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Abstract

Let K be a convex body in R" with volume |K| = 1. We choose
N points z1,...,zy independently and uniformly from K, and write
C(x1,... ,zn) for their convex hull. If n(logn)? < N < exp(cin), we
show that the expected volume radius

El/n(K,N)=/ / IC(z1,...,an)|" " day - - da:
K K

of this random N-tope can be estimated by

log(N log(N
o og(N/n) <Ei(K,N) < esLx og( /n)7
Vn Vn
where c1, ca are absolute positive constants and Lg is the isotropic con-

stant of K.

1 Introduction

We work in R™ which is equipped with a Euclidean structure (-,-). We denote the
corresponding Euclidean norm by |- | and fix an orthonormal basis {e1,... ,en}.

Let K be a compact subset of R* with volume |K| = 1. The matriz of inertia
M(K) of K is the n x n matrix with entries

(M(K)).. :/K(:v,ei)(:v,ej)dx.

ij
The determinant of M (K) can be expressed in the form
(1.1) n!det(M(K)) = / o / [det(z1,...,z0)])> day - - - day.
K K

This identity goes back to Blaschke and can be easily verified by expanding the de-
terminant inside the integral. Since the right hand side is invariant under SL(n), we



see that det(M(K)) = det(M(TK)) for every T € SL(n). On the other hand, there
exists 71 € SL(n) for which M (T1K) is a multiple of the identity. Equivalently,

(1.2) / (x,ei)(x,ej)dr = L6
T K

where Lg is the isotropic constant of K (we refer to [5] for the isotropic position of a
convex body). By (1), Lk is well defined and satisfies

(1.3) nlL3 :/ / [det(z1, ... ,2,)]° da,, - - - dz;.
K K

Assume now that K is a convex body with centroid at the origin. We fix N > n+1 and
choose points z1, ... ,zn independently and uniformly from K. Let C(z1,... ,zn) be
their convex hull. For every p > 0 we consider the quantity

(1.4) E,(K,N) = </K.../K|C(a:1,...,a:N)|pda:N---da:1>l/pn.

When N = n + 1, these quantities are exact functions of the isotropic constant of K.
To see this, note that

An(K) ::L...L|CO(O,$17... ,,’En)|2dwn--.d$1

satisfies the identity L% = n!A, (K) and
(1.5) An(K) <E"(K,n+1) < (n+1)° A, (K).

It follows that

KBt <ok
where c1,c2 > 0 are absolute constants. Moreover, using Khintchine type inequali-
ties for linear functionals on convex bodies (see the next section) one can show that
E,(K,n+ 1) > cLx //n for every p > 0, where ¢ > 0 is an absolute constant.

In this paper, we give estimates for the volume radius E,,, (K, N) of a random
N-tope C(z1,...,zn) in K. It turns out that a generalization of the upper bound in
(6) is possible.

(1.6) C1

Theorem 1.1. Let K be a convez body in R™ with volume |K| = 1. For every N >
n+ 1, we have

Ei/ (K, N) < CLKM

where ¢ > 0 1s an absolute constant.

The proof of this fact is presented in Section 2. We can also obtain upper estimates
for E,(K,N), p > 1/n, but the dependence on p does not seem to be optimal. Our
method shows that if K is a t2-body then one has the stronger estimate E;,,, (K, N) <

cLi+/log(2N/n)/+/n. This is optimal and might be the right dependence for every
convex body K in R".

Our lower bound is based on an extension of a result of Groemer [3].



Theorem 1.2. Let K be a conver body of volume 1 and B be a ball of the same
volume. Then,

E,(K,N) > E, (B, N)
for every p > 0. In particular, the ezpected volume radius K, (K, N) of a random
N-tope in K 1s minimal when K = B.

Groemer proved the same fact for p > 1. Schopf [7] proved Theorem 1.2 in the case
N = n+1. Our argument is along the same lines: we show that Steiner symmetrization
decreases E, (K, N). A different extremal problem concerning the p-th moment of the
volume of Minkowski sums of intervals defined by random points from a convex body
was solved in [2]: the solution is again given by the Euclidean ball for every p > 0.
In the case of the ball, one can give a lower bound for E,, (K, N).

Theorem 1.3. Let B be a ball of volume 1 in R™. If n(log n)?> < N < exp(cn), then

log(N/n)
NG

]El/n(B:N) ZC

where ¢ > 0 1s an absolute constant.

Theorems 1.2 and 1.3 are proved in Section 3. It follows that E,,, (K,N) >

cy/log(N/n)/+/n for every convex body K of volume 1. This bound is optimal. How-
ever, an interesting question is to give lower bounds for E;,, (K, N) in terms of L.
Since E, /,, (K, N) < 1, this would lead to non-trivial upper estimates for the isotropic
constant.

For standard notation and definitions we refer to [5] and [6]. We use ¢, c1, ¢’ etc. for
absolute positive constants which are not necessarily the same in all their occurences.

2 The upper bound

Let « € [1,2]. We say that a convex body K in R" is a ¥ -body with constant bs if

(2.1) ([ |<w,y>|f’da:)l/p <00’ [ [Gealas

for every y € R™ and p > 1. It is clear by the definition that if K is a 1o-body then
the same is true for TK, T € GL(n) (with the same constant by ). By Borell’s lemma
(see [6], Appendix III), every convex body K is a t1-body with constant by = ¢, where
¢ > 0 is an absolute constant.

Assume that K has volume 1 and satisfies the isotropic condition

[eta-ri
K

for every y € S"!. Then, the fact that K is a 1),-body with constant b, is equivalent

to the inequality
1/p
([ Keraz) " < vy L
K

for every p > 1 and y € S™*. We shall prove the following.



Theorem 2.1. Let K be a conver body in R" with volume 1. Assume that K is a
Yo -body with constant bo. Then, for every N > n+1

( log(ZN/n)) L/e
vn '
This implies Theorem 1.1. For the proof, we will use a result of Ball and Pajor

[1] on the volume of symmetric convex bodies which are intersections of symmetric
strips in R™.

]El/n (K: N) S CbaLK

Lemma 2.2. Let z1,... a8y € R" and 1 < g < oo. If W = {z € R" : |[(z,2;)| <
1, 5=1,...,N}, then
+ N 1 -1/q
n nrgq
W™ > 2 |(z, ;)| dz O
n ;|Bg| Br !

Proof of Theorem 2.1: We may assume that K is isotropic. Write Ky for the
absolute convex hull co{£z1,... ,+zn} of N random points from K. By the Blaschke-
Santal6 inequality,

El/n(K,N) < ]E|KN|1/n Swz/n,EK;’rl/n

where Ky is the polar body of K. Lemma 2.2 shows that

N 1/q
o |— 1 n+q 1
(2.2) |K 3| ””§§( - > Bl ), I(z,mlqu)
j=11"4 7

for every ¢ > 1. Consider the convex body W = K x --- x K (N times) in RV™. We
apply Holder’s inequality, change the order of integration and use the t,-property of
K:

N 1/q
o |=1/n lintg~_1 ANT
E| K3 | S/W2< — ;IBH Bg|<z,xj>| dz dzy - -dr

1 + N 1 l/q
<= |(z,z;}|?den - -deydz
2 ( n Z|Bg| rJw !

j=1

1/q
1 n+q 1/ q 1
< - [ =2 (b, — e :
_2< . (q b LK) Ng . 2|7 dz

Since wy/™ < ¢1/n and |z| < n'/?7/4 for all z € BY, we get

1/q 1/q
c 1/a (N n+q
K,N) < —b,L — — .
Ei /. (K, )_\/_ K{q < > ( )

Choosing g = log(2N/n) we complete the proof. |

Remark The proof shows that E,, (K, N) < cbaLK(log(2N/n))1/O‘/\/ﬁ7 where po =
log(2N/n)/n. Since

F@n, . an) = (zN:/B |<Z,x]_>|qdz>uq



is a norm on RV™ one can estimate E, (K, N) for larger values of p by a standard
application of Borell’s lemma (see [6], Appendix III). When p is close to 1, the right
dependence of E, (K, N) on p is not clear.

3 The lower bound

Let H be an (n — 1)-dimensional subspace of R”. We identify H with R*™* and write
z = (y,t), y € H,t € Rfor a point x € R*. If K is a convex body in R" with |K| =1
and P(K) is the orthogonal projection of K onto H, then

(3.1) " (K, N) =/ [ My, yn)dyy - di
P(K) P(K)
where

(3.2) Mpx(yy,...,yn) = / / |IC((y1,t1), ..., (yn,tn)) [P dtw - dta

((K,y1)  U(Kyn)

and {(K,y) ={teR: (y,t) € K}.

We fix y1,...,yn € H and consider the function Fy : RY — R defined by

(3.3) Fy(t,...,tn) =|C((y1,t1), ..., (yn,tn))|,

where Y = (y1,...,y~n). The key observation in [3] is the following:

Lemma 3.1. For any y1,... ,y~ € H, the function Fy is convez. O
We now also fix r1,... ,rx > 0 and define Q = {U = (u1,... ,un) : |ui| <1y =

1,...,N}. For every N-tuple W = (w1, ... ,wn) € RY we set

(3.4) Gw(ui,... ,un) = Fy(wi +u1,... ,wn +un),

and write

Gw (U) = Fy (W + U).

This is the volume of the polytope which is generated by the points (yi,w; + ;).
Finally, for every W € RY and a > 0, we define

(3.5) AW,a) ={U € Q : Gw(U) < a}.

With this notation, we have

Lemma 3.2. Let o > 0 and A € (0,1). If W,W’' € R, then
(3.6) JAAW + (1 = W', a)| > AW, ) AW a)|* .

Proof: Let U € A(W,«) and U’ € A(W', ). Then, using the convexity of Fy we see
that
Grwra-—vw AU+ (1 =NU") = Fy (AW +U) + (1 =)W' +U"))
SAFY(WH+U)+ (1= NFy (W +U")
=AGw (U) + (1 = N)Gw: (U
< a.



Therefore,
AQW + (1= N)W') D AA(W, ) + (1 = N AW, )

and the result follows from the Brunn-Minkowski inequality. O

Observe that the polytopes C((yi,wi + Ui)igN) and C((yi, —w; — ui)igN) have
the same volume since they are reflections of each other with respect to H. It follows
that

(3.7) A(—W,q) = —A(W,a)

for every > 0. Taking W' = —W and A = 1/2 in Lemma 3.2, we obtain the following:

Lemma 3.3. Let yi,... ,yv € H. For every W € RY and every a > 0,
(3.8) |A(0, )| > [A(W,a)],
where O is the origin in RY . a

For every y € P(K), we denote by w(y) the midpoint and by 2r(y) the length of
{(K,y). Let S(K) be the Steiner symmetral of K. By definition, P(S(K)) = P(K) =
P and for every y € P the midpoint and length of ¢(S(K), ) are w'(y) = 0 and
2r' (y) = 2r(y) respectively.

Lemma 3.4. Let y1,... ,yn € P(K) = P(S(K)). Then,
MPaK(yh"' :yN) Z Mp,S(K)(yla' .. :yN)
for every p > 0.

Proof: In the notation of the previous lemmata, we have

MpyK(ylw" )yN) :/C;(GW(U)deU

_ /°° U € Q: Gw (U) > t"/7}|dt

= [ (@1 = jaow.en) ar

By the definition of S(K),

Myt ) = [ (o) dv = [ (121140, #/7)1) ar,

and the result follows from Lemma 3.3. a
It is now clear that E, (K, N) decreases under Steiner symmetrization.

Theorem 3.5. Let K be a convez body with volume |K| =1 and let H be an (n —1)-
dimensional subspace of R™. If Su(K) is the Steiner symmetral of K with respect to
H, then

E, (Su(K),N) <E,(K,N)
for every p > 0.

Proof: We may assume that H = R""*. Since P(Sg(K)) = P(K), Lemma 3.4 and
(9) show that



Eﬁ"(K,N)=/ Mp,x(y1,. .. ,yn)dyn - din
P(K) P(K)

> / / My s, k)W, - yn) dyn -~ - dyn
P(Sg(K)) P(Sua(K))

=B" (Su(K),N),
completing the proof. a

Proof of Theorem 1.2: Since the ball B of volume 1 is the Hausdorff limit of a
sequence of successive Steiner symmetrizations of K, Theorem 3.1 shows that the
expected volume radius is minimal in the case of B. m|

Remark The argument shows that a more general fact holds true.

Theorem 3.6. Let K be a convex body of volume 1 and let B be a ball of the same
volume. Then,

/K---/Kf(|C(x1,...,wN)|)da:N---da:1
Z/B---/BfﬂC(xl,...,xN)|)d:EN~~~d:E1

for every increasing function f: RT — RT. O

Next, we give a lower bound for E, ,, (B, N). We will actually prove that the convex

hull of N random points from K = B contains a ball of radius ¢4/log(2N/n)/\/n (an
analogous fact was proved in [4] for an arbitrary convex body K, but the fact that we
are dealing with a ball leads to the much better estimate which is needed).

Lemma 3.7. Let B = rD,, be the centered ball of volume 1 in R™. If0 € S 1, then
Prob (z € B : (z,0) > er) > exp(—4e°n)
for every e € (c1/\/n,1/4), where ¢1 > 0 is an absolute constant.

Proof: A simple calculation shows that

1
Prob (Z‘ €B: (a:,@) > 57‘) = Wn—lrn/ (1 — t2)(n_l)/2dt

> Wn—1

1 — 422y (n=1)/2
Lol - 42”)

> exp (— 4(n — 1)e?)
> exp(—4e°n)
since v/nw, < ciw,—1 for some absolute constant ¢; > 0.

O
Lemma 3.8. There exist ¢ > 0 and no € N such that if n > no and n(logn)> < N <
exp(cn), then
1
e/ ,
6y/n

C(xl,... ,$N) 2

with probability greater than 1 — exp(—n).



Proof: By Lemma 3.7, for every § € S" ! we have

Prob((xl, S, EN) Hia].\)]((ﬁj, 6) < sr) <(1- exp(—452n))N
i<

<exp(— Nexp(—462n))

for every ¢ € (c1/yv/n,1/4). Let N be a p-net for S~ with cardinality |N| <
exp (log(1 +2/p)n). If

(3.9) exp (nlog(l +2/p) — Nexp(—452n)) < exp(—n),

we have max;<ny(zj,0) > er for all § € N with probability greater than 1 — exp(—n).
For every u € S"™* we find § € N with | — u| < p. Then,
uy > 6) — L0 —u) > (e — p)r.
géﬁ((wjyu) 2 max(;, 0) g@@c(%ﬂ u) > (e —p)r

We choose £ = 2a((log(N/n)/n) 12 (a > 0 is an absolute constant to be determined)
and p = /2. Then,

In

< < -
nlog(l+2/p) +n < 2nlog(3/p) < nlog <a2 Tog (/)

) < nlogn,

if a® > 9/log(N/n). Therefore, (17) will be a consequence of

N
2
. <
(3.10) exp (16a” log(N/n)) < nlogn’
which can be written equivalently in the form
N 1-16a?
(3.11) <E> > logn.

If N > n(logn)? and a = 1/6, then (19) is clearly satisfied. The restriction we had
posed on a was a® > 9/2loglogn, which is also satisfied when n > ng, for a suitable
(absolute) no € N. |

Theorem 3.9. Let B be the ball of volume 1 in R™. If n(logn)* < N < exp(cn), then

Tog(N/n)
Jn

]El/n(B:N) ZC

where ¢ > 0 is an absolute constant.
Proof: Let f(N,n) = y/log(N/n)/6y/n and
A={(z1,...,zn) : C(z1,...,2n) 2 f(N,n)B}.

By Lemma 3.8, Prob(A) > 1 — exp(—n), and hence

E(B, N) Z/ |C(z1,... ,zN)|dzy - -doy
A

> (1 —exp(—n)) f(N,n)|B|
> f(N,n)/2,



completing the proof. a
This completes the proof of Theorem 1.3.

Remarks (a) The argument shows that if § > 0 and cin(logn)' ™ < N < exp(can),
then

v/ 1og(2N
(3.12) Ei (B, N) > ov/5 YV 108C2N/m),
Vvn
(b) The estimate of Lemma 3.8 implies that
log(2N,
(3.13) E, (B, N) > Y 108N/m)
Vvn

for every p > exp(—n). However, it is not clear if (21) holds true for every p > 0.
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