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Abstract

We discuss isoperimetric inequalities for convex sets. These include
the classical isoperimetric inequality and that of Brunn-Minkowski,
Blaschke-Santaló, Busemann-Petty and their various extensions. We
show that many such inequalities admit stronger randomized forms in
the following sense: for natural families of associated random convex
sets one has stochastic dominance for various functionals such as vol-
ume, surface area, mean width and others. By laws of large numbers,
these randomized versions recover the classical inequalities. We give an
overview of when such stochastic dominance arises and its applications
in convex geometry and probability.

1 Introduction

The focus of this paper is stochastic forms of isoperimetric inequali-
ties for convex sets. To set the stage, we begin with two examples.
Among the most fundamental isoperimetric inequalities is the Brunn-
Minkowski inequality for the volume Vn of convex bodies K,L ⊆ Rn,

Vn(K + L)1/n > Vn(K)1/n + Vn(L)1/n, (1.1)

where K+L is the Minkowski sum {x+y : x ∈ K, y ∈ L}. The Brunn-
Minkowski inequality is the cornerstone of the Brunn-Minkowski the-
ory and its reach extends well beyond convex geometry; see Schneider’s
monograph [68] and Gardner’s survey [27]. It is well-known that (1.1)
provides a direct route to the classical isoperimetric inequality relating
surface area S and volume,(

S(K)

S(B)

)1/(n−1)

>

(
Vn(K)

Vn(B)

)1/n

, (1.2)

where B is the Euclidean unit ball. As equality holds in (1.1) if K and
L are homothetic, it can be equivalently stated in isoperimetric form
as follows:

Vn(K + L) > Vn(rKB + rLB), (1.3)
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where rK , rL denote the radii of Euclidean balls with the same volume
as K,L, respectively, i.e., rK = (Vn(K)/Vn(B))1/n; for subsequent
reference, with this notation, (1.2) reads

S(K) > S(rKB). (1.4)

Both (1.1) and (1.2) admit stronger empirical versions associated
with random convex sets. Specifically, let x1, . . . , xN be indepen-
dent random vectors (on some probability space (Ω,F ,P)) distributed
according to the uniform density on a convex body K ⊆ Rn, say,
fK = 1

Vn(K)1K , i.e., P(xi ∈ A) =
∫
A
fK(x)dx for Borel sets A ⊆ Rn.

For each such K and N > n, we associate a random polytope

KN = conv{x1, . . . , xN},

where conv denotes convex hull. Then the following stochastic domi-
nance holds for the random polytopesKN1

, LN2
and (rKB)N1

, (rLB)N2

associated with the bodies in (1.3): for all α > 0,

P (Vn(KN1
+ LN2

) > α) > P (Vn((rKB)N1
+ (rLB)N2

) > α) . (1.5)

Integrating in α gives

EVn(KN1
+ LN2

) > EVn((rKB)N1
+ (rLB)N2

),

where E denotes expectation. By the law of large numbers, when
N1, N2 →∞, the latter convex hulls converge to their ambient bodies
and this leads to (1.3). Thus (1.1) is a global inequality which can
be proved by a random approximation procedure in which stochastic
dominance holds at each stage; for a different stochastic form of (1.1),
see Vitale’s work [72]. For the classical isoperimetric inequality, one
has the following distributional inequality, for α > 0,

P (S(KN1) > α) > P (S((rKB)N1) > α) . (1.6)

The same integration and limiting procedure lead to (1.4). For fixed
N1 and N2, the sets in the extremizing probabilities on the right-hand
sides of (1.5) and (1.6) are not Euclidean balls, but rather sets that
one generates using Euclidean balls. In particular, the stochastic forms
are strictly stronger than the global inequalities (1.1) and (1.2).

The goal of this paper is to give an overview of related stochas-
tic forms of isoperimetric inequalities. Both (1.1) and (1.2) hold for
non-convex sets but we focus on stochastic dominance associated with
convex sets. The underlying randomness, however, will not be lim-
ited to uniform distributions on convex bodies but will involve con-
tinuous distributions on Rn. We will discuss a streamlined approach
that yields stochastic dominance in a variety of inequalities in convex

2



geometry and their applications. We pay particular attention to high-
dimensional probability distributions and associated structures, e.g.,
random convex sets and matrices. Many of the results we discuss are
from a series of papers [56], [57], along with D. Cordero-Erausquin,
M. Fradelizi [24], S. Dann [25] and G. Livshyts [44]. We also present
a few new results that fit in this framework and have not appeared
previously.

Inequalities for the volume of random convex hulls in stochastic
geometry have a rich history starting with Blaschke’s resolution of
Sylvester’s famous four-point problem in the plane (see, e.g., [61], [18],
[20], [28] for background and history). In particular, for planar con-
vex bodies Blaschke proved that the random triangle K3 (notation as
above) satisfies

EV2(∆3) > EV2(K3) > EV2((rKB2)3), (1.7)

where ∆ is a triangle in R2 with the same area as K and B2 is the unit
disk. Blaschke’s proof of the lower bound draws on Steiner symmetriza-
tion, which is the basis for many related extremal inequalities, see, e.g,.
[68], [28], [34]. More generally, shadow systems as put forth by Rogers
and Shephard [69], [63] and developed by Campi and Gronchi, among
others, play a fundamental role, e.g., [18], [21], [22], and will be defined
and discussed further below. Finding maximizers in (1.7) for n > 3 has
proved more difficult and is connected to the slicing problem, which
we will not discuss here (see [13] for background).

A seminal result building on the lower bound in (1.7) is Busemann’s
random simplex inequality [16], [17]: for a convex body K ⊆ Rn and
p > 1, the set Ko,n = conv{o, x1, . . . , xn} (xi’s as above) satisfies

EVn(Ko,n)p > EVn((rKB)o,n)p. (1.8)

This is a key ingredient in Busemann’s intersection inequality,∫
Sn−1

Vn−1(K ∩ θ⊥)ndσ(θ) ≤
∫
Sn−1

Vn−1((rKB) ∩ θ⊥)ndσ(θ), (1.9)

where Sn−1 is the unit sphere equipped with the Haar probability mea-
sure σ; (1.8) is also the basis for extending (1.9) to lower dimensional
secitons as proved by Busemann and Straus [17] and Grinberg [32].

Inextricably linked to Busemann’s random simplex inequality is
the Busemann-Petty centroid inequality, proved by Petty [59]. The
centroid body of a star body K ⊆ Rn is the convex body Z(K) with
support function given by

h(Z(K), y) =
1

Vn(K)

∫
K

|〈x, y〉| dx;
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(star bodies and support functions are defined in §2) and it satisfies

Vn(Z(K)) > Vn((rKB)).

The latter occupies a special role in the theory of affine isoperimetric
inequalities; see Lutwak’s survey [46].

One can view (1.8) as a result about convex hulls or about the ran-
dom parallelotope

∑n
i=1[−xi, xi] (since n!Vn(Ko,n) = |det[x1, . . . , xn]|).

Both viewpoints generalize: for convex hulls KN with N > n, this was
done by Groemer [33] and for Minkowski sums of N > n random line
segments by Bourgain, Meyer, Milman and Pajor [11]; these are stated
in §5, where we discuss various extensions for different functionals and
underlying randomness. These are the starting point for a systematic
study of many related quantities.

In particular, convex hulls and zonotopes are natural endpoint fam-
ilies of sets in Lp-Brunn-Minkowski theory and its recent extensions.
In the last twenty years, this area has seen significant developments.
Lp analogues of centroid bodies are important for affine isoperimetric
inequalities, e.g., [47], [48], [35] and are fundamental in concentration
of volume in convex bodies, e.g,. [41], [42]. The Lp-version of the
Busemann-Petty centroid inequality, due to Lutwak, Yang and Zhang
[47], concerns the convex body Zp(K) defined by its support function

hp(Zp(K), y) =
1

Vn(K)

∫
K

|〈x, y〉|p dx (1.10)

and states that
Vn(Zp(K)) > Vn(Zp(rKB)). (1.11)

A precursor to (1.11) is due to Lutwak and Zhang [52] who proved that
when K is origin-symmetric,

Vn(Zp(K)◦) 6 Vn(Zp(rKB)◦). (1.12)

When p → ∞, Zp(K) converges to Z∞(K) = K and (1.12) recovers
the classical Blaschke-Santaló inequality [65],

Vn(K◦) 6 Vn((rKB)◦). (1.13)

The latter holds more generally for non-symmetric bodies with an ap-
propriate choice of center. The analogue of (1.12) in the non-symmetric
case was proved by Haberl and Schuster [35], to which we refer for fur-
ther references and background on Lp-Brunn-Minkowski theory.

Inequalities (1.11) and (1.12) are fundamental inequalities in the
Lp Brunn-Minkowski theory. Recently, such inequalities have been
placed in a general framework involving Orlicz functions by Lutwak,
Yang, and Zhang, e.g., [49], [50] and a closely related concept, due
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to Gardner, Hug and Weil [30], [29], termed M -addition, which we
discuss in §5; for further extensions and background, see [10]. We treat
stochastic forms of fundamental related inequalities. For example, we
show that in (1.5) one can replace Minkowski addition by M -addition.
With the help of laws of large numbers, this leads to a streamlined
approach to many such inequalities.

The notion of M -addition fits perfectly with the random linear
operator point of view which we have used in our work on this topic
[56], [57]. For random vectors x1, . . . , xN , we form the n×N random
matrix [x1, . . . , xN ] and view it as a linear operator from RN to Rn. If
C ⊆ RN , then

[x1, . . . , xN ]C =

{
N∑
i=1

cixi : c = (ci) ∈ C

}
.

In particular, if C = conv{e1, . . . , eN}, where e1, . . . , eN is the standard
unit vector basis for RN , then

[x1, . . . , xN ]conv{e1, . . . , eN} = conv{x1, . . . , xN}.

Let BNp denote the closed unit ball in `Np . If C = BN1 , then

[x1, . . . , xN ]BN1 = conv{±x1, . . . ,±xN}.

If C = BN∞, then one obtains Minkowski sums,

[x1, . . . , xN ]BN∞ =

N∑
i=1

[−xi, xi].

We define the empirical analogue Zp,N (K) of the Lp-centroid body
Zp(K) by its (random) support function

hp(Zp,N (K), y) =
1

N

N∑
i=1

|〈xi, y〉|p , (1.14)

where x1, . . . , xN are independent random vectors with density 1
Vn(K)1K ;

this can be compared with (1.10); in the matrix notation Zp,N (K) =
N−1/p[x1, . . . , xN ]BNq , where 1/p + 1/q = 1. In this framework, we
will explain how uniform measures on Cartesian products of Euclidean
balls arise as extremizers for

P(φ([X1, . . . , XN ]C) > α) (1.15)

and
P(φ(([X1, . . . , XN ]C)◦) > α); (1.16)
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over the class of independent random vectors Xi with continuous dis-
tributions on Rn having bounded densities; here C ⊆ RN is a com-
pact convex set (sometimes with some additional symmetry assump-
tions) and φ an appropriate functional, e.g., volume, surface area, mean
width, diameter, among others. Since the random sets in the extrem-
izing probabilities are not typically balls but sets one generates using
balls, there is no clear cut path to reduce distributional inequalities
for (1.15) and (1.16) from one another via duality; for comparison,
note that the Lutwak-Yang-Zhang inequality for Lp centroid bodies
(1.11) implies the Lutwak-Zhang result for their polars (1.12) by the
Blaschke-Santaló inequality since the extremizers in each case are balls
(or ellipsoids).

The random operator approach allows one to interpolate between
inequalities for families of convex sets, but such inequalities in turn
yield information about random operators. For example, recall the
classical Bieberbach inequality on the diameter of a convex body K ⊆
Rn,

diam(K) > diam(rKB). (1.17)

A corresponding empirical form is given by

P(diam(KN ) > α) > P(diam((rKB)N ) > α). (1.18)

The latter identifies the extremizers of the distribution of certain op-
erators norms. Indeed, if K is an origin-symmetric convex body and
we set KN,s = conv{±x1, . . . ,±xN} (xi ∈ Rn) then (1.18) still holds
and we have the following for the `N1 → `n2 operator norm,

diam(KN,s) = 2
∥∥[x1, . . . , xN ] : `N1 → `n2

∥∥ .
We show in §6 that if X = [X1, . . . , XN ], where the Xi’s are indepen-
dent random vectors in Rn and have densities bounded by one, say,
then for any N -dimensional normed space E, the quantity

P (‖[X1, . . . , XN ] : E → `n2‖ > α)

is minimized when the columns Xi are distributed uniformly in the
Euclidean ball B̃ of volume one, centered at the origin. This can be
viewed as an operator analogue of the Bieberbach inequality (1.17).
When n = 1, X is simply a 1 × N row vector and the latter extends
to semi-norms. Thus if F is a subspace of Rn, we get the following for
random vectors x ∈ RN with independent coordinates with densities
bounded by one: the probability

P(‖PFx‖2 > α) (1.19)

is minimized when x is sampled in the unit cube [−1/2, 1/2]N - prod-
ucts of “balls” in one dimension (here ‖·‖2 is the Euclidean norm and
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PF is the orthogonal projection onto F ). Combining (1.19) with a
seminal result by Ball [3] on maximal volume sections of the cube, we
obtain a new proof of a result of Rudelson and Vershynin [64] (which
differs also from the proof in [44], our joint work G. Livshyts) on small
ball probabilities of marginal densities of product measures; this is
explained in §6.

As mentioned above, Busemann’s original motivation for proving
the random simplex inequality (1.8) was to bound suitable averages
of volumes of central hyperplane sections of convex bodies (1.9). If
Vn(K) = 1 and θ ∈ Sn−1 then Vn−1(K∩θ⊥) is the value of the marginal
density of 1K on [θ] = span{θ} evaluated at 0, i.e. π[θ](1K)(0) =∫
θ⊥
1K(x)dx. Thus it is natural that marginal distributions of proba-

bility measures arise in this setting. One reason for placing Busemann-
type inequalities in a probabilistic framework is that they lead to
bounds for marginal distributions of random vectors not necessarily
having independent coordinates, as in our joint work with S. Dann
[25], which we discuss further in §5.

Lastly, we comment on some of the tools used to prove such in-
equalities. We make essential use of rearrangement inequalities such
as that of Rogers [62], Brascamp, Lieb and Luttinger [12] and Christ
[23]. These interface particularly well with Steiner symmetrization and
shadow systems and other machinery from convex geometry. Another
key ingredient is an inequality of Kanter [38] on stochastic dominance.
In fact, we formulate the Rogers/Brascamp-Lieb-Luttinger inequality
in terms of stochastic dominance using the notion of peaked measures
as studied by Kanter [38] and Barthe [5], [6], among others. One can ac-
tually prove (1.19) directly using the Rogers/Brascamp-Lieb-Luttinger
inequality and Kanter’s theorem but we will show how these ingredi-
ents apply in a general framework for a variety of functionals. Similar
techniques are used in proving analytic inequalities, e.g., for k-plane
transform by Christ [23] and Baernstein and Loss [2]. Our focus is on
phenomena in convex geometry and probability.

The paper is organized as follows. We start with definitions and
background in §2. In §3, we discuss the rearrangement inequality of
Rogers/Brascamp-Lieb-Luttinger and interpret it as a result about
stochastic dominance for certain types of functions with a concav-
ity property, called Steiner concavity, following Christ. In §4, we
present examples of Steiner concave functions. In §5, we present gen-
eral randomized inequalities. We conclude with applications to opera-
tors norms of random matrices and small deviations in §6.
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2 Preliminaries

We work in Euclidean space Rn with the canonical inner-product 〈·, ·〉
and Euclidean norm ‖·‖2. As above, the unit Euclidean ball in Rn is
B = Bn2 and its volume is ωn := |Bn2 |; Sn−1 is the unit sphere, equipped
with the Haar probability measure σ. Let Gn,k be the Grassmannian
manifold of k-dimensional linear subspaces of Rn equipped with the
Haar probability measure νn,k.

A convex body K ⊆ Rn is a compact, convex set with non-empty
interior. The set of all compact convex sets in Rn is denoted by Kn.
For a convex body K we write K̃ for the homothet of K of volume

one; in particular, B̃ = ω
−1/n
n B. Let Kn◦ denote the class of all convex

bodies that contain the origin in their interior. For K,L ∈ Kn, the
Minkowski sum K + L is the set {x + y : x ∈ K, y ∈ L}; for α > 0,
αK = {αx : x ∈ K}. We say that K is origin-symmetric (or simply
’symmetric’), if −x ∈ K whenever x ∈ K. For K ∈ Kn, the support
function of K is given by

hK(x) = sup{〈y, x〉 : y ∈ K} (x ∈ Rn).

The mean width of K is

w(K) =

∫
Sn−1

hK(θ) + hK(−θ)dσ(θ) = 2

∫
Sn−1

hK(θ)dσ(θ).

Recall that the intrinsic volumes V1, . . . , Vn are functionals on con-
vex bodies which can be defined via the Steiner formula: for any convex
body K ⊆ Rn and ε > 0,

Vn(K + εB) =

n∑
j=0

ωn−jVj(K)εn−j ;

here V0 ≡ 1, V1 is a multiple of the mean width, 2Vn−1 is the surface
area and Vn is the volume; see [68].

For compact sets C1, C2 in Rn, we let δH(C1, C2) denote the Haus-
dorff distance:

δH(C1, C2) = inf{ε > 0 : C1 ⊆ C2 + εB,C2 ⊆ C1 + εB}
= sup

θ∈Sn−1

|hK(θ)− hL(θ)| .

A set K ⊆ Rn is star-shaped if it is compact, contains the origin
in its interior and for every x ∈ K and λ ∈ [0, 1] we have λx ∈ K. We
call K a star-body if its radial function

ρK(θ) = sup{t > 0 : tθ ∈ K} (θ ∈ Sn−1)
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is positive and continuous. Any positive continuous function f : Sn−1 →
R determines a star body with radial function f .

Following Borell [8], [9], we say that a non-negative, non-identically
zero, function ψ is γ-concave if: (i) for γ > 0, φγ is concave on {ψ > 0},
(ii) for γ = 0, logψ is concave on {ψ > 0}; (iii) for γ < 0, ψγ is convex
on {ψ > 0}. Let s ∈ [−∞, 1]. A Borel measure µ on Rn is called
s-concave if

µ ((1− λ)A+ λB) > ((1− λ)µ(A)s + λµ(B)s)
1
s

for all compact sets A,B ⊆ Rn such that µ(A)µ(B) > 0. For s = 0,
one says that µ is log-concave and the inequality reads as

µ ((1− λ)A+ λB) > µ(A)1−λµ(B)λ.

Also, for s = −∞, the measure is called convex and the inequality is
replaced by

µ ((1− λ)A+ λB) > min{µ(A), µ(B)}.

An s-concave measure µ is always supported on some convex subset
of an affine subspace E where it has a density. If µ is a measure on Rn
absolutely continuous with respect to Lebesgue measure with density
ψ, then it is s-concave if and only if its density ψ is γ-concave with
γ = s

1−sn (see [8], [9]).
Let A be a Borel subset of Rn with finite Lebesgue measure. The

symmetric rearrangement A∗ of A is the open ball with center at the
origin, whose volume is equal to the measure of A. Since we choose
A∗ to be open, 1∗A is lower semicontinuous. The symmetric decreasing
rearrangement of 1A is defined by 1∗A = 1A∗ . We consider Borel mea-
surable functions f : Rn → R+ which satisfy the following condition:
for every t > 0, the set {x ∈ Rn : f(x) > t} has finite Lebesgue mea-
sure. In this case, we say that f vanishes at infinity. For such f , the
symmetric decreasing rearrangement f∗ is defined by

f∗(x) =

∫ ∞
0

1{f>t}(x)dt =

∫ ∞
0

1{f>t}∗(x)dt.

The latter should be compared with the “layer-cake representation” of
f :

f(x) =

∫ ∞
0

1{f>t}(x)dt. (2.1)

see [43, Theorem 1.13]. Note that the function f∗ is radially-symmetric,
decreasing and equimeasurable with f , i.e., {f > a} and {f∗ > a} have
the same volume for each a > 0. By equimeasurability one has that
‖f‖p = ‖f∗‖p for each 1 6 p 6 ∞, where ‖ · ‖p denote the Lp(Rn)-
norm.
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Let f : Rn → R+ be a measurable function vanishing at infinity.
For θ ∈ Sn−1, we fix a coordinate system that e1 := θ. The Steiner
symmetral f(·|θ) of f with respect to θ⊥ := {y ∈ Rn : 〈y, θ〉 = 0}
is defined as follows: for z := (x2, . . . , xn) ∈ θ⊥, we set fz,θ(t) =
f(t, x2, . . . , xn) and define f∗(t, x2, . . . , xn|θ) := (fz,θ)

∗(t). In other
words, we obtain f∗(·|θ) by rearranging f along every line parallel to
θ. We will use the following fact, proved in [4]: If g : Rn → R+ is an
integrable function with compact support, there exists a sequence of
functions gk, where g0 = g and gk+1 = g∗k(·|θk), for some θk ∈ Sn−1,
such that limk→∞ ‖gk − g∗‖1 = 0. We refer the reader to the books
[43], [71] or the introductory notes [14] for further background material
on rearrangements of functions.

3 Inequalities for stochastic dominance

We start with a seminal inequality now known as the Rogers/Brascamp-
Lieb-Luttinger inequality. It was observed by Madiman and Wang in
[73] that Rogers proved the inequality in [62] but it is widely known
as the Brascamp-Lieb-Luttinger inequality [12]. We will state it only
for integrable functions since this is the focus in our paper.

Theorem 3.1. Let f1, . . . , fM be non-negative integrable functions on
R and u1, . . . , uM ∈ RN . Then∫

RN

M∏
i=1

fi(〈x, ui〉)dx 6
∫
RN

M∏
i=1

f∗i (〈x, ui〉)dx. (3.1)

We will write the above inequality in an equivalent form using the
notion of peaked measures. The ideas behind this definition can be
tracked back to Anderson [1] and Kanter [38], among others, but here
we follow the terminology and notation of Barthe in [5], [6]. Let µ1, µ2

be finite Radon measures on Rn with µ1(Rn) = µ2(Rn). We say that
µ1 is more peaked than µ2 (and we write µ1 � µ2 or µ2 ≺ µ1) if

µ1(K) > µ2(K) (3.2)

for all symmetric convex bodies K in Rn. If X1, X2 are random vectors
in Rn with distributions µ1 and µ2, respectively, we write X1 � X2 if
µ1 � µ2. Let f1, f2 two non-negative integrable functions on Rn with∫
f1 =

∫
f2. We write f1 � f2 if the measures µi with densities fi

satisfy µ1 � µ2. It follows immediately from the definition that the
relation � is transitive. Moreover if µi � νi and ti > 0, 1 6 i 6 N
then

∑
i tiµi �

∑
i tiνi. Another consequence of the definition is that

if µ � ν and E is an k-dimensional subspace then the marginal of
µ on E, i.e. µ ◦ P−1E , is more peaked than the marginal of ν on E.
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To see this, take any symmetric convex body K in E and consider
the infinite cylinder C := K × E⊥ ⊆ Rn. It is enough to check that
µ(C) > ν(C), and this is satisfied since C can be approximated from
inside by symmetric convex bodies in Rn. More generally, if µ � ν
then for every linear map T , we have

µ ◦ T � ν ◦ T, (3.3)

where µ ◦ T is the pushforward measure of µ through the map T .
Recall that F : Rn → R is quasi-concave (quasi-convex) if for all s

the set {x : F (x) > α} ({x : F (x) 6 s}) is convex.

Lemma 3.2. Let µ1, µ2 be Radon measures on Rn and assume that
µ1 � µ2. Then ∫

Rn
F (x)dµ1(x) >

∫
Rn
F (x)dµ2(x) (3.4)

for all even non-negative quasi-concave functions F . In fact, the above
statement is an equivalent formulation of the statement µ1 � µ2.

Proof. Assume first that F is even and quasi concave. Then by the
layer-cake representation and Fubini’s theorem we have that∫

Rn
F (x)dµ1(x) =

∫ ∞
0

∫
{x:F (x)>s}

dµ1(x)ds >

∫ ∞
0

∫
{x:F (x)>s}

dµ2(x)ds =

∫
Rn
F (x)dµ1(x).

Note that if K is a symmetric convex body then F := 1K is even and
quasi-concave and (3.4) becomes µ1(K) > µ2(K). So (3.4) implies
that µ1 � µ2.

We are now able to state the following equivalent formulation of
the Rogers/Brascamp-Lieb-Luttinger inequality:

Proposition 3.3. Let f1, . . . , fN be non-negative integrable functions
on R. Then

N∏
i=1

fi ≺
N∏
i=1

f∗i . (3.5)

Let us explain why Theorem 3.1 implies Proposoition 3.3. Note first
that without loss of generality we can replace the assumption “inte-
grable” with “having integral 1.” Let K be a symmetric convex body
in RN . Then it can be approximated by intersections of symmetric
slabs of the form

Km :=

m⋂
i=1

{x ∈ RN : |〈x, ui〉| 6 1}
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for suitable u1, . . . , um ∈ RN . Note that 1Km =
∏m
i=1 1[−1,1](〈·, ui〉).

Apply (3.1) with M = m + N and um+i := ei, i = 1, . . . , N . Then
(since 1Km → 1K in L1), we get that∫

K

N∏
i=1

fi(xi)dx 6
∫
K

N∏
i=1

f∗i (xi)dx. (3.6)

Since K is an arbitrary symmetric convex body in RN , we get (3.5).
The latter is an extension of a theorem of Anderson [1] and it is the
basis of Christ’s extension of the Rogers/Brascamp-Lieb-Luttinger in-
equality [23]; see also the thesis of Pfiefer [60] and work of Baernstein
and Loss [2].

In the other direction, consider non-negative integrable functions
f1, . . . , fm and let u1, . . . , um be vectors in RN . Write F (x) :=

∏m
i=1 fi(xi)

and F∗(x) :=
∏m
i=1 f

∗
i (xi). Let T be the m × N matrix with rows

u1, . . . , um. Note that (3.5) implies that F ≺ F∗. By (3.3) we also
have that F ◦ T ≺ F∗ ◦ T so that for any symmetric convex body
K ⊆ RN ,

∫
K
F ◦ T (x)dx ≤

∫
K
F∗ ◦ T (x)dx, hence∫

RN

m∏
i=1

fi(〈x, ui〉)dx 6
∫
RN

m∏
i=1

f∗i (〈x, ui〉)dx

which is (3.1).

Actually we will use the Rogers/Brascamp-Lieb-Luttinger inequal-
ity in the following form.

Corollary 3.4. Let f1, . . . , fm be non-negative integrable functions on
R. Let u1, . . . , um be non-zero vectors in RN and let F1, . . . , FM be
non-negative, even, quasi-concave functions on RN . Then∫

RN

M∏
j=1

Fj(x)

m∏
i=1

fi(〈x, ui〉)dx 6
∫
RN

M∏
j=1

Fj(x)

m∏
i=1

f∗i (〈x, ui〉)dx.

(3.7)
Also, if F is a non-negative, even, quasi-convex function on RN , we
have ∫

RN
F (x)

N∏
i=1

fi(xi)dx >
∫
RN

F (x)

m∏
i=1

f∗i (xi)dx. (3.8)

Proof. (Sketch). Note that
∏M
j=1 Fj(x) is again quasi-concave and

even. So (3.7) follows from Proposition 3.3 and Lemma 3.2.
For the proof of (3.8) first notice that it is enough to prove in the

case that
∫
R fi(t)dt = 1, 1 6 i 6 N . Recall that for every t > 0,

{F 6 t} is convex and symmetric. Thus using Proposition 3.3 and
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Lemma 3.2, we have that∫
RN

F (x)

N∏
i=1

fi(xi)dx

=

∫
RN

(∫ ∞
0

1{F>t}(x)dt

) N∏
i=1

fi(xi)dx

=

∫ ∞
0

∫
RN

(1− 1{F6t})

N∏
i=1

fi(xi)dxdt

=

∫ ∞
0

(∫
RN

N∏
i=1

f∗i (xi)dx−
∫
RN

1{F6t})

N∏
i=1

fi(xi)dx

)
dt

>
∫ ∞
0

(∫
RN

N∏
i=1

f∗i (xi)dx−
∫
RN

1{F6t})

N∏
i=1

f∗i (xi)dx

)
dt

=

∫
RN

F (x)

N∏
i=1

f∗i (xi)dx.

We say that a function f on Rn is unimodal if it is the increasing
limit of a sequence of functions of the form,

m∑
i=1

ti1Ki ,

where ti > 0 and Ki are symmetric convex bodies in Rn. Even quasi-
concave functions are unimodal and every even and non-increasing
function on R+ is unimodal. In particular, for every integrable f :
Rn → R+, f∗ is unimodal. We will use the following lemma, which is
essentially the bathtub principle (e.g., [43]).

Lemma 3.5. Let f : Rn → R+ be an integrable function.

1. If g : R+ → [0, 1] is a measurable function and β :=
∫∞
0
f(t)tn−1dt <

∞ and φ : R+ → R+ is a non-decreasing function, then∫ ∞
0

φ(t)f(t)tn−1dt >
∫ ∞
0

φ(t)h(t)tn−1dt, (3.9)

where h := 1
[0,(nβ)

1
n ]

. If φ is non-increasing then the inequality

in (3.9) is reversed.

2. If n = 1, ‖f‖1 = 1, ‖f‖∞ 6 1 and f is even, then f∗ ≺ 1[− 1
2 ,

1
2 ]

.

3. If f is rotationally invariant, ‖f‖1 = 1, and ‖f‖∞ 6 1, then for
every star-shaped set K ⊆ Rn,

∫
K
f(x)dx 6

∫
K

1B̃(x)dx.

13



4. If ‖f‖1 = 1, ‖f‖∞ 6 1, then f∗ ≺ 1B̃.

Proof. The proof of the first claim is standard, see e.g. [56, Lemma
3.5]. The second claim follows from the first, by choosing n = 1, β = 1

2
and φ := 1[0,a], a > 0. The third claim follows by applying (3.9) after
writing the desired inequality in polar coordinates. The last claim
follows immediately from the third.

A fundamental result on peaked measures is the following result of
Kanter [38]

Theorem 3.6. Let f1, f2 be functions on Rn1 such that f1 � f2 and
f a unimodal function on Rn2 . Then

ff1 � ff2. (3.10)

In particular, if fi, gi are unimodal functions on Rni , 1 6 i 6 M and
fi � gi for all i, then

M∏
i=1

fi �
M∏
i

gi. (3.11)

Proof. (Sketch) Without loss of generality, assume
∫
f1 =

∫
f2 =∫

f = 1. Consider first the case where f := 1L for some symmet-
ric convex body L in Rn2 . Let K be a symmetric convex body in
Rn1 ×Rn2 . The Prékopa-Leindler inequality implies that the symmet-
ric function

F (x) :=

∫
Rn2

1K(x, y)1L(y)dy

is log-concave. So, using Lemma 3.2, we have that∫
Rn1

∫
Rn2

1K(x, y)f1(x)f(y)dxdy =

∫
Rn1

F (x)f1(x)dx >

∫
Rn1

F (x)f2(x)dx =

∫
Rn1

∫
Rn2

1K(x, y)f2(x)f(y)dxdy.

Again, by Lemma 3.2, we have that ff1 � ff2. The general case
follows easily.

Theorem 3.6 and Lemma 3.5 immediately imply the following corol-
lary.

Corollary 3.7. Let f1, . . . , fm : Rn → R+ be probability densities of
continuous distributions such that maxi6M ‖fi‖∞ 6 1. If n = 1, then

m∏
i=1

f∗i ≺ 1Qm (3.12)
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where Qm is the m-dimensional cube of volume 1 centered at 0. In the
general case we have that

m∏
i=1

f∗i ≺
m∏
i=1

1B̃ . (3.13)

3.1 Multidimensional case

Let f be a non-negative function on Rn, θ ∈ Sn−1 and z ∈ θ⊥. We
write fz,θ(t) := fz(θ) := f(z + tθ). Let G be a non-negative function
on the N -fold product Rn × . . . × Rn. Let θ ∈ Sn−1 and let Y :=
{y1, . . . , yN} ⊆ θ⊥ := {y ∈ Rn : 〈y, θ〉 = 0}. We define a function
GY : RN → R+ as

GY,θ(t1, . . . , tN ) := G(y1 + t1θ, . . . , yN + tNθ).

We say that G : Rn×. . .×Rn → R+ is Steiner concave if for every θ and
Y ⊆ θ⊥ we have that GY,θ is even and quasi-concave. For example, if
N = n, then negative powers of the absolute value of the determinant of
an n× n matrix are Steiner concave since the determinant is a multi-
linear function of its columns (or rows). Our results depend on the
following generalization of the Rogers and Brascamp-Lieb-Luttinger
inequality due to Christ [23] (our terminology differs slightly from [23]).

Theorem 3.8. Let f1, . . . , fN be non-negative integrable functions on
Rn, A an ` × N matrix. Let F (j) : Rn × . . . × Rn be Steiner con-
cave functions 1 6 j 6 M and let µ be a measure with a rotationally
invariant quasi-concave density in Rn. Then∫

Rn
. . .

∫
Rn

M∏
`=1

F (`)(x1, . . . , x`)

N∏
i=1

fi

∑̀
j=1

aijxj

 dµ(x`) . . . dµ(x1) 6

∫
Rn
. . .

∫
Rn

M∏
`=1

F (`)(x1, . . . , x`)

N∏
i=1

f∗i

∑̀
j=1

aijxj

 dµ(x`) . . . dµ(x1).

(3.14)

Proof. (Sketch) Note that the case n = 1, (3.14) is just (3.7). We
consider the case n > 1. Let ui ∈ R` be the rows of the matrix A. Fix
a direction θ ∈ Sn−1 and let y1, . . . , y` ∈ θ⊥ the (unique) vectors such
that xj = yj + tjθ. Consider the function

hi(〈ui, t〉) := fi

∑̀
j=1

aij(yj + tjθ)

 , 1 6 i 6 N.
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We defined the Steiner symmetral f∗i (·|θ) = h∗i in the direction θ in
§2. Then by Fubini’s theorem we write each integral as an integral
on θ⊥ and [θ] = span{θ}, for each fixed y1, . . . , y` we apply (3.7) for

the functions hi and the quasi-concave functions F
(`)
Y,θ. (Recall the

definition of Steiner concavity). Using Fubini’s theorem again, we have
proved that

∫
Rn
. . .

∫
Rn

M∏
`=1

F (`)(x1, . . . , x`)

N∏
i=1

fi

∑̀
j=1

aijxj

 dµ(x`) . . . dµ(x1) 6

∫
Rn
. . .

∫
Rn

M∏
`=1

F (`)(x1, . . . , x`)
N∏
i=1

f∗i

∑̀
j=1

aijxj |θ

 dµ(x`) . . . dµ(x1).

(3.15)
In [12] it has been proved that the function f∗ can be approximated
(in the L1 metric) by a suitable sequence of Steiner symmetrizations.
This leads to (3.14).

Let F be a Steiner concave function. Notice that the function
F̃ := 1{F>α} is also Steiner concave. Indeed, if θ ∈ Sn−1 and Y ⊆ θ⊥

and notice that F̃Y,θ(t) = 1 if and only if FY,θ(t) > α. Since F is

Steiner concave, F̃Y,θ is the indicator function of a symmetric convex

set. So F̃ is also Steiner concave. Thus we have the following corollary.

Corollary 3.9. Let F : Rn × . . . × Rn be a Steiner concave function
and let fi : Rn → R+ be non-negative functions with ‖fi‖1 = 1 for
1 6 i 6 N . Let ν be the (product) probability measure defined on
Rn × . . .×Rn with density

∏
i fi and let ν∗ have density

∏
i f
∗
i . Then

for each α > 0,

ν ({F (x1, . . . , xN ) > α}) 6 ν∗ ({F (x1, . . . , xN ) > α}) . (3.16)

Moreover if G : Rn × . . .× Rn is a Steiner convex function, then

ν ({F (x1, . . . , xN ) > α}) > ν∗ ({F (x1, . . . , xN ) > α}) . (3.17)

Proof. We apply (3.14) for µ the Lebesgue measure ` = N , A the
identity matrix, M = 1 and for the function F̃ (as defined above).
This proves (3.16). Working with the function 1− F̃ as in the proof of
(3.8) we get (3.17).

3.2 Cartesian products of balls as extremizers

In the last section, we discussed how in the presence of Steiner con-
cavity, one can replace densities by their symmetric decreasing rear-
rangements. Among products of bounded, radial, decreasing densities,
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the uniform measure on Cartesian products of balls arises in extremal
inequalities under several conditions and we discuss two of them in this
section.

We will say that a function F : Rn × . . .×Rn → R+ is coordinate-
wise decreasing if for any x1, . . . , xN ∈ Rn, and 0 6 si 6 ti, 1 6 i 6 N ,

F (s1x1, . . . , sNxN ) > F (t1x1, . . . , tNxN ). (3.18)

The next proposition can be proved by using Fubini’s theorem it-
eratively and Lemma 3.5 (as in [24]).

Proposition 3.10. Let F : Rn × . . .×Rn → R+ be a function that is
coordinate-wise decreasing. If g1, . . . , gN : Rn → R+ are rotationally
invariant densities with maxi6N ‖gi‖∞ 6 1, then∫

Rn
. . .

∫
Rn
F (x1, . . . , xN )

N∏
i=1

gi(xi)dxN . . . dx1 (3.19)

6
∫
Rn
. . .

∫
Rn
F (x1, . . . , xN )

N∏
i=1

1B̃(xi)dxN . . . dx1. (3.20)

Using Corollary 3.7, we get the following.

Proposition 3.11. Let F : Rn × . . .×Rn → R+ be a function that is
quasi-concave and even. Assume that g1, . . . , gN are each less peaked
than 1B̃. Then

∫
Rn
· · ·
∫
Rn
F (x1, . . . , xN )

N∏
i=1

gi(xi)dxN . . . dx1 (3.21)

6
∫
Rn
. . .

∫
Rn
F (x1, . . . , xN )

N∏
i=1

1B̃(xi)dxN . . . dx1. (3.22)

4 Examples of Steiner concave and convex
functions

As discussed in the previous section, the presence of Steiner concav-
ity (or convexity) allows one to prove extremal inequalities when the
extremizers are rotationally invariant. The requisite Steiner concavity
is present for many functionals associated with random structures. As
we will see, in many important cases, verifying the Steiner concavity
condition is not a routine matter but rather depends on fundamental
inequalities in convex geometry. In this section we give several non-
trivial examples of Steiner concave (or Steiner convex) functions and
we describe the variety of tools that are involved.
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4.1 Shadow systems and mixed volumes

Shadow systems were defined by Shephard [70] and developed by Rogers
and Shephard [63], and Campi and Gronchi, among others; see, e.g.,
[18], [20], [19], [21], [66]. Let C be a closed convex set in Rn+1. Let
(e1, . . . , en+1) be an orthonormal basis of Rn+1 and write Rn+1 =
Rn ⊕ Ren+1 so that Rn = e⊥n+1 . Let θ ∈ Sn−1. For t ∈ R let Pt be
the projection onto Rn parallel to en+1 − tθ: for x ∈ Rn and s ∈ R,

Pt(x+ sen+1) = x+ tsθ.

Set Kt = PtC ⊆ Rn. Then the family (Kt) is a shadow system of
convex sets, where t varies in an interval on the real line. Shephard
[69] proved that for each 1 6 j 6 n,

[0, 1] 3 t 7→ Vj(PtC)

is a convex function; see work of Campi and Gronchi, e.g., [22], [19]
for further background and references. Here we consider the following
N -parameter variation, which can be reduced to the one-parameter
case.

Proposition 4.1. Let n,N be postive integers and C be a compact
convex set in Rn × RN . Let θ ∈ Sn−1 ⊆ Rn. For t ∈ RN and (x, y) ∈
Rn × RN , we define Pt(x, y) = x+ 〈y, t〉θ. Then

RN 3 t 7→ Vj(PtC)

is a convex function.

Proof. (Sketch) Fix s and t in RN . It is sufficient to show that

[0, 1] 3 λ 7→ Vj(Ps+λ(t−s)C)

is convex. Note that λ 7→ Ps+λ(s−t)C is a one-parameter shadow sys-
tem and we can apply Shephard’s result above; for an alternate argu-
ment, following Groemer [33], see [56].

Corollary 4.2. Let C be a compact convex set in RN . Then

(Rn)N 3 (x1, . . . , xN ) 7→ Vj([x1, . . . , xN ]C)

is Steiner convex on RN . Moreover, if C is 1-unconditional then the
latter function is coordinate-wise increasing analogous to definition
(3.18). In particular,

(Rn)N 3 (x1, . . . , xN ) 7→ Vj([x1, . . . , xN ]C) (4.1)

is Steiner convex and coordinate-wise increasing.
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Proof. Let θ ∈ Sn−1 and yi ∈ θ⊥ for i = 1, . . . , N . Write xi = yi + tiθ.
Let C = [y1 + en+1, . . . , yN + en+N ]C. Then C is a compact convex
set in Rn × RN which is symmetric with respect to θ⊥ in Rn+N since
[y1 + en+1, . . . , yN + en+N ]C ⊆ θ⊥. Let Pt : Rn×RN → Rn be defined
as in Proposition 4.1. Then

Pt([y1 + en+1, . . . , yN + en+N ]C = [y1 + t1θ, . . . , yN + tNθ]C.

We apply the previous proposition to obtain the convexity claim. Now
for each θ ∈ Sn−1 and y1, . . . , yN ∈ θ⊥, the sets [y1 + t1θ, . . . , yN +
tNθ]C and [y1 − t1θ, . . . , yN − tNθ]C reflections of one another and so
the evenness condition holds as well. The coordinate-wise monotonicity
holds since one has the following inclusion when C is 1-unconditional:
for 0 6 si 6 ti,

[s1x1, . . . , sNxN ]C ⊆ [t1x1, . . . , tNxN ]C.

4.2 Dual setting

Here we discuss the following dual setting involving the polar dual
of a shadow system. Rather than looking at projections of a fixed
higher-dimensional convex set as in the previous section, this involves
intersections with subspaces. We will invoke a fundamental inequality
concerning sections of symmetric convex sets, known as Busemann’s
inequality [15]. This leads to a randomized version of an extension of
the Blaschke-Santaló inequality to the class of convex measures (de-
fined in §2). For this reason we will need the following extension of
Busemann’s inequality to convex measures from our joint work with
D. Coredero-Erausquin and M. Fradelizi [24]; this builds on work by
Ball [4], Bobkov [7], Kim, Yaskin and Zvavitch [39]).

Theorem 4.3. (Busemann Theorem for convex measures). Let ν be
a convex measure with even density ψ ∈ Rn. Then the function Φ
defined on Rn by Φ(0) = 0 and for z 6= 0,

Φ(z) =
‖z‖2∫

z⊥
ψ(x)dx

is a norm.

The latter inequality is the key to the following theorem from [24]
which extends the result of Campi-Gronchi [21] to the setting of convex
measures; the approach taken in [21] was the starting point for our work
in this direction.
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Proposition 4.4. Let ν be a measure on Rn with a density ψ which
is even and γ-concave on Rn for some γ > − 1

n+1 . Let (Kt) := PtC be
an N -parameter shadow system of origin symmetric convex sets with
respect to an origin symmetric body C ⊆ Rn ×RN . Then the function
RN 37→ t→ ν(K◦t )−1 is convex.

This result and the assumption on the symmetries of C and ν, leads
to the following corollary. The proof is similar to that given in [24].

Corollary 4.5. Let r > 0, C be an origin-symmetric convex set in RN .
Let ν be a radial measure on Rn with a density ψ which is −1/(n+ 1)-
concave on Rn. Then the function

G(x1, . . . , xN ) = ν(([x1 . . . xN ]C + rBN2 )◦)

is Steiner concave. Moreover if C is 1-unconditional then the function
G is coordinate-wise decreasing.

Remark. The present setting is limited to origin-symmetric convex
bodies. The argument of Campi and Gronchi [21] leading to the
Blaschke-Santaló inequality has been extended to the non-symmetric
case by Meyer and Reisner in [54]. It would be interesting to see an
asymmetric version for random sets as it would give an empirical form
of the Blaschke-Santaló inequality and related inequalities, e.g,. [35]
in the asymmetric case.

4.3 Minkowski addition and extensions

In this section, we recall several variations of Minkowski addition that
are the basis of Lp-Brunn-Minkowski theory and its extensions. Lp-
addition as originally defined by Firey [26] of convex sets K and L with
the origin in their interior is given by

hpK+pL
(x) = hpK(x) + hpL(x).

The Lp-Brunn-Minkowski inequality of Firey states that

Vn(K +p L)1/n > Vn(K)1/n + Vn(L)1/n. (4.2)

A more recent pointwise definition that applies to compact sets K and
L is due to Lutwak, Yang and Zhang [51]

K +p L = {(1− t)1/q + t1/qy : x ∈ K, y ∈ L, 0 6 t 6 1}; (4.3)

they proved that with the latter definition (4.2) extends to compact
sets.

A general framework incorporating the latter as well as more gen-
eral notions in the Orlicz setting initiated by Lutwak, Yang and Zhang
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[49], [50], was studied by Gardner, Hug and Weil [30], [29]. LetM be an
arbitrary subset of Rm and define theM -combination⊕M (K1, . . . ,Km)
of arbitrary sets K1, . . . ,Km in Rn by

⊕M (K1, . . . ,Km) =

{
m∑
i=1

aix
(i) : x(i) ∈ Ki, (a1, . . . , am) ∈M

}
=

⋃
(ai)∈M

(a1K
1 + . . .+ amK

m).

Gardner, Hug, and Weil [30] develop a general framework for addi-
tion operations on convex sets which model important features of the
Orlicz-Brunn-Minkowski theory. The notion of M -addition is closely
related to linear images of convex sets in this paper. In particular,
if C = M and K1 = {x1}, . . . ,Km = {xm}, where x1, . . . , xm ∈ Rn,
then [x1, . . . , xm]C = ⊕M ({x1}, . . . , {xm}).

As a sample result we mention just the following from [30] (see
Theorem 6.1 and Corollary 6.4.

Theorem 4.6. Let M be a convex set in Rm, m > 2.

i. If M contained in the positive orthant and K1, . . . ,Km are convex
sets in Rn, then ⊕M (K1, . . . ,Km) is a convex set.

ii. If M is 1-unconditional and K1, . . . ,Km are origin-symmetric
convex sets, then ⊕M (K1, . . . ,Km) is an origin symmetric con-
vex set.

For several examples we mention the following:

(i) IfM = {(1, 1)} andK1 andK2 are convex sets, thenK1⊕MK2 =
K1 +K2, i.e., ⊕M is the usual Minkowski addition.

(ii) If M = BNq with 1/p + 1/q = 1, and K1 and K2 are origin
symmetric convex bodies, then K1⊕M K2 = K1 +pK

2, i.e., ⊕M
corresonds to Lp-addition as in (4.3).

(iii) There is a close connection between Orlicz addition as defined
in [49], [50] and M -addition, as shown in [29]. In fact, we define
Orlicz addition in terms of the latter as it interfaces well with our
operator approach. As an example, let ψ : [0,∞)2 → [0,∞) be
convex, increasing in each argument, and ψ(0, 0) = 0, ψ(1, 0) =
ψ(0, 1) = 1. Let K and L be origin-symmetric convex bodies and
let M = B◦ψ, where Bψ = {(t1, t2) ∈ [−1, 1]2 : ψ(|t1| , |t2|) 6 1}.
Then we define K +ψ L to be K ⊕M L.

Let N1, . . . , Nm be positive integers. For each i = 1, . . . ,m, con-
sider collections of vectors {xi1, . . . , xiNi} ⊆ Rn and let C1, . . . , Cm be
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convex sets with Ci ⊆ RNi . Then for any M ⊆ RN1+...+Nm ,

⊕M ([x11, . . . , x1N1
]C1, . . . , [xm1, . . . , xmNm ]Cm)

=


m∑
i=1

ai

 Ni∑
j=1

cijxij

 : (ai)i ∈M, (cij)j ∈ Ci


=


m∑
i=1

Ni∑
j=1

aicijxij : (ai)i ∈M, (cij)j ∈ Ci


= [x11, . . . , x1N1

, . . . , xm1, . . . , xmNm ](⊕M (C ′1, . . . , C
′
m)),

where C ′i is the natural embedding of Ci into RN1+...+Nm . Thus the M -
combination of families of sets of the form [xi1, . . . , xiNi ]Ci fits exactly
in the framework considered in this paper. In particular, the j-th
intrinsic volume of latter set is a Steiner convex function by Corollary
4.2.

For subsequent reference we note one special case of the preceding
identities. Let C1 = conv{e1, . . . , eN1

} and C2 = conv{e1, . . . , eN2
}.

Then we identify C1 with C ′1 = conv{e1, . . . , eN1
} in RN1+N2 and

C2 with C ′2 = conv{eN1+1, . . . , eN1+N2} ⊆ RN1+N2 . If x1, . . . , xN1 ,
xN1+1, . . . , xN1+N2 ∈ Rn, then

conv{x1, . . . , xN1} ⊕M conv{xN1+1, . . . , xN1+N2}
= [x1, . . . , xN1 ]C1 ⊕M [xN1+1, . . . , xN1+N2 ]C2

= [x1, . . . , xN1 , xN1+1, . . . , xN1+N2 ](C ′1 ⊕M C ′2).

This will be used in §5.

4.4 Unions and intersections of Euclidean balls

Here we consider Euclidean balls B(xi, R) = {x ∈ Rn : |x−xi| 6 r} of
a given radius r > 0 with centers with centers x1, . . . , xN ∈ Rn.

Theorem 4.7. For each 1 6 j 6 n, the function

(Rn)N 3 (x1, . . . , xN ) 7→ Vj

(
N⋂
i=1

B(xi, r)

)
(4.4)

is Steiner concave. Moreover, it is quasi-concave and even on (Rn)N .

Proof. Let F be the function in (4.4). Let u = (u1, . . . , uN ) ∈ (Rn)N

and v = (v1, . . . , vN ) ∈ (Rn)N belong to the support of F . One checks
the following inclusion,

N⋂
i=1

B

(
ui + vi

2
, ri

)
⊇ 1

2

N⋂
i=1

B(ui, ri) +
1

2

N⋂
i=1

B(vi, ri),
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and then applies the concavity of K 7→ Vj(K)1/j , which is a conse-
quence of the Alexandrov-Fenchel inequalities.

Remark. The latter theorem is also true when Vj is replaced by a func-
tion which is monotone with respect to inclusion, rotation-invariant
and quasi-concave with respect to Minkowski addition; see [58].

The latter can be compared with the following result for the convex
hull of unions of Euclidean balls.

Theorem 4.8. The function

(Rn)N 3 (x1, . . . , xN ) 7→ Vj

(
conv

(
N⋃
i=1

B(xi, r)

))
is Steiner convex.

Proof. Since

conv

(
N⋃
i=1

B(xi, r)

)
= conv{x1, . . . , xN}+B(0, r),

we can apply the same projection argument as in the proof of Corollary
4.2; see also work of Pfiefer [60] for a direct argument.

4.5 Operator norms

Steiner convexity is also present for operator norms from an arbitrary
normed space into `n2 .

Proposition 4.9. Let E be an N -dimensional normed space. For
x1, . . . , xN ∈ Rn, let X = [x1, . . . , xN ]. Then the operator norm

(Rn)N 3 X 7→ ‖X : E → `n2‖ (4.5)

is Steiner convex.

Proof. Denote the map in (4.5) by G. Then G is convex and hence
the restriction to any line is convex. In particular, if z ∈ Sn−1 and
y1, . . . , yN ∈ z⊥, then the function GY : RN → R+ defined by

GY (t1, . . . , tN ) = G(y1 + t1z1, . . . , yN + tNzN )

is convex. To show that GY is even, we use the fact that y1, . . . , yN ∈
z⊥ to get for any λ ∈ RN ,∥∥∥∑λi(yi + tiz)

∥∥∥2
2

=
∥∥∥∑λi(yi − tiz)

∥∥∥2
2
,

hence GY (t) = GY (−t).
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5 Stochastic forms of isoperimetric inequal-
ities

We now have all the tools to prove the randomized inequalities men-
tioned in the introduction and others. We will first prove two general
theorems on stochastic dominance and then show how these imply a
variety of randomized inequalities. At the end of the section, we discuss
some examples of a different flavor.

For the next two theorems, we assume we have the following se-
quences of independent random vectors defined on a common proba-

bility space (Ω,F ,P); recal that B̃ = ω
−1/n
n B.

1. X1, X2, . . ., sampled according to densities f1, f2, . . . on Rn, re-
spectively (which will be chosen accordingly to the functional
under consideration).

2. X∗1 , X
∗
2 , . . ., sampled according to f∗1 , f

∗
2 , . . ., respectively.

3. Z1, Z2 . . . sampled uniformly in B̃.

We use X to denote the n × N random matrix X = [X1 . . . XN ].
Similarly, X∗ = [X∗1 . . . X

∗
N ] Z = [Z1 . . . ZN ].

Theorem 5.1. Let C be a compact convex set in RN and 1 6 j 6 n.
Then for each α > 0,

P(Vj(XC) > α) > P(Vj(X
∗C) > α). (5.1)

Moreover, if C is 1-unconditional and ‖fi‖∞ 6 1 for i = 1, . . . , N ,
then for each α > 0,

P(Vj(XC) > α) > P(Vj(ZC) > α). (5.2)

Proof. By Corollary 4.2, we have Steiner convexity. Thus we may
apply Corollary 3.9 to obtain (5.1). If C is unconditional, then Propo-
sition 3.10 applies so we can conclude (5.2).

Theorem 5.2. Let C be an origin symmetric convex body in RN . Let
ν be a radial measure on Rn with a density ψ which is −1/(n + 1)-
concave on Rn. Then for each α > 0,

P(ν((XC)◦) > α) 6 P(ν(X∗C)◦ > α). (5.3)

Moreover, if C is 1-unconditional and ‖fi‖∞ 6 1 for i = 1, . . . , N ,
then for each α > 0,

P(ν((XC)◦) > α) 6 P(ν((ZC)◦) > α). (5.4)
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Proof. By Corollary 4.5, the function is Steiner concave. Thus we
may apply Corollary 3.9 to obtain (5.3). If C is unconditional, then
Proposition 3.10 applies so we can conclude (5.4).

We start by explicitly stating some of the results mentioned in the
introduction. We will first derive consequences for points sampled in
convex bodies or compact sets K ⊆ Rn. In this case, we have imme-
diate distributional inequalities as ( 1

Vn(K)1K)∗ = 1
Vn(rKB)1rKB , even

without the unconditionality assumption on C. The case of compact
sets deserves special mention for comparison to classical inequalities.

1. Busemann random simplex inequality. As mentioned the
Busemann random simplex inequality says that if K ⊆ Rn is a com-
pact set with Vn(K) > 0 and Ko,n = conv{o,X1, . . . , Xn}, where
X1, . . . , Xn are i.i.d. random vectors with density fi = 1

Vn(K)1K , then

for p > 1,
EVn(Ko,n)p > EVn((rKB)o,n)p. (5.5)

In our notation, X∗1 , . . . , X
∗
n have density 1

Vn(rKB)1rKB . For C =

conv{o, e1, . . . , en}, we have Kn,o = conv{o,X1, . . . , Xn}. Thus the
stochastic dominance of Theorem 5.1 implies (5.5) for all p > 0.

2. Groemer’s inequality for random polytopes. Let KN =
conv{X1, . . . , XN}, where the Xi’s are as in the previous example. An
inequality of Groemer [33] states that for p > 1,

EVn(KN )p > EVn((rKB)N )p; (5.6)

this was extended by Tsolomitis and Giannopoulos for p ∈ (0, 1) in
[31]. Let C = conv{e1, . . . , eN} so that KN = [X1, . . . , XN ]C and
(rKB)N = [X∗1 , . . . , X

∗
N ]C. Then (5.6) follows from Theorem 5.1.

3. Bourgain-Meyer-Milman-Pajor inequality for random zono-
topes. Let Z1,N (K) =

∑N
i=1[−Xi, Xi], with Xi as above. Bourgain,

Meyer, Milman, and Pajor [11] proved that for p > 0,

EVn(Z1,N (K))p > EVn(Z1,N (rKB))p (5.7)

With the notation of the previous examples, Z1,N (K) = [X1, . . . , XN ]BN∞.
Thus Theorem 5.1 implies (5.7).

4. Inequalities for intrinsic volumes. For completeness, we record
here how one obtains the stochastic form of the isoperimetric inequality
(1.6). In fact, we state a stochastic form of the following extended
isoperimetric inequality for convex bodies K ⊆ Rn: for 1 6 j 6 n,

Vj(K) > Vj(rKB). (5.8)
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The latter is a consequence of the Alexandrov-Fenchel inequalities, e.g.,
[68]. With KN as above, a stochastic form (5.8) is the following: for
α > 0,

P(Vj(KN ) > α) > P(Vj((rKB)N ) > α), (5.9)

which is immediate from Theorem 5.1. For expectations, results of this
type for intrinsic volumes were proved by Pfiefer [60] and Hartzoulaki
and the first named author [36].

For further information on the previous inequalities and others we
refer the reader to the paper of Campi and Gronchi [20] and the ref-
erences therein. We have singled out these four as particular exam-
ples of M -additions (defined in the previous section). For example, if
C = conv{e1, . . . , eN}, we have

KN = ⊕C({X1}, . . . , {XN}).

Similarly, for C = BN∞,

⊕C([−X1, X1], . . . , [−XN , XN ]).

One can also intertwine the above operations and others. For example,
if C = conv{e1, e1 + e2, e1 + e2 − e3}. Then

[X1, X2, X3]C = conv{X1, X1 +X2, X1 +X2 −X3}

and Theorem 5.1 applies to such sets as well. The randomized Brunn-
Minkowski inequality (1.5) is just one example of mixing two opera-
tions - convex hull and Minkowski summation. In the next example,
we state a sample stochastic form of the Brunn-Minkowski inequality
for M -addition in which (1.5) is just a special case; all of the previ-
ous examples also fit in this framework for additional summands. For
other Brunn-Minkowski type inequalities for M -addition, see [30], [29].

5. Brunn-Minkowski type inequalities. Let K and L be convex
bodies in Rn and let M ⊆ R2 be convex and contained in the positive
orthant. Then the following Brunn-Minkowski type inequality holds
for each 1 6 j 6 n,

Vj(K ⊕M L) > Vj(rKB ⊕M rLB). (5.10)

We first formulate a suitable stochastic form of the latter. Let KN1
=

conv{X1, . . . , XN1
}, where X1, . . . , XN1

have density fi = 1
Vn(K)1K

and LN2
= conv{XN1+1, . . . , XN1+N2

}, and XN1+1, . . ., XN1+N2
have

density fi = 1
Vn(L)

1L. Then for α > 0,

P (Vj(KN1 ⊕M LN2) > α) > P (Vj((rKB)N1 ⊕M (rLB)N2) > α) .
(5.11)
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To see that (5.11) holds, set

C1 = conv{e1, . . . , eN1
}, C2 = conv{e1, . . . , eN2

}.

Identifying C1 with C ′1 = conv{e1, . . . , eN1
} in RN1+N2 and C2 with

C ′2 = conv{eN1+1, . . . , eN1+N2} ⊆ RN1+N2 as in §4.3, we have

KN1 ⊕M LN2 = [X1, . . . , XN1 ]C1 ⊕M [XN1+1, . . . , XN1+N2 ]C2

= [X1, . . . , XN1 , XN1+1, . . . , XN1+N2 ](C ′1 ⊕M C ′2).

Write X1 = [X1, . . . , XN1 ] and X2 = [XN1+1, . . . , XN1+N2 ], and X∗1 =
[X∗1 , . . . , X

∗
N1

] and X∗2 = [X∗N1+1, . . . , X
∗
N1+N2

]. In block matrix form,
we have

KN1
⊕M LN2

= [X1, X2](C ′1 ⊕M C ′2).

Similarly,

(rKB)N1 ⊕M (rLB)N2 = [X∗1, X∗2](C ′1 ⊕M C ′2),

and so Theorem 5.1 implies (5.11). To prove (1.5), we simply take
M = {(1, 1)} and j = n in (5.11). Inequality (5.10) follows from (5.11)
when N1, N2 →∞. For simplicity of notation, we have stated this for
only two sets and C1, C2 as above.

For another example involving a law of large numbers, we turn to
the following, stated in the symmetric case for simplicity.

6. Orlicz-Busemann-Petty centroid inequality. Let ψ : [0,∞)→
[0,∞) be a Young function, i.e., convex, strictly increasing with ψ(0) =
0. Let f be a bounded probability density of a continuous distribution
on Rn. Define the Orlicz-centroid body Zψ(f) associated to ψ by its
support function

h(Zψ(f), y) = inf

{
λ > 0 :

∫
Rn
ψ

(
|〈x, y〉|
λ

)
f(x)dx 6 1

}
.

Let rf > 0 be such that ‖f‖∞ 1rfB is a probability density. Then

Vn(Zψ(f)) > Vn(Zψ(‖f‖∞ 1rfB). (5.12)

Here we assume that h(Zψ(f), y) is finite for each y ∈ Sn−1 and so
h(Zψ(f), ·) defines a norm and hence is the support function of the
symmetric convex body Zψ(f). When f is the indicator of a convex
body, (5.12) was proved by Lutwak, Yang and Zhang [49] (where it
was also studied for more general functions ψ); it was extended to
star bodies by Zhu [74]; the version for probability densities and the
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randomized version below is from [56]; an extension of (5.12) to the
asymmetric case was carried out by Huang and He [37].

The empirical analogue of (5.12) arises by considering the following
finite-dimensional origin-symmetric Orlicz balls

Bψ,N :=

{
t = (t1, . . . , tN ) ∈ RN :

1

N

N∑
i=1

ψ(|ti|) 6 1

}
.

with associated Orlicz norm ‖t‖Bψ/N := inf{λ > 0 : t ∈ λBψ,N}, which

is the support function for B◦ψ,N . For independent random vectors
X1, . . . , XN distributed according to f , we let

Zψ,N (f) = [X1, . . . , XN ]B◦ψ,N .

Then for y ∈ Sn−1,

h(Zψ,N (f), y) = ‖(〈X1, y〉, . . . , 〈XN , y〉)‖Bψ/N .

Applying Theorem 5.1 for C = B◦ψ,N , we get that for 1 6 j 6 n and
α > 0,

P(Vj(Zψ,N (f)) > α) > P(Vj(Zψ,N (‖f‖∞ 1rf B̃)) > α). (5.13)

Using the law of large numbers, one may check that

Zψ,N (f)→ Zψ(f) (5.14)

almost surely in the Hausdorff metric (see [56]); when ψ(x) = xp and
f = 1

Vn(K)1K , Zψ,N (f) = Zp,N (K) as defined in the introduction; in

this case, the convergence in (5.14) immediate by the classical law of
large numbers (compare (1.10) and (1.14)). By integrating (5.13) and
sending N →∞, we thus obtain (5.12).

We now turn to the dual setting.

7. Blaschke-Santaló type inequalities. The Blaschke-Santaló in-
equality states that if K is a symmetric convex body in Rn, then

Vn(K◦) 6 Vn((rKB)◦). (5.15)

This was proved by Blaschke for n = 2, 3 and in general by Santaló
[65]; see also Meyer and Pajor’s proof by Steiner symmetrization [53]
and [68], [28] for further background; origin symmetry in (5.15) is not
needed but we discuss the randomized version only in the symmetric
case. One can obtain companion results for all of the inequalities men-
tioned so far with suitable choices of symmetric convex bodies C. Let
ν be a radially decreasing measure as in Theorem 5.2. Let C = BN1
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and set KN,s = [X1, . . . , XN ]BN1 , where Xi has density fi = 1
Vn(K)1K .

Then for α > 0,

P(ν((KN,s)
◦) > α) 6 P(ν(((rKB)N,s)

◦) > α).

Similarly, if K and L are origin-symmetric convex bodies and M ⊆ R2

is unconditional, then for α > 0,

P(ν((KN1,s⊕MLN1,s)
◦) > α) 6 P(ν(((rKB)N1,s⊕M (rLB)N1,s)

◦) > α).
(5.16)

We also single out the polar dual of the last example on Orlicz-
Busemann-Petty centroid bodies. Let ψ and Bψ,N be as above. Then

P(ν(Z◦ψ,N (f)) > α) > P(ν(Z◦ψ,N (‖f‖∞ 1rfB)) > α).

For a particular choice of ψ we arrive at the following example, which
has not appeared in the literature before and deserves an explicit men-
tion.

8. Level sets of the logarithmic Laplace transform. For a
continuous probability distribution with a symmetric bounded density
f , recall that the logarithmic Laplace transform is defined by

Λ(f, y) = log

∫
Rn

exp (〈x, y〉) f(x)dx.

For such f and p > 0, we define an origin-symmetric convex body
Λp(f) by

Λp(f) = {y ∈ Rn : Λf (y) 6 p}.

The empirical analogue is defined as follows: for independent random
vectors X1, . . . , XN with density f , set

Λp,N (f) =

{
y ∈ Rn :

1

N

N∑
i=1

ψ(|〈Xi, y〉|) 6 ep

}
.

If we set ψp(x) = e−p(ex − 1) then ([X1, . . . , XN ]B◦ψp,N )◦ = Λp,N (f).
Then we have the following stochastic dominance

P(ν(Λp,N (f)) > α) 6 P(ν(Λp,N (‖f‖∞ 1rfB)) > α),

where rf satisfies ‖f‖∞ 1rfB = 1. When N →∞, we get

ν(Λp(f)) 6 ν(Λp(‖f‖∞ 1rfB).

The latter follows from the law of large numbers as in [56, Lemma 5.4]
and the argument given in [24, §5].
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For log-concave densities, the level sets of the logarithmic Laplace
transform are known to be isomorphic to the duals to the Lp-centroid
bodies; see work of Lata la and Wojtaszczyk [42], or Klartag and E.
Milman [41]; these bodies are essential in establishing concentration
properties of log-concave measures, e.g., [55], [40], [13].

9. Ball-polyhedra. All of the above inequalities are volumetric in
nature. For convex bodies, they all reduce to comparisons of bodies
of a given volume. For an example of a different flavor, we have the
following inequality involving random ball polyhedra, for R > 0,

P
(
Vj

(⋂N

i=1
B(Xi, R)

)
> α

)
6 P

(
Vj

(⋂N

i=1
B(Zi, R)

)
> α

)
.

When the Xi’s are sampled according to a particular density f associ-
ated with a convex body K, the latter leads to the following generalized
Urysohn inequality,

Vj(K) 6 Vj((w(K))/2)B),

where w(K) is the mean width of K, see [58]; the latter is not a
volumetric inequality when j < n. The particular density f is the
uniform measure a star-shaped set A(K,R) defined by specifying its
radial function ρA(K,R)(θ) = R − hK(−θ); Steiner symmetrization of
A(K,R) preserves the mean-width of K (for large R) so the volumet-
ric techniques here lead to a stochastic dominance inequality for mean
width.

We have focused this discussion on stochastic dominance. It is
sometimes useful to relax the probabilistic formulation and instead
consider the quantities above in terms of bounded integrable functions.
We give one such example.

10. Functional forms. The following functional version Buse-
man’s random simplex inequality (1.8) is useful for marginal distribu-
tions of high-dimensional probability distributions; this is from joint
work with S. Dann [25]. Let f1, . . . , fk be non-negative, bounded, inte-
grable functions such that ‖fi‖1 > 0 for each i = 1, . . . , k. For p ∈ R,
set

gp(f1, . . . , fk) =

∫
Rn
· · ·
∫
Rn
Vk(conv{0, x1, . . . , xk})p

k∏
i=1

fi(xi)dx1 . . . dxk.

Then for p > 0,

gp(f1, . . . , fk) >

(
k∏
i=1

‖fi‖1+p/n1

ω
1+p/n
n ‖fi‖p/n∞

)
gp(1Bn2 , . . . ,1Bn2 ).
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The latter is just a special case of a general functional inequality [25].
Following Busemann’s argument, we obtain the following. Let 1 6 k 6
n− 1 and let f be a non-negative, bounded integrable function on Rn.
Then ∫

Gn,k

(∫
E
f(x)dx

)n
‖f |E‖n−k∞

dνn,k(E) 6
ωnk
ωkn

(∫
Rn
f(x)dx

)k
;

when f = 1K this recovers the inequality of Busemann and Straus [17]
and Grinberg [32] extending (1.9). Schneider proved an analogue of
the latter on the affine Grassmannian [67], which can also be extended
to a sharp isoperimetric inequality for integrable functions [25]. The
functional versions lead to small ball probabilities for projections of
random vectors that need not have independent coordinates.

6 An application to operator norms of ran-
dom matrices

In the last section we gave examples of functionals on random convex
sets which are minorized or majorized by the uniform measure on the
Cartesian product of Euclidean balls. In some cases the associated dis-
tribution function can be accurately estimated. For example, passing
to the complements in (5.2), we get for α > 0,

P(Vn(XC) 6 α) 6 P(Vn(ZC) 6 α), (6.1)

where X and Z are as in Theorem 5.1. When C = BN1 , i.e., for ran-
dom symmetric convex hulls, we have estimated the quantity on the
righthand side of (6.1) in [57] for all α less than an absolute contant
(sufficiently small), at least when N 6 en. (The reason for the restric-
tion is that we compute this for Gaussian matrices and the comparison
to the uniform measure on the Cartesian products of balls is only valid
in this range). This leads to sharp bounds for small deviation prob-
abilities for the volume of random polytopes that were known before
only for certain sub-gaussian distributions. The method of [57] applies
more broadly. In this section we will focus on the case of the operator
norm of a random matrix with independent columns.

By combining Corollary 3.9, and Propositions 3.11 and 4.9, we get
the following result, which is joint work with G. Livshyts [45].

Theorem 6.1. Let N,n ∈ N. Let E be an N -dimensional normed
space. Then the random matrices X,X∗ and Z (as in §5) satisfy the
following for each α > 0,

P (‖X : E → `n2‖ 6 α) 6 P
(
‖X∗ : E → `22‖ 6 α

)
. (6.2)
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Moreover, if ‖fi‖∞ 6 1 for each i = 1, . . . , N , then

P (‖X : E → `n2‖ 6 α) 6 P
(
‖Z : E → `22‖ 6 α

)
.

As before, the latter result reduces the problem to computations
for matrices Z with columns sampled in the Euclidean ball of volume
one. For the important case of the operator norm, i.e., E := `N2 , then
one can provide the following bound for ε > 0,

P(‖Z‖2→2 6 ε
√
N) 6 (c1ε)

nN−1,

where c1, c2 are absolute constants. Consequently, we get small ball
probability bounds for the operator norm under minimal assumptions
on the columns of X.

For 1×N matrices, the latter theorem reduces to small-ball prob-
abilities for norms a random vector x in RN distributed according to a
density of the form

∏N
i=1 fi where each fi is a density on the real line.

In particular, if ‖fi‖∞ ≤ 1 for each i = 1, . . . , N , then for any norm
‖·‖ on RN (the norm for the dual of E), we have for ε > 0,

P (‖x‖ 6 ε) 6 P (‖z‖ 6 ε) , (6.3)

where z is a random vector in the cube [−1/2, 1/2]N - the uniform
measure on Cartesian products of “balls” in 1-dimension. In fact, by
approximation from within, the same result holds if ‖·‖ is a semi-norm.
Thus if x and z are as above, for each ε > 0 we have

P(‖PEx‖2 6 ε
√
k) 6 P(‖PEz‖2 6 ε

√
k) 6 (2

√
πeε)k, (6.4)

where the last inequality uses a result of Ball [3]. In this way we re-
cover the result of Rudelson and Vershynin from [64], who proved (6.4)
with a bound of the form (Cε)k for some absolute constant C. Using
the Rogers/Brascamp-Lieb-Luttinger inequality and Kanter’s theorem,
one can also obtain the sharp constant of

√
2 for marginal densities,

which was first computed in [44] by adapting Ball’s arguments from
[3].
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