors

Z1, . . . ,ZN according to 1
|B|1B. Then for all 1 6 j 6 n and t > 0,

P

(

Vj(conv{X1, . . . ,XN }) > t
)

> P

(

Vj(conv{Z1, . . . ,ZN }) > t
)

, (1.3)
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where conv denotes the convex hull. Integrating in t yields

EVj(conv{X1, . . . ,XN }) > EVj(conv{Z1, . . . ,ZN }). (1.4)

By the law of large numbers, the latter convex hulls converge to
their respective ambient bodies and thus when N →∞,

Vj(K) > Vj(B) whenever Vn(K) = Vn(B),

which is equivalent to (1.1). Thus (1.1) can be seen as a global
inequality which arises through a random approximation proce-
dure in which stochastic domination holds at each stage. In fact,
(1.3) holds not just for the convex hull but for a variety of other
(linear, convex) operations and one can sample points according
to continuous distributions on R

n (see [17]). Our recent focus has
been on Vn. For example, such distributional inequalities are use-
ful for small deviation inequalities for the volume of random sets
[18]; inequalities in the dual setting, obtained in joint work with
Fradelizi and Cordero-Erausquin [8], lead to a stochastic version
of the Blaschke-Santalo inequality and the Lp-versions of Lutwak
and Zhang [15].

Our aim here is to present a stochastic version of (1.2) of a dif-
ferent type - using intersections of Euclidean balls. In [3], Bezdek,
Lángi, Naszódi, and Papez study the intersection of finitely many
(unit) Euclidean balls, called ball-polyhedra, and lay out a broad
framework for their study; they treat analogues of classical the-
orems in convexity such as those of Caratheodory and Steinitz,
and they study their facial structure. Motivation arises, in part,
from the Kneser-Poulsen Conjecture on the monotonicity of the
volume of intersections (or unions) of Euclidean balls under con-
tractions of their centers; see e.g. Bezdek’s expository monograph
[2]. Ball-polyhedra are also of their own inherent geometric inter-
est since for large radii they resemble intersections of half-spaces,
i.e., convex polyhedra, and hence all convex bodies - this is our
motivation. We consider intersections of balls whose centers Xi
are sampled independently according to a continuous distribu-
tion, i.e., a density f : Rn → [0,∞) with

∫

Rn f (x)dx = 1 so that

P (Xi ∈ A) =
∫

A
f (x)dx for Borel sets A ⊂ R

n. In what follows, by
a probability density we always mean that of a continuous distri-
bution. Different random models associated with ball-polyhedra
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have been studied by Csikós [9], Ambrus, Kevei and Vígh [1] and
Fodor, Kevei and Vígh [10].

Our first result is the following isoperimetric inequality for in-
trinsic volumes; here B(x,r) is the closed Euclidean ball in R

n cen-
tered at x ∈Rn with radius r > 0 (so B = B(0,1)).

Theorem 1.1. Let N,n > 1 and R > 0. Let f be a probablity density
on R

n that is bounded by one. Consider independent random vectors
X1, . . . ,XN sampled according to f and Z1, . . . ,ZN according to 1B(0,rn)
where rn > 0 is chosen so that |B(0, rn)| = 1. Then for all 1 6 j 6 n and
t > 0,

P

(

Vj

(

∩N
i=1B(Xi ,R)

)

> t
)

6 P

(

Vj

(

∩N
i=1B(Zi ,R)

)

> t
)

. (1.5)

In particular,

EVj

(

∩N
i=1B(Xi ,R)

)

6 EVj

(

∩N
i=1B(Zi ,R)

)

. (1.6)

In §5, we show that the latter theorem implies (1.2) which we
formulate as follows for comparison purposes: if K ⊆ R

n is a con-
vex body, then for each 1 < j 6 n,

Vj(K) ≤ Vj(B) whenever V1(K) = V1(B). (1.7)

In general, Steiner symmetrization of K is not useful for com-
paring V1(K) and Vj(K), j < n, (since it decreases both). Never-
theless, as in our previous work [17], Theorem 1.1 is based on
Steiner symmetrization (and rearrangement inequalities). The es-
sential difference here is that we apply such techniques to auxil-
lary sets associated to K , which we then use to generate random
ball-polyhedra that approximate K . This method is useful for
comparing convex bodies of a given mean-width. In fact, the tech-
nique also applies to Wulff shapes, a topic which has received in-
creased attention recently in Brunn-Minkowski theory; see work
of Böröczky, Lutwak, Yang and Zhang [4] and Schuster and We-
berndorfer [22].

As mentioned above, (1.1) and (1.2) share a common result -
Urysohn’s inequality. Since we have two different randomzied in-
equalities that lead to Urysohn’s inequality, namely for random
ball-polyhedra by taking j = n in (1.6), and for random convex
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hulls by taking j = 1 in (1.4), it is natural to investigate the rela-
tionship between the two randomized forms. It turns out that the
random ball-polyhedra version implies the random convex hull
version. This is a consequence of a result of Gorbovickis [11],
which has been used to establish the Kneser-Poulsen conjecture
for large radii (see §5.3).

Lastly, we also consider random ball polyhedra with indepen-
dently chosen centers Xi = (Xi1, . . . ,Xin) ∈ R

n having independent
coordinates and bounded densities, say by one. In this case, the
uniform density on the unit cube Qn = [−1/2,1/2]n is the extrem-
izer.

Theorem 1.2. Let N,n > 1 and R > 0. Let h(x) =
∏n

i=1hi(xi), where
each hi is a probability density on R that is bounded by one. Consider
independent random vectors X1, . . . ,XN sampled according to h and
Y1, . . . ,YN according to 1Qn

. Then for all 1 6 j 6 n and t > 0,

P

(

Vj

(

∩N
i=1B(Xi ,R)

)

> t
)

6P

(

Vj

(

∩N
i=1B(Yi ,R)

)

> t
)

. (1.8)

In particular,

EVj

(

∩N
i=1B(Xi ,R)

)

6 EVj

(

∩N
i=1B(Yi ,R)

)

. (1.9)

The paper is organized as follows: we recall definitions in §2.
Theorems 1.1 and 1.2 are proved in §3. Wulff shapes and (non-
random) ball polyhedra are discussed in §4. In §5, we derive
the generalized Urysohn inequality (1.2), discuss a connection to
Minkowski symmetrizations, and compare the two random ver-
sions of Urysohn’s inequality.

2 Preliminaries

We work in Euclidean space Rn with the canonical inner-product
〈·, ·〉, Euclidean norm |·|; we also use |·| (or Vn) for volume. As
above, the unit Euclidean ball in R

n is B = Bn
2 and its volume is

ωn := |B
n
2|; S

n−1 is the unit sphere, equipped with the Haar proba-
bility measure σ.

A convex bodyK ⊆ R
n is a compact, convex set with non-empty

interior. The set of all convex bodies in R
n is denoted by Kn. For
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K,L ∈ Kn, the Minkowski sum K +L is the set {x + y : x ∈ K,y ∈ L};
for α > 0, αK = {αx : x ∈ K}. We say that K is symmetric if it is
origin-symmetric, i.e., −x ∈ K whenever x ∈ K . For K ∈ Kn, the
support function of K is given by

hK (x) = sup{〈y,x〉 : y ∈ K} (x ∈Rn).

The mean-width of K is

w(K) =

∫

Sn−1
hK (θ) + hK (−θ)dσ(θ)

= 2

∫

Sn−1
hK (θ)dσ(θ).

If K ∈ Kn and u ∈ Sn−1, the Minkowski symmetral of K about u⊥

is the convex body

Mu(K) =
K +Ru(K)

2
,

where Ru is the reflection about u⊥. The Steiner symmetral of a
convex body will be defined later, and more generally for func-
tions.

For compact sets C1,C2 in R
n, we let δH(C1,C2) denote the

Hausdorff distance:

δH(C1,C2) = inf{ε > 0 : C1 ⊆ C2 + εBn
2,C2 ⊆ C1 + εBn

2}

LetKn
◦ denote the class of all convex bodies that contain the origin

in their interior. We will make use of the following fact (see, e.g.,

[21, §1.8]): If K,L,K1,K2, . . . ∈ K
n
◦ satisfy KN

δH
−→K as N →∞, then

KN ∩ L
δH
−→ K ∩ L as N →∞. (2.1)

A set K ⊆R
n is star-shaped if it is compact, contains the origin

in its interior and for every x ∈ K and λ ∈ [0,1] we have λx ∈ K .
We call K a star-body if its radial function

ρK (θ) = sup{t > 0 : tθ ∈ K} (θ ∈ Sn−1)

is positive and continuous. Any positive continuous function f :
Sn−1→ R determines a star body with radial function f .
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For non-negative functions f and g on [0,∞), we write f (r) =
O(g(r)) as r → ∞ if there exists M > 0 and r0 > such that f (r) 6
Mg(r) for all r > r0; we write f (r) = o(g(r)) if f (r)/g(r) → 0 as
r→∞.

We say that a non-negative function f on R
n is quasi-concave

if {x ∈ Rn : f (x) > t} is convex for each t > 0.
For Borel sets A ⊆ R

n with |A| < ∞, the volume-radius vr(A)
is the radius of a Euclidean ball with the same volume as A; the
symmetric rearrangement A∗ of A is the (open) Euclidean ball of
radius vr(A). The symmetric decreasing rearrangement of 1A is
defined by (1A)

∗ := 1A∗ . If f : Rn → R
+ is an integrable function,

we define its symmetric decreasing rearrangement f ∗ by

f ∗(x) =

∫ ∞

0
1∗{f >t}(x)dt =

∫ ∞

0
1{f >t}∗(x)dt.

The latter should be compared with the “layer-cake representa-
tion” of f :

f (x) =

∫ ∞

0

1{f >t}(x)dt; (2.2)

see [14, Theorem 1.13]. The function f ∗ is radially-symmetric,
decreasing and equimeasurable with f , i.e., {f > α} and {f ∗ > α}
have the same volume for each α > 0. By equimeasurability one
has ‖f ‖p = ‖f

∗‖p for each 1 6 p 6∞, where ‖·‖p denotes the Lp(R
n)-

norm. For a nonnegative, integrable function f on R
n, the rear-

rangement f ∗ can be reached by a sequence of Steiner symmetrals
f ∗(·|θ), which correspond to symmetrization in dimension one in
the direction θ ∈ Sn−1; namely f ∗(·|θ) is obtained by rearranging
f along every line parallel to θ. The function f ∗(·|θ) is symmet-
ric with respect to θ⊥. We refer the reader to the book [14] for
further background material on rearrangements of functions.

3 Extremal inequalities for random ball-polyhedra

In this section we prove a more general version of Theorem 1.1.
It concerns a family of functions φ : Kn → [0,∞) satisfying the
following three conditions:

(a) Minkowski-concave: for all K,L ∈ Kn and λ ∈ (0,1),

φ(1−λ)K +λL) > (1−λ)φ(K) +λφ(L);

7



(b) monotone: φ(K) 6 φ(L) whenever K,L ∈ Kn satisfy K ⊆ L;

(c) rotation-invariant: φ(UK) = φ(K) for all orthogonal transfor-
mations U of Rn and K ∈ Kn.

It is known that Vj(·)
1/j satisfies each of the latter conditions

(e.g., [21]).

Theorem 3.1. Let N,n > 1 and r1, . . . , rN ∈ (0,∞). Assume that
φ : Kn → [0,∞) satisfies (a), (b) and (c). Let f1, . . . , fN be probabil-
ity densities on R

n. Consider independent random vectors X1, . . . ,XN
and X∗1, . . . ,X

∗
N such that Xi is distributed according to fi and X∗i ac-

cording to f ∗i , for i = 1, . . . ,N . Then for any t > 0,

P

(

φ
(

∩N
i=1B(Xi , ri )

)

> t
)

6 P

(

φ
(

∩N
i=1B(X

∗
i , ri )

)

> t
)

. (3.1)

Furthermore, assume each fi is bounded. Let Z1, . . . ,ZN be indepen-
dent random vectors with Zi distributed according to ai1biB, where

ai = ‖fi‖∞ and bi satisfies
∫

Rn ai1biBdx = 1, for i = 1, . . . ,N . Then

P

(

φ
(

∩N
i=1B(Xi , ri)

)

> t
)

6 P

(

φ
(

∩N
i=1B(Zi , ri )

)

> t
)

. (3.2)

As in [17], [18], we use the rearrangement inequality of Rogers
[19] and Brascamp-Lieb-Luttinger [5]; in particular, the following
variant due to Christ [7].

Theorem 3.2. Let F : (Rn)N = ⊗Ni=1R
n→ [0,∞). Then

∫

(Rn)N
F(x1, . . . ,xN )f1(x1) · · · fN (xN )dx1 . . . dxN

6

∫

(Rn)N
F(x1, . . . ,xN )f

∗
1 (x1) · · · f

∗
N (xN )dx1 . . . dxN (3.3)

holds for any integrable f1, . . . , fN : Rn → [0,∞) whenever F satisfies
the following condition: for every z ∈ Sn−1 ⊆ R

n and for every Y =
(y1, . . . ,yN ) ⊆ (z⊥)N ⊆ (Rn)N , the function Fz,Y : RN → [0,∞) defined
by

Fz,Y (t) := F(y1 + t1z, . . . ,yN + tN z). (3.4)

is even and quasi-concave.
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Remark 3.3. (i) When n = 1, the condition on F in the latter
theorem reduces to F : RN → [0,∞) being even and quasi-
concave.

(ii) The proof of the latter theorem relies on the fact that such
integrals are increased when the fi ’s are replaced by their
Steiner symmetrals f ∗i (·|θ). When repeated in suitable direc-
tions θ, they yield the symmetric decreasing rearrangements
f ∗i . We refer the reader to [7] or [17], [8] for the details.

We also combine the latter with a theorem of Kanter [13]. If
f and g are probability densities on R

n such that
∫

K
f (x)dx 6

∫

K
g(x)dx for every symmetric convex set K ⊂ R

n, we say that f
is less peaked than g . Furthemore, we say that f is unimodal if it
is quasi-concave and even.

Theorem 3.4. Let n,N > 1. Let f1, . . . , fN and g1, . . . ,gN be unimodal
probability densities on R

n. Assume that fi is less peaked than gi for
each i = 1, . . . ,N . Then

∏n
i=1fi is less peaked than

∏n
i=1gi .

We will also use the following basic lemma (it can be proved
using, e.g., [8, Lemma 4.3]).

Lemma 3.5. Any probability density on R that is bounded by one
is less peaked than 1[−1/2,1/2]. Any radial probability density on R

n

that is bounded by one is less peaked than 1B(0,rn) where rn satisfies
|B(0, rn)| = 1.

The requisite concavity needed to apply Theorem 3.2 is a con-
sequence of the following lemma.

Lemma 3.6. Let N,n > 1 and r1, . . . , rN ∈ (0,∞). Assume that φ :
Kn→ [0,∞) satisfies (a) and (b) and φ(K) = φ(−K) for each K ∈ Kn.
Set

F(x1, . . . ,xN ) = φ
(

∩N
i=1B(xi , ri)

)

.

Then F is even and concave on its support. Additionally, assume that
φ satisfies condition (c). If z ∈ Sn−1 and y1, . . . ,yN ∈ z⊥ and Fz,Y :
R

N → [0,∞) is defined by

Fz,Y (t) := φ
(

∩N
i=1B(yi + tiz, ri)

)

,

then Fz,Y is even and concave on its support.

9



Proof. The function F is clearly even on (Rn)N . For the concav-
ity claim, let u = (u1, . . . ,uN ) ∈ (R

n)N and v = (v1, . . . ,vN ) ∈ (R
n)N

belong to the support of F. We will first show that

∩N
i=1B

(

ui + vi
2

, ri

)

⊇
1

2
∩N

i=1 B(ui , ri) +
1

2
∩N

i=1 B(vi , ri ).

Let w1,w2 ∈ R
n and assume |w1 − ui | 6 ri and |w2 − vi | 6 ri for

i = 1, . . . ,N . Then for i = 1, . . . ,N ,
∣

∣

∣

∣

∣

w1 +w2

2
−

(

ui + vi
2

)
∣

∣

∣

∣

∣

6
1

2
|w1 − ui |+

1

2
|w2 − vi |

6 ri ,

which shows the inclusion. By monotonicity and concavity of φ,
we have

F((u+ v)/2) = φ
(

∩N
i=1B

(

ui + vi
2

, ri

))

> φ
(

1

2
∩N

i=1 B(ui , ri ) +
1

2
∩N

i=1 B(vi , ri )
)

>
1

2
φ
(

∩N
i=1B(ui , ri )

)

+
1

2
φ
(

∩N
i=1B(vi , ri )

)

=
1

2
F(u) +

1

2
F(v).

Therefore, F is concave on its support.
The second concavity claim follows from the fact that the re-

striction of a concave function to a line is itself concave. Finally,
let z ∈ Sn−1 and y1, . . . ,yN ∈ z

⊥. Let Rz denote the reflection about
z⊥. Then

Rz

(

∩N
i=1B(yi + tiz, ri )

)

= ∩N
i=1Rz(riB(0,1) + (yi + tiz))

= ∩N
i=1 (riB(0,1) + (yi − tiz))

= ∩N
i=1B(yi − tiz, ri).

Since φ satisfies (c), we have

Fz,Y (t) = φ
(

∩N
i=1B(yi + tiz, ri )

)

10



= φ
(

∩N
i=1B(yi − tiz, ri)

)

= Fz,Y (−t).

Proof of Theorem 3.1. Let F be as in Lemma 3.6. For t > 0, set H =
1{F>t}. Let z ∈ S

n−1 and Y = (y1, . . . ,yN ) ∈ (z
⊥)N . Let Fz,Y and Hz,Y

be as defined in Lemma 3.6. Note that 1{Fz,Y>t} =Hz,Y . By Lemma
3.6, Fz,Y is an even, concave function. It follows that Hz,Y is even
and quasi-concave. Therefore we can apply Theorem 3.2 to obtain

P

(

φ
(

∩N
i=1B(Xi , ri )

)

> t
)

=

∫

Rn
. . .

∫

Rn
H(x1, . . . ,xN )

∏N
i=1 fi(xi)dx1 . . . dxN

6

∫

Rn
. . .

∫

Rn
H(x1, . . . ,xN )

∏N
i=1 f

∗
i (xi)dx1 . . . dxN

= P

(

φ
(

∩N
i=1B(X

∗
i , ri )

)

> t
)

,

which proves (3.1).
We will first prove (3.2) under the additional assumption that

‖fi‖∞ = 1 for i = 1, . . . ,N . Furthermore, by the first part of the
proof we may assume that each fi is radial and decreasing, hence
unimodal. By Lemma 3.5, fi is less peaked than 1B(0,rn). Since
H = 1{F>t} is the indicator function of a symmetric convex set in

(Rn)N , Theorem 3.4 yields

P

(

φ
(

∩N
i=1B(Xi , ri)

)

> t
)

=

∫

Rn
. . .

∫

Rn
H(x1, . . . ,xN )

∏N
i=1 fi(xi)dx1 . . . dxN

6

∫

Rn
. . .

∫

Rn
H(x1, . . . ,xN )

∏N
i=1 1B(0,rn)(xi)dx1 . . . dxN

= P

(

φ
(

∩N
i=1B(Zi , ri )

)

> t
)

.

The general case follows by a change of variables; note that we
make no assumption of homogeneity of φ in the following argu-
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ment. For i = 1, . . . ,N , let ci = ‖fi‖
−1/n
∞ and set

f̄i(x) =
fi(cix)

∫

Rn fi(ciy)dy
=
fi(cix)

‖fi‖∞
.

Then ‖f̄i‖1 = ‖f̄i‖∞ = 1 for i = 1, . . . ,N . We apply what we just
proved with f̄1, f̄2, . . . , f̄N and H(c1·, . . . , cN ·) (which remains the in-
dicator of a symmetric convex set)

P

(

φ
(

∩N
i=1B(Xi , ri )

)

> t
)

=

∫

Rn
. . .

∫

Rn
H(x1, . . . ,xN )

∏n
i=1 fi(xi)dx1 . . . dxN

=
∏N

i=1‖fi‖∞

∫

Rn
. . .

∫

Rn
H(c1y1, . . . , cnyN )

∏N
i=1

cni fi(ciyi)

‖fi‖∞
dy1 . . . dyN

=

∫

Rn
. . .

∫

Rn
H(c1y1, . . . , cnyN )

∏N
i=1 f̄i(yi)dy1 . . . dyN

6

∫

Rn
. . .

∫

Rn
H(c1y1, . . . , cnyN )

∏N
i=1 1rnB(yi)dy1 . . . dyN

=

∫

Rn
. . .

∫

Rn
H(x1, . . . ,xN )

∏N
i=1 ‖fi‖∞1cirnB(xi)dx1 . . . dxN

= P

(

φ
(

∩N
i=1B(Zi , ri )

)

> t
)

,

where, as above, rn = ω−1/nn . This proves (3.2) as claimed with
bi = cirn, for i = 1, . . . ,N .

Now we turn to a generalization of Theorem 1.2.

Theorem 3.7. Let N,n > 1 and r1, . . . , rN ∈ (0,∞). Assume that
φ : Kn → [0,∞) satisfies (a) and (b). Let h1, . . . ,hN be probability

densities on R
n with hi(x) =

∏n
j=1hij(xj ) and each hij is a probability

density on R that is bounded by one. Consider independent random
vectors X1, . . . ,XN and Y1, . . . ,YN such that Xi is distributed according
to hi and Yi according to 1Qn

, for i = 1, . . . ,N . Then for any t > 0,

P

(

φ
(

∩N
i=1B(Xi , ri)

)

> t
)

6P

(

φ
(

∩N
i=1B(Yi , ri )

)

> t
)

. (3.5)

Proof. Note that each h∗ij is less peaked than 1[−1/2,1/2], hence by

Theorem 3.4,
∏N

i=1

∏n
j=1 h

∗
ij is less peaked than

∏N
i=11Qn

. Let F

12



be as in Lemma 3.6, t > 0 and H = 1{F>t}. For xi ∈ R
n we write

xi = (xi1, . . . ,xin). Since F is even and concave on its support, we
can apply Theorem 3.2 (considering F as a concave function on
R

nN as in Remark 3.3(i)) and Theorem 3.4 to obtain

P

(

φ
(

∩N
i=1B(Xi , ri )

)

> t
)

=

∫

Rn
. . .

∫

Rn
H(x1, . . . ,xN )

∏N
i=1

∏n
j=1hij (xij )dx1 . . . dxN

6

∫

Rn
. . .

∫

Rn
H(x1, . . . ,xN )

∏N
i=1

∏n
j=1h

∗
ij(xi)dx1 . . . dxN

6

∫

Rn
. . .

∫

Rn
H(x1, . . . ,xN )

∏N
i=1 1Qn

(xi)dx1 . . . dxN

= P

(

φ
(

∩N
i=1B(Yi , ri )

)

> t
)

.

Remark 3.8. One can adapt the latter argument to treat densities
hij that are not necessarily bounded by the same value. In this
case, hij is less peaked than ‖hij‖∞1[− 1

2‖hij ‖∞
, 1
2‖hij ‖∞

]. Then the cor-

responding extremizers would be uniform measures on suitable
coordinate boxes.

4 Wulff shapes and ball-polyhedra

In this section we recall the definition of the Wulff shape and
show that it can be approximated by (non-random) ball-polyhedra
of large radii; for background onWulff shapes in Brunn-Minkowski
theory and further references, see [21].

If f : Sn−1 → R is a positive continuous function, the Wulff
shapeW (f ) is defined by

W (f ) =∩θ∈Sn−1H−(θ,f (θ)), (4.1)

where
H−(θ,f (θ)) = {x ∈Rn : 〈x,θ〉 6 f (θ)}. (4.2)

Then W (f ) is a convex body with the origin in its interior. If K is
a convex body with support function hK , then W (hK ) = K .

13



With f as above and R > supθ∈Sn−1 f (θ), we introduce a star
body A(f ,R) by specifying its radial function:

ρA(f ,R)(−θ) = R − f (θ) (θ ∈ Sn−1). (4.3)

The role of A(f ,R) is described in the following proposition; as
mentioned, vr(A(f ,R)) = (|A(f ,R)|/ωn)

1/n is the radius of a Eu-
clidean ball with the same volume as A(f ,R).

Proposition 4.1. Let f : Sn−1→ R be continuous, R > supθ∈Sn−1 f (θ)
and A(f ,R) as in (4.3). Then, in the Hausdorff metric,

W (f ) = lim
R→∞
∩x∈A(f ,R)B(x,R), (4.4)

and

R − vr(A(f ,R)) >

∫

Sn−1
f (θ)dσ(θ); (4.5)

moreover, equality holds as R→∞.

The proof of the proposition relies on the following lemmas.

Lemma4.2. LetN,n ≥ 1, x1, . . . ,xN ∈R
n and set P = conv{x1, . . . ,xN }.

Then for each r > 0,

∩x∈P B(x,r) =∩
N
i=1B(xi , r). (4.6)

Proof of Lemma 4.2. Let y ∈∩N
i=1B(xi , r) so that |y −xi | 6 r for each

i = 1, . . . ,N . Let x ∈ P and write x =
∑N

i=1αixi , where α1, . . . ,αN > 0

and
∑N

i=1αi = 1. Then

|y − x| = |
∑N

i=1αiy −
∑N

i=1αixi | 6
∑N

i=1αi |y − xi | 6 r,

hence y ∈∩x∈PB(x,r). The reverse inclusion is trivial.

Lemma 4.3. Let f : Sn−1→ be positive and continuous. Then

W (f ) = lim
R→∞
∩θ∈Sn−1B(−(R − f (θ)θ,R), (4.7)

where the convergence is in the Hausdorff metric.

Proof of Lemma 4.3. Fix θ ∈ Sn−1 and R > supθ∈Sn−1 f (θ). Note that

B(−(R − f (θ))θ,R) ⊆H−(θ,f (θ)). (4.8)
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Indeed, if x <H−(θ,f (θ)), then 〈x,θ〉 > f (θ), hence |x| > f (θ) so

|x + (R − f (θ))θ|2

> |x|2 +2(R − f (θ))f (θ) +R2 − 2Rf (θ) + f 2(θ)

> R2.

Therefore x < B(−(R− f (θ))θ,R) which establishes (4.8). It follows
that

∩θ∈Sn−1 B(−(R − f (θ))θ,R) ⊆W (f ). (4.9)

Next note that

B(−(R − f (θ))θ,R)

⊇ {x ∈W (f ) : |x + (R − f (θ))θ|2 6 R2}

=
{

x ∈W (f ) : |x|2 +2(R − f (θ))〈x,θ〉 6 2Rf (θ)− f 2(θ)
}

=

{

x ∈W (f ) : 〈x,θ〉 6
2Rf (θ)− f 2(θ)− |x|2

2(R − f (θ))

}

=



















x ∈W (f ) :

〈

x,
θ

f (θ)

〉

6

1−
f (θ)
2R −

|x|2

2Rf (θ))

1−
f (θ)
R



















⊇

{

x ∈W (f ) :

〈

x,
θ

f (θ)

〉

6 1−O(1/R)

}

,

where the implied constants in O(1/R) depend only on the in-
radius and out-radius of W (f ), hence on the minimum and max-
imum values of f . As R→∞, the latter set converges to W (f )∩
H−(θ,f (θ)). Moreover, the convergence is uniform in θ. For R
sufficiently large, each of the latter sets belongs to Kn

◦ so we may
apply (2.1) to get

lim
R→∞
∩θ∈Sn−1B(−(R − f (θ))θ,R) ⊇ W (f )∩∩θ∈Sn−1H−(θ,f (θ))

= W (f ),

which, combined with (4.9) completes the proof.

Proof of Proposition 4.1. The map θ 7→ −(R − f (θ))θ is a bijection
between Sn−1 and the boundary ∂A(f ,R) of A(f ,R). Therefore

∩θ∈Sn−1 B(−(R − f (θ))θ,R) = ∩x∈∂A(f ,R)B(x,R) (4.10)
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= ∩x∈A(f ,R)B(x,R), (4.11)

where the last equality is simply Lemma 4.2 applied on each line
segment

P(θ) = conv{ρA(K,R)(θ),ρA(K,R)(−θ)} (θ ∈ Sn−1).

Thus equality (4.4) follows from Lemma 4.3. Since A(f ,R) is a
star body, we can use polar coordinates and Jensen’s inequalty to
get

vr(A(f ,R)) =

(∫

Sn−1
ρA(f ,R)(−θ)

ndσ(θ)

)1/n

=

(∫

Sn−1
(R − f (θ))ndσ(θ)

)1/n

> R −

∫

Sn−1
f (θ)dσ(θ).

Writing ‖f ‖1 =
∫

Sn−1 f (θ)dσ(θ), we can prove the equality in the
latter by Taylor expansion:

vr(A(f ,R))

= R

(∫

Sn−1

(

1−
nf (θ)

R
+O(1/R2)

)

dσ(θ)

)1/n

= R

(

1−
n‖f ‖1
R

+O(1/R2)

)1/n

= Rexp

(

1

n
log

(

1−
n‖f ‖1
R

+O(1/R2)

))

= Rexp

(

1

n

(

−
n‖f ‖1
R

+O(1/R2)

))

= Rexp

(

−
‖f ‖1
R

+O(1/R2)

)

= R

(

1−
‖f ‖1
R

+O(1/R2)

)

= R − ‖f ‖1 +O(1/R).
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5 Forms of Urysohn’s inequality

5.1 Derivation of the generalized Urysohn inequality

Proposition 5.1. Theorem 3.1 implies the generalized Urysohn in-
equality (1.2).

Proof. Let K be a convex body in R
n. For R > supθ∈Sn−1 hK (θ), let

A(hK ,R) be the star-shaped set defined in (4.3). The volume radius
of A(hK ,R) is r := vr(A(hK ,R)) = ω−1/nn |A(K,R)|1/n. Consider inde-
pendent random vectors X1,X2, . . . in A(hK ,R) sampled according
to 1
|A(hK ,R)|

1A(hK ,R). Sample also Z1,Z2, . . . according to 1
|A(hk ,R)|

1rB.

For each j, Vj(·)
1/j satisfies the assumptions of Theorem 3.1. Thus

for each N ,

EVj

(

∩N
i=1B(Xi ,R)

)1/j
6 EVj

(

∩N
i=1B(Zi ,R)

)1/j
. (5.1)

As N →∞, we have

∩N
i=1B(Xi ,R)→∩

∞
i=1B(Xi ,R)

in δH with probability one (see, e.g., [21, Lemma 1.8.2]). Setting
δ = δH({Xi }

∞
i=1,A(hK ,R)), we have

∩x∈A(hK ,R)B(x,R) ⊂∩
∞
i=1B(Xi ,R) ⊂∩x∈A(hK ,R)B(x,R+ δ).

On the other hand, δ = 0 almost surely (see, e.g., [16, Proposition
6.17], which is stated more generally for convergence of random
closed sets in the Fell topology but for compact subsets of the
compact set A(hK ,R) this coincides with convergence in δH). The
same argument applies to the Z ′i s and rB. For each j, Vj is contin-

uous with respect to convergence of convex bodies in δH . Thus as
N →∞ in (5.1), we get

Vj

(

∩x∈A(hK ,R)B(x,R)
)

6 Vj

(

∩z∈rBB(z,R)
)

. (5.2)

Note that
∩z∈rBB(z,R) = B(0,R − vr(A(hK ,R))).

By Proposition 4.1, we have

K = lim
R→∞
∩x∈A(hK ,R)B(x,R)
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in δH , and

lim
R→∞

R − vr(A(hK ,R))→

∫

Sn−1
hK (θ)dσ(θ) = w(K)/2,

where w(K) is the mean-width of K . Thus when R→∞ in (5.2),
we get Vj(K) 6 Vj(B(0,w(K)/2), which is equivalent to the gener-
alized Urysohn inequality (1.2) (since w(K) is a multiple of V1(K)
and B(0,w(K)/2) is a ball of the same mean-width as K).

The latter proof ultimately rests on Steiner symmetrization of
the set A(hK ,R) (see Remark 3.3). Since Minkowski symmetriza-
tion of K is also useful for proving the generalized Urysohn in-
equality, it is natural to investigate its effect on A(hk ,R). It turns
out that one can obtain (5.2) via Minkowski symmetrization of
K as well. Since this further illuminates the use of A(hK ,R), we
discuss it in the next subsection.

5.2 Relation to Minkowski symmetrization

It will be convenient to identify convex bodies with their support
functions and write A(K,R) rather than A(hK ,R) (defined in (4.3)).
If K and L are convex bodies, the equality h(K+L)/2 = (hK + hL)/2
implies

ρA(K+L
2 ,R) =

1

2
(ρA(K,R) + ρA(L,R)).

In particular, if u ∈ Sn−1 and Mu(K) is the Minkowski symme-
tral of K about u⊥, then A(Mu(K),R) is the star-body with radial
function 1

2(ρA(K,R) + ρA(Ru (K),R)). Using (4.10) and (4.11)

∩x∈A(Mu (K),R)B(x,R)

=∩θ∈Sn−1B
(

ρMu(K)(θ),R
)

⊇
1

2
∩θ∈Sn−1 B(ρA(K,R)(θ),R) +

1

2
∩θ∈Sn−1 B(ρA(L,R)(θ),R)

=
1

2
∩x∈A(K,R) B(x,R) +

1

2
∩x∈A(Ru (K),R) B(x,R).

Since the latter two sets are reflections of each other, we can apply
the Brunn-Minkowski inequality to get

Vj

(

∩x∈A(Mu (K),R)B(x,R)
)

≥ Vj

(

∩x∈A(K,R)B(x,R)
)

. (5.3)
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It is known that given a convex body K , there is a sequence of
directions so that successive Minkowski symmerizations about
those directions converge to a Euclidean ball with the same mean-
width as K (e.g., [21]). Combining this with inequality (5.3), we
get another proof of (5.2), which can be interpreted as a (non-
random) version of the generalized Urysohn inequality for ball-
polyhedra.

5.3 Connection between random ball-polyhedra and random
convex hulls

As mentioned already, the inequality for random ball-polyhedra
obtained by taking j = n in (1.6) implies Urysohn’s inequality, and
so does the inequality for random convex hulls when j = 1 in (1.4).
Here we show that the former implies the latter. The proof uses
the following theorem of Gorbovickis [11, Theorem 4].

Theorem 5.2. Let x1 . . . ,xN ∈ R
n where n ≥ 2. Then the following

asymptotic equality holds as R→∞:
∣

∣

∣

∣

∣

(

∩N
i=1B(xi ,R)

)
∣

∣

∣

∣

∣

= ωnR
n − nωnw(conv{x1, . . . ,xN })R

n−1 + o(Rn−1).

(5.4)

Assume that K is a convex body in R
n with |K | = |B|. Sample

independent random vectors X1, . . . ,XN in K and Z1, . . . ,ZN in B
according to their respective uniform probability measures. For
each fixed value of X1, . . . ,XN , Theorem 5.2 implies

nωnw(conv{X1, . . . ,XN }) = R−R−(n−1)
∣

∣

∣

∣

∣

(

∩N
i=1B(Xi ,R)

)
∣

∣

∣

∣

∣

+o(1), (5.5)

as R → ∞. By compactness of K , we can use dominated conver-
gence to conclude

nωnEw(conv{X1, . . . ,XN }) = R −R−(n−1)E

∣

∣

∣

∣

∣

(

∩N
i=1B(Xi ,R)

)
∣

∣

∣

∣

∣

+Eo(1),

as R→∞. By continuity of the volume of the intersection and the
mean-width, the quantity Eo(1) is also of the form o(1). The same
argument applies to Z1, . . . ,ZN . By Theorem 3.1, we get

Ew(conv{X1, . . . ,XN }) > Ew(conv{Z1, . . . ,ZN }),

which is equivalent to the j = 1 case in (1.4).
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