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Abstract

We present an approach that allows one to bound the largest and
smallest singular values of an N × n random matrix with iid rows,
distributed according to a measure on Rn that is supported in a rel-
atively small ball and linear functionals are uniformly bounded in Lp

for some p > 8, in a quantitative (non-asymptotic) fashion. Among
the outcomes of this approach are optimal estimates of 1±c

√
n/N not

only in the case of the above mentioned measure, but also when the
measure is log-concave or when it a product measure of iid random
variables with “heavy tails”.

1 Introduction

The question of estimating the extremal singular value of a random matrix of
the form Γ = N−1/2

∑N
i=1

〈
Xi, ·

〉
ei, that is, of an N×n matrix with iid rows,

distributed according to a probability measure µ on Rn, has attracted much
attention in recent years. As a part of the non-asymptotic approach to the
theory of random matrices, obtaining sharp quantitative bounds has many
important applications, for example, in Asymptotic Geometric Analysis and
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in Statistics. Instead of listing some of those applications, we refer the reader
to [8, 17, 10, 5, 1, 2, 3, 19, 21] and references therein for more details on
the history of the problem and its significance. General surveys on the
non-asymptotic theory of random matrices may be found in [18, 20].

Our main motivation is to identify assumptions on the measure µ that
allow one to obtain the typical behavior of the extremal singular values of
Γ, i.e., assumptions that ensure that for N ≥ n, with high probability,

1− c

√
n

N
≤ smin(Γ) ≤ smax(Γ) ≤ 1 + c

√
n

N
,

where c is an absolute constant.
Two particularly interesting cases are when µ is an isotropic, log-concave

measure [8, 17, 10, 5, 11, 12, 1, 2, 3], and when µ is some natural extension
of the situation in the asymptotic Bai-Yin theorem [21, 19, 13], formulated
below.

Theorem 1.1 [7] Let A = AN,n be an N × n random matrix with indepen-
dent entries, distributed according to a random variable ξ, for which

Eξ = 0, Eξ2 = 1 and Eξ4 < ∞.

If N, n →∞ and the aspect ratio n/N converges to β ∈ (0, 1], then

1√
N

smin(A) → 1−
√

β,
1√
N

smax(A) → 1 +
√

β

almost surely. Also, without the fourth moment assumption, smax(A)/
√

N
is almost surely unbounded.

In a more general setting we assume that the n-dimensional rows Xi, 1 ≤
i ≤ N , of the matrix Γ are independent and distributed according to an
isotropic probability measure µ, (that is, for every t ∈ Sn−1, E

〈
X, t

〉
=

0 and E|〈X, t
〉|2 = 1), and that every linear functional has bounded p

moments, i.e. that supt∈Sn−1 ‖〈X, t
〉‖p ≤ κ1 (or in the “ψ1-case”, that

supt∈Sn−1 ‖〈X, t
〉‖ψ1 ≤ κ2, where ‖〈X, t〉‖ψ1 = inf{s > 0 : E exp( |〈X,t〉|

s ) 6
2}). Note that obtaining the desired bound is equivalent to showing that
with high probability,

sup
t∈Bn

2

|
N∑

i=1

(
〈
Xi, t

〉2 − 1)| ≤ c
√

Nn, (1.1)
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where c is a constant that depends only on p and κ1 (or just on κ2 in the ψ1

case), and Bn
2 is the Euclidean unit ball in Rn. Since we are interested in

CLT-type rates, with a decay of ∼ 1/
√

N , we will focus on the case p > 4,
because for p < 4, CLT rates are false. Such rates in the non-asymptotic
Bai-Yin estimate have recently been established in [13] for X = (ξi)n

i=1,
where the ξi’s are iid, mean-zero, variance 1 random variables that belong
to some Lp space for p > 4 (while different rates have been proved there for
2 < p ≤ 4).

The common threads linking the log-concave case and the “heavy tails”
one are that in both, the random vector X satisfies that with high probabil-
ity, the Euclidean norm ‖X‖ is of the order of

√
n, and that linear functionals〈

X, t
〉

are well behaved: for a log-concave measure supt∈Sn−1 ‖〈X, t
〉‖ψ1 ≤

κ2, and in the “heavy tails” case, supt∈Sn−1 ‖〈X, t
〉‖Lp ≤ κ1(p).

Having this in mind, the goal of this note is to present a proof of the
following result:

Theorem 1.2 Let µ be an isotropic probability measure on Rn, set N ≥ n
and assume that maxi≤N ‖Xi‖ ≤ C0(Nn)1/4. Let κ1 ≥ 1 and set k0 to be
the first integer which satisfies that k0 log(eN/k0) ≥ n.
If p > 8, supt∈Bn

2
‖〈t, ·〉‖Lp ≤ κ1 and 1 ≤ β ≤ c1k0, then with µN -probability

at least

1− c2

(
1

Nβ
+ exp(−c3n)

)
,

sup
t∈Sn−1

|
N∑

i=1

〈
Xi, t

〉2 − 1| ≤ c4

√
nN,

where c1, c2, c3 and c4 depend only on β, p, C0 and κ1.

Following the proof of Theorem 1.2, one can establish the same result in
the ψ1-case but with a better estimate on the probability. The following
theorem has already appeared in [1, 2, 4] and recently M. Talagrand found
a shorter proof of the same fact [16]. Instead of essentially repeating the
proof of Theorem 1.2 we will state at each step the corresponding result in
the ψ1 case and only sketch the changes required in the proof.

Theorem 1.3 Let µ be an isotropic probability measure on Rn, set N ≥ n
and assume that maxi≤N ‖Xi‖ ≤ C0(Nn)1/4. If supt∈Bn

2
‖〈t, ·〉‖ψ1 ≤ κ2,

then with µN -probability at least

1− 2
(
exp(−c1(Nn)1/4) + exp(−c1n)

)
,
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sup
t∈Sn−1

|
N∑

i=1

〈
Xi, t

〉2 − 1| ≤ c2

√
nN,

where c1 and c2 are constants that depend only on C0 and κ2.

As will be explained later, the probability estimate of exp(−cn) that appears
in Theorems 1.2 and 1.3 is the correct one when N is larger than exp(cpn)
and exp(cn) respectively.

The two theorems lead to the desired estimates on the singular values of
Γ by a standard argument which we will not present in full. It is well under-
stood that one may replace the L∞ condition on ‖X‖ with the assumption
that Pr(maxi≤N ‖Xi‖ ≥ t(Nn)1/4) is well behaved, and the modifications
needed in the proofs are minimal. Moreover, in all the examples mentioned
above the probability Pr(maxi≤N ‖Xi‖ ≥ t(Nn)1/4) is well behaved. In-
deed, if µ is log-concave then it follows from [15] that Pr(maxi≤N ‖Xi‖ ≥
t(Nn)1/4) ≤ 2 exp(−ct(Nn)1/4); and if ξ ∈ Lp for p > 4 and X = (ξi)n

i=1,
one may show that Pr(maxi≤N ‖Xi‖ ≥ t(Nn)1/4) ≤ cp(n/N)p/4−1t−p. Since
adapting the proof from the L∞ assumption to the tail-based one is standard
and has appeared in many places, we will not repeat it here.

Theorem 1.2 extends the recent result from [13] beyond the case in which
X has iid coordinate, distributed according to ξ ∈ Lp for some p > 4, and
with a considerably easier proof than the original one (although it does not
cover the range 4 < p ≤ 8, nor can it be extended to a more general context
than the case of the Euclidean ball as in (1.1).

Theorem 1.3 was established in [1, 2], but with a weaker probability
estimate of 1 − 2 exp(−c

√
n). Very recently the original proof from [1, 2]

was simplified in [4] and [16], and with the same probability estimate as we
obtain here. In fact, several ideas used in both these proofs are essential in
ours as well, although we believe that our proof is simpler. Moreover, the
proofs from [1, 2] and [4], [16] use the ψ1 assumption in an essential way
and cannot be extended to the “heavy tails” case.

Throughout, we will denote absolute constants by c1, c2, .... Their value
may change from line to line. We write A . B if there is an absolute
constant c1 for which A ≤ c1B. A ∼ B means that c1A ≤ B ≤ c2A for
absolute constants c1 and c2. If the constants depend on some parameter r
we will write A .r B or A ∼r B. We will denote the Euclidean norm by ‖ ‖.
Finally, if (an) is a sequence, set (a∗n) to be the non-increasing rearrangement
of (|an|).
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2 The Proof

We begin with the following simple observation on a monotone rearrange-
ment of iid random variables. Recall that k0 satisfies that k0 log(eN/k0) ∼ n
if log(eN) . n, and k0 = 1 otherwise.

Lemma 2.1 Let Z1, ..., ZN be iid random variables, distributed according to
Z.

1. If p > 4 and C0, β > 0, there exist constants c0, c1, c2 and c3 that
depend only on p, C0 and β for which the following hold. If ‖Z‖L∞ ≤
C0(Nn)1/4 and u ≥ c0, then

∑
i≤uk0

(Z∗i )2 ≤ c1(1 + u‖Z‖2
Lp

)(Nn)1/2

with probability at least 1 − c2N
−β and

∑N
i=uk0+1(Z

∗
i )4 ≤ c1‖Z‖4

Lp
N

with probability at least 1− 2 exp(−c3un).

2. There exist absolute constants c4, ..., c7 for which the following hold.
If Z ∈ Lψ1, then with probability at least 1 − 2 exp(−c4(Nn)1/4),∑

i≤k0
(Z∗i )2 ≤ c5‖Z‖2

ψ1
(Nn)1/2. Also, for u ≥ c6, with probability

at least 1− 2 exp(−c7un),
∑N

i=k0+1(Z
∗
i )4 ≤ c5u

4‖Z‖4
ψ1

N .

Proof. The fact that Pr(Z∗2s ≥ t) ≤ (
N
2s

)
(Pr(|Z| ≥ t))2

s

is the main ingre-
dient in the proof. We will also assume that k0 > 1, and in particular, that
k0 log(eN/k0) ∼ n. If k0 = 1, the modifications required are minimal and
we will omit the proof in that case.

First, consider the Lp case. Fix ε = p/4− 1, let β ≥ 1 and set s2 which
depends only on β and p and will be named later. For 2s2 ≤ 2s ≤ k0 put
αs = (eN/2s)(1+ε)/p/(Nn)1/4 = 2s/4/n1/4. Since Pr(|Z| ≥ ‖Z‖Lpt) ≤ t−p,
then in that range, Pr(Z∗2s ≥ ‖Z‖Lpαs(Nn)1/4) ≤ (eN/2s)−ε2s

. Hence, for
a right choice of s2(β, p), and since 4(1 + ε)/p = 1, then with probability at
least 1− (eN/2s2)−cε2s2 ≥ 1− c0N

−β,
∑

2s≤uk0

2s(Z∗2s)2 ≤ ‖Z‖2
L∞2s2 + ‖Z‖2

Lp
(Nn)1/2

∑

2s2≤2s≤uk0

2sα2
s

.C0 2s2(Nn)1/2 + ‖Z‖2
Lp

N1/2
∑

2s2≤2s≤un

2s/2 .β,p (1 + u1/2‖Z‖2
Lp

)(Nn)1/2.

For the second part, take ts = ‖Z‖Lp(eN/2s)(1+ε)/p = ‖Z‖Lp(eN/2s)1/4

and let max{2/ε, 1} < u . (N/k0)1/2. Hence, with probability at least

1−
∑

uk0≤2s≤N

exp(−ε2s log(eN/2s)) ≥1− exp(−c1εuk0 log(eN/k0))

≥1− exp(−c2εun),
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∑

uk0≤2s≤N

2s(Z∗2s)4 . ‖Z‖4
Lp

∑

uk0≤2s≤N

2s(eN/2s)4(1+ε)/p .p ‖Z‖4
Lp

N.

Next, consider the ψ1 case. Set s1 to be the first integer for which
2s log(eN/2s) ≥ (Nn)1/4 and assume without loss of generality that 2s1 ≤
k0. Put αs ∼ 1/2s for s ≤ s1 and let αs ∼ log(eN/2s)/(Nn)1/4 for 2s1 ≤
2s ≤ k0. Note that if s ≤ s1 then

Pr(Z∗2s ≥ ‖Z‖ψ1αs(Nn)1/4) ≤ exp(2s log(eN/2s)− c1(Nn)1/4)

≤ exp(−c2(Nn)1/4),

and if 2s1 ≤ 2s ≤ k0 then

Pr(Z∗2s ≥ ‖Z‖ψ1αs(Nn)1/4) ≤ exp(−c32s log(eN/2s)).

Since k0 log2(eN/k0) . n log(eN/n) then

∑

2s≤k0

2sα2
s ≤

∑

2s≤k0

2−s +
2s log2(eN/2s)

(Nn)1/2
. 1 +

( n

N

)1/2
log

(
eN

n

)
. c4.

Summing the probabilities, it follows that with probability at least 1 −
2 exp(−c5(Nn)1/4),

k0∑

i=1

(Z∗i )2 .
∑

2s≤k0

2s(Z∗2s)2 . ‖Z‖2
ψ1

√
Nn,

which proves our first claim in the ψ1 case.
Turning to the second part, fix u ≥ 2 and consider ts = u‖Z‖ψ1 log(eN/2s).

Since Pr(Z∗2s ≥ ts) ≤ exp(−(u − 1)2s log(eN/2s)) and k0 log(eN/k0) ∼ n,
then by summing the probabilities, it is evident that

∑

k0≤2s≤N

2s(Z∗2s)4 ≤ u4‖Z‖4
ψ1

∑

k0≤2s≤N

2s log4(eN/2s) . u4‖Z‖4
ψ1

N

with probability at least 1− 2 exp(−c6un).

The following corollary uses the same idea as in Lemma 2.1 and we will
need it only when k0 > 1. To formulate it, fix 0 < γ < 1 and κ3 to be
named later, let k` = γ`k0 and set `0 to be the first integer satisfying that
k`0 log(eN/k`0) ≤ κ3(Nn)1/4. The constants γ and κ3 will depend only on
p and their value will be specified in the proof of Lemma 2.3 below.
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Corollary 2.2 There exist a constant c1 such that for every γ there ex-
ist constant c2 = c2(γ) for which the following holds. Let p > 4 and
ε = p/4 − 1, set `1 > 0 to be any integer for which k`1 ≥ 1, and let
Z1, ..., ZN be iid random variables, distributed according to Z with ‖Z‖p <
∞. Then, for every 0 ≤ ` < `1, with probability at least 1−(eN/k`+1)−εk`+1,
(
∑k`

j=k`+1
(Z∗j )2)1/2 ≤ c1‖Z‖pη`, where η` ∼ (Nk`)

1
4 . In particular we have

that
∑`1−1

`=0 η` ≤ c2(Nn)1/4.
Moreover, if Z1, ..., ZN are iid random variables, distributed according to

Z with ‖Z‖ψ1 < ∞, there exist absolute constants c3, c4 and c5 for which
the following holds. Let γ = 1/2, and for every 0 ≤ ` < `0 and u ≥ c3,
with probability at least 1− 2 exp(−c4uk` log(eN/k`)), (

∑k`
j=k`+1

(Z∗j )2)1/2 ≤
c5u‖Z‖ψ1 η̄`, where

∑`0−1
`=0 η̄` ≤ c5(Nn)1/4.

The proof of Corollary 2.2 follows from the same argument used in the
second parts of the Lp and ψ1 cases in Lemma 2.1, with the choice of ts =
(eN/k`)(1+ε)/p = (eN/k`)1/4 in the Lp case and ts = u log(eN/k`) in the ψ1

one, combined with a straightforward calculation.
Next, let us turn to the main ingredient of the proof. Consider Uk = {x ∈

SN−1 : |supp(x)| ≤ k} and set Ak = supa∈Uk
‖∑N

i=1 aiXi‖. The motivation

for studying this quantity is that for every k ≤ N , Ak = supt∈Bn
2

(∑k
i=1(

〈
Xi, t

〉∗)2
)1/2

,
but for reasons that will become clear later, we only need to bound Ak0 .

For every k, let δk be determined later and set Nk a subset of BN
2 satis-

fying that for every x ∈ RN ,

sup
y∈Nk

〈
y, x

〉 ≥ (1− δk) sup
z∈Uk

〈
y, x

〉
.

It is standard to verify that there is a set Nk as above of cardinality at most
exp(k log(eN/kδk)).

The main application of Corollary 2.2 is the following Lemma.

Lemma 2.3 For every p > 8, C0, κ1 and β > 0 as in Theorem 1.2 , there
exist constants c1 and c2 that depend only on p, C0, κ1 and β and for
which the following holds. If I ⊂ {1, ..., N}, then in the Lp case, with µN -
probability at least 1− c1/N

β,

sup
a∈Uk0

sup
b∈Uk0

〈∑

i∈I

aiXi,
∑

i∈Ic

biXi

〉 ≤ c2(Nn)1/4Ak0 .
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Also, in the ψ1 case, there are constants c3 and c4 that depend only on C0

and κ2, for which, with µN -probability at least 1− 2 exp(−c3(Nn)1/4),

sup
a∈Uk0

sup
b∈Uk0

〈∑

i∈I

aiXi,
∑

i∈Ic

biXi

〉 ≤ c4(Nn)1/4Ak0 .

Again, we will restrict ourselves to the case when k0 > 1, since the
modifications needed for the case k0 = 1 are minor.
Proof. Let us begin with the Lp case. Consider the sets Uk`

as above and
let

Bk`
= sup

a∈Uk`

sup
b∈Uk`

〈∑

i∈I

aiXi,
∑

i∈Ic

biXi

〉
.

The main observation is that for every 0 ≤ ` ≤ `1,

ρk`
Bk`

≤Bk`+1
+ sup

b∈Nk`

(
k∑̀

i=k`+1+1

(
〈∑

j∈Ic

bjXj , Xi

〉∗)2)1/2

+ sup
a∈Nk`+1

(
k∑̀

i=k`+1+1

(
〈∑

i∈I

aiXi, Xj

〉∗)2)1/2, (2.1)

where ρk`
= (1− δk`

)(1− δk`+1
) and `1 will be defined later.

Indeed, fix a ∈ Uk`
and let Za,j =

〈∑
i∈I aiXi, Xj

〉
. By the definition of

Nk`

sup
b∈Uk`

∑

j∈Ic

bjZa,j ≤ (1− δk`
)−1 sup

b∈Nk`

∑

j∈Ic

bjZa,j .

Note that

sup
a∈Uk`

sup
b∈Nk`

∑

j∈Ic

bjZa,j = sup
b∈Nk`

sup
a∈Uk`

∑

i∈I

ai

〈
Xi,

∑

j∈Ic

bjXj

〉
= (∗),

and setting Wb,i =
〈
Xi,

∑
j∈Ic bjXj

〉
for i ∈ I, it is evident that

(∗) ≤ sup
b∈Nk`

(
k∑̀

i=1

(W ∗
b,i)

2)1/2

≤ sup
a∈Uk`+1

sup
b∈Nk`

〈∑

i∈I

aiXi,
∑

j∈Ic

bjXj

〉
+ sup

b∈Nk`

(
k∑̀

i=k`+1+1

(W ∗
b,i)

2)1/2.

Replacing Uk`+1
by Nk`+1

and repeating the argument used above for the
first term (while reversing the roles of a and b) proves (2.1).
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Since |Nk`
| ≤ exp(k` log(eN/k`δk`

)), and using the independence of (Xj)j∈Ic

and (Xi)i∈I , a straightforward application of Corollary 2.2, shows that with
probability at least

1− 2 exp(−(p/4− 1)k`+1 log(eN/k`+1) + k` log(eN/k`δk`
)) = (∗∗),

for every b ∈ Nk`
and every a ∈ Nk`+1

,




k∑̀

i=k`+1+1

(
〈∑

j∈Ic

bjXj , Xi

〉∗)2



1/2

≤ (cNk`)1/4Ak0

and 


k∑̀

i=k`+1+1

(
〈∑

i∈I

aiXi, Xj

〉∗)2



1/2

≤ (cNk`)1/4Ak0 .

Since p/4 > 2, there is γ < 1 for which (p/4 − 1)γ > 1. Thus, for p > 8
there are γ, c1 and c2 that depend only on p, and for which one may take
δk`

= (k`/N)c1 , satisfying that

(∗∗) ≥ 1− 2 exp(−c2k`+1 log(eN/k`+1)).

Now set `1 to be the largest integer ` for which both k` − k`+1 > 1 and

∑̀

j=0

exp(−c2kj+1 log(eN/kj+1)) ≤ N−β.

Therefore, `1 is the first integer satisfying (p/4−2)k` log(eN/k`) ≤ κ3β log N
for an appropriate choice of κ3.

Observe that there is a constant c3 that depends only on p for which∏`1
`=0(1 − δk`

)2 ≥ c3. Hence, repeating this dimension reduction procedure
up to ` = `1 and then applying the “large coordinates” estimate from Lemma
2.1 for Bk`1

, (while observing that k`1 6 k0), concludes the proof.
The proof in the ψ1 case is similar - only with a different termination

point for the dimension reduction process: k`0 instead of k`1 . We omit the
details of this case.

Observe that in the proof of the previous Lemma we needed that p
4−1 >

1. This is the only point in our proof where the fact p > 8 is required.
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Theorem 2.4 Under the assumptions of Theorem 1.2, there are constants
c1 and c2 that depend only β, p, C0 and κ1, for which with probability at
least 1− c1N

−β, Ak0 ≤ c2(Nn)1/4.
Under the assumptions of Theorem 1.3, with probability at least 1 −

2 exp(−c3(Nn)1/4), Ak0 ≤ c4(Nn)1/4, where c3, c4 depend only on C0 and
κ2.

Proof. We will only present a proof in the Lp case, as the ψ1 one has
an almost identical proof. Clearly, for every a ∈ Uk0 , ‖

∑N
i=1 aiXi‖2 =∑

i6=j aiaj

〈
Xi, Xj

〉
+

∑N
i=1 a2

i ‖Xi‖2, and since ‖a‖ ≤ 1, the second term is
at most maxi≤N ‖Xi‖2 ≤ C2

0 (Nn)1/2.
To bound the first term, let (εi)N

i=1 be independent Bernoulli random
variables. Note that

Eε

∑

i6=j

(1 + εi)(1− εj)aiaj

〈
Xi, Xj

〉
=

∑

i6=j

aiaj

〈
Xi, Xj

〉
,

and thus it suffices to control

sup
a∈Uk0

Eε

∑

i6=j

(1 + εi)(1− εj)aiaj

〈
Xi, Xj

〉

≤Eε sup
a∈Uk0

∑

i 6=j

(1 + εi)(1− εj)aiaj

〈
Xi, Xj

〉 ≡ EεH((εi)N
i=1, (Xi)N

i=1).

Observe that if Iε = {i : εi = 1} then

H((εi)N
i=1, (Xi)N

i=1) = 4 sup
a∈Uk0

〈∑

i∈Iε

aiXi,
∑

j∈Ic
ε

ajXj

〉

for every realization of (εi)N
i=1.

Fix (εi)N
i=1, then

H((εi)N
i=1, (Xi)N

i=1) . sup
a∈Uk0

sup
b∈Uk0

〈∑

i∈Iε

aiXi,
∑

j∈Ic
ε

bjXj

〉
.

Applying Lemma 2.3, if p > 8, with µN -probability at least 1 − cN−β,
H((εi)N

i=1, (Xi)N
i=1) .p (Nn)1/4Ak0 . Thus, by a Fubini argument, there

exists a set B ⊂ ΩN of µN -probability at least 1− c1N
−β/2, on which, with

µN
ε -probability at least 1 − c2N

−β/2, H((εi)N
i=1, (Xi)N

i=1) .p (Nn)1/4Ak0 .

10



Hence, for every (Xi)N
i=1 ∈ B,

EεH((εi)N
i=1, (Xi)N

i=1) .p

Ak0(Nn)1/4 + N−β/2 sup
a∈Uk0

|
∑

i6=j

aiaj

〈
Xi, Xj

〉|

.p,C0Ak0(Nn)1/4 + N−β/2(A2
k0

+ (Nn)1/2), (2.2)

where the last inequality follows from the Cauchy-Scwarz inequality and the
definition of Ak0 . Therefore, on B, if β > 0 and N is large enough, then
A2

k0
.p,β,C0 Ak0(Nn)1/4 + (Nn)1/2 and the claim follows.

The final observation we need is a straightforward application of Lemma
2.1 to the random variables Zt =

〈
X, t

〉
, for vectors t in a 1/2-net in Bn

2 .

Lemma 2.5 Under the assumptions of Theorem 1.2 there exist absolute
constants c1, c2 and c3 depending only on κ1 for which the following holds.
If N is a maximal 1/2-separated subset of Bn

2 then with probability at least

1− 2 exp(−c1n), supt∈N
(∑N

i=c3k0+1(
〈
Xi, t

〉∗)4
)1/2

≤ c2

√
N .

Moreover under the assumptions of Theorem 1.3 there exist absolute con-
stants c4 and c5 depending only on κ2 for which with probability at least

1− 2 exp(−c1n), supt∈N
(∑N

i=k0+1(
〈
Xi, t

〉∗)4
)1/2

≤ c2

√
N .

Proof of Theorem 1.2. Let N be a maximal 1/2-separated subset of Bn
2

and let C be the intersection of the events from Theorem 2.4 and Lemma
2.5. Note that on C, with µN

ε -probability at least 1− 2 exp(−c1n),

sup
t∈Bn

2

|
N∑

i=1

εi

〈
Xi, t

〉2| .C0,p

√
Nn.

Indeed, let c3 be the constant from Lemma 2.5, fix t, t′ ∈ N and let J
be the union of the sets of the largest c3k0 coordinates of (|〈Xi, t

〉|)N
i=1 and

(|〈Xi, t
′〉|)N

i=1. By Höffding’s inequality, for every v > 0, with µN
ε -probability

11



at least 1− 2 exp(−c4v
2),

|
N∑

i=1

εi

〈
Xi, t

〉〈
Xi, t

′〉| .
∑

i∈J

|〈Xi, t
〉〈

Xi, t
′〉|+ v(

∑

i∈Jc

〈
Xi, t

〉2〈
Xi, t

′〉2)1/2

≤ 2c3(
k0∑

i=1

(
〈
Xi, t

〉∗)2)1/2(
k0∑

i=1

(
〈
Xi, t

′〉∗)2)1/2

+v(
N∑

i=c3k0+1

(
〈
Xi, t

〉∗)4)1/4(
N∑

i=c3k0+1

(
〈
Xi, t

′〉∗)4)1/4

.A2
k0

+ v
√

N. (2.3)

Let v ∼ √
n, and since |N | ≤ 5n, there is a set D ⊂ {−1, 1}N of µN

ε -
probability at least 1 − 2 exp(−c5n) on which (2.3) holds for any pair t, t′

taken from N × N . Since each t ∈ Bn
2 can be written as

∑∞
i=1 βiti with

0 ≤ βi . 2−i and ti ∈ N , then on D,

sup
t∈Bn

2

|
N∑

i=1

εi

〈
Xi, t

〉2| . (Nn)1/2
∞∑

i,j=1

2−i2−j . (Nn)1/2,

with constants that depends on κ0, C0, p and β. The assertion now follows
from a standard application of a variation of the Giné-Zinn symmetrization
theorem [9] (see also §5.3 in [13]).

The proof of 1.3 follows the same line and we will not present the details.
Finally, let us point out that the estimate on the probability in Theorem
1.2 (and in Theorem 1.3 as well) is of the right order when N > ecpn, where
cp > 0 is a constant that depends only on p; observe that in that range, the
dominant term in the probability estimate is e−cn.

Indeed, set A = supt∈Bn
2
|N−1/2

∑N
i=1(

〈
Xi, t

〉2−1)|, and note that for any

fixed t ∈ Sn−1, Pr(A > cn1/2) ≥ Pr(|N−1/2
∑N

i=1(
〈
Xi, t

〉2 − 1)| > cn1/2).
By a variant of Berry-Esseen theorem (see [14], Theorem 2.2) it follows that

∣∣∣∣∣Pr((|N−1/2
N∑

i=1

(
〈
Xi, t

〉2 − 1)| > cn1/2)− Pr(|g| > cn1/2)

∣∣∣∣∣ . 1
Nα

,

where α depends only on p (and is positive for any p > 4), and g is a standard
gaussian variable. Hence, under our assumptions and for those very large
values of N , it is evident that Pr(A > cn1/2) > (1/2) exp(−c1n).
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2.1 Final Remarks

Many of the ideas used in the proof of Theorem 1.2 can actually be traced
back to Bourgain [8], who studied the log-concave case and obtained es-
timates on the random variables max|I|≤m ‖

∑
i∈I Xi‖ using a combination

of self-bounding and decoupling arguments. This led to a bound on the
non-increasing rearrangement of vectors (

〈
Xi, t

〉
)N
i=1, uniformly for t ∈ Bn

2 .
In [11], similar uniform bounds were obtained in the more general, em-

pirical processes setup, and under a ψ1-tail assumption; that is, estimates
on supf∈F max|I|=m |

∑
i∈I f(Xi)| for a general class of functions F with a

bounded diameter in Lψ1 . In both cases, the quantity that was estimated
was not the right one for the problem at hand, and thus the approach re-
sulted in slightly suboptimal estimates on supf∈F |

∑N
i=1 f2(Xi)− Ef2|.

Bourgain’s method was extended and improved in [1, 2], in which the
parameters Am were introduced. This, combined with the correct level
of truncation ((Nn)1/4 rather than n1/2) were the main ingredients in the
solution of the log-concave case, though only with the probability estimate
of 1− 2 exp(−c

√
n).

At the same time, it was noted in [12] that one may use a chaining ar-
gument to control supf∈F max|I|=m(

∑
i∈I f2(Xi))1/2 for a general class of

functions F that has a bounded diameter in Lψ1 . Of course, when con-
sidering F = {〈t, ·〉 : t ∈ Bn

2 }, this quantity is just Am. This approach
was extended further in [13], allowing one to control the empirical process
supf∈F |

∑N
i=1 f2(Xi)− Ef2| for classes that are only bounded in Lp rather

than in Lψ1 .
To see why our proof follows the same ideas as [12, 13], one should

observe that the key point in [12, 13] was to study the fine structure of
the random coordinate projection V = {(f(Xi))N

i=1 : f ∈ F}, and then
use this structure to handle the Bernoulli process indexed by V 2 (without
reverting to the gaussian process indexed by the same set!). To that end, one
obtains information on the monotone rearrangement of each “link” ((πs+1f−
πsf)(Xi))N

i=1 in the chain given by the admissible sequence (Fs), where at
each step, one balances the cardinality of the set of links and

(
N
k

)
. In

this way, one may obtain uniform information on the k largest coordinates
of ((πs+1f − πsf)(Xi))N

i=1 for that value of k. Moreover, these k largest
coordinates are controlled in terms of a “global” notion of complexity of
F (e.g. the γ2 functional), while the smaller coordinates are estimated in
the same way we did here – using tail estimates on each random variable
(πsf − πs+1f)(X).

Unlike the general case, here, the structure is rather simple because Bn
2
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is both large and very regular. In particular, one should not expect chaining
to have any advantage over the union bound – which can be viewed as “one-
step chaining”, or alternatively, chaining that starts at a set of cardinality
exp(cn). Having this in mind, our proof follows the path mentioned above:
the balance should be between the “cardinality” of Bn

2 - i.e. exp(cn), and(
N
k

)
, which is precisely the definition of k0. What happens on the “large” k0

coordinates (i.e. Ak0) depends on a “global” property – maxi≤N ‖Xi‖ (The-
orem 2.4), while the “small” coordinates are estimated using only individual
tail estimates (Lemma 2.5).

<
∑

aiXi,
∑

bjXj >≤ Ak0 <
∑

aiXi, v >≤ Ak0‖
∑

aiXi‖‖v‖ =

Ak0‖
∑

aiXi‖ ≤ Ak0

∑
‖Xi‖
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