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Abstract

Let K be a centrally-symmetric convex body in Rn and let ‖ · ‖ be its
induced norm on Rn. We show that if K ⊇ rBn

2 then:

√
nM(K) 6 C

n∑
k=1

1√
k

min

(
1

r
,
n

k
log
(
e+

n

k

) 1

v−k (K)

)
.

where M(K) =
∫
Sn−1 ‖x‖ dσ(x) is the mean-norm, C > 0 is a universal

constant, and v−k (K) denotes the minimal volume-radius of a k-dimensional
orthogonal projection of K. We apply this result to the study of the mean-
norm of an isotropic convex body K in Rn and its Lq-centroid bodies. In
particular, we show that if K has isotropic constant LK then:

M(K) 6
C log2/5(e+ n)

10
√
nLK

.

1 Introduction

LetK be a centrally-symmetric convex compact set with non-empty interior (“body”)
in Euclidean space (Rn, 〈·, ·〉). We write ‖ · ‖ for the norm induced on Rn by K
and hK for the support function of K; this is precisely the dual norm ‖ · ‖∗. The
parameters:

M(K) =

∫
Sn−1

‖x‖ dσ(x) and M∗(K) =

∫
Sn−1

hK(x) dσ(x), (1.1)

where σ denotes the rotationally invariant probability measure on the unit Eu-
clidean sphere Sn−1, play a central role in the asymptotic theory of finite dimen-
sional normed spaces.

Let vrad(K) := (|K|/|Bn2 |)
1/n

denote the volume-radius of K, where |A| de-
notes Lebesgue measure in the linear hull of A and Bn2 denotes the unit Euclidean
ball. It is easy to check that:

M(K)−1 6 vrad(K) 6M∗(K) = M(K◦), (1.2)

where K◦ = {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K} is the polar body to K, i.e. the
unit-ball of the dual norm ‖ · ‖∗. Indeed, the left-hand side is a simple consequence
of Jensen’s inequality after we express the volume of K as an integral in polar coor-
dinates, while the right-hand side is the classical Urysohn inequality. In particular,
one always has M(K)M∗(K) > 1.
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In the other direction, it is known from results of Figiel–Tomczak-Jaegermann
[11], Lewis [18] and Pisier’s estimate [30] on the norm of the Rademacher projection,
that for any centrally-symmetric convex body K, there exists T ∈ GL(n) such that:

M(TK)M∗(TK) 6 C log n, (1.3)

where C > 0 is a universal constant. Throughout this note, unless otherwise
stated, all constants c, c′, C, . . . denote universal numeric constants, independent of
any other parameter, whose value may change from one occurrence to the next. We
write A ' B if there exist absolute constants c1, c2 > 0 such that c1A 6 B 6 c2A.

The role of the linear map T in (1.3) is to put the body in a good “position”,
since without it M(K)M∗(K) can be arbitrarily large. The purpose of this note is
to obtain good upper bounds on the parameter M(K), when K is already assumed
to be in a good position - the isotropic position. A convex body K in Rn is called
isotropic if it has volume 1, its barycenter is at the origin, and there exists a constant
LK > 0 such that: ∫

K

〈x, θ〉2dx = L2
K , for all θ ∈ Sn−1. (1.4)

It is not hard to check that every convex body K has an isotropic affine image which
is uniquely determined up to orthogonal transformations [24]. Consequently, the
isotropic constant LK is an affine invariant of K. A central question in asymptotic
convex geometry going back to Bourgain [5] asks if there exists an absolute constant
C > 0 such that LK 6 C for every (isotropic) convex body K in Rn and every
n > 1. Bourgain [6] proved that LK 6 C 4

√
n log n for every centrally-symmetric

convex body K in Rn. The currently best-known general estimate, LK 6 C 4
√
n, is

due to Klartag [14] (see also the work of Klartag and E. Milman [16] and a further
refinement of their approach by Vritsiou [33]).

It is known that if K is a centrally-symmetric isotropic convex body in Rn then
K ⊇ LKB

n
2 , and hence trivially M(K) 6 1/LK . It seems that, until recently, the

problem of bounding M(K) in isotropic position had not been studied and there
were no other estimates besides the trivial one. The example of the normalized
`n∞ ball shows that the best one could hope is M(K) 6 C

√
log n/

√
n. Note that

obtaining a bound of the form M(K) 6 n−δL−1K immediately provides a non-trivial

upper bound on LK , since M(K) > vrad(K)−1 ' 1/
√
n, and hence LK 6 c−1n

1
2−δ.

The current best-known upper bound on LK suggests that M(K) 6 C(n1/4LK)−1

might be a plausible goal.
Paouris and Valettas (unpublished) proved that for every isotropic centrally-

symmetric convex body K in Rn one has:

M(K) 6
C 3
√

log(e+ n)
12
√
nLK

. (1.5)

Subsequently, this was extended by Giannopoulos, Stavrakakis, Tsolomitis and Vrit-
siou in [12] to the case of the Lq-centroid bodies Zq(µ) of an isotropic log-concave
probability measure µ on Rn (see Section 5 for the necessary definitions). The ap-
proach of [12] was based on a number of observations regarding the local structure
of Zq(µ); more precisely, lower bounds for the in-radius of their proportional projec-
tions and estimates for their dual covering numbers (we briefly sketch an improved
version of this approach in Section 7).
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In this work we present a different method, applicable to general centrally-
symmetric convex bodies, which yields better quantitative estimates. As always,
our starting point is Dudley’s entropy estimate (see e.g. [32, Theorem 5.5]):

√
nM∗(K) 6 C

∑
k>1

1√
k
ek(K,Bn2 ), (1.6)

where ek(K,Bn2 ) are the entropy numbers of K. Recall that the covering number
N(K,L) is defined to be the minimal number of translates of L whose union covers
K, and that ek(K,L) := inf

{
t > 0 : N(K, tL) 6 2k

}
.

Our results depend on the following natural volumetric parameters associated
with K for each k = 1, . . . , n:

wk(K) := sup {vrad(K ∩ E) : E ∈ Gn,k} , v−k (K) := inf {vrad(PE(K)) : E ∈ Gn,k} ,

where Gn,k denotes the Grassmann manifold of all k-dimensional linear subspaces
of Rn, and PE denotes orthogonal projection onto E ∈ Gn,k. Note that by the
Blaschke–Sanataló inequality and its reverse form due to Bourgain and V. Milman
(see Section 2), it is immediate to verify that wk(K◦) ' 1

v−k (K)
.

Theorem 1.1. For every centrally-symmetric convex body K in Rn and k > 1:

ek(K,Bn2 ) 6 C
n

k
log
(
e+

n

k

)
sup

16m6min(k,n)

{
2−

k
3mwm(K)

}
.

By invoking Carl’s theorem (see Section 2), a slightly weaker version of Theorem
1.1 may be deduced from the following stronger statement:

Theorem 1.2. Let K be a centrally-symmetric convex body in Rn. Then for any
k = 1, . . . , bn/2c there exists F ∈ Gn,n−2k so that:

K ∩ F ⊆ Cn
k

log
(
e+

n

k

)
wk(K)Bn2 ∩ F, (1.7)

and dually, there exists F ∈ Gn,n−2k so that:

PF (K) ⊇ 1

C n
k log(e+ n

k )
v−k (K)PF (Bn2 ). (1.8)

A weaker version of Theorem 1.2, with the parameters wk(K), v−k (K) above
replaced by:

vk(K) := sup {vrad(PE(K)) : E ∈ Gn,k} , w−k (K) := inf {vrad(K ∩ E) : E ∈ Gn,k} ,

respectively, was obtained by V. Milman and G. Pisier in [25] (see Theorem 4.1).
Our improved version is crucial for properly exploiting the corresponding properties
of isotropic convex bodies.

By (essentially) inserting the estimates of Theorem 1.1 into (1.6) (with K re-
placed by K◦), we obtain that if K is a centrally-symmetric convex body in Rn
with K ⊇ rBn2 then:

√
nM(K) 6 C

n∑
k=1

1√
k

min

(
1

r
,
n

k
log
(
e+

n

k

) 1

v−k (K)

)
. (1.9)
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In the case of the centroid bodies Zq(µ) of an isotropic log-concave probability
measure µ on Rn, one can obtain precise information on the growth of the param-
eters v−k (Zq(µ)). We recall the relevant definitions in Section 5, and use (1.9) to
deduce in Section 6 that:

2 6 q 6 q0 := (n log n)2/5 =⇒ M(Zq(µ)) 6 C

√
log q
4
√
q
. (1.10)

In particular, since Zn(µ) ⊇ Zq0(µ) and M(K) ' M(Zn(λK/LK ))/LK , where
λA denotes the uniform probability measure on A, we immediately obtain:

Theorem 1.3. If K is a centrally-symmetric isotropic convex body in Rn then:

M(K) 6
C log2/5(e+ n)

10
√
nLK

. (1.11)

It is clear that (1.11) is not optimal. Note that if (1.10) were to remain valid

until q0 = n, we would obtain the bound M(K) 6 C

√
log(e+n)

n1/4LK
, which as previously

explained would in turn imply that LK 6 C
√

log(e+ n) n1/4, in consistency with
the best-known upper bound on the isotropic constant. We believe that it is an
interesting question to extend the range where (1.10) remains valid. In Section 6,
we obtain such an extension when µ is in addition assumed to be Ψα (see Section
6 for definitions).

Our entire method is based on Pisier’s regular versions of V. Milman’s M -
ellipsoids associated to a given centrally-symmetric convex body K, comparing
between volumes of sections and projections of K and those of its associated regular
ellipsoids. This expands on an approach already employed in [32, 7, 17, 15, 12].

We conclude the introduction by remarking that the dual question of providing
an upper bound for the mean-width M∗(K) of an isotropic convex body K has
attracted more attention in recent years. Until recently, the best known estimate
was M∗(K) 6 Cn3/4LK , where C > 0 is an absolute constant (see [9, Chapter 9]
for a number of proofs of this inequality). The second named author has recently
obtained in [21] an essentially optimal answer to this question - for every isotropic
convex body K in Rn one has M∗(K) 6 C

√
n log2 nLK .

2 Preliminaries and notation from the local theory

Let us introduce some further notation. Given F ∈ Gn,k, we denote BF = Bn2 ∩ F
and SF = Sn−1 ∩ F . A centrally-symmetric convex body K in Rn is a compact
convex set with non-empty interior so that K = −K. The norm induced by K on
Rn is given by ‖x‖K = min{t > 0 : x ∈ tK}. The support function of K is defined
by hK(y) := ‖y‖∗K = max

{
〈y, x〉 : x ∈ K

}
, with K◦ denoting the unit-ball of the

dual-norm. By the Blaschke–Santaló inequality (the right-hand side below) and its
reverse form due to Bourgain and V. Milman [8] (the left-hand side), it is known
that:

0 < c 6 vrad(K)vrad(K◦) 6 1. (2.1)

Recall that the k-th entropy number is defined as

ek(K,L) := inf
{
t > 0 : N(K, tL) 6 2k

}
.
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A deep and very useful fact about entropy numbers is the Artstein–Milman–Szarek
duality of entropy theorem [1], which states that:

ek(Bn2 ,K) 6 Ceck(K◦, Bn2 ) (2.2)

for every centrally-symmetric convex body K and k > 1.
In what follows, a crucial role is played by G. Pisier’s regular version of V.

Milman’s M -ellipsoids. It was shown by Pisier (see [31] or [32, Chapter 7]) that
for any centrally-symmetric convex body K in Rn and α ∈ (0, 2), there exists an
ellipsoid E = EK,α so that:

max{ek(K, E), ek(K◦, E◦), ek(E ,K), ek(E◦,K◦)} 6 Pα

(n
k

)1/α
, (2.3)

where Pα 6 C
(

α
2−α

)1/2
is a positive constant depending only on α.

Given a pair of centrally-symmetric convex bodies K,L in Rn, the Gelfand
numbers ck(K,L) are defined as:

ck(K,L) :=

{
inf {diamL∩F (K ∩ F ) : F ∈ Gn,n−k} k = 0, . . . , n− 1

0 otherwise
,

where diamA(B) := inf {R > 0 : B ⊆ RA}. We denote ck(K) = ck(K,Bn2 ) and
ek(K) = ek(K,Bn2 ).

Carl’s theorem [10] relates any reasonable Lorentz norm of the sequence of
entropy numbers {em(K,L)} with that of the Gelfand numbers {cm(K,L)}. In
particular, for any α > 0, there exist constants Cα, C

′
α > 0 such that for any k > 1:

sup
m=1,...,k

mαem(K,L) 6 Cα sup
m=1,...,k

mαcm(K,L), (2.4)

and:
k∑

m=1

m−1+αem(K,L) 6 C ′α

k∑
m=1

m−1+αcm(K,L). (2.5)

In fact, Pisier deduces the covering estimates of (2.3) from an application of Carl’s
theorem, after establishing the following estimates:

max{ck(K, E), ck(K◦, E◦)} 6 Pα

(n
k

)1/α
for all k ∈ {1, . . . , n} . (2.6)

Our estimates depend on a number of volumetric parameters of K, already
defined in the Introduction, which we now recall:

wk(K) := sup {vrad(K ∩ E) : E ∈ Gn,k} , vk(K) := sup {vrad(PE(K)) : E ∈ Gn,k} ,

and

w−k (K) := inf {vrad(K ∩ E) : E ∈ Gn,k} , v−k (K) := inf {vrad(PE(K)) : E ∈ Gn,k} .

Note that 0 < c 6 w−k (K)vk(K◦), v−k (K)wk(K◦) 6 1 by (2.1). Also observe that
k 7→ vk(K) is non-increasing by the Alexandrov inequalities and Kubota’s formula,
and that k 7→ w−k (K) is non-decreasing by polar-integration and Jensen’s inequality.

We refer to the books [26] and [32] for additional basic facts from the local
theory of normed spaces.
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3 New covering estimates

The main result of this section provides a general upper bound for the entropy
numbers ek(K,Bn2 ).

Theorem 3.1. Let K be a centrally-symmetric convex body in Rn, and let k > 1.
Then:

ek(K,Bn2 ) 6 C
n

k
log
(
e+

n

k

)
sup

16m6min(k,n)

{
2−

k
3mwm(K)

}
.

We combine this fact with Dudley’s entropy estimate

√
nM∗(K) 6 C

∑
k>1

1√
k
ek(K,Bn2 ). (3.1)

(see [32, Theorem 5.5] for this formulation). As an immediate consequence, we
obtain:

Corollary 3.2. Let K be a centrally-symmetric convex body in Rn with K ⊆ RBn2 .
Then:

√
nM∗(K) 6 C

∑
k>1

1√
k

min

{
R,

n

k
log
(
e+

n

k

)
sup

16m6min(k,n)

{
2−

k
3mwm(K)

}}
.

Dually, let K be a centrally-symmetric convex body in Rn with K ⊇ rBn2 . Then:

√
nM(K) 6 C

∑
k>1

1√
k

min

{
1

r
,
n

k
log
(
e+

n

k

)
sup

16m6min(k,n)

{
2−

k
3m

1

v−m(K)

}}

Proof. The first claim follows by a direct application of (3.1) if we estimate ek(K,Bn2 )
using Theorem 3.1 and the observation that ek(K,Bn2 ) 6 R for all k > 1 (recall that
K ⊆ RBn2 ). Then, the second claim follows by duality since wm(K◦) ' 1

v−m(K)
.

We will see in the next section that the supremum over m above is unnecessary
and that one may always use m = k, only summing over k = 1, . . . , n. But we
proceed with the proof of Theorem 3.1, as it is a simpler approach.

Proof of Theorem 3.1. Assume without loss of generality that k is divisible by 3,
and use the estimate:

ek(K,Bn2 ) 6 ek/3(K, E)e2k/3(E , Bn2 ),

where E = EK,αk is Pisier’s αk-regular M -ellipsoid associated to K, with αk ∈ [1, 2)
to be determined. The first term is controlled directly by Pisier’s regular covering
estimate (2.3). For the second term we use the following simple fact about covering
numbers of ellipsoids (see e.g. [32, Remark 5.15]):

ej(E , Bn2 ) ' sup
16m6n

2−j/mwm(E) ' sup
16m6min(j,n)

2−j/mwm(E);

the latter equivalence follows since wm(E) is the geometric average of the m largest
principal radii of E , and so m 7→ wm(E) is non-increasing. Now recall that

wm(E) ' 1/v−m(E◦). (3.2)
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To estimate v−m(E◦), we use a trivial volumetric bound: for any E ∈ Gn,m,

vrad(PE(K◦))

vrad(PE(E◦))es(K◦, E◦)
6 N(PE(K◦), es(K

◦, E◦)PE(E◦))1/m

6 N(K◦, es(K
◦, E◦)E◦)1/m 6 2s/m,

for s > 1 to be determined. Consequently:

v−m(E◦) > 1

2s/mes(K◦, E◦)
v−m(K◦),

and plugging this back into (3.2), we deduce:

wm(E) 6 C2s/mes(K
◦, E◦)wm(K),

and hence:

e2k/3(E , Bn2 ) 6 C sup
16m6min(k,n)

2
s−2k/3
m es(K

◦, E◦)wm(K).

Setting s = k/3, we conclude that:

e2k/3(E , Bn2 ) 6 Cek/3(K◦, E◦) sup
16m6min(k,n)

2−
k

3mwm(K).

Combining everything, we obtain:

ek(K, E) 6 Cek/3(K, E)ek/3(K◦, E◦) sup
16m6min(k,n)

2−
k

3mwm(K)

6
C ′

2− αk

(n
k

) 2
αk sup

16m6min(k,n)

2−
k

3mwm(K).

Setting αk = 2− 1
log(e+n/k) , the assertion follows.

Remark 3.3. Theorem 3.1 implies the following dual covering estimate:

ek(Bn2 ,K) 6 C
n

k
log
(
e+

n

k

)
sup

16m6min(k,n)

{
2−

k
3m

1

v−m(K)

}
. (3.3)

Indeed, this is immediate from the duality of entropy theorem (2.2) and the fact
that wm(K◦) ' 1

v−m(K)
. Alternatively, one may simply repeat the proof of Theorem

3.1 with the roles of K and Bn2 exchanged.

4 New diameter estimates

This section may be read independently of the rest of this work, and contains a
refinement of the following result of V. Milman and G. Pisier from [25], as exposed
in [32, Lemma 9.2]:

Theorem 4.1 (Milman–Pisier). Let K be a centrally-symmetric convex body in
Rn. Then, for any k = 1, . . . , n/2:

c2k(K) 6 C
n

k
log
(
e+

n

k

)
vk(K).
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In other words, there exists F ∈ Gn,n−2k so that:

K ∩ F ⊆ Cn
k

log
(
e+

n

k

)
vk(K)BF , (4.1)

and dually, there exists F ∈ Gn,n−2k so that:

PF (K) ⊇ 1

C n
k log(e+ n

k )
w−k (K)BF . (4.2)

Our version refines these estimates by replacing vk(K) and w−k (K) above by
the stronger wk(K) and v−k (K) parameters, respectively; this refinement is crucial
for our application in this paper.

Theorem 4.2. Let K be a centrally-symmetric convex body in Rn. Then for any
k = 1, . . . , n/2:

c2k(K) 6 C
n

k
log
(
e+

n

k

)
wk(K).

In other words, there exists F ∈ Gn,n−2k so that:

K ∩ F ⊆ Cn
k

log
(
e+

n

k

)
wk(K)BF , (4.3)

and dually, there exists F ∈ Gn,n−2k so that:

PF (K) ⊇ 1

C n
k log(e+ n

k )
v−k (K)BF . (4.4)

Our refinement will come from exploiting the full strength of Pisier’s result on
the existence of regular M -ellipsoids. In contrast, the Milman–Pisier result is based
on V. Milman’s quotient-of-subspace theorem, from which it seems harder to obtain
enough regularity to deduce our proposed refinement.

Proof of Theorem 4.2. Given k = 1, . . . , n/2, let E = EK,αk denote Pisier’s αk-
regular M -ellipsoid, for some αk ∈ [1, 2) to be determined. By the second estimate
in (2.6), we know that there exists E ∈ Gn,n−k so that:

PE(K) ⊇ 1

Pαk

(
k

n

)1/αk

PE(E).

For the ellipsoid E ′ := PE(E) ⊆ E, we may always find a linear subspace F ⊆ E of
codimension m in E so that:

PF (E ′) ⊇ inf
H∈Gm(E)

sup
H′⊆H

{vrad(PH′(E ′))}BF ,

where Gm(E) is the Grassmannian of all m-dimensional linear subspaces of E.
Indeed, this is immediate by choosing H to be the subspace spanned by the m
shortest axes of E ′, and setting F to be its orthogonal complement. Consequently,
there exists a subspace F ∈ Gn,n−(k+m) so that:

PF (K) ⊇ 1

Pαk

(
k

n

)1/αk

inf
H∈Gn,m

sup
H′⊆H

{vrad(PH′(E))}BF . (4.5)
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We now deviate from the proof of our refined version, to show how one may
recover the Milman–Pisier estimate. Assume for simplicity that k < n/3. By the
first estimate in (2.6), we know that there exists J ∈ Gn,n−k so that:

K ∩ J ⊆ Pαk
(n
k

)1/αk
E ∩ J.

Given H ∈ Gn,m and denoting H ′ := H ∩ J ∈ Gm′(H) with m′ ∈ [m − k,m], it
follows that:

PH′(E) ⊇ E ∩H ′ ⊇ 1

Pαk

(
k

n

)1/αk

K ∩H ′.

Setting m = 2k, it follows from (4.5) that there exists F ∈ Gn,n−3k so that:

PF (K) ⊇ 1

P 2
αk

(
k

n

)2/αk

inf {vrad(K ∩H ′) : H ′ ∈ Gn,m′ , m′ ∈ [k, 2k]}BF .

Noting that the sequence m′ 7→ w−m′(K) is non-decreasing, and setting αk = 2 −
1

log(e+n/k) , we have found F ∈ Gn,n−3k such that

PF (K) ⊇ c
n
k log(e+ n

k )
w−k (K),

as asserted in (4.2) (with perhaps an immaterial constant 3 instead of 2). The
assertion of (4.1) follows by duality.

To obtain our refinement, we will use instead of the first estimate in (2.6),
the covering estimate (2.3) (which Pisier obtains from (2.6) by an application of
Carl’s theorem, requiring the entire sequence of ck estimates, not just the one for
our specific k). Setting m = k, we use a trivial volumetric estimate to control
vrad(PH(E)), exactly as in the proof of Theorem 3.1: for any H ∈ Gn,k,

vrad(PH(K))

vrad(PH(E))ek(K, E)
6 N(PH(K), ek(K, E)PH(E))1/k 6 N(K, ek(K,E)E)1/k 6 2.

Together with (2.3), we obtain:

vrad(PH(E)) >
1

2ek(K, E)
vrad(PH(K)) >

1

2Pαk

(
k

n

)1/αk

vrad(PH(K)).

Plugging this into (4.5) and setting as usual αk = 2 − 1
log(e+n/k) , the asserted

estimate (4.4) follows. The other estimate (4.3) follows by duality.

As immediate corollaries, we have:

Corollary 4.3. For every centrally-symmetric convex body K in Rn, k = 1, . . . , n
and α > 0:

ek(K,Bn2 ) 6 Cα sup
m=1,...,k

(m
k

)α n

m
log
(
e+

n

m

)
wm(K),

where Cα > 0 is a constant depending only on α.
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Proof. This is immediate from Theorem 4.2 and Carl’s theorem (2.4). Note that
k 7→ ck(K,Bn2 ) is non-increasing, and so there is no difference whether we take the
supremum on the right-hand-side just on the even integers.

Corollary 4.4. For every centrally-symmetric convex body K in Rn so that K ⊆
RBn2 , we have:

√
nM∗(K) 6 C

n∑
k=1

1√
k

min
(
R,

n

k
log
(
e+

n

k

)
wk(K)

)
.

Dually, for every centrally-symmetric convex body K in Rn so that K ⊇ rBn2 , we
have:

√
nM(K) 6 C

n∑
k=1

1√
k

min

(
1

r
,
n

k
log
(
e+

n

k

) 1

v−k (K)

)
.

Proof. Let us verify the first claim, the second follows by duality. Indeed, this is
immediate from Dudley’s entropy estimate (1.6) coupled with Carl’s theorem (2.5):

√
nM∗(K) 6 C

n∑
k=1

1√
k
ek(K) 6 C ′

n∑
k=1

1√
k
ck(K).

Obviously ck(K) 6 R for all k, and so the assertion follows from the estimates of
Theorem 4.2.

Both Corollaries should be compared with the results of the previous section.

Remark 4.5. It may be insightful to compare Theorem 4.2 to some other known
estimates on diameters of k-codimensional sections, besides the Milman–Pisier The-
orem 4.1. One sharp estimate is the Pajor–Tomczak-Jaegermann refinement [27] of
V. Milman’s low-M∗ estimate [22]:

ck(L) ≤ C
√
n

k
M∗(L), (4.6)

for any origin-symmetric convex L and k = 1, . . . , n. However, for our application,
we cannot use this to control ck(K◦) since we do not a-priori know M∗(K◦) =
M(K). A type of dual low-M estimate was observed by Klartag [13]:

ck(L) ≤ C n
k vrad(L)

n
kM(L)

n−k
k .

Since M(K◦) = M∗(K) is now well understood for an isotropic origin-symmetric
convex body [21], this would give good estimates for low-dimensional sections (large
codimension k), but unfortunately this is not enough for controlling M(K). Klartag
obtains the latter estimate from the following one, which is more in the spirit of
the estimates we obtain in this work:

ck(L) ≤ C n
k

vrad(L)
n
k

wn−k(L)
n−k
k

.

Again, this seems too rough for controlling the diameter of high-dimensional sec-
tions.
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5 Preliminaries from asymptotic convex geometry

An absolutely continuous Borel probability measure µ on Rn is called log-concave
if its density fµ is of the form exp(−ϕ) with ϕ : Rn → R∪{+∞} convex. Note that
the uniform probability measure on K, denoted λK , is log-concave for any convex
body K.

The barycenter of µ is denoted by bar(µ) :=
∫
Rn xdµ(x). The isotropic constant

of µ, denoted Lµ, is the following affine invariant quantity:

Lµ := ( sup
x∈Rn

fµ(x))
1
n det Cov(µ)

1
2n , (5.1)

where Cov(µ) :=
∫
x⊗xdµ(x)−

∫
xdµ(x)⊗

∫
xdµ(x) denotes the covariance matrix

of µ. We say that a log-concave probability measure µ on Rn is isotropic if bar(µ) =
0 and Cov(µ) is the identity matrix. Note that a convex body K of volume 1 is
isotropic if and only if the log-concave probability measure λK/LK is isotropic, and
that LλK indeed coincides with LK . It was shown by K. Ball [2, 3] that given n > 1:

sup
µ
Lµ 6 C sup

K
LK ,

where the suprema are taken over all log-concave probability measures µ and convex
bodies K in Rn, respectively (see e.g. [14] for the non-even case). Klartag’s bound
on the isotropic constant [14] thus reads Lµ 6 Cn1/4 for all log-concave probability
measures µ on Rn.

Given E ∈ Gn,k, we denote by πEµ := µ ◦ P−1E the push-forward of µ via PE .
Obviously, if µ is centered or isotropic then so is πEµ, and by the Prékopa–Leindler
theorem, the same also holds for log-concavity.

Given a log-concave probability measure µ on Rn and q > 1, the Lq-centroid
body of µ, denoted Zq(µ), is the centrally-symmetric convex body with support
function:

hZq(µ)(y) :=

(∫
Rn
|〈x, y〉|qdµ(x)

)1/q

. (5.2)

Observe that µ is isotropic if and only if it is centered and Z2(µ) = Bn2 . By Jensen’s
inequality Z1(µ) ⊆ Zp(µ) ⊆ Zq(µ) for all 1 6 p 6 q < ∞. Conversely, it follows
from work of Berwald [4] or by employing Borell’s lemma (see [26, Appendix III]),
that:

1 6 p 6 q =⇒ Zq(µ) ⊆ C q
p
Zp(µ).

When µ = λK is the uniform probability measure on a centrally-symmetric convex
body K in Rn, it is easy to check (e.g. [9]) using the Brunn–Minkowski inequality
that:

cK ⊆ Zn(λK) ⊆ K.

Let µ denote an isotropic log-concave probability measure µ on Rn. It was
shown by Paouris [28] that

1 6 q 6
√
n =⇒ M∗

(
Zq(µ)

)
' √q, (5.3)

and that:
1 6 q 6 n =⇒ vrad(Zq(µ)) 6 C

√
q. (5.4)

11



Conversely, it was shown by Klartag and E. Milman in [16] that:

1 6 q 6
√
n =⇒ vrad(Zq(µ)) > c1

√
q. (5.5)

This determines the volume radius of Zq(µ) for all 1 6 q 6
√
n. For larger values

of q one can still use the lower bound:

1 6 q 6 n =⇒ vrad(Zq(µ)) > c2
√
q L−1µ , (5.6)

obtained by Lutwak, Yang and Zhang [20] via symmetrization.

We refer to the book [9] for further information on isotropic convex bodies and
log-concave measures.

6 M-estimates for isotropic convex bodies and their
Lq-centroid bodies

Let µ denote an isotropic log-concave probability measure on Rn, and fix H ∈ Gn,k.
A very useful observation is that:

PH
(
Zq(µ)

)
= Zq

(
πH(µ)

)
.

It follows from (5.5) that:

1 6 q 6
√
k =⇒ vrad(PH(Zq(µ))) > c

√
q. (6.1)

Furthermore, using (5.6), we see that:

q ≥
√
k =⇒ vrad(PH(Zq(µ))) > c′max

(
4
√
k,

√
min(q, k)

LπHµ

)
. (6.2)

Unfortunately, we can only say in general that sup{LπHµ : H ∈ Gn,k} 6 C 4
√
k, and

so the estimate (6.2) is not very useful, unless we have some additional information
on µ. Recalling the definition of v−k (Zq(µ)), we summarize this (somewhat sloppily)
in:

Lemma 6.1. Let µ be an isotropic log-concave probability measure on Rn. For any
q > 1 and k = 1, . . . , n we have:

v−k (Zq(µ)) > c

√
min(q,

√
k).

Assuming that sup{LπHµ : H ∈ Gn,k} 6 Ak we have:

v−k (Zq(µ)) >
c′

Ak

√
min(q, k).

6.1 Estimates for Zq(µ)

Plugging these lower bounds for v−k (Zq(µ)) into either Theorem 3.1 or Corollary 4.3
coupled with Remark 3.3, we immediately obtain estimates on the entropy numbers
ek(Bn2 , Zq(µ)). Similar estimates on the maximal (with respect to F ∈ Gn,n−k) in-
radius of PF (Zq(µ)) are obtained by invoking Theorem 4.2.
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Theorem 6.2. Given q > 2 and an integer k = 1, . . . , n, denote:

Rk,q := min

{
1, C

1

min(
√
q, 4
√
k)

n

k
log
(
e+

n

k

)}
.

Then, for any isotropic log-concave probability measure µ on Rn:

ek(Bn2 , Zq(µ)) 6 Rk,q,

and there exists F ∈ Gn,n−k so that:

PF (Zq(µ)) ⊇ 1

Rk,q
BF .

Proof. From (3.3) and Lemma 6.1 we have

ek(Bn2 , Zq(µ)) 6 C
n

k
log
(
e+

n

k

)
sup

16m6min(k,n)

{
2−

k
3m

1

min(
√
q, 4
√
m)

}
.

Then, it suffices to observe that

sup
16m6min(k,n)

{
2−

k
3m

1

min(
√
q, 4
√
m)

}
' sup

16m6min(k,n)

{
2−

k
3m

(
1
√
q

+
1

4
√
m

)}
6 C

(
1
√
q

+
1
4
√
k

)
' 1

min(
√
q, 4
√
k)
,

because 2−
k

3m /
√
q 6 1/

√
q for all 1 6 m 6 k, and the function m 7→ 2

k
3m 4
√
m attains

its minimum at m = k, which shows that sup16m6min(k,n)(2
− k

3m / 4
√
m) 6 1/ 4

√
k.

We also use the fact that in a certain range of values for q > 2 and k > 1, we might
as well use the trivial estimates:

ek(Bn2 , Zq(µ)) 6 1 , PF (Zq(µ)) ⊇ BF , (6.3)

which hold since Zq(µ) ⊇ Z2(µ) = Bn2 .

An elementary computation based on Corollary 4.4 then yields a non-trivial
estimate for M(Zq(µ)). It is interesting to note that without using the trivial infor-
mation that Zq(µ) ⊇ Bn2 (or equivalently, the trivial estimates in (6.3)), Corollary
4.4 would not yield anything meaningful.

Theorem 6.3. For any isotropic log-concave probability measure µ on Rn:

2 6 q 6 q0 := (n log(e+ n))2/5 =⇒ M(Zq(µ)) 6 C

√
log q
4
√
q
.

Proof. We use the estimate

√
nM(Zq(µ)) 6 C

n∑
k=1

1√
k

min

{
1, C

1

min(
√
q, 4
√
k)

n

k
log
(
e+

n

k

)}
,
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which follows from Corollary 4.4 combined with Theorem 6.2. We set k(n, q) =
n log q/

√
q. Note that if k > k(n, q) then k > cq2. Therefore, we may write

√
nM(Zq(µ)) 6 C

k(n,q)∑
k=1

1√
k

+
Cn
√
q

n∑
k=k(n,q)

1

k3/2
log
(
e+

n

k

)
6 C1

√
k(n, q) + C2

n log q√
qk(n, q)

6 C3

√
n log q

4
√
q

.

The result follows.

For larger values of q, we obtain no additional information beyond the trivial
monotonicity:

q0 6 q =⇒ M(Zq(µ)) 6M(Zq0(µ)) 6 C
log2/5(e+ n)

n1/10
.

If K is an isotropic centrally-symmetric convex body in Rn, using that λK/LK is
isotropic log-concave and that Zn(λK/LK ) is isomorphic to K/LK , one immediately
translates the above results to corresponding estimates for K.

Theorem 6.4. Given k = 1, . . . , n, set:

Rk := min

{
1, C

1
4
√
k

n

k
log
(
e+

n

k

)}
.

Then, for any isotropic centrally-symmetric convex body K in Rn:

ek(Bn2 ,K) 6
Rk
LK

,

and there exists F ∈ Gn,n−k so that:

PF (K) ⊇ LK
Rk

BF .

Moreover:

M(K) 6
C

LK

log2/5(e+ n)

n1/10
.

6.2 Assuming that the isotropic constant is bounded

It is interesting to perform the same calculations under the assumption that Lµ 6 C
for any log-concave probability measure µ (regardless of dimension). In that case:

v−k (Zq(µ)) > c
√

min(q, k).

This would yield the following conditional result:

Theorem 6.5. Given q > 2 and an integer k = 1, . . . , n, denote:

Rk,q := min

{
1, C

1√
min(q, k)

n

k
log
(
e+

n

k

)}
.
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Assuming that Lµ 6 C for any log-concave probability measure (regardless of di-
mension), then for any isotropic log-concave probability measure µ on Rn:

ek(Bn2 , Zq(µ)) 6 Rk,q,

and there exists F ∈ Gn,n−k so that:

PF (Zq(µ)) ⊇ 1

Rk,q
BF .

Furthermore:

M(Zq(µ)) 6 C

√
log q
4
√
q

for all 2 6 q 6 (n log n)2/3.

Consequently, for every isotropic convex body K in Rn one would have:

M(K) 6 C
log1/3(e+ n)

n1/6
.

6.3 ψα–measures

Finally, rather than assuming that Lµ is always bounded, we repeat the calculations
for a log-concave measure µ which is assumed to be ψα-regular. Recall that µ is
called ψα with constant bα (α ∈ [1, 2]) if:

Zq(µ) ⊆ bαq1/αZ2(µ) for all q > 2.

Note that this property is inherited by all marginals of µ, and that any log-concave
measure is ψ1 with b1 = C a universal constant.

It was shown by Klartag and E. Milman [16] that when µ is a ψα log-concave
probability measure on Rn with constant bα, then:

1 6 q 6 C
n
α
2

bαα
=⇒ vrad(Zq(µ)) > c

√
q,

and:

Lµ 6 C
√
bααn

1−α/2.

This implies that for such a measure, for any H ∈ Gn,k:

1 6 q 6 C
k
α
2

bαα
=⇒ vrad(PH(Zq(µ))) > c

√
q.

By (5.6), we know that:

q ≥ q0 := C
k
α
2

bαα
=⇒ vrad(PH(Zq(µ))) > c′max

(
√
q0,

√
min(q, k)

LπHµ

)
. (6.4)

Unfortunately, since we only know that:

LπHµ 6 C
√
bααk

1−α/2,

we again see that the maximum in (6.4) is always attained by the
√
q0 term. Sum-

marizing, we have:
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Lemma 6.6. Let µ be an isotropic log-concave probability measure on Rn which is
ψα with constant bα for some α ∈ [1, 2]. Then for any q > 1 and k = 1, . . . , n we
have:

v−k (Zq(µ)) > c

√
min

(
q,
kα/2

bαα

)
.

Plugging this estimate into the general results of Sections 3 and 4, we obtain:

Theorem 6.7. Let µ denote an isotropic log-concave probability measure on Rn
which is ψα with constant bα for some α ∈ [1, 2]. Given q > 2 and an integer
k = 1, . . . , n, denote:

Rk,q := min

1, C
1√

min
(
q, k

α/2

bαα

) nk log
(
e+

n

k

) .

Then:
ek(Bn2 , Zq(µ)) 6 Rk,q,

and there exists F ∈ Gn,n−k so that:

PF (Zq(µ)) ⊇ 1

Rk,q
BF .

Furthermore:

M(Zq(µ)) 6 C

√
log q
4
√
q

for all 2 6 q 6 c
(n log(e+ n))

2α
α+4

b
4α
α+4
α

.

Consequently, for every isotropic convex body K in Rn so that λK is ψα with con-
stant bα, one has:

M(K) 6
C

LK
b

α
α+4
α

log
2

α+4 (e+ n)

n
α

2(α+4
)

.

Remark 6.8. Better estimates for the entropy-numbers ek(Bn2 , Zq(µ)) and Gelfand
numbers ck(Zq(µ)◦) may be obtained for various ranges of k by employing the alter-
native known estimates mentioned in Remark 4.5. However, these do not result in
improved estimates on M(Zq(µ)), which was our ultimate goal. We therefore leave
these improved estimates on the entropy and Gelfand numbers to the interested
reader. We only remark that even the classical low-M∗ estimate (4.6) coupled with
our estimate on M(Zq(µ)) yield improved estimates for ek and ck in a certain range
- a type of “bootstrap” phenomenon.

7 Concluding remarks

In this section we briefly describe an improved and simplified version of the argu-
ments from [12] and compare the resulting improved estimates to the ones from
the previous section. Following the general approach we employ in this work, the
arguments are presented for general centrally–symmetric convex bodies, and this
in fact further simplifies the exposition of [12].

We mainly concentrate on presenting an alternative proof of the following
slightly weaker variant of Theorem 6.2:
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Theorem 7.1. Let K be a centrally-symmetric convex body in Rn. For any k =
1, . . . , bn/2c there exists F ∈ Gn,n−2k such that:

PF
(
K
)
⊇ c

n
k log2

(
e+ n

k

)v−k (K)BF

where c > 0 is an absolute constant.

For the proof of Theorem 7.1, we use a sort of converse to Carl’s theorem (2.4)
on the diameter of sections of a convex body satisfying 2-regular entropy estimates,
which is due to V. Milman [23] (see also [9, Chapter 9]).

Lemma 7.2. Let L be a symmetric convex body in Rn. Then:

√
k ck(L,Bn2 ) 6 C log(e+ n/k) sup

k6m6n

√
m em(L,Bn2 ).

Remark 7.3. Clearly, by applying a linear transformation, the statement equally
holds with Bn2 replaced by an arbitrary ellipsoid.

Proof of Theorem 7.1. Given k = 1, . . . , bn/2c, let E = EK,αk denote Pisier’s αk-
regular M -ellipsoid, for some αk ∈ [1, 2) to be determined. Instead of directly using
Pisier’s estimate (2.6) on the Gelfand numbers as in the proof of Theorem 4.2 to
deduce the existence of E ∈ Gn,n−k so that:

PE(K) ⊇ 1

Pαk

(
k

n

)1/αk

PE(E), (7.1)

the starting point in [12] are the more traditional covering estimates (2.3):

max{ek(K, E), ek(K◦, E◦), ek(E ,K), ek(E◦,K◦)} 6 Pα

(n
k

)1/αk
. (7.2)

In [12], the following estimate was used (see [32, Theorem 5.14]):

ck(K◦, E◦) 6 C

√
n

k
ek(K◦, E◦).

However, this estimate does not take into account the regularity of the covering.
Consequently, a significantly improved estimate is obtained by employing Lemma
7.2 (and the subsequent remark) which exploits this regularity:

√
k ck(K◦, E◦) 6 C log(e+ n/k) sup

k6m6n

√
mem(K◦, E◦)

6 C log(e+ n/k) sup
k6m6n

√
m Pαk

( n
m

)1/αk
.

Even with this improvement, note that this is where the current approach incurs
some unnecessary logarithmic price with respect to the approach in the previous
sections: instead of using (7.1) directly, one uses (7.2) which Pisier obtains from
(7.1) by applying Carl’s theorem, and then uses the converse to Carl’s theorem
(Lemma 7.2) to pass back to Gelfand number estimates.
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Using αk = 2− 1
log(e+n/k) , we deduce that:

ck(K◦, E◦) 6 C

√
n

k
log3/2(e+ n/k),

or in other words, the existence of E ∈ Gn,n−k such that:

PE(K) ⊇ 1

C
√

n
k log3/2(e+ n/k)

PE(E).

The rest of the proof is identical to that of Theorem 4.2. For the ellipsoid
E ′ := PE(E) we may always find a linear subspace F ⊆ E of codimension k in E so
that:

PF (E ′) ⊇ inf
H∈Gk(E)

{vrad(PH(E ′))}BF .

Estimating vrad(PH(E ′)) = vrad(PH(E)) by comparing to vrad(PH(K)) via the
dual covering estimate on ek(K, E) (note that there is no need to use the duality of
entropy theorem here), we obtain:

vrad(PH(E ′)) > 1

2ek(K, E)
vrad(PH(K)) >

1

2C
√

n
k log1/2(e+ n/k)

vrad(PH(K)).

Combining all of the above, we deduce the existence of F ∈ Gn,n−2k so that:

PF (K) ⊇ 1

C ′ nk log2(e+ n/k)
vrad(PH(K))BF .

This concludes the proof.

Having obtained a rather regular estimate on the Gelfand numbers, the next
goal is to obtain an entropy estimate. To this end, one can use Carl’s theorem (2.4)
or (2.5), as we do in Section 4. The approach in [12] proceeds by employing an
entropy extension theorem of Litvak, V. Milman, Pajor and Tomczak-Jaegermann
[19]. We remark that this too may be avoided, by employing the following elemen-
tary covering estimate (see e.g. [9, Chapter 9]):

Lemma 7.4. Let K be a symmetric convex body in Rn and assume that Bn2 ⊆ ρK
for some ρ > 1. Let W be a subspace of Rn with dimW = m and PW⊥(K) ⊇ BW⊥ .
Then, we have

N(Bn2 , 4K) 6 (3ρ)
m
.

Finally, having a covering estimate at hand, the estimate on M(K) is obtained
by Dudley’s entropy bound (1.6). Plugging in the lower bounds on v−k (Zq(µ)) given
in Section 6, the results of [12] are recovered and improved.

As the reader may wish to check, the improved approach of this section over the
arguments of [12] yields estimates which are almost as good as the ones obtained
in Section 6, and only lose by logarithmic terms.
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