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Abstract

We establish a family of isoperimetric inequalities for sets that interpolate between inter-
section bodies and dual Lp centroid bodies. This provides a bridge between the Busemann
intersection inequality and the Lutwak–Zhang inequality. The approach depends on new em-
pirical versions of these inequalities.

1 Introduction

The focus of this paper is on connections between fundamental inequalities in Brunn-Minkowski
theory and dual Brunn-Minkowski theory. The former details the behavior of the volume of
Minkowski sums of convex bodies. The standard isoperimetric inequality is emblematic of deep
principles within Alexandrov’s theory of mixed volumes [83]. A central line of research is on
affine-invariant strengthenings of kindred isoperimetric principles, especially around projections
of convex sets; as a sample, see Lutwak’s survey [58], Schneider’s monograph [83], the funda-
mental papers [60, 64, 65], and [71] for a recent breakthrough. In dual Brunn-Minkowski theory,
the emphasis is on star-shaped sets and radial addition. Dual mixed volumes, put forth by Lut-
wak [53], parallel many aspects of mixed volumes. They provide a rich framework for studying
intersections of star bodies with subspaces; for example, see [54, 55] for foundational results;
the monographs by Koldobsky [47] and Gardner [24] for the resolution of the Busemann-Petty
problem and interplay with geometric tomography; the papers [38, 39, 7, 8] for striking new
developments. Establishing an important family of isoperimetric inequalities linking the two
theories has remained a principle challenge.

A common root for the inequalities we treat is the Busemann intersection inequality [14] for
the volume of central slices of a compact set K ⊆ Rn:

∫

Sn−1

|K ∩ u⊥|ndu ≤ ωn
n−1

ωn−1
n

|K|n−1, (1.1)

where du denotes integration with respect to the normalized Haar probability measure on the
sphere Sn−1, |·| is volume and ωn is the volume of the Euclidean unit ball Bn

2 . The result
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itself (with hindsight) is an invariant inequality for the volume of the intersection body I(K)
of K, which is defined by its radial function via ρ(I(K), u) = |K ∩ u⊥| (see §3 for notation
and definitions). Intersection bodies were introduced by Lutwak [55] in connection with the
Busemann-Petty problem and play a crucial role in dual Brunn-Minkowski theory [24, 47]. The
proof of (1.1) used an essential ingredient known as the Busemann random simplex inequality,
which says that the expected volume of certain random simplices in a convex body are minimal
for ellipsoids. Petty used the latter to establish a conjecture of Blaschke on the volume of centroid
bodies [79], which is now known as the Busemann-Petty centroid inequality. Geometrically, given
an origin-symmetric convex body K in Rn, the centroids of halves of K cut by hyperplanes
through the origin form the surface of its centroid body. Centroid bodies are zonoids i.e.,
Hausdorff limits of Minkowski sums of segments, and thus naturally belong to Brunn-Minkowski
theory. Zonoids play an important role in functional analysis and related fields, e.g., [4, 84, 9, 72].

Lutwak raised the question of connecting the Busemann intersection inequality and the
Busemann-Petty centroid inequality in [58]. The latter is one of several fundamental results that
lead to strengthenings of the standard isoperimetric inequality; in particular, it is equivalent to
an inequality of Petty [80] on polar projection bodies, as shown in [58]. Projection bodies are
also zonoids and play a central role in Brunn-Minkowski theory [24].

A functional analytic perspective has shaped the development of both intersection bodies
and polar projection bodies. Early work in the isometric theory of Banach spaces, going back
to Lévy, introduced stable laws in connection with embeddings in Lp for p ∈ (0, 2]. Positive
definite distributions, stable laws and associated change of density arguments play a central role
[3, 85, 74, 68]. Koldobsky developed a parallel theory, based on a Fourier-analytic approach, for
embedding in Lp, for p < 0. This led to fundamental characterizations of intersection bodies
and their higher-dimensional analogues [44, 46, 47]. With this view, intersection bodies are unit
“balls” of finite-dimensional subspaces of L−1. At the other end, polar projection bodies arise
naturally as unit balls of subspaces of L1 [4]. In between L−1 and L1 is a continuum of spaces
that are no longer Banach spaces. A result of Koldobsky shows that the classes in between
decrease as p varies from −1 to 1; in particular, every polar projection body is an intersection
body [45, 47]. A longstanding question of Kwapień from 1970 [50], in geometric form, asks if
every intersection body is isomorphic to a polar projection body, which remains unsolved; see
work of Kalton and Koldobsky [40] for progress on this question.

A rich theory of isoperimetric inequalities has flourished around centroid bodies and polar
projection bodies. Two fundamental papers in this development are those of Lutwak–Zhang
[66] and Lutwak–Yang–Zhang [60]. For a star-shaped body K and 1 ≤ p ≤ ∞, the Lp centroid
body Zp(K) is defined by its support function (see §3) via

hp(Zp(K), u) =
1

|K|

∫

K

|〈x, u〉|p dx. (1.2)

Lutwak and Zhang proved that for 1 ≤ p ≤ ∞,

|Z◦
p (K)| ≤ |Z◦

p (K∗)|; (1.3)

here K∗ is the dilate of the unit ball centered at the origin of the same volume as K. When
p = ∞, (1.3) is the Blaschke-Santaló inequality, which is equivalent to the affine isoperimetric
inequality [58]. When p = 1, (1.3) follows from the Busemann-Petty centroid inequality. Lutwak,
Yang, and Zhang [60] later proved a stronger inequality for Zp(K) itself. These are central results
within the framework of Lp-Brunn-Minkowski theory, which is governed by a different elemental
notion of summation, called Lp-addition [23, 57, 59]. This theory provides a basis for wide-
ranging inequalities in geometry, analysis, and probability, e.g., [61, 62, 63, 35, 34, 37]. Campi
and Gronchi developed an alternate approach to isoperimetric inequalities for Lp-centroid bodies
in [15, 16]. In particular, they further developed the notion and applications of shadow systems,
as introduced by Rogers and Shephard [82]. These systems generalize Steiner symmetrization
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and have far-reaching extensions and applications; see, e.g., [17, 18]. There is significant interest
in Lp-Brunn-Minkowski theory for the challenging setting of p < 1 [6]; see the survey [8], and
recent advances in [49, 70], and the references therein.

A common framework for polar projection bodies and intersection bodies has been pursued
from several perspectives. Drawing on [66], the notion of the dual Lp-centroid body was extended
by Gardner and Giannopoulos in [25] to p ∈ (−1, 1) via

ρ−p(Z♦
p (K), u) =

1

|K|

∫

K

|〈x, u〉|p dx. (1.4)

The bodies Z♦
p (K) interpolate between intersection bodies and polar Lp-centroid bodies using

ρ(I(K), u) = |K ∩ u⊥| = lim
p→−1+

p + 1

2

∫

K

|〈x, u〉|p dx;

see [25, 29, 47, 31]. For p < 1, Z♦
p (K) need not be convex, which we emphasize here by the use of

the ·♦ notation. Busemann-Petty type volume comparison problems for Z♦
p (K), motivated by

earlier work of Grinberg and Zhang [29] and Lutwak [56] were treated by Yaskin and Yaskina in
[88]. For p < 0, these bodies have also been termed Lp-intersection bodies and characterizations
of such operators as radial valuations were established by Haberl and Ludwig [33]; see also [32]
for p > −1. Properties of Lp-intersection bodies were further developed by Haberl in [31]. When
K is an origin-symmetric convex body, a result of Berck [2] shows that Z♦

p (K) is actually convex
for −1 < p < 1, which extends Busemann’s seminal result for intersection bodies [13].

We develop methods to bridge the gap between the Busemann intersection inequality (1.1)
and the Lutwak–Zhang theorem (1.3). Each of these can be proved using Steiner symmetrization,
but in very different ways. The former applies to the star bodies I(K) and uses integral geometric
identities (of Blaschke-Petkantschin type) that are particular to slices of K. The latter relies
on convexity of the polar centroid bodies Z◦

p (K) for p ≥ 1. We develop a new approach that
applies to star bodies in between these two classes, that sees (1.1) and (1.3) from the same
viewpoint. We will show that (1.1) is one of a large family of inequalities for unit balls of finite-
dimensional subspaces of Lp. We merge several techniques that have been used for p = ±1.
These include symmetrization, embedding via random linear operators, and a classical change
of density technique used in Koldobsky’s Fourier analytic treatment of intersection bodies.

We follow a probabilistic approach in which Lp-centroid bodies are attached to probability
densities rather than sets. This view was put forth by the second-named author [75] in the study
of high-dimensional measures and their concentration properties; see also [42, 51]. Fundamental
inequalities of Lutwak, Yang and Zhang, in [60], were extended to probability measures by
the second and third-named authors in [76, 77]. An empirical approach to dual Lp-centroid
bodies, for p ≥ 1 was developed in further joint work with Cordero-Erausquin and Fradelizi [20],
motivated by [17]. To fix the notation, we set

Pn =

ß

f : Rn → [0,∞)
∣

∣

∣

∫

Rn

f(x)dx = 1, ‖f‖∞ < ∞
™

,

where ‖f‖∞ denotes the essential supremum. For f ∈ Pn, the empirical Lp centroid body
Zp,N (f) is defined by its support function via

hp(Zp,N (f), u) =
1

N

N
∑

i=1

|〈Xi, u〉|p , (1.5)

where X1, . . . , XN are independent random vectors with density f . In [20], a stronger stochastic
version of (1.3) was established for radial measures ν with decreasing densities,

Eν
(

Z◦
p,N (f)

)

≤ Eν(Z◦
p,N (f∗)), (1.6)
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where f∗ is the symmetric decreasing rearrangement of f (see §3). By the law of large numbers,
(1.6) implies the Lutwak–Zhang inequalities (1.3) when N → ∞ and f = 1

|K|χK .

The empirical inequality (1.6) follows from a general theorem about random operators acting
in normed spaces [20]. The random operator viewpoint is from the asymptotic theory of normed
spaces. In seminal work, Gluskin used random operators to construct counter-examples to a
longstanding question on the maximal Banach-Mazur distance between finite-dimensional spaces
[26]. The expository article of Mankiewicz and Tomczak-Jaegermann [67] details its far-reaching
extensions in Banach space theory. This viewpoint was also fruitful in developing stochastic
versions of a number of isoperimetric inequalities [77, 78]. However, inherent in the method
was a restriction to convex sets. The main new feature we develop here is its applicability to
star-shaped sets. We will show how this change provides a bridge between the aforementioned
inequalities in Brunn-Minkowski theory and dual Brunn-Minkowski theory.

2 Main results

Our first result establishes a sharp isoperimetric inequality that extends the Lutwak–Zhang
inequality (1.3) to the case p ∈ (0, 1). For f ∈ Pn and p ∈ (0, 1), define the dual Lp-centroid
body Z♦

p (f) via its radial function:

ρ−p(Z♦
p (f), u) =

∫

Rn

|〈x, u〉|p f(x)dx. (2.1)

To define the empirical version Z♦
p,N (f), we let N > n and consider independent random vectors

X1, . . . , XN according to f as above, and set

ρ−p(Z♦
p,N (f), u) =

1

N

N
∑

i=1

|〈Xi, u〉|p . (2.2)

Theorem 2.1. Let f ∈ Pn and let 0 < p < 1. Then

|Z♦
p (f)| ≤ |Z♦

p (f∗)|. (2.3)

Moreover,
E|Z♦

p,N (f)| ≤ E|Z♦
p,N (f∗)| (2.4)

Theorem 2.1 relies on first establishing the empirical version (2.4), while (2.3) is derived as
a consequence. This is a key difference from the empirical approach in [77, 20, 78] in which
(non-random) inequalities of Lutwak, Yang and Zhang [66, 60, 64] inspired the development of
their empirical versions (e.g., (1.3) motivated its stochastic form (1.6)). Recently, Yaskin proved
(2.3) and extensions raised in [48] in the case when f = χK , where K is an origin-symmetric
star body sufficiently close to the Euclidean ball [87].

Our original inspiration is a recent volume formula for sections of finite-dimensional Lp balls
by Nayar and Tkocz [73] that builds on ideas involving Gaussian mixtures of random variables
from [22]. Kindred probabilistic representations have been indispensible in the study of sections
of convex bodies, e.g., [69, 43, 1]. In our case, it allows for a reduction from star-shaped sets to
convex sets that interfaces well with the empirical approach from [77, 20, 78].

The methods we develop here go beyond centroid bodies, to families of subspaces of Lp. For

f ∈ Pn, an origin-symmetric convex body C in Rm, m ≥ 1, and p 6= 0, we define Z♦
p,C(f) ⊆ Rn

by its radial function: for p 6= 0,

ρ−p(Z♦
p,C(f), u) =

∫

(Rn)m

hp(C, (〈xi, u〉)mi=1)

m
∏

i=1

f(xi)dx, (2.5)
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where dx = dx1 . . . dxm, and for p = 0,

log ρ(Z♦
0,C(f), u) = −

∫

(Rn)m

log h(C, (〈xi, u〉)mi=1)

m
∏

i=1

f(xi)dx. (2.6)

We also define empirical versions involving multiple bodies C and densities f . Specifically, let
C1, . . . , CN be origin-symmetric convex bodies with mi = dim(Ci) ≥ 1 for i ∈ [N ] = {1, . . . , N},
where N > n. Let (Xij), i ∈ [N ], j ∈ [mi] be independent random vectors with Xij distributed
according to fij ∈ Pn. Write C = (C1, . . . , CN ) and F = ((fij)j)i. For p 6= 0, we define a

star-shaped set Z♦
p,C(F) ⊆ Rn by

ρ−p(Z♦
p,C(F), u) =

1

N

N
∑

i=1

hp(Ci, (〈Xij , u〉)mi

j=1); (2.7)

for p = 0, we define Z♦
0,C(F) ⊆ Rn by its radial function

ρ−N(Z♦
0,C(F), u) =

N
∏

i=1

h(Ci, (〈Xij , u〉)mi

j=1). (2.8)

For p ≥ 1, the ·♦ notation agrees with usual polarity. When p > 0 and C = [−1, 1], then
Z♦
p,[−1,1](f) = Z♦

p (f); similarly, if p > 0, F = (f)Ni=1 and C = ([−1, 1])Ni=1, then Z♦
p,C(F) =

Z♦
p,N (f). For p ≥ 0, we have the following generalization of Theorem 2.1, going from F = (fij)

to the family of rearranged densities F# = (f∗
ij).

Theorem 2.2. Let f ∈ Pn and let p ≥ 0. If C is an origin-symmetric convex body of dimension
m ≥ 1, then

|Z♦
p,C(f)| ≤ |Z♦

p,C(f∗)|. (2.9)

Moreover, if F = (fij) ⊆ Pn and C = (C1, . . . , CN ), where each Ci is an origin-symmetric
convex body of dimension mi ≥ 1, then

E|Z♦
p,C(F)| ≤ E|Z♦

p,C(F#)|. (2.10)

The theorem is new for all values of p. For p ≥ 1, the proof uses tools that have already
been developed in [20]. The main novelty here is in techniques to deal with the star-shaped
sets Z♦

p,C(F) in the range p ∈ [0, 1). In particular, we provide a separate treatment for p = 0

including a new volume formula for Z♦
0,C(F). For p < 0, the expected volume of the empirical

bodies Z♦
p,C(F) need not be finite when dim(Ci) < n (see Remark 5.8); here the use of higher-

dimensional convex bodies C1, . . . , CN is essential. For certain values of p, namely when p ∈
[−1, 0) and n/p is an integer, we establish the following theorem.

Theorem 2.3. Let f ∈ Pn and let p ∈ [−1, 0). Let C be an origin-symmetric convex body with
dim(C) ≥ 1. If p > −1 and n/|p| ∈ N, then

|Z♦
p,C(f)| ≤ |Z♦

p,C(f∗)|. (2.11)

Furthermore, let F = (fij) ⊆ Pn and C = (C1, . . . , CN ), where each Ci is an origin-symmetric
convex body of dimension mi ≥ n + 1. If p ≥ −1 and n/|p| ∈ N, then

E|Z♦
p,C(F)| ≤ E|Z♦

p,C(F#)|. (2.12)
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Empirical versions of isoperimetric inequalities from [77, 20, 78] have involved operations
in Brunn-Minkowski theory; e.g., for p ≥ 1, the sets Zp,C(f) in (1.5) are Lp sums of random
line segments (see §4). Theorems 2.1 - 2.3 are the first to treat empirical forms of inequalities
for star-shaped sets in dual Brunn-Minkowski theory. In particular, we develop randomized
analogues of approximation results of Goodey and Weil [27], and Kalton, Koldobsky, Yaskin
and Yaskina [41], in which intersection bodies and their Lp analogues are limits of radial sums
of ellipsoids. The use of higher-dimensional bodies Ci in Theorem 2.3 is needed for this purpose
and such bodies are crucial for establishing the corresponding isoperimetric inequalities. In
particular, we define a variant of the Lp-intersection body as follows: for f ∈ Pn, α > 0 and
p ∈ [−1, 0), we set

ρ|p|(Iα|p|(f), u) =

∫

Rn

Ä

|〈x, u〉|2 + α2 ‖u‖22
ä−|p|/2

f(x)dx.

For the empirical version, we consider N > n independent random vectors X1, . . . , XN from
f ∈ Pn and define Iα

|p|,N (f) via

ρ|p|(Iα
|p|,N (f), u) =

1

N

N
∑

i=1

Ä

|〈Xi, u〉|2 + α2 ‖u‖22
ä−|p|/2

.

The star-shaped bodies Iα
|p|,N(f) are Lp-radial sums of ellipsoids (see §3 for definitions). In fact,

the bodies Iα
|p|,N (f) are special (limiting) cases of Z♦

p,C(F) for a suitable choice of C and F ,
involving ellipsoids and uniform measures on balls.

Corollary 2.4. Let f ∈ Pn, α > 0, p ∈ [−1, 0) and n/|p| ∈ N. Then

|Iα|p|(f)| ≤ |Iα|p|(f∗)|. (2.13)

Moreover,
E|Iα

|p|,N (f)| ≤ E|Iα
|p|,N (f∗)|. (2.14)

When p = −1, (2.14) is a stochastic form of the Busemann intersection inequality (1.1), as it
implies the latter when N → ∞ and α → 0. Indeed, if f ∈ Pn, we write I(f) for the intersection
body of f , defined by its radial function via

ρ(I(f), u) =

∫

u⊥

f(x)dx,

and (2.14) implies the following functional version of (1.1).

Corollary 2.5. Let f be a continuous and compactly supported function in Pn. Then

|I(f)| ≤ |I(f∗)|. (2.15)

Thus the Busemann intersection inequality (1.1) is one limiting case of a family of extremal
inequalities about Lp-radial sums in Theorem 2.3. For (non-random) functional versions of the
Busemann intersection inequality, see [21], and [36] for recent developments.

Lastly, we can further reduce inequalities to uniform measures on balls in each of the above
theorems whenever the convex bodies C and Ci are unconditional, i.e., invariant under reflections
in the coordinate hyperplanes.

Theorem 2.6. Let f ∈ Pn. Suppose that p ∈ [0, 1], or p ∈ [−1, 0) and n/|p| ∈ N. Let C be an
unconditional convex body in Rm, m ≥ 1. Set g = ‖f‖∞ χrBn

2
, where r > 0 satisfies

∫

g = 1.
Then for p > −1,

|Z♦
p,C(f)| ≤ |Z♦

p,C(g)|,
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while for p ≥ −1,
E|Iα

|p|,N (f)| ≤ E|Iα
|p|,N (g)|.

Furthermore, assume that F = (fij) ⊆ Pn and G = (gij), where gij = ‖fij‖∞ χrijBn
2

with
rij > 0 satisfying

∫

gij = 1. If C = (C1, . . . , CN ), where each Ci is an unconditional convex body
of dimension mi as above, then

E|Z♦
p,C(F)| ≤ E|Z♦

p,C(G)|.

The paper is organized as follows: §3 introduces notation and basic tools; §4 is devoted to the
non-random bodies Z♦

p,C(f) and variants of Lp-intersection bodies; §5 develops the randomized
versions of these objects. New volume formulas and representations for radial functions are
developed in §6. The theorems are proved in §7.

3 Preliminaries

3.1 Notation and definitions

For a compact set K ⊆ Rn, we denote its convex hull by conv(K). The set of all compact,
convex sets in Rn will be denoted by Kn. For K ∈ Kn, its support function is defined by
h(K,u) = supx∈K〈x, u〉, u ∈ Rn. The Hausdorff metric on Kn is defined by

δH(K,L) = sup
θ∈Sn−1

|h(K, θ) − h(L, θ)|,

where Sn−1 is the unit sphere. We call K ∈ Kn a convex body if it has interior points. We say
that K ∈ Kn is origin-symmetric if −x ∈ K whenever x ∈ K. The set of all origin-symmetric
convex bodies in Rn will be denoted by Kn

s . Each K ∈ Kn
s gives rise to a norm on Rn given by

‖u‖K = inf{λ > 0 : u ∈ λK}.

The polar body of K ∈ Kn
s is defined by K◦ = {u ∈ K : hK(u) ≤ 1}.

For measurable sets A ⊆ Rn, we use |A| for the Lebesgue measure of A. By ωn, we mean
the volume of the Euclidean ball in Rn with radius 1, i.e., ωn = πn/2/Γ(n/2 + 1).

We will call a set K in Rn star-shaped if 0 ∈ K and αx ∈ K whenever x ∈ K and α ∈ [0, 1].
The radial function of a star-shaped set K is defined as ρ(K,u) = sup{α ≥ 0 : αu ∈ K} for
u ∈ Sn−1. Here we allow K to be unbounded and ρ(K,u) may take the value +∞. As our focus
is volumetric inequalities, we are particularly interested in radial functions of star-shaped sets
K with ρ(K, ·) ∈ Ln(Sn−1, σ) in which case we write

‖ρ(K, ·)‖n =

Å∫

Sn−1

ρn(K,u)du

ã1/n

= ω−1/n
n |K|1/n.

Throughout, du denotes dσ(u), where σ is the normalized Haar probability measure on Sn−1.
We will call K a star-body if it is a compact, star-shaped set with the origin in its interior

and its radial function is continuous. When K ∈ Kn
s , we have for u ∈ Rn\{0},

ρ(K,u) = ‖u‖−1
K and ρ(K◦, u) = h−1

K (u).

We recall a core notion of addition of convex bodies from Lp Brunn-Minkowski theory, e.g.
[23, 57, 59]. For K,L ∈ Kn containing the origin and p ≥ 1, we will write K +p L for their Lp

sum, i.e.,
hp(K +p L, u) = hp(K,u) + hp(L, u) (u ∈ Rn).

7



In dual Brunn-Minkowski theory, (e.g., [66, 83]), for star-bodies K,L, and p 6= 0, their Lp-radial
sum K+̃pL is defined by

ρp(K+̃pL, u) = ρp(K,u) + ρp(L, u) (u ∈ Sn−1).

For a measurable set A in Rn with finite volume, we define its rearrangement A∗ to be the
(open) Euclidean ball centered at the origin satisfying |A∗| = |A|. We will use the following
bracket notation for indicator functions:

[u ∈ A] = χA(u). (3.1)

For a non-negative integrable function f on Rn, its layer-cake representation is given by

f(x) =

∫ ∞

0

χ{f>t}(x)dt =

∫ ∞

0

[x ∈ {f > t}]dt. (3.2)

The symmetric decreasing rearrangement of a non-negative integrable function f on Rn is defined
using rearrangement of its level sets {x ∈ Rn : f(x) > t} = {f > t} (t > 0) via

f∗(x) =

∫ ∞

0

χ{f>t}∗(x)dt =

∫ ∞

0

[x ∈ {f > t}∗]dt. (3.3)

For a general reference on rearrangements, we refer the reader to [52]. We will use the fact that
f and f∗ are equimeasurable; in particular, f∗ preserves all Lp norms of f . Note also that if
f ≤ g, then f∗ ≤ g∗. Moreover, rearrangements satisfy the following contractive property: for
1 ≤ p ≤ ∞ and for f, g ∈ Lp,

‖f∗ − g∗‖p ≤ ‖f − g‖p . (3.4)

For f ∈ Pn, the marginal density of f on a subspace E of dimension k, is defined as

πE(f)(x) =

∫

E⊥+x

f(y)dy, (3.5)

where E⊥ denotes the orthogonal complement of E. Note that when f ∈ Pn and has compact
support, then πE(f) is also bounded and has compact support.

3.2 Probabilistic tools

We will make repeated use of the following fact about uniformly integrable collections of random
variables (e.g., [86, pg. 189]).

Proposition 3.1. Let η, η1, η2, . . . be non-negative random variables on a probability space
(Ω,M,P) such that ηk → η as k → ∞ almost surely. If {ηk} is uniformly integrable, then

lim
k→∞

Eηk = Eη < ∞.

Remark 3.2. A sufficient condition for uniform integrability of a family of random variables {ηk}
is boundedness in L1+δ(Ω,M,P), for some δ > 0 ([86, pg. 190]).

We will also use Kolmogorov’s strong law of large numbers ([86, pg. 391]).

Proposition 3.3. Let η1, η2, . . . be independent identically distributed random variables on a
probability space (Ω,M,P) such that E|η1| < ∞. Then, almost surely, as N → ∞,

1

N

N
∑

k=1

ηk → Eη1.

We will frequently use a.s. as an abbreviation for almost sure convergence; similarly, we use
i.i.d. for a sequence of independent identically distributed random variables.
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3.3 Volume in terms of Gaussian integrals

We will use the following elementary lemma which relates the volume of star-shaped sets to
certain Gaussian integrals.

Lemma 3.4. Let K be a star-shaped set with 0 ∈ int(K) and ρ(K, ·) ∈ Ln(Sn−1, σ). If ξ is a
standard Gaussian vector in Rn, and s ∈ (0, n), then

Eξρ
s(K, ξ) = bn,s

∫

Sn−1

ρs(K,u)du, (3.6)

where

bn,s = Eξ ‖ξ‖−s
2 =

nΓ(n−s
2 )

2s/2+1Γ(n2 + 1)
. (3.7)

Furthermore, if ρ(K, ·) is additionally the pointwise limit of an increasing sequence of radial
functions {ρ(Kℓ, ·)} of star shaped sets {Kℓ}, then

|K| = lim
ℓ→∞

Eξρ
n−1/ℓ(Kℓ, ξ)

bn,n−1/ℓ
. (3.8)

Proof. Using polar coordinates, we have for 0 < s < n,

Eξρ
s(K, ξ) =

nωn

(2π)n/2

∫ ∞

0

rn−s−1e−r2/2dr

∫

Sn−1

ρs(K,u)du

=
nΓ(n−s

2 )

2s/2+1Γ(n2 + 1)

∫

Sn−1

ρs(K,u)du.

The conditions 0 ∈ int(K) and ρ(K, ·) ∈ Ln(Sn−1, σ) ensure that ρ(K,u) is positive and finite
for all u outside of a null set on Sn−1. For such u, since ρ(Kℓ, u) → ρ(K,u), we have

ρn−1/ℓ(Kℓ, u) = ρn(Kℓ, u) exp

Å

− log ρ(Kℓ, u)

ℓ

ã

→ ρn(K,u).

Next, since {ρ(Kℓ, u)} is increasing,

ρn−1/ℓ(Kℓ, u) ≤ max(1, ρn(Kℓ, u)) ≤ max(1, ρn(K,u)) ≤ 1 + ρn(K,u). (3.9)

By dominated convergence and (3.6), we get

ω−1
n |K| =

∫

Sn−1

ρn(K,u)du = lim
ℓ→∞

∫

Sn−1

ρn−1/ℓ(Kℓ, u)du = lim
ℓ→∞

Eξρ
n−1/ℓ(Kℓ, ξ)

bn,n−1/ℓ
.

4 Dual Lp,C-centroid bodies

Let f ∈ Pn, p > −1 and let C be an origin-symmetric convex body in Rm, m ≥ 1. For ease of
reference, we recall that for p 6= 0,

ρ−p(Z♦
p,C(f), u) =

∫

(Rn)m

hp(C, (〈xi, u〉)mi=1)

m
∏

i=1

f(xi)dx (4.1)
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and for p = 0,

log ρ(Z♦
0,C(f), u) = −

∫

(Rn)m

log hC((〈xi, u〉)mi=1)

m
∏

i=1

f(xi)dx. (4.2)

As noted in the introduction, the latter bodies are not convex in general. We will use the term
dual Lp,C centroid body as these bodies fit within dual Brunn-Minkowski theory. This agrees
with the convex case when p ≥ 1, however, the term here is meant in a broader sense than
duality for convex bodies. When p ≥ 1, Z♦

p,N(f) = Z◦
p,N (f).

We start by noting a few elementary properties of the bodies Z♦
p,C(f).

Lemma 4.1. Let f ∈ Pn, p, p1, p2 > −1 and C ∈ Km
s , m ≥ 1.

(a) If p1 ≤ p2, then
Z♦
p2,C

(f) ⊆ Z♦
p1,C

(f).

(b) If D ∈ Km1
s , and C ⊆ D, then

Z♦
p,C(f) ⊇ Z♦

p,D(f).

(c) ρ|p|(Z♦
p,C(f), ·) ∈ L1(S

n−1, σ).

(d) For k ∈ N such that
∫

kBn
2
f(x)dx > 0, let ϕ(k) = f |kBn

2
and φ(k) = ϕ(k)/

∫

ϕ(k). Then

ρ(Z♦
p,C(f), u) = lim

k→∞
ρ(Z♦

p,C(φ(k)), u) (u ∈ Sn−1).

Proof. Part (a) is a consequence of Hölder’s inequality. For (b), the condition C ⊆ D is equiv-
alent to h(C, ·) ≤ h(D, ·), hence ρ(Z♦

p,D(f), u) ≤ ρ(Z♦
p,C(f), u) for each u ∈ Sn−1.

By using (a), it is sufficient to treat (c) for p ∈ (−1, 0). Since C ∈ Km
s , we can assume

C ⊆ span{e1, . . . , em}, and there exists r0 > 0 such that r0[−e1, e1] ⊆ C, hence ρ(Z♦
p,C(f), u) ≤

r−1
0 ρ(Z♦

p (f), u) for u ∈ Sn−1. For p ∈ (−1, 0), we have for each u ∈ Sn−1,

‖x‖−|p|
2 = βn,p

∫

Sn−1

|〈x, u〉|−|p|
du,

where βn,p = bn,|p|/b1,|p| (cf. (3.7)). Since x 7→ ‖x‖−|p|
2 is locally integrable and f ∈ Pn, we have

∫

Rn

‖x‖−|p|
2 f(x)dx ≤ ‖f‖∞

∫

Bn
2

‖x‖−|p|
2 dx +

∫

Rn\Bn
2

f(x)dx < ∞.

Thus part (c) follows from

∫

Sn−1

ρ|p|(Z♦
p (f), u)du =

∫

Sn−1

∫

Rn

|〈x, u〉|−|p| f(x)dxdu

= β−1
n,p

∫

Rn

‖x‖−|p|
2 f(x)dx.

To prove (d), we note that part (c) implies ρ(Z♦
p,C(f), u) < ∞ for a.e. u ∈ Sn−1. Since

ϕ(k) → f , and f ∈ Pn, we have
∫

ϕ(k) →
∫

f = 1. For p 6= 0, (d) follows by monotone
convergence:

∫

(Rn)m
hp(C, (〈xi, u〉)mi=1)

m
∏

i=1

ϕ(k)(xi)dx →
∫

(Rn)m
hp(C, (〈xi, u〉)mi=1)

m
∏

i=1

f(xi)dx; (4.3)

10



the latter holds even when the righthand side of (4.3) is infinite, which may occur for p > 0, in
which case ρ(Z♦

p,C(f), u) = 0. To treat p = 0, we set

P1(u) = {(xi)
m
i=1 ∈ (Rn)m : h(C, (〈xi, u〉)mi=1) > 1}

and P2(u) = (Rn)m\P1(u). Applying the same argument to each factor in

ρ(Z♦
0,C(φ(k)), u) =

2
∏

i=1

exp

(

−
∫

Pi(u)

log h(C, (〈xi, u〉)mi=1

m
∏

i=1

φ(k)(xi)dx

)

,

shows that (d) holds for p = 0 as well.

4.1 Lα

p
-intersection bodies

For f ∈ Pn, we write I(f) for its intersection body, defined by its radial function via

ρ(I(f), u) =

∫

u⊥

f(x)dx, (4.4)

where the integration is with respect to Lebesgue measure on u⊥; for background on intersection
bodies, see [55, 47, 24]. Motivated by approximation results for intersection bodies involving
radial sums of ellipsoids [27, 41], we define a variant of (4.4): for α > 0 and p ∈ [−1, 0), the
Lα
p -intersection body of f is given by

ρ|p|(Iα|p|(f), u) =

∫

Rn

Ä

|〈x, u〉|2 + α2 ‖u‖22
ä−|p|/2

f(x)dx.

As mentioned, when f is the indicator of a star-body and α = 0, the latter bodies were studied
in [88, 33, 31]. When p = −1 and α > 0, we write Iα(f) = Iα1 (f).

Proposition 4.2. Let f be a continuous, compactly supported function in Pn. For α > 0, let
sα = sinh−1(1/α). Then

|I(f)| = lim
α→0

(2sα)−n|Iα(f)|.

We will prove this using an approximate identity, i.e., a family of non-negative functions
(kα)α∈(0,1) on R satisfying the following conditions, for each α ∈ (0, 1),

(i)
∫

R
kα(t)dt = 1;

(ii) for any δ > 0, limα→0

∫

|t|>δ kα(t)dt = 0.

In this case, if g is continuous and supported on a compact set K, then ‖(kα ∗ g) − g‖L∞(K) → 0

(see, e.g., [28, pg. 27]).

Proof. For α > 0, let

kα(t) = (2sα)−1
(

t2 + α2
)−1/2

χ[−1,1](t).

Standard computations show that (kα)α is an approximate identity. Fix u ∈ Sn−1 and recall
the notation for the marginal of f on [u] = span{u} (cf (3.5)), and set fu(t) = π[u](f)(t). Then

(2sα)−1ρ(Iα(f), u) = (2sα)−1

∫

R

(

t2 + α2
)−1/2

fu(t)dt

=

∫

|t|≤1

kα(t)fu(t)dt + (2sα)−1

∫

|t|>1

(

t2 + α2
)−1/2

fu(t)dt (4.5)

= (kα ∗ fu)(0) + (2sα)−1

∫

|t|>1

(

t2 + α2
)−1/2

fu(t)dt.

11



We have kα ∗ fu(0) → fu(0) = ρ(I(f), u). Since
∫

R
fu(t)dt = 1 and sα → ∞ as α → 0, we have

lim
α→0

(2sα)−1

∫

|t|>1

(

t2 + α2
)−1/2

fu(t)dt = 0.

It follows that
(2sα)−nρn(Iα(f), u) → ρn(I(f), u).

Using (4.5), the latter convergence is dominated on (Sn−1, σ) by (supu ‖fu‖∞+(2s1)−1)n, hence

|I(f)| = ωn

∫

Sn−1

lim
α→0

ρn((2sα)−1Iα(f), u)du = lim
α→0

(2sα)−n|Iα(f)|.

5 Empirical dual Lp,C-centroid bodies

An empirical approach to Lp-centroid bodies was initiated in [77] and developed further in
[20, 78]. It relies on random linear operators acting on various sets in finite-dimensional normed
spaces. In this section, we recall the main theorem from [20]. We lay the groundwork to re-
interpret the random star-shaped bodies Z♦

p,C(F) of our main theorems as random sections of
ℓp-balls. We also develop new notions of randomly generated intersection bodies.

5.1 Tools from the empirical approach

It will be useful to fix some notation for matrices acting as linear operators. For an n × N
matrix X = [x1 . . . xN ], we write XT for the transpose of X and we view X : RN → Rn and
XT : Rn → RN as linear operators. In particular, for an origin-symmetric convex body C ⊆ RN ,

XC = {Xc : c ∈ C} =

{

N
∑

i=1

cixi : c = (ci) ∈ C

}

.

Principal examples include (i) C = BN
1 = conv{±e1, . . . ,±eN} and (ii) C = BN

∞ = [−1, 1]N in
which case

(i)XBN
1 = conv{±X1, . . . ,±XN} (ii)XBN

∞ =
N
∑

i=1

[−Xi, Xi].

Volumetric inequalities for convex hulls of random points and random zonotopes [30, 10] moti-
vated work in [77] to interpolate between these two extremes and led to an empirical study of
Lp centroid bodies; see the survey [78] and the references therein.

All of the theorems in the introduction will be derived from the following result about polars
of convex bodies from [20]. It concerns radial measures with decreasing densities (“decreasing”
is meant in a non-strict sense).

Theorem 5.1. Let X and X# be n × N random matrices with independent columns drawn
from F = (fi)

N
i=1 ⊆ Pn and F# = (f∗

i )Ni=1, respectively. Let ν be a radial measure with a
decreasing density, i.e., dν(x) = h(‖x‖2)dx with h : [0,∞) → [0,∞) decreasing. Then for any
origin-symmetric convex body C in RN ,

Eν ((XC)◦) ≤ Eν
(

(X#C)◦
)

. (5.1)

Assume additionally that each fi is bounded and Z is an n × N random matrix with indepen-
dent columns drawn from gi = ‖fi‖∞ χriBn

2
, where ri > 0 satisfies

∫

gi = 1. Then for any

unconditional convex body C in RN ,

Eν((XC)◦) ≤ Eν((ZC)◦). (5.2)
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The latter theorem relies on rearrangement inequalities of Rogers [81], Brascamp-Lieb-
Luttinger [12] and Christ [19]. It also relies on the Borell-Brascamp-Lieb inequalities [5, 11]. It
was motivated by work of Campi and Gronchi on symmetrization of polar convex bodies [17].

The following lemma is a useful re-interpretation of the bodies (XC)◦, stated in terms of the
transpose XT and its pre-image X−T .

Lemma 5.2. Let X be an n×N matrix of full rank, viewed as a linear operator X : RN → Rn.
Then for C ∈ KN

s ,
(XC)◦ = X−T [C◦]. (5.3)

Proof. When N = n, then X and XT are invertible and (5.3) is a standard identity:

(XC)◦ = {x ∈ Rn : 〈x,Xc〉 ≤ 1 for all c ∈ C}
=

{

x ∈ Rn : 〈XTx, c〉 ≤ 1 for all c ∈ C
}

= X−T [C◦].

When N < n, the same computation is valid by viewing X−T [C◦] as the pre-image of C◦ under
XT . When N > n, XT is injective and X−T is also the inverse of XT on Im(XT ) = ker(X)⊥,
in which case

X−T [C◦] = X−T [C◦ ∩ Im(XT )]. (5.4)

Remark 5.3. When N < n, we note that (XC)◦ denotes polarity in Rn and (XC)◦ may be
unbounded. When N ≥ n, (5.4) implies that

|(XC)◦| = det(XXT )−1/2|C◦ ∩ Im(XT )|. (5.5)

5.2 Random slices of finite-dimensional ℓp-balls

For p ≥ 1, the centroid body Zp(f) can be viewed in terms of limits of images of finite-
dimensional ℓq balls, where 1/p + 1/q = 1. To fix the notation, for p 6= 0, we denote by
BN

p , the ℓp ball in RN , i.e.,

BN
p =

®

x ∈ RN :

Å

∑N

i=1
|〈x, ei〉|p

ã1/p

≤ 1

´

, (5.6)

where e1, . . . , eN is the standard unit vector basis for RN . For p = 0, we set

BN
0 =

®

x ∈ RN :

Å

∏N

i=1
|〈x, ei〉|

ã1/N

≤ 1

´

. (5.7)

Note that BN
p is a convex body when p ∈ [1,∞) and a star-body when p > 0. When p ≤ 0, BN

p

is unbounded but remains star-shaped.
Let X be an n×N random matrix with independent column vectors X1, . . . , XN drawn from

f ∈ Pn. For 1 ≤ p < ∞, the empirical Lp-centroid body Zp,N (f) defined above in (1.5) has the
equivalent description

Zp,N (f) = N−1/pXBN
q ,

where 1/p + 1/q = 1. Indeed,

h(XBN
q , u) = h(BN

q ,XTu) =

(

N
∑

i=1

|〈Xi, u〉|p
)1/p

.
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Using Lemma 5.2 and 1/p + 1/q = 1, we have

Z◦
p,N (f) = N1/pX−T [BN

p ], (5.8)

where, as above, X−T [A] denotes the pre-image of A under XT . We will mimic identity (5.8)
to realize the bodies Z♦

p,N (f) defined in (2.2) as sections of BN
p for p ∈ (0, 1).

Lemma 5.4. Let X be an n×N random matrix with independent columns distributed according
to f ∈ Pn. Then for p ∈ (0, 1),

Z♦
p,N (f) = N1/pX−T [BN

p ].

Proof. For u ∈ Sn−1, we have

ρ(Z♦
p,N (f), u) = ρ(N1/pBN

p ,XTu) = ρ(N1/pX−T [BN
p ], u).

We can similarly view the bodies Z♦
p,C(F) (cf. (2.7)) using random linear operators. For

C = (C1, . . . , CN ) with Ci ∈ Kmi
s , we place them in orthogonal subspaces Rmi = span{eij}mi

j=1,
i = 1, . . . , N . Then for p 6= 0, we define

BN
p (C) =

{

(x1, . . . , xN ) ∈
N
⊕

i=1

Rmi :

Å

∑N

i=1
hp(Ci, xi)

ã1/p

≤ 1

}

; (5.9)

when p = ∞, we replace the sum by maxi h(Ci, xi). For p = 0, we set

BN
0 (C) =

{

(x1, . . . , xN ) ∈
N
⊕

i=1

Rmi :

Å

∏N

i=1
h(Ci, xi)

ã1/N

≤ 1

}

. (5.10)

When the C′
is are identical copies of [−1, 1], we have BN

p = BN
p (([−e1, e1], . . . , [−eN , eN ])). As

for BN
p , the set BN

p (C) is a convex body, star-body or unbounded star-shaped set, according

to whether p ≥ 1, p ∈ (0, 1) or p ≤ 0, respectively. Note that we have defined BN
p (C) using

support functions h(Ci, ·) rather than norms associated to the Ci’s, as some computations are
more convenient with this convention. By standard duality arguments, for 1 ≤ p, q ≤ ∞ with
1/p + 1/q = 1, we have for C = (C1, . . . , CN ),

(

BN
p (C)

)◦
= BN

q (C◦), (5.11)

where we have set C◦ = (C◦
1 , . . . , C

◦
N ). We will use the particular case of p = 1 and q = ∞,

combined with Lemma 5.2 in the following form.

Lemma 5.5. Let C = (C1, . . . , CN ), where Ci ∈ Kmi
s , mi ≥ 1, and C◦ = (C◦

1 , . . . , C
◦
N ). Set

M = m1 + . . . + mN . Let X = [X1 . . .XN ] be an n ×M matrix with n ×mi blocks Xi of full
rank. Then

N
⋂

i=1

(XiCi)
◦ = (XBN

1 (C◦))◦.

Proof. By Lemma 5.3,

N
⋂

i=1

(XiCi)
◦ =

N
⋂

i=1

X−T
i [C◦

i ] =

N
⋂

i=1

{

u ∈ Rn : XT
i u ∈ C◦

i

}

,

while

(XBN
1 (C◦))◦ = X−T [BN

∞(C)] =

ß

u ∈ Rn : max
i≤N

h(Ci,X
T
i u) ≤ 1

™

.
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Using the above notation, the empirical bodies Z♦
p,C(F) defined in (2.7) and (2.8) can be

realized as sections of BN
p (C) as follows.

Lemma 5.6. For i ∈ [N ], let Ci ∈ Kmi
s , mi ≥ 1 and let M = m1 + . . . + mN . Let

X = [X1 · · ·XN ] be an n × M random matrix with n × mi blocks Xi = [Xi1 . . .Ximi
] hav-

ing independent columns Xij distributed according to fij ∈ Pn. Then for p 6= 0,

Z♦
p,C(F) = N1/pX−T [BN

p (C)], (5.12)

and, for p = 0,
Z♦

0,C(F) = X−T [BN
0 (C)]. (5.13)

Proof. For u ∈ Sn−1,

XTu = (XT
1 u, . . . ,X

T
Nu) = ((〈X1j , u〉)m1

j=1, . . . , (〈XNj , u〉)mN

j=1).

For any set S in RnM , we have

X−T [S] =
{

u ∈ Rn : XTu ∈ S
}

.

For p 6= 0, we have

ρ(N1/pX−T [BN
p (C)], u) = ρ(N1/pBN

p (C),XTu)

=

(

1

N

N
∑

i=1

hp(Ci,X
T
i u)

)−1/p

= ρ(Z♦
p,C(F), u).

For p = 0, we have

ρ(X−T [BN
0 (C)], u) =

N
∏

i=1

h(Ci,X
T
i u)−1/N = ρ(Z♦

0,C(F), u).

Remark 5.7. For p ≥ 1, we have by Lemma 5.2 and (5.11),

Z♦
p,C(F) = Z◦

p,C(F) = N1/pX−T [BN
p (C)] = N1/p(XBN

q (C◦))◦. (5.14)

Remark 5.8. For p ≤ 0, the bodies Z♦
p,C(F) are pre-images of slices of unbounded sets and hence

need not be bounded. This is reflected in our notation as their radial functions take the value
+∞. When mj = dim(Cj) < n, the matrix XT

j has a non-trivial kernel and, for p 6= 0,

ρ(X−T [BN
p (C)], u) =

(

N
∑

i=1

h−|p|(Ci,X
T
i u)

)1/|p|

≥ h−1(Cj ,X
T
j u),

which is infinite for u ∈ ker(XT
j ) and arbitrarily large in any neighboorhood of such u. When

each Ci has dimension mi ≥ n, the absolute continuity of fij ensures that the n ×mi matrix
Xi has rank n a.s.. This implies that h(C,XT

i ·) > 0 a.s., hence each summand in the radial
function ρ(Z♦

p,C(F), ·) is necessarily finite a.s..

For N -tuples of origin-symmetric convex sets C = (C1, . . . , CN ) and D = (D1, . . . , DN ), with
dim(Ci) ≤ dim(Di), we will write

C ⊆ D ⇐⇒ Ci ⊆ Di for all i = 1, . . . , N.
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Lemma 5.9. Let F = (fij) ⊆ Pn and −1 ≤ p, p1, p2 ≤ ∞. Let C = (C1, . . . , CN ) with
Ci ∈ Kmi

s , mi ≥ 1, for i ∈ [N ].

(a) If p1 ≤ p2, then
Z♦

p2,C(F) ⊆ Z♦
p1,C(F). (5.15)

(b) If D = (D1, . . . , DN ) with Di ∈ Km′
i

s , m′
i ≥ mi, for i ∈ [N ], and C ⊆ D, then

Z♦
p,C(F) ⊇ Z♦

p,D(F). (5.16)

Proof. Part (a) is a consequence of Hölder’s inequality, which gives monotonicity of the normal-
ized means in the definition of ρ(Z♦

p,C(F), u) (cf. (2.7) and (2.8)).
For part (b), Ci ⊆ Di is equivalent to h(Ci, ·) ≤ h(Di, ·) for each i, which implies (5.16).

5.3 Convergence of volumes

The next proposition provides sufficient conditions to obtain the volume of Z♦
p,C(f) as a limit

of the expected volumes of the random bodies Z♦
p,C(F).

Proposition 5.10. For i ∈ N, let Ci ∈ Kmi
s , mi ≥ 1 and (fij) ⊆ Pn, j ∈ [mi]. For N ∈ N, let

CN = (C1, . . . , CN ) and FN = ((fij)
mi

j=1)Ni=1. Assume that

a. there is an r0 > 0 such that r0B
mi

2 ⊆ Ci for each i.

b. fij are supported on a common compact set and supi,j ‖fij‖∞ < ∞.

If p ∈ [0, 1], or p ∈ [−1, 0) and mi ≥ n + 1 for each i, then for any ε ∈ (0, 1),

sup
N≥n+1

sup
u∈Sn−1

Eρn+ε(Z♦
p,CN

(FN ), u) < ∞, (5.17)

and hence
sup

N≥n+1
E|Z♦

p,CN
(FN )| < ∞. (5.18)

Furthermore, if C1, C2, . . . are copies of a given convex body C of dimension m and fij are
identical and satisfy (5.17), then

|Z♦
p,C(f)| = lim

N→∞
E|Z♦

p,CN
(FN )|. (5.19)

Proof. Without loss of generality, we may assume that r0 = 1. By assumption (b), we can fix
a Gaussian density φα and a constant A > 0 such that for each i, j,

1

A
fij(x) ≤ φα(x) =

1

(2πα2)n/2
e−‖x‖2

2/2α
2

(x ∈ Rn). (5.20)

Fix ε > 0 and u ∈ Sn−1. Assume first that p ∈ [0, 1]. By Lemma 5.9, we need only treat
the case p = 0, mi = 1 for i = 1, . . . , N , and CN = ([−ei, ei])

N
i=1. In the notation of Lemma 5.6,

this means that FN = (fi1)Ni=1 and Xi = [Xi1] are n× 1 matrices. By Fubini’s theorem,

Eρn+ε
(

Z♦
0,CN

(FN ), u
)

=

N
∏

i=1

E |〈Xi1, u〉|−(n+ε)/N
.

Set τ = (n+ε)/N . Let g1, . . . , gN be i.i.d. standard Gaussian vectors in Rn. Fix i ∈ {1, . . . , N}.
Then 〈gi, u〉 is a standard Gaussian random variable. Assume first that N ≥ 2(n + ε) so that
τ ≤ 1/2. By Hölder’s inequality,

EXi1 |〈Xi1, u〉|−τ ≤
(

E |〈Xi1, u〉|−1/2)2τ
.
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Using (5.20) and the notation for bn,s from (3.7), we have

A−1α1/2EXi1 |〈Xi1, u〉|−1/2 ≤ Egi |〈gi, u〉|−1/2
= b1,1/2,

hence for N ≥ 2(n + ε),

Eρn+ε
(

Z♦
0,CN

(FN ), u
)

≤ (Aα−1/2b1,1/2)2τN = (Aα−1/2b1,1/2)2(n+ε). (5.21)

Assume now that n + 1 ≤ N < 2(n + ε). Then τ < 1 and b1,τ < ∞. By (5.20),

A−1ατEXi1 |〈Xi1, u〉|−τ ≤ Egi |〈gi, u〉|−τ = b1,τ .

It follows that for n + 1 ≤ N < 2(n + ε),

Eρn+ε
(

Z♦
0,CN

(FN ), u
)

≤ (Aα−τ b1,τ )N ≤ max(1, (Aα−τ b1,τ )2(n+ε)). (5.22)

The bounds in (5.21) and (5.22) are independent of u and N . This establishes (5.17) for p ∈ [0, 1].
Assume now that p ∈ [−1, 0). By Lemma 5.9, we can assume that p = −1, mi = n + 1, for

i = 1, . . . , N and C = (Bn+1
2 )Ni=1. Set s = n + ε and let s′ be defined by 1/s + 1/s′ = 1. By

Hölder’s inequality,

ρn+ε(Z♦
−1,CN

(FN ), u) =

(

1

N

N
∑

i=1

∥

∥XT
i u
∥

∥

−1

2

)n+ε

≤ Ns/s′−s
N
∑

i=1

∥

∥XT
i u
∥

∥

−(n+ε)

2
.

For i ∈ [N ], let Gi be i.i.d. n× (n+ 1) random matrices with i.i.d. N(0, 1) entries. For i ∈ [N ],

A−(n+1)αn+εEXi

∥

∥XT
i u
∥

∥

−(n+ε)

2
≤ EGi

∥

∥GT
i u
∥

∥

−(n+ε)

2
= bn+1,n+ε.

Using N1−sNs/s′ = 1, (5.17) now follows from

EXρn+ε(Z♦
−1,CN

(FN), u) ≤ An+1α−(n+ε)bn+1,n+ε;

here we have used that mi = dim(Ci) ≥ n + 1, which ensures finiteness of bn+1,n+ε. To justify
(5.18), for general CN and FN , set δ = ε/n so that n(1 + δ) = n + ε. By Hölder’s inequality,

Å∫

Sn−1

Eρn(Z♦
p,CN

(FN ), u)du

ã1+δ

≤
∫

Sn−1

Ä

Eρn(Z♦
p,CN

(FN ), u)
ä1+δ

du

≤
∫

Sn−1

Eρn+ε(Z♦
p,CN

(FN ), u)du.

Therefore, (5.18) follows from

Ä

E|Z♦
p,CN

(FN)|
ä1+δ

≤ ω1+δ
n sup

u∈Sn−1

Eρn+ε(Z♦
p,CN

(FN ), u). (5.23)

Towards proving (5.19), we fix u ∈ Sn−1, identical bodies Ci = C of dimension m and
fij = f . For p 6= 0, the family of i.i.d. random variables

{

hp(C,XT
i u)

}

i∈N
has finite first

moment, i.e.,

Ehp(C,XT
i u) =

∫

(Rn)m
hp(C, (〈xi, u〉)mi=1)

m
∏

i=1

f(xi)dx < ∞. (5.24)

Indeed, for p > 0, this is a direct consequence of f being bounded and compactly supported.
For p < 0, the function Ehp(C,XT

i ·) = ρ−p(Z♦
p,C(f), ·) is integrable by part (c) of Lemma 4.1;
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in particular, (5.24) holds for all u outside of a null set on Sn−1 (henceforth disregarded). Thus
by Proposition 3.3, for our fixed u ∈ Sn−1,

1

N

N
∑

i=1

hp(C,XT
i u) → Ehp(C,XT

i u) = ρ−p(Z♦
p,C(f), u) (a.s.);

similarly, for p = 0, the i.i.d. collection
{

log h(C,XT
i u)

}

i∈N
satisfies

E|log h(C,XT
i u)| =

∫

(Rn)m
|log h(C, (〈xi, u〉))|

m
∏

i=1

f(xi)dx < ∞,

hence

1

N

N
∑

i=1

log h(C,XT
i u) → E log h(C,XT

i u) (a.s.).

In all cases, we have
ρn(Z♦

p,CN
(FN ), u)→ρn(Z♦

p,C(f), u) (a.s.).

Using (5.17), the collection
¶

ρn(Z♦
p,CN

(FN ), u) : N ≥ n + 1
©

(for our fixed u) is bounded in

L1+δ, where, as above, δ = ε/n. By Proposition 3.1 and Remark 3.2, as N → ∞,

Eρn(Z♦
p,CN

(FN ), u) → Eρn(Z♦
p,C(f), u) = ρn(Z♦

p,C(f), u). (5.25)

Lastly, the collection
¶

Eρn(Z♦
p,CN

(FN ), ·) : N ≥ n + 1
©

is uniformly integrable on (Sn−1, σ)

(by the inequality preceding (5.23)). Using (5.25), Proposition 3.1 and Fubini’s theorem, we get

|Z♦
p,C(f)| = ωn

∫

Sn−1

ρn(Z♦
p,C(f), u)du

= ωn lim
N→∞

∫

Sn−1

Eρn(Z♦
p,CN

(FN ), u)du

= lim
N→∞

E|Z♦
p,CN

(FN )|,

which establishes (5.19) and completes the proof of the proposition.

5.4 Empirical Lp-intersection bodies

In this section, we show how particular choices of C and F in the bodies Z♦
p,C(F) lead naturally

to empirical versions of Lp-intersection bodies. As mentioned, unit balls of normed spaces that
embed in Lp, p ∈ [−1, 1] can be obtained as limits of p-radial sums of ellipsoids [27, 41]. The
next proposition can be seen as a complementary volumetric random approximation. Since our
main interest is when p = −1, we have stated this only for p ∈ [−1, 0); similar considerations
lead to an analogous result for p > 0.

For p ∈ [−1, 0) and α > 0, we define the empirical Lα
p -intersection body Iα

|p|,N(f) via

ρ(Iα
|p|,N (f), u) =

1

N

N
∑

i=1

ρ|p|(Eα(Xi), u),

where X1, . . . , XN are i.i.d. with density f ∈ Pn and Eα(Xi) = ([−Xi, Xi] +2 αB
n
2 )◦.
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Proposition 5.11. Let f be a compactly supported function in Pn. Let p ∈ [−1, 0) and α > 0.
Then for N ≥ n + 1,

E|Iα
|p|,N (f)| = lim

m→∞
E|Z♦

p,Cα
m

(Fm)|,

where Cα
m = (Cα

m)Ni=1 and Fm = ((fij)
m+1
j=1 )Ni=1 are given by

Cα
m = [−e1, e1] +2 α conv{±ej}m+1

j=2 , fij =

®

f if i ∈ [N ], j = 1

ω−1
n χBn

2
if i ∈ [N ], j > 1.

Proof. Let X1, . . .XN be i.i.d. n × (m + 1) random matrices with Xi = [Xi1Zi1 · · ·Zim],
where Xi1 has density fi1 = f , and Zij has density fi(j+1) = ω−1

n χBn
2

, and the columns are
independent. Then for i = 1, . . . , N ,

XiC
α
m = [−Xi1, Xi1] +2 α conv{±Zij}mj=1,

which for m → ∞, converges a.s. in the Hausdorff metric to [−Xi1, Xi1] +2 αB
n
2 . For u ∈ Sn−1,

we have as m → ∞,

1

N

N
∑

i=1

h−|p|(XiC
α
m, u) → 1

N

N
∑

i=1

h−|p|([−Xi1, Xi1] +2 αB
n
2 , u) (a.s.),

and hence
ρn(Z♦

p,Cα
m

(Fm), u) → ρn(Iα
|p|,N (f), u) (a.s.).

For m ≥ n, the latter convergence is dominated by ρn(Z♦
−1,Cα

n
(Fn), u) (cf. (5.15)). The inradius

of Cα
n is min(1, α/

√
n). Using Proposition 5.10 with fixed N ≥ n + 1,

∫

Sn−1

Eρn(Z♦
−1,Cα

n
(Fn), u)du < ∞.

By dominated convergence, we get

E

∫

Sn−1

ρn(Iα
|p|,N(f), u)du = lim

m→∞
E

∫

Sn−1

ρn(Z♦
p,Cα

m
(Fm), u)du.

Proposition 5.12. Let f ∈ Pn, p ∈ [−1, 0), and α > 0. Then

|Iα|p|(f)| = lim
N→∞

E|Iα
|p|,N (f)|.

Proof. Fix u ∈ Sn−1. Since f ∈ Pn, the random variables
Ä

|〈Xi, u〉|2 + α2 ‖u‖22
ä−|p|/2

have

finite first moment. By the law of large numbers, as N → ∞, we have

1

N

N
∑

i=1

Ä

|〈Xi, u〉|2 + α2 ‖u‖22
ä−1/2

→
∫

Rn

Ä

|〈x, u〉|2 + α2 ‖u‖22
ä−1/2

f(x)dx (a.s.),

hence
ρn(Iα

|p|,N (f), u) → ρn(Iα|p|(f), u) (a.s.).

Since ρ(Iα|p|,N (f), u) ≤ 1/α for each u, we can use dominated convergence to get

E

∫

Sn−1

ρn(Iα
|p|,N (f), u)du → E

∫

Sn−1

ρn(Iα|p|(f), u)du = |Iα|p|(f)|.
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6 Volume formulas

As mentioned, our work is inspired by a formula for the volume of sections of BN
p , p ∈ (0, 2),

due to Nayar and Tkocz [73]. We will recall the basic ingredients and then derive a formula
for the volume of the random sets Z♦

p,C(F). For p ≤ 0, we will present an alternative path and
complementary volume formulas.

6.1 Volume via Gaussian mixtures for p > 0

Recall that for 0 < α < 1, a positive random variable w is called normalized positive α-stable if

E e−tw = e−tα (t > 0). (6.1)

We will denote the density of such a random variable by gα; for background on stable random
variables, see [89]. The following Nayar–Tkocz volume formula was proved in [73], where it is
stated explicitly for p = 1 and explained how the same method applies to p ∈ (0, 2).

Proposition 6.1. Let 0 < p < 2 and let X be a n×N matrix with columns x1, · · · , xN spanning
Rn. Let W = (w1, · · · , wN ) be a random vector with i.i.d. entries wi having common density
proportional to s 7→ s−1/2gp/2(s). Then

|BN
p ∩ Im(XT )|
det(XXT )

1
2

= aN,n,pπ
n/2EW

√
w1 · · ·wN

Å

det

Å

∑N

i=1
wixix

T
i

ãã− 1
2

. (6.2)

where aN,n,p = π−N/2Γ (1 + 1/p)
N

Γ (1 + n/p)
−1

.

The proof of the formula relies on two ingredients. The first is that the volume of a star-body
K in Rn with radial function ρ(K, ·) is given by

|K| = cn,p

∫

Rn

exp
(

−ρ−p(K,x)
)

dx, (6.3)

where cn,p = Γ(1 + n/p)−1. The second ingredient is the following fact from [22, Lemma 23]:
if ξ is a standard Gaussian random variable, independent of a positive random variable w with
density proportional to t 7→ t−1/2gp/2(t), then 1√

2w
ξ has density [2Γ (1 + 1/p)]

−1
e−|t|p and

e−|x|p = dpEw

√
we−wx2

(x ∈ R), (6.4)

where dp = Γ (1 + 1/p) /
√
π (as can be seen by integrating (6.4) on R).

We will adapt the Nayar-Tkocz argument to derive a volume formula for Z♦
p,C(F) for p ∈

(0, 2), using the pre-image interpretation in (5.12).

Proposition 6.2. Let C = (C1, . . . , CN ), F and X be as in Lemma 5.6. Let 0 < p < 2 and
let W = (w1, · · · , wN ) be a random vector with i.i.d. entries wi having a common density
proportional to s 7→ s−1/2gp/2(s). Set C◦

W = ((
√
w1C1)◦, . . . , (

√
wNCN )◦). Then

|Z♦
p,C(F)| = aN,n,pc

−1
n,2N

n/pEW
√
w1 · · ·wN |

(

XBN
2 (C◦

W )
)◦|.

Proof. Note that (BN
2 (CW ))◦ = BN

2 (C◦
W ) (cf. (5.9)), hence

N
∑

i=1

h2(
√
wiCi,X

T
i u) = h2(XBN

2 (C◦
W ), u) (6.5)
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Using (6.3)–(6.5), we have

c−1
n,p|X−T [BN

p (C)]| =

∫

Rn

exp
(

−ρ−p(BN
p (C),XTu)

)

du

=

∫

Rn

N
∏

i=1

exp
(

−hp(Ci,X
T
i u)

)

du

= dNp

∫

Rn

EW

N
∏

i=1

√
wi exp

(

−wih
2(Ci,X

T
i u)

)

du

= dNp

∫

Rn

EW
√
w1 · · ·wN exp

Å

−
∑N

i=1
h2(

√
wi Ci,X

T
i u)

ã

du

= c−1
n,2d

N
p EW

√
w1 · · ·wN |X−T [BN

2 (CW )]|,

where CW = (
√
w1C1, . . . ,

√
wNCN ) and we used (6.3) again in the last equality. The result

now follows from Lemmas 5.2 and 5.6 and the identity aN,n,p = cn,pd
N
p .

Remark 6.3. To see that the latter proposition implies (6.2), we take Ci = [−ei, ei] and write
XW = [

√
w1X1, . . . ,

√
wNXN ] so that XWBN

2 = XBN
2 (C◦

W ). By (5.5),

|(XWBN
2 )◦| = ωn

Å

det

Å

∑N

i=1
wiXiX

T
i

ãã− 1
2

.

When p = 1 in (6.2), wi is the reciprocal of an exponential random variable [73] and we have
maintained this convention here, though the exact normalization is immaterial in what follows.

6.2 Volume via Gaussian measure for p = 0

The set Z♦
0,C(F) can be treated as a limiting case of Z♦

p,C(F) when p → 0 but it will be handy
to derive a different volume formula using the pre-image representation (5.13) directly. This
approach will also be helpful for p < 0. The formula involves standard Gaussian measure γn
and negative moments of the Gaussian random vectors bn,s defined in (3.7).

Proposition 6.4. Let C = (C1, . . . , CN ), F and X be as in Lemma 5.6. For t = (t1, . . . , tN)

in RN
+ and s > 0, set C◦

s,t =
Ä

(t
N/s
1 C1)◦, . . . , (tN/s

N CN )◦
ä

. Then

E|Z♦
0,C(F)| = lim

s→n−
b−1
n,s

∫

RN
+

EXγn
(

(XBN
1 (C◦

s,t))
◦) dt. (6.6)

Proof. We will first show that for u ∈ Rn\{0},

ρs(Z♦
0,C(F), u) =

∫

RN
+

î

u ∈
(

XBN
1

(

C◦
s,t

))◦ó
dt, (6.7)

Note that

ρs
(

Z♦
0,C(F), u

)

=

N
∏

i=1

h−s/N (Ci,X
T
i u)

=

∫

RN
+

N
∏

i=1

î

u ∈ {h−s/N (Ci,X
T
i ·) > ti}

ó

dt.

For each i = 1, . . . , N , we have
¶

h−s/N (Ci,X
T
i ·) > ti

©

=
¶

t
N/s
i h(XiCi, ·) < 1

©

=
Ä

t
N/s
i XiCi

ä◦
.
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By Lemma 5.5,

N
⋂

i=1

Ä

t
N/s
i XiCi

ä◦
=
(

XBN
1 (C◦

s,t)
)◦

.

Therefore,

ρs
(

Z♦
0,C(F), u

)

=

∫

RN
+

ï

u ∈
⋂N

i=1

¶

h−s/N (Ci,X
T
i y) > ti

©

ò

dt

=

∫

RN
+

î

u ∈
(

XBN
1

(

C◦
s,t

))◦ó
dt

Let ξ be a standard Gaussian random vector in Rn and s ∈ (0, n). Using Lemma 3.4 and (6.7),

Eξρ
s(Z♦

0,C(F), ξ) =

∫

RN
+

γn
Ä

(

XBN
1

(

C◦
s,t

))◦ä
dt. (6.8)

Assume first that

E|Z♦
0,C(F)| = ωnE

∫

Sn−1

ρn(Z♦
0,C(F), u)du < ∞. (6.9)

Then ρ(Z♦
0,C(F), ·) ∈ Ln(Sn−1, σ) a.s.. Arguing as in the proof of Lemma 3.4,

∫

Sn−1

ρs(Z♦
0,C(F), u)du →

∫

Sn−1

ρn(Z♦
0,C(F), u)du (a.s.), (6.10)

and the convergence is dominated by 1 + ω−1
n |Z♦

0,C(F)| (cf. (3.9)). Thus, using (3.6), we get

E|Z♦
0,C(F)| = ωnEX lim

s→n−

∫

Sn−1

ρs(Z♦
0,C(F), u)du

= ωn lim
s→n−

EX

∫

Sn−1

ρs(Z♦
0,C(F), u)du

= ωn lim
s→n−

b−1
n,sEXEξρ

s(Z♦
0,C(F), ξ).

Applying (6.8) gives the proposition when E|Z♦
0,C(F)| is finite. The proposition also remains

valid when E|Z♦
0,C(F)| is infinite. Indeed, we can replace Sn−1 in (6.10) by {ρ(Z♦

0,C(F), ·) ≥ 1},
in which case the convergence is monotone and both sides of (6.6) are divergent.

6.3 Volume via Gaussian measure for p < 0

We will start with a volume formula for the non-random bodies Z♦
p,C(f).

Proposition 6.5. Let f ∈ Pn and C ∈ Km
s , where m ≥ 1. Let p ∈ (−1, 0) and set n(p) =

n/|p| ∈ N. Let X be an n × n(p)m random matrix with independent columns distributed
according to f . For ℓ ∈ N, let pℓ = p(1 − 1/(ℓn)). For t1, . . . , tn(p) > 0 and ℓ ∈ N, let

C◦
t,pℓ

= ((t
1/|pℓ|
1 C)◦, . . . , (t1/|pℓ|

n(p) C)◦). Then

|Z♦
p,C(f)| = lim

ℓ→∞
b−1
n,n−1/ℓ

∫

R
n(p)
+

EXγn

(

Ä

XBn(p)
1 (C◦

t,pℓ
)
ä◦)

dt. (6.11)

22



Proof. Fix k ∈ N. Let X1, . . . ,Xk be independent n × m random matrices with independent
columns drawn from f . We will first show that for u ∈ Rn\{0},

ρk|p|(Z♦
p,C(f), u) =

∫

Rk
+

E
î

u ∈
(

XBk
1 (C◦

t,p)
)◦ó

dt. (6.12)

Note that

ρk|p|(Z♦
p,C(f), u) =

Ä

EX1h
−|p|(C,XT

1 u)
äk

= EX1 · · ·EXk

k
∏

i=1

h−|p|(C,XT
i u)

and
k
∏

i=1

h−|p|(C,XT
i u) =

∫

Rk
+

k
∏

i=1

î

u ∈ {h−|p|(C,XT
i ·) > ti}

ó

dt.

For each i = 1, . . . , k,

{h−|p|(C,XT
i ·) > ti} = {h(XiC, ·) < t

−1/|p|
i } =

Ä

t
1/|p|
i XiC

ä◦
.

By Lemma 5.5,

⋂k

i=1

Ä

t
1/|p|
i XiC

ä◦
=
(

XBk
1 (C◦

t,p)
)◦

.

Therefore,

EX1 · · ·EXk

k
∏

i=1

h−|p|(C,XT
i u) =

∫

Rk
+

EX

î

u ∈
(

XBk
1 (C◦

t,p)
)◦ó

dt,

which implies (6.12). If ξ is a standard Gaussian vector in Rn, then

Eξρ
k|p|(Z♦

p,C(f), ξ) =

∫

Rk
+

EXγn
Ä

(

XBk
1 (C◦

t,p)
)◦ä

dt. (6.13)

Note that n(p) = n
|p| = n−1/ℓ

|pℓ| . It remains to apply Lemma 3.4 with K = Z♦
p,C(f) and the

increasing sequence Kℓ = Z♦
pℓ,C

(f) (cf. Lemma 4.1(a)). With an eye on (6.13) with pℓ and n(p)
in place of p and k, respectively, we conclude by

|Z♦
p,C(f)| = ωn lim

ℓ→∞
b−1
n,n−1/ℓEξρ

n(p)|pℓ|(Z♦
pℓ,C

(f), ξ).

6.4 Radial function representation for p < 0

The volume formulas for Z♦
0,C(F) and Z♦

p,C(f) each rely on a representation of the radial function
as a mixture of indicator functions of origin-symmetric convex bodies. In this subsection, we
develop an analogous representation for the radial function of the empirical bodies Z♦

p,C(F) for

p < 0 and n/|p| ∈ N. A similar volume formula for Z♦
p,C(F) holds but the notation becomes

lengthy, so we will derive only the radial function for later use.
To fix the notation, for k ∈ N, we let k = (k1, . . . , kN ) ∈ [k]N and define S(k) = k1+ . . .+kN

and m(k) = {i ∈ [N ] : ki 6= 0}; we write |m(k)| for the cardinality of m(k).
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Proposition 6.6. Let C = (C1, . . . , CN ), F and X be as in Lemma 5.6. Let p ∈ (−1, 0) and
k ∈ N. Then for u ∈ Rn\{0},

ρk|p|(Z♦
p,C(F), u) = Nk

∑

k∈[k]N

S(k)=k

Ç

k

k

å

∫

R
|m(k)|
+

[

u ∈
Ä

XkB|m(k)|
1 (C◦

k,t,p)
ä◦]

dt,

where
(

k
k

)

= k!
k1!···kN ! , Xk = [Xki

]i∈m(k) and C◦
k,t,p = ((t

1
ki|p|

i Ci)
◦)i∈m(k).

Proof. Using the fact that k ∈ N, we have for any u ∈ Rn,

ρk|p|(X−T [BN
p (C)], u) =

∑

k∈[k]N

S(k)=k

Ç

k

k

å

∏

i∈m(k)

h−ki|p|(Ci,X
T
i u).

Fix k = (k1, . . . , kN ) with S(k) = k. Then

∏

i∈m(k)

h−ki|p|(Ci,X
T
i u) =

∫

R
|m(k)|
+

∏

i∈m(k)

î

u ∈ {h−ki|p|(Ci,X
T
i ·) > ti}

ó

dt.

For each i ∈ m(k),

{h−ki|p|(Ci,X
T
i ·) > ti} = {h(XiCi, ·) < t

− 1
ki|p|

i } =

Å

t
1

ki|p|

i XiCi

ã◦
.

By Lemma 5.5,

⋂

i∈m(k)

Å

t
1

ki|p|

i XiCi

ã◦
=
Ä

XkB|m(k)|
1 (C◦

k,t,p)
ä◦

.

Thus the proposition follows from

∏

i∈m(k)

h−ki|p|(Ci,X
T
i u) =

∫

R
|m(k)|
+

[

u ∈
Ä

XkB|m(k)|
1 (C◦

k,t,p)
ä◦]

dt.

7 Main proofs

Proof of Theorem 2.2. Suppose that X and X# are n×M random matrices with independent
columns drawn from F = (fij) ⊆ Pn and F# = (f∗

ij) respectively, where M = m1 + . . . + mN .
Suppose that each fij is supported on a Euclidean ball RBn

2 . Denote the expectation in X and
X# by EX and EX# , respectively.

We will use Theorem 5.1, combined with the volume formulas for Z♦
p,C(F) as indicated. For

p ≥ 1, we have by Remark 5.7,

E|Z♦
p,C(F)| = EX|N1/p(XBN

q (C◦))◦|
≤ EX# |N1/p(X#BN

q (C◦))◦|
= E|Z♦

p,C(F#)|.

For p ∈ (0, 1), using Proposition 6.2 and Fubini’s theorem,

E|Z♦
p,C(F)| = aN,n,pEWEX

√
w1 · · ·wN |

(

XBN
2 (C◦

W )
)◦|
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≤ aN,n,pEWEX#

√
w1 · · ·wN |

(

X#BN
2 (C◦

W )
)◦|

= E|Z♦
p,C(F#)|.

For p = 0, we apply Proposition 6.4 to get

E|Z♦
0,C(F)| = lim

s→n−

∫

RN
+

EXγn
(

(XBN
1 (C◦

s,t))
◦) dt

≤ lim
s→n−

∫

RN
+

EX#γn
(

(X#BN
1 (C◦

s,t))
◦) dt

= E|Z♦
0,C(F#)|.

When the Ci’s are identical, we have by Proposition 5.10,

|Z♦
p,C(f)| = lim

N→∞
E|Z♦

p,CN
(FN )|, (7.1)

which proves (2.9) for f compactly supported. For a general f ∈ Pn, we define {φ(k)} as in
Lemma 4.1. By Fatou’s lemma and the compactly supported case,

|Z♦
p,C(f)| ≤ lim inf

k→∞
|Z♦

p,C(φ(k))| ≤ lim inf
k→∞

|Z♦
p,C((φ(k))∗)| = |Z♦

p,C(f∗)|,

where the last equality holds as each set Z♦
p,C((φ(k))∗) is a Euclidean ball and the convergence

is ensured by (3.4).
Lastly, we turn to the case when F = (fij) consists of functions that are not supported

on a common compact set. In the notation of Lemma 4.1(d), we set ϕ
(k)
ij = fij |kBn

2
and

φ
(k)
ij = ϕ

(k)
ij /

∫

ϕ
(k)
ij and set Fk = (φ

(k)
ij ). Then

E|Z♦
p,C(Fk)| =

∫

((Rn)m)N

∫

Sn−1

(

1

N

N
∑

i=1

hp(C, (〈xij , u〉)mi

j=1)

)n/p
∏

i,j

φ
(k)
ij (xij)dudx.

Using
∫

ϕ
(k)
ij →

∫

fij = 1 and monotone convergence for ϕ
(k)
ij ,

E|Z♦
p,C(Fk)| = lim

k→∞
E|Z♦

p,C(Fk)| ≤ lim
k→∞

E|Z♦
p,C(F#

k )| = E|Z♦
p,C(F#)|.

Proof of Theorem 2.1. Taking C = Ci = [−1, 1] and F = (f) gives Z♦
p,N (f) = Z♦

p,C(F) and

Z♦
p,C(f) = Z♦

p (f), hence Theorem 2.1 follows from Theorem 2.2.

Proof of Theorem 2.3. Let X and X# be n×n(p)m random matrices with i.i.d. columns drawn
from f and f∗, respectively. By Proposition 6.5 and Theorem 5.1,

|Z♦
p,C(f)| = lim

ℓ→∞
b−1
n,n−1/ℓ

∫

R
n(p)
+

EXγn

(

Ä

XBn(p)
1 (C◦

t,pℓ
)
ä◦)

dt

≤ lim
ℓ→∞

b−1
n,n−1/ℓ

∫

R
n(p)
+

EX#γn

(

Ä

X#Bn(p)
1 (C◦

t,pℓ
)
ä◦)

dt

= |Z♦
p,C(f∗)|.

Next, we prove (2.12). Fix origin-symmetric convex bodies C1, . . . , CN with dim(Ci) = mi ≥
n + 1. Set M = m1 + . . . + mN . Suppose that X and X# are n × M random matrices with
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independent columns drawn from F = (fij) and F# = (f∗
ij), respectively. Fix k ∈ N and

p ∈ [−1, 0) with k|p| < n.
Assume first that f is supported on a Euclidean ball RBn

2 . By Proposition 5.10,

E|Z♦
p,C(F)| = ωnEX

∫

Sn−1

ρn(X−T [BN
p (C)], u)du < ∞.

Applying Proposition 6.6 for a standard Gaussian random vector ξ in Rn, we have

Eξρ
k|p|(Z♦

p,C(F), ξ) =
∑

k∈[k]N

S(k)=k

Ç

k

k

å

∫

R
|m(k)|
+

γn

(

Ä

XkB|m(k)|
1 (C◦

k,t)
ä◦)

dt.

Fix k = (k1, . . . , kN ) ∈ [k]N with S(k) = k and ti ∈ (0,∞) for i ∈ m(k). By Theorem 5.1,

EXk
γn

(

Ä

XkB|m(k)|
1 (C◦

k,t)
ä◦)

≤ E
X

#
k

γn

(

Ä

X
#
k
B|m(k)|
1 (C◦

k,t)
ä◦)

.

Consequently,
EXEξρ

k|p|(Z♦
p,C(F), ξ) ≤ EX#Eξρ

k|p|(Z♦
p,C(F#), ξ). (7.2)

As in the proof of Proposition 6.5, when n/|p| ∈ N, we choose pℓ ∈ Q∩(p, 0) such that n
|p| = n−1/ℓ

|pℓ|
for j ∈ N. For u ∈ Sn−1, we have

ρ(Z♦
pℓ,C(F), u) → ρ(Z♦

p,C(F), u) (a.s.).

As in the proof of Lemma 3.4, using (3.9) with Kℓ = Z♦
pℓ,C(F), we have

∫

Sn−1

ρℓ|pℓ|(Z♦
pℓ,C(F), u)du→

∫

Sn−1

ρn(Z♦
p,C(F), u)du (a.s.)

and the convergence is dominated by 1 + ω−1
n |Z♦

p,C(F)|. Thus,

EX|Z♦
p,C(F)| = ωnEX lim

ℓ→∞

∫

Sn−1

ρℓ|pℓ|(Z♦
pℓ,C(F), u)du

= ωn lim
ℓ→∞

EX

∫

Sn−1

ρn−1/ℓ(Z♦
pℓ,C(F), u)du

= ωn lim
ℓ→∞

b−1
n,n−1/ℓEXEξρ

n−1/ℓ(Z♦
pℓ,C(F), ξ),

where bn,n−1/ℓ is the constant in (3.7). The same identities apply for X# and F#. Thus
applying (7.2), we get

E|Z♦
p,C(F)| ≤ E|Z♦

p,C(F#)|.
Lastly, we can remove the assumption that the functions are compactly supported by arguing
as in the proof of Theorem 2.2.

Proof of Corollary 2.4. By Proposition 5.11 and Theorem 2.3,

E|Iα
|p|,N (f)| = lim

m→∞
E|Z♦

p,Cα
m

(Fm)| ≤ lim
m→∞

E|Z♦
p,Cα

m
(F#

m)| = E|Iα
|p|,N (f∗)|. (7.3)

Using (7.3) with Proposition 5.12, we get

|Iα|p|(f)| = lim
N→∞

E|Iα
|p|,N (f)| ≤ lim

N→∞
E|Iα

|p|,N (f∗)| = |Iα|p|(f∗)|. (7.4)

Finally, we apply Proposition 4.2 and (7.4) for p = −1, to obtain

|I(f)| = lim
α→0+

|(2sα)−1Iα(f)| ≤ lim
α→0+

|(2sα)−1Iα(f∗)| = |I(f∗)|.
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Proof of Theorem 2.6. We have reduced Theorems 2.1 to 2.3 and Corollaries 2.4, 2.5 to a suitable
application of (5.1) in Theorem 5.1. When the convex bodies C1, . . . , CN are unconditional, we
can instead apply (5.2) in Theorem 5.1.
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[8] K.J. Böröczky. The logarithmic Minkowski conjecture and the Lp-Minkowski problem.
https://arxiv.org/abs/2210.00194.

[9] J. Bourgain, J. Lindenstrauss, and V. Milman. Approximation of zonoids by zonotopes.
Acta Math., 162(1-2):73–141, 1989.

[10] J. Bourgain, M. Meyer, V. Milman, and A. Pajor. On a geometric inequality. In Geometric
aspects of functional analysis (1986/87), volume 1317 of Lecture Notes in Math., pages
271–282. Springer, Berlin, 1988.

[11] H. J. Brascamp and E. H. Lieb. On extensions of the Brunn-Minkowski and Prékopa-
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