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I. 

Introduction. 

I. The kernel of this paper is 'elementary', but it originated in attempts, 

ultimately successful, to solve a problem in the theory of functions. We begin 

by stating this problem in its apparently most simple form. 

Suppose that  s > o, that  

f (z )  = f ( r e  ~e) 

is a n  analytic function regular for r ~ I, and that  

F(O) ---- Max If(re'~)[ 
0 ~ r ~ l  

is .the maximum of [f[ on the radius 0. Is it true tl~at 

- -  _ ~  - -  e t ~  ~ d O ,  

2 ~  2 ~  

where A(2) is a function of ~ only? The problem is very interesting in itself, 

a n d  the theorem suggested may be expected,  if it is true, to have important 

applications to the theory of functions. 

The answer to the question is affirmative, and is contained in Theorems 

17 and 24--27 beiow (where the problem is considered in various more general 
11--29643. Acta mathematlca. 54. Imprim6 le 20 mars 1930. 
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forms). There seems to be no really easy proof; the one we have found depends 

entirely on the difficult, though strictly elementary, argument of section II. ~ 

Here we solve a curious, and at first sight rather artificial, maximal problem. 

The key theorem is Theorem 2; a certain sum, defined by means of averages 

of a given finite set of positive numbers, is greatest when the numbers are 

arranged in descending order. I t  is this theorem which contains the essential 

novelty of our analysis; once i t  is proved, the rest of Our work is comparatively 

a matter of routine. We have therefore written out the proof with the maximum 

of attention to detail. 

I t  is noteworthy that  the central idea of the solution is appropriate only 

for sums. What  is required for the function-theoretic applications is not Theorem 

2 itself but its analogue for integrals, Theorem 5. The proof for integrals, how- 

ever, cannot run parallel to that  for sums, a peculiarity very unusual in inequality 

theorems, and one which makes the final function-theoretic results rest on founda- 

tions very alien to the i r  own content. I t  seems here to be essential to deduce 

the integral theorem from the sum theorem by a limiting process, and this 

transition is set out in section I I I .  The argument is not quite trivial, but i~ 

is comparatively straightforward "and involves no novel idea; we have therefore 

trear it less expansively, .and have omitted a certain amount o f  detail which 

an experienced reader will easily suppiy for himself. 

In  section IV we deduce some inequalities for real integrals which are 

required later. The typical theorem is Theorem m; if f (x)  is positive and be- 

longs to the Lebesgue class L k, where k >  I, in (a, b), and O(x)is ' themaximum 

average of f(x) about the point x' ,  then O(x) also belongs to L k and 

/ ,/ 0 kdx<-_A(k f kdx ,  
$ 

where A(k) depends only on k. This is false when k ~  ~, and ~ we investigate 

also the theorem which then replaces it. 

Finally, in section V we make some applications of the theorems which 

precede to the theory of functions. We have other such applications in View; 

here we go so far only as is necessary to solve the problem from which we 

shorted, t h e  analogous problems for harmonic and sub-harmonic functions, and 

a similar problem which naturally suggests itself concerning the Cesaro means 

of a Fourier series. . 

1 Another proof has since been found by Mr. R. E. A. C. Paley, and will be published in 
the Proceedings of the London Mathematical Society. 
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I I .  

The maximal problem. 

2. The problem is most  easily grasped when s ta ted i n  the language of 

cricket, or any other  game in �9 a player  compiles a series of scores of 

which an average is recorded. ~ I t  will be convenient  to begin by giving �9 the 

solution of a much simpler problem, 

Suppose tha t  a ba tsman plays, in a given season, a given 'stock' of innings 

(2. I) al,  a~, . . . ,  a~ 

(determined in everyth ing  e x c e p t  arrangement) .  Le t  a,  be his average af ter  the 

~-th innings, so tha t  

A ~ _  a~ + a~ + ... + a, 
(2.2) a,  = 

Le t  s(x) be a positive funct ion which increases (in the wide sense) with x,  and 

le t  his 'satisfaction'  a f te r  the ~-th innings be measured by 

( 2 . 3 )  s ,  = 

Finally,  let  his total  satisfaction for  the season be measured by 

(2.4) S-~  2~s, = ~s(a,). 

I t  is then  easily verified that S is a maximum, for a given stock of  innings, when 

the innings are played in decreasing order. For  suppose t h a t  

I f  we in terchange a~ and a~, then  sl, s2, . . . ,  s~-i and s,,  s,+1, . . . ,  s,~ are un- 

altered, and s~, s ~ + l , . . . ,  s,-1 are increased, so tha t  S is increased. 

This problem is tr ivial  and the resul t  well known. We state it, for  con- 

venience of reference,  as a formal  theorem. 

i The a rguments  used in ~ 5---5 are indeed most ly  of the  type which arc intui t ive to a 

s tudent  of cricket averages. A ba t sman ' s  average is increased by his  playing an innings greater 
than  his  present  average; if his average is increased by playing an innings  x ,  it  is fur ther  i n -  

creased by playing next  an innings y > x;  and so forth. 
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T h e o r e m  1. I f  a~, as, . . . ,  a~ are positive, in the wide sense, and given 

except in arrangement, s(x) is any increasing function of x ,  and ~,, s,,  S are de- 

fined by (2.2), (2.3), and (2.4), then S is a maximum when the a, are arranged in 

descending order. 

3. We  obtain a non4rivial  problem by a slight change in our definitions 

of a,  and s,. Suppose now tha t  a, is not  the batsman's  average f o r t  he complete 

season ~ date, but  his maximum average for  any consecutive series of  innings 

ending at the v-th, so that 

a, ,  + a,,+l + .. + a, ag + ag+x + ... + a, 
( 3 .  I )  ~ ,  = = M a x  �9 

v - - v * +  I #~ ,  v - - t ,  q- I ' 

we may agree that ,  in ease of ambiguity,  v* is to be chosen as small as possible. 1 

Let  s, and S be then defined by (2.3) and (2.4) as before. The same maximal  

problem presents itself, and its solution ~is now much less obvious. Theorem 2, 

however, shows tha t  S is still a maximum when the innings are played in descend- 

ing ordcr. 

T h e o r e m  2. I f  al, a s , . . . ,  a, are positive, in the wide sense, and given 

except in arrangement, s(x) is any increasing function of x ,  and a,, s,,  S are 

defined by (3. I), (2.3), and (2.4), then S is a maximum when the a, are arranged 

in descending order. 

�9 P r e l i m i n a r y  n o t e s  a n d  d e f i n i t i o n s .  

4. We suppose tha t  al,  a z , . . . ,  a,, form _N descending pieces C~, where 

i~--I, 2 , . . . ,  N,  Ci containing ni terms a~ (vi_--<v < vi + m) such tha t  

a~ i ~ a~i+l ~ ... ~ a~i+nr--1. 

/ t  piece may contain one term only; thus,  if the a, increase strictly, each a, con- 

stitu~es a piece and _N=n .  In  any ease 

nl  + n2 + . . .  + n x - - ~  n .  

We shall prove that ,  i f  N >  I,  we can rearrange the a, so that N is decreased 

If the innings to date are 82, 4, I33, o, 43, 58, 65, 53, 86, 3o, the batsman says to himself  
'at any rate my average for my last 8 innings is 58.5' (a not uncommon psychology). 
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and with advantage, i .e .  with increase of S. Here 'advantage', 'increase' are used 

widely (so that  'with increase' means 'without decrease') but 'N  is decreased' is 

to be interpreted in the strict sense. I t  is plain that this will prove the theorem. 

We denote the average of the terms of C~ by 7," and write 

7i --  A v( Ci). 

We use this notation systematically for averages; thus Av(Ci ,  Ci+l) means the 

average of all the terms of the two successive pieces C~, Ci+l, and Av(a,r--1 , Ci) 

means the average of the terms of Ci and the immediately preceding term. 

We call a,i, the left hand efid of C,, the summit of C~; it is, in the wide 

sense, the greatest term of C~. 

The set of terms 

a , . ,  a ~ + l ~  . . . ~  av 

which defines the a, associated with a, will be called the stretch a, of a,, a, the 

source of a,, and a, ,  the end of a,. 

I t  is almost obvious (see Lemma I below) that any end of a stretch is a 

summit of a piece, so that any stretch which enters a piece (contains at least 

one term of the piece), other than the piece to which its source belongs, Tasses 

through that  piece (contains all its terms). Here again 'passes through' is used 

widely; the stretch extends at least to the summit of the piece. 

To combine two consecutive pieces Ci, C~+~ is to rearrange the aggregate 

of their terms as a descending sequence, thereby replacing the two pieces by a 

single piece and decreasing N .  similarly we may combine Ci with part of Ci+l, 

or Ui+l with part of C~; this will not in general decrease h r. 

Lernmas for Theorem 2. 

5. I. Lemma 1. Any  end of a stretch is a summit of a piece. 

Suppose, if possible, that  a~, a~+l belong to the same piece, and that a 

streteh a, ends at a~+l. Then 

al~+l ~ Av(al~-i-2 , a ~ + 3 ,  . . . ,  a,.) 

and so 

a~, > a~+l > Av(a~,+l, a~+2, . . . .  a,). 

Hence a, goes on to include a, ,  a contradiction. 
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5-2. Lemma 2. I f  a, and a,+l belong to the same piece C~, then (~,+1 

extends at least as f a r  to the left as a, (and so includes it): 

Suppose, if possible, that a, ends at the summit of C~-~q, while a,+l ends 

at that  of C~--~, with o_--<p < q. Call 

C~-q + C~-q+~ + . . .  + Ci-~--~ C ~, 

Ci-p + Ci-r+~ + ' "  + Ci-1 C 2, 

Ci (up tO a,) C 8. 

Since a~ goes back to C~-q, instead of stopping in C;-v, we have 

(5.2~) Av(C 1) > Av(CL V~); 

and since a,+l does not do so 

(5" 22) Av(C 1) < Av(C' ,  C s, a,+l). 

On the other hand, since a,+l does go back to 6~-p, we have 

(5 .23)  Av(C ~) >__ Av(C a, a,+~). 

I t  follows from (5.22) and (5.23) that  

(5. 24) Av(C 1) "< Av(C') ,  

and from (5.2I) and (5.24) that 

(5.25) Av(~ a) < Av(C~). 

Also (5.21) and (5.22) show that  

(5.26) a ,+v>  A v ( C  ~, Ca), 

and then (5.25) and (5.26) show that  

(5.27) a,+~ > av(Ca). 

This is a contradiction, since a,+l cannot exceed any term of C a. 

5.3. Lemma 3. Suppose that 7~-~ >= 7~. Then any a v whose source lies to 

the right of Ci (in Ci+l, Ci+~,.. .),  and which enters C~, will pass through Ci-x. 
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I f  not, it s~ops in (at the summit of) C~. Let C' b e t h e  par~ of:a, between 
t Ci and its source, and 7' the average of C'. Then 7i >----7, and so 7~-~ >>-7~ >>-7'. 

Hence 

7--  >= Av(C~, ~'); 

which is a contradiction, since a, does not enter Ci--1. 

5-4. Lemma 4. Suppose that Ci-~ and C~ are consecutive pieces, and that 

the stretches of the terms of Ci all pass through C~-1. Then combination of  Ci-1 

and Ci increases the contribution of their te~ns to S. 

The contributions of Ct-2, C i - 3 , . . .  are obviously 'not  changed. Those of 

Ci+i, C~+2 . . . .  may be, but we are not concerned with that  here. 

I t  is easiest to prove more. Consider any arrangement of the terms of 

C~-1 and Ct, say 

bl, b~ . . . .  , b~, . . . ,  bq, 

and associaI~ with each /~ a stretch ~, going back at least as far as b~, and a 

corresponding average /~. Among all possible hrrangements of  the b, that which 
makes 

s(fi,) + + + s( q) 

greatest is the decreasing arrangement. 

For suppose (e. g0 b,+l > b~. I f  we exchange b, and b~+l, then plainly 

fit is increased and the remaining fi are unaltered. I t  follows (going back to 

the state of affairs in the lemma) that, when we have combined C~-1 and C~, 

there is some set of stretches a',, with corresponding averages a', ,  which makes 

at least as great as the original contribution of C~-1 and C~  This set of a', is 
not necessarily identical with the set of a'; actually a~socia~ed with the piece 

replacing C~-1 and C~; but 

> Zs( . ' . ) ,  

by the definition of a: ,  and is therefore at least as great as the origi'nal contribu- 

tion. This proves the lemma. 
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5.5. Lemma 5. I f  C~-i and C~ are two consecutive pieces, and the stretches 

of the terms of each piece extend to the summits of these pieces only, then combina- 

tion of Ci-1 and Ct increases their contribution to S. 

This is the least trivial of our lemmas. I t  is obviously included in the 

following lemma. 

Lemma 6. 

and that 

Suppose that 

c~c2>--_.,,>=cp, d~ >--_ d~ ~ ... >= dq, 

e 1 ~ e 2 >= "" >= ep+q 

is the set of c and d arranged in descending order. 

(S. 5~) C, = cl + c~ + . . .  + c , ,  

Let 

and similarly with the other letters. Then 

(9 (9 (5. 5 2 ) 8 ( C 1 ) + s  + " ' +  8 + s (D1)  4.- 8 + " "  4- s 

< s(El) + s + . . .  + s i ~ !  

We prove Lemma 61 by induction from p + q-- I to p + q .  Suppose that  

it has been proved for p + q - - I ,  but that  (5.52) itself is false. Plainly 

p + q - -  q 

say. Writing (5.52) with ' > '  in place of '_--<', and suppressing the last term on 

each side, we obtain 
p q---1 p+q-1 

I f  c ~ d q ,  (5.53) contains the same c and d on its two sides, and ~eord- 

ingly contradicts our assumptions. We must therefore have dq > cp. Then dq 

is missing from the left of (5.53) and cp from the right. Let us suppose that  

Our original proof of this l emma was much . less  sat isfactory;  the present  one is due ill 
substance to Mr T. W. Chaundy. 
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ct>dq>ct+~; the argument requires only an obvious modification when dqis 
greater than every c. Then the terms involving dq on the right of (5.53) are 

tc l  § ~ " § ct § dl § " " § dqt § (5.54) s t + q 
c, + -.. + et+l + d, § ... § dq~ 

t § 2 4 7  ! 

+ . . .  + s ( C ,  + .- .  + + + . -  + . .  p + q - ,  

I f  the E on the r ight  of (5.53) were constructed in the manner of the theorem 

from el, c~, . . . ,  cp, dl, ...-, dq-1, then the right of (5.53) would contain, instead 

of the terms just written, the terms 

e l +  "" + e t+ ct+l + dl + -.. + d + s 
s t §  t + q + i  

+ . . . + s ( C ' + ' § 2 4 7  ) p + q _ ~  �9 

Since d~ ~ c~+1 ~ ct+~ ~ . . - ,  none of t he se  terms exceeds the corresponding term 

of (5.54): Hence (5.53) is true with the new interpretation of the E ,  when it 

contradicts our assumptions. We have thus arrived in any case at a contradic- 

tion which establishes the lemma. 

Proof of Theorem 2. 

6. W e  arrange the proof in three stages; (I) iS a special case of (2), but  

is proved separately for the sake of clearness. 

(I) I f  7,~7~, then C 1 and C~ may be combined with advantage. 
We begin with two preliminary observations. 

(a) A stretch from a source in Cs, CA,...  either never enters C~ or passes 
through C~ and C t. 

This follows from Lemma 3- 

(b) Any rearrangement of C, and C~, and in particular their combination, 
increases the contribution of 6~, C A . . . .  

F o r  if a, belongs to  C3, C4 . . . .  , o,, by (a), stops Short of C~ or Passes 

through C~ and C 1. In  either case the new a, is the maximum of a set of 

values which includes t he  value which determined the old maximum. 

We observe next that  C~ consists of two parts C2' and C," (either of which 
o , . 2 

may be nul) such that (i)C~" lies to the right of C~' and (ii) the a, of ~ '  stop 

at ~he summit of C2 while those of C~" pass through to the summit of C 1, All 
12--29643. Acta mathernatlea. 54. Imprim6 le 20 mars 1930. 
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this  follows from Lemma 2 .  We now prove (I) by operating in two stages, first 

combining C 1 and C~' into a single piece C1', and then combining Ca' antics",  
and showing that  each combination is advantageous. 

First  combine Q and C~' into C/, The a~ of C2" continue to pass through 

C~, and the contribution of C~" is  unchanged. The contribution of C8, C ~ , . .  

is increased, by (b) above; and that  of C1 and C~' is increased, by Lemma 5. 

Hence the combination is advantageous�9 

Next combine C/ and C2": The a, of C~" pass through C/ ,  so that,  by 

Lemma 4, the contribution of C L' and C2" is increased. The contribution of 

Ca, C 4 , . . .  is increased, by (b) above. Hence the combination of C/  and Ce" is 

also advantageous. This completes the proof of (I). �9 

(2) I f  7~ < 7~. <""  < 7k, 7k ~ 7k+l, then Ca and Ca+~ may be combined with 
advantage. 

We note first that  the a, of Ca all stop at the summit of Ck. 

(a) A stretch from a source in Ca+2, Ca+a,... either�9 never enters Ca+l or 

passes through Ck+l and Ca. 
This, like (a) under (I), follows from Lemma 3. 

(b) Any rearrangement of Ca and Ca+1 increases the contribution of Ck+2, 
C k - { -  3 , �9 �9 �9 

The proof is the same as tha~ of (b) under (i). 

' C a §  o ' ~  We now argue as before. Ck+l divides into C a+l and " the of 
~ ~ 

Ck~-I stopping in Ck§ while those of C"a+l pass through Ck+l and Ca. We 

first combine Ca and C'a+i into C'a The a~ of C" �9 k+~ continue to pass through 

C'k, and the contribution o f  C"k+~ is unchanged. Since 7a+l~Ta>Ta-~>'" ,  
t h e  a, o f  C'a will s~ill stop in C'k. By Lemma 5, the contribution of Ca and 

C'a+~ will b e  increased. Finally the contributidn of Ca+21 Ca+a, . . .  is increased, 

by (b) above. Thus combination of Ca and C'k+l is advantageous. 

Next combine C'~ and C"a+i. The a, 'of each of these pass through at 

least to the summit of C"a. Hence, by Lemma 4, the Contribution of C'a and 

C"a+l is increased. �9 of Ca+~, Ca+a, . . .  is increased, by (b) above. Hence  

con~bination of C'a and C"k+l is advantageous. This completes the proof of (2).- 

(3) I t  follows that  we can decrease N by a combination of two pieces 

e x c e p t  perhaps  when 7 1 < 7 ~ . . . < 7 N .  But in this case every stretch ~t0ps at 

the summit of the piece in which it originates; and this continues to be 

so  when w e  combine any two consecutive pieces: By Lemma 5, a n y  such 
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combinat ion is advantageous.  We can therefore  in any case decrease N with 

advantage,  and the  theorem follows. 

7. I t  is sometimes convenient  to use Theorem 2 in a different  but  obviously 

equivalent  form. Suppose tha t  

A t,)  = (,', a) -= - + "  + 
v - - / ~ +  I 

and tha t  * " * * a~, a,, . . . ,  an are ai, a~ , . . . ,an  rear ranged  in descending order  of 

magai tude.  Then  Theorem 2 may be res ta ted  as follows. 

Theorem 3. I f  ~:~=/~(~) is any function of v which is a positive integer .for 
every positive integral ~, and never exceeds ~, then 

Zs(A(y,I~,a)~ ~ Z g ( A ( r ,  I, a*))." 
1 1 

I I I .  

The maximal problem for integrals. 

8. Suppose tha t  f(x) is  positive, bounded, and measurable in (o, a), and 

let  re(y) be t he  measure of the set in which f(x)>=y, so tha t  m(y)is a decreasing 

funct ion  of y which vanishes for  sufficiently large y. We define f*(x), for  

o<=x<a, by 

f *  {m(y)} = y (o < m(y) < a); 

if re(y) has a discontinuity,  with a jump f rom ?t I to /x~, then .f*(x) is cons tant  

in (tt~, ~t~). I t  is plain tha t  f*(x) is a decreasing function.  W e  call f*(x) the 
rearrangement o f f (x)  in decreasing order. Thus if f(x) is I - - x  in o_--<x< I ,  and 

2 - - x  in I < X < 2 ,  t h e n f * ( x )  is I = . - x in o = ~ x ~ 2 .  
2 

Sets of zero measure are i r re levant  in the definition of f*(x). The upper  

bound of f*(x) is the effective upper  bound of f(x), tha t  is to say the least 

such tha t  f(x)<= ~ except  in a nul  set. 

The  definition appl ies  also to "unbounded integrubte functions,  for  which 

m(y)--*O when y - - ~ .  I f  ] (x)  is effectively unbounded,  t ha t  is to say i f f ( x ) >  G, 
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for every  G ,  in a set of positive measure, then f*(x) is a decreasing function 

with an infinite peak at the origin. 

I t  is evident that  f and f *  are 'equimeasurable', i.e. the measures of the 

sets in which they assume values lying in any given interval are equal; and that  

a a 

0 0 

for any positive function ~0, whenever either integral exists. 

We write 

i f  A(x,~)=A(x,~, f )  x--~ f( t)dt  ( o < ~ < x ) '  A(x,x)=f(x) .  (8. 

I f  f(x) is bounded, A(x, ~) is bounded; in any ease it is continuous in ~ except 

perhaps for ~ = x .  W e  define O(x) by 

O(x) = O(x , f )  -~ Max A (x, ~)1 : b o u n d  A (x, ~). 
0_-<~=<x 0_~6x 

(8. : )  

When 9~x) decreases, O(x)= A(x, o). 

9. The theorems for integrals corresponding to Theorems I, 2 and 3 are 

as follows. 

T h e o r e m  4. I f  s(x) is continuous and increasing, then 

a a 

o o 

o,f*)) dx. 

I f  s(x) is continuous and increasing, then 

a a �9 

~ 
o o 

T h e o r e m  5. 

r 

t In what follows the symbol 'Max', when it refers to an infinite aggregate of values, is 
always to be interpreted in the sense of upper bound. 
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Theorem 6. 

.93 

I f  ~ = ~(x) is any measurable funct ion such that o <= ~ <= x ,  then 

a a 

0 0 

Of these theorems, Theorem 4 corresponds to the trivial Theorem I, and 

is included in Theorem 6, which is an alternative form of Theorem 5, and cor- 

responds to Theorem 3 as Theorem 5 corresponds to Theorem 2. The results 

are always to be interpreted as meaning 'if the integral on the right hand side 

is finite, then that  on the left is finite and satisfies the inequality'. 

Io. We can deduce Theorems 5 and 6 from Theorems 2 and 3 by fairly 

s~ igh t fo rward  processes, but a little care is required, since a change of f in 

a set of small measure may alter f *  throughout the whole interval. We begin 

by proving the theorems for continuous f .  I t  is easy to see that  f *  is continuous 

i f  f is continuous; for if f *  has a jump, say from y - - ~  to y + d ,  the measure 

of the set in which f lies between y - - d  and y + ~ is zero, and this is impossible, 

since f is continuous and assumes the value y. 

We may take a =  I. I f  Theorem 6 is not true for continuous f ,  there is 

a continuous f and an associated ~ such that  

1 1 

o 0 

Let 

o,f*)} d x  - -  J ( o , f * ) .  

( Y - -  I ,  2 ,  . . .~ n ) ;  

and let ~ be t he in t ege r  such that  

n 

and 

n 

A ,  = A (v, tz, a) = ~-~- + at*+l + " ' "  + a , ,  

A; =: A(u, I, a*) = a* + a* + . . .  + a',, 
Y 
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We c a n  choose n so that  S= ~s(A,) and S = ~ s ( A , )  differ by as little as we 

please from J(~,f) and J (o , f* )  1, and therefore so that  S >  S*, in contradiction 

to Theorem 3. Hence Theorems 5 and 6 are true for continuous f .  

I I. We prove next that  the theorems are true for any bounded measur- 

able f .  We can approximate to f by a continuous f~ which (a) differs from f 

by less than r ,  except in a set of measure less than ~n and (b)tends to f ,  when 

n:-~oo, fo r  almost all x. Here ~, and 6n are positive and tend to zero when 

n--~ oo. 

: W e  consider 

I I .  I) 

1 

J(fi~) = J(~,fn) : f s{A(x, ~, f,)} dx, 
o 

and make n--, ~ (keeping ~(x) the same function of x throughout). The integrand 

is uniformly bounded; and, whether ~ < x  or g = x ,  the functions A(x,~,f,) and 

s(A) tend almost always to the corresponding functions with f i n  place off~: 
I t  follows tha~ J(f,)--4 J(f) .  I t  is therefore sufficient t o  prove tha t  

( i i .  2) ~ J(f~) < J(f*) + ~] 

for any positive ~ and-sufficiently large u. 

We have f , < f + ~ ,  except in a set E of measure ~ < ~ , .  We define 

g~-g(x, n) as f +  s,~ except in E and as ) / /+  2e,~, where M is the upper bound 

o f f ,  in E .  T h e n f , , ~ g  and s o f ~ g * ,  so that  

J(fn) ~ J(f~) ~ J(g*). 

A moment's consideration shows that  

g $ ( x )  : M - - ~  2~n ( o < x < { ~ ) ,  g r  "~ f r  -~ - 8n ( ( ~ < X <  I) .  ~ 

Since f, A, s(A) are ufiiformly bounded, we can choose ~ so that  

3) 8{A(x o,g*)}dx < 
o 

We suppress the straightforward but  tiresome details of the proof. 
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and we may suppose 6<) . .  For x>~5 we have 

Hence 

and so, by (II. 3) 

x 
*(M§ 

X + f*( t - -d)d t  + ~ 

_ ~(M+ 2,,,! + I ff*(t)dt 
X X 

0 

lira A(x, o, g*) ~ A(x, o,f*), 

1 1 1 

limf < f f =-2~ + lira s(A(x,o,g*))dx<: 27I "u 8{A(x, o , f*)}dx .  

o 2 0 

This is equivalent to (I I. 2), so that  the theorem is proved for any bounded 

measurable f .  

I2. We have finally to make the transition to unbounded functions.. I f  

.f~ = Min (f, n), f~ increases with n and tends to f for almost all x. If  ~ - ~ ( x )  

is independent of n, A,~=-A(x, ~,f,,) and s(An) also increase with h a n d  tend to 

A(x, ~,f) and s(A) for almost all x, and 

J(f, ,)  ~ J ( f )  

whenever the right hand side exists. Hence, for sufficiently large n, 

a n d  SO 

J( f )  < J(f,,) + ~ <= J(f~,) + ~ <= J(f*)  + ~, 

J ( f )  ~ J(f*).  

13. We  add a few supplementary theorems which are ~rivial corollaries of 

Theorem 5, but which are useful in applications..  

Theorem 7. I f  O(x) is the upper bound of 

fg 

! elf(t) dt A(x, ~,f) -- x 
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for a ~ ~ ~ b , then 

b b 

a a 

dx. 

The constant 2 is the best possible constant. 

We may {ake a = o ,  b = I .  Then 

o __< Ma ,(ol, o,),  _-_ 

where O 1 and O~ are the upper bounds of 

X I /  I f  f d t  ( o~<=x) ,  ~ f d t  ( x ~  i) 

(r averages being replaced by f(x) when ~ =  x). I t  follows from Theorem 5 that  

i 1 ~. 

o o o 

and it is obvious from symmetry that  the corresponding integral with 02 has  

the same upper bound. 1 This proves the theorem. 

The factor 2 is the best possible constant. For suppose that  a = o ,  b =  I, 

and that  f ( x ) i s  I b e t w e e n  I ( I - - { ~ )  and I 2 2 (1 +~) and 0 elsewhere, so that  f*(x) 

is I between o and ~. An elementary calculation shows that  the tWO integrals 

of Theorem 7 are then 

I I + ~  
+ ~ l o g ~ ,  ~ +  2~log 2~ 

respectively, and their ratio tends to 2 when $-~o.  

t O~ depends on averages over intervals to :the r ight  from x,  and the f *  which arises then  
is an increasing function: this  doe~ not  affect the  final result. 
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14. 

(,4. ~) 

I t  is known 

IV. 

Inequalities deduced from the maximal theorems.  

Suppose in particular that 

s ( x )  = x ~ (k > 1). 

i that 

and 

+a~)  k = /  k "k '~ 

k k 
(14.3' (I f f(t)dt)kdx<( ) f 

0 0 0 

for finite .or infinite n a n d  a. Since 

A(v, I, a*) = al + a ,  + ... + a ,  
- 

and ~a  :k--- ~a~, with analogous formulae for integrals, we obtain the following 

theorems. 

Theorem 8. I f  A ,  i~-~l~ (v), and a~ are defined as in Theorems 2 and 3, then 

and 

Z Ak( v, I z, a) < Z ak 
1 ~ ~ - ~  1 

Z < I •  a' 
1 = ~ k - - ] [ /  T 'v" 

Here n may be finite ~" infinite. 

t See for example G. H. Hardy, 'Note on a theorem of Hilbert ' ,  Math. Zeitschrift, 6 (1919), 
314--317, and 'Notes on some points in the integral calculus', Messenger of Math., 54 (I925), I5o 
--156; and E. B. Elliott, 'A Simple exposition of some recently proved facts as to convergency', 
Journal London Math. Soc., I (i926), 93--95. A considerable number of other proofs have been 
given by other writers in the Journal of the London Mathematical Society. 

13--29643. Acta mathematica. 54. Imprlmd Io 22 mars 1930. 
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and 

Theorem 9. 

G. H. Hardy and J. E. Littlewood. 

I f  A ,  ~--~(x), and 0 are defined as in Theorems 5 and 6, then 

/ ( ) /  k 
A~(x, ~, f) dx _--< k---T fk(x) d~ 

0 o 

f ()Y k k 
O~(x)dx< ~_~ f~(x)dx. 

0 0 

Here a may be finite or i.nfinite. 

Theorem 10. I f  0 is defined as in Theoren~ 7, then 

a b 

k f Ok(x) dx < 2 f f (x) dx. 
0 a 

Here a and b may be finite or infinite. 

W e  do not  assert tha t  the 2 here is a best possible constant .  

I5. I. All the theorems of the last  section become false for  k =  I.  

f d x  (o < a < I) 

0 

is convergent  when f = x -1 log , but  

0 0 

Thus 

is divergent.  There  is, however,  an interest ing theorem corresponding to this case. 

We shall say tha t  f ( x ) b e l o n g s  ~o Z in a finite interval  (a, b) if 

b 

f [f[ log + If[  d x  

a 
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exists. Here, as usual, log + Ifl  is log Ifl  if I l l  _>--i and zero otherwise. 

I l l  ----< Max (e, Ifl  log+ Ifl), 

9 9  

Since 

any function of Z is integrable. 1 The importance of the class Z in the theory 

of functions has been shown recently by ~ygmund. ~ 

The following theorem contains rather more than we shall actually require, 

but is of sufficient interest to be stated completely. 

T h e o r e m  11. Suppose that a is positive and finite; that B-~B(a)  ddnotes 

generally a number depending on a only; that ]~x) is positive; and that 

([5. II} f,(x) -~ j f( t)dt ,  

(I s. 12) 

0 

: J =  f log+ f dx,  K =  dx.  

0 0 

I f  J is finite then K is aLvo finite, and 

K <  B J +  B.  

(ii) When f is a decreasing function the canverse is also true: if" K is finite 

then J is also finite and 

IS. I4) J <  BKIog+ K + B.  

(iii) A necessary and sufficient condition that f should belong to Z is that 

a 

(I s. IS) / A ( x ,  o , / * ) d x ,  
a ]  
o 

the integral of Theorem 6, with s (x )=x ,  should be finite. 
I t  is not necessary to state explicitly that  f is integrable; in case (i)because 

we have seen that any function of Z is integrable, and in case (ii) because the 

integrability of f is implied in the existence of K. 

(i) 

(~s. ~3) 

t Thi s  would  not  necessar i ly  be true if the  interval  were  infinite.  
2 A. Zygmund, 'Sur les fonetions eonjugu~es', Fundamenta Math., 13 (I929), 284--3o3. 
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15. 2. We begin by proving a lemma. 

Lemma 7. I f  a > o and f is positive and integrable, then 

( I5 .  21) f l o g  i -dx ~ " dx  + f l ( a ) l o g  -I 
X a 

o o 

whenever either integral is finite. 

B y  partial integrution 

( 1 5 . 2 2 )  

a a 

fflog ax d x  + f~(a) log I _ f~(,) log I 
a E 

for o < e < a. The conclusion follows if only 

(I 5. 23) f l ($ )  l o g  I ~ 0 
,8 

when e---,o. I f  the second in~grul in (I5.2I)  is finite, and e < I ,  (I5.22) gives 

fz a 

;flogi dx<-_ f  dx+ f (a)log '-, 
.) X a 

�9 o 

so tha~ the first 

finite, then 

integral is also finite. If, conversely, the 

fII*)l~176 x 
o 0 

first integral is 

~ends to o with ~, which proves (15. 23) and Cherefore (15. 2I). 

15.3. (i) Suppose now first that  f belongs to Z. We have 

( I5 .  3 I )  

Next, 

(l a 

f x f ,loo+I+e, 
0 0 

d x < J +  B .  

uv  < u l o g u  + e "-1 
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I I 
for all positive u and real v. 1 Taking u = f ,  v =  21ogx ,  we obtain 

I I I 
2 f l ~  x _--<flogf + e l fx  ----<fl~ e ~ ' I  

and so 
a a 

f f I d x ~ 2 f f l o g + f d x - t i i a l o g  x ~ - - e  

0 o 

Hence, by (x 5.2 I), 

a a (l 

f: [ 'If �9 dx <= 2 log+fdx  + 4 V a  + log-  f d x ;  
e a 

0 0 0 

and plainly this, with (I 5. 31), gives (15. 13). 

(ii) Suppose now that f is a decreasing function, and that K is finite. 

x f(.) <= f . fd  t = A (x), 
0 

cl a 

: # ) = f : d . <  
0 0 

:(x,<= f x 
0 

log+f  < log + ~ + log + KI 

/ / : :  f: J =  f log+ f d x <  log + dx + log + K  dx 

0 0 0 

b 

=< f flog+ xl dx + Klog + K, 
0 

101 

Then 

t This  very use fu l  i n e q u a l i t y  is due to W. H. Young,  'On a cerkain series of Fourier' ,  Proe. 

London Math. Soc. (2), xl (I913), 357--355. 
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where b -  Min (a, I). We dist inguish the cases a > I  and a < I ,  using Lemma 7 

in e i ther  case. I f  a > x ,  we have b = I  and 

1 

J <  f fl~ x d x +  K l o g  + K 

0 

1 =ff-'dx+ K l o g + K < K l o g  + K +  K.. 

0 

I f  a < I :  we have b = a  and 

J <  : . f l o g  ~ dx + K l o g  + K 

0 

a 

0 

dx + f l (a)  log I + K l o g  + K < K l o g  + K + BK.  a 

Since K < B K l o g + K +  B, we obtain (I 5. I4) in e i ther  case. 

(iii) The  last clause of the theorem is now obvious, since f *  is a decreasing 

funct ion  and belongs to Z if and only if f does so. 

I6. I t  is plain tha t  we can now assert  theorems corresponding to Theorems 

9 and IO. Tha t  which co.rresponds ~o Theorem I o is 

Theorem 12. I f  0 is defined as in Theorems 7 and Io, then 

+ B ,  

b b 

fod <Bfflo:fd  
a a 

where B-~B(a, b) de, ends on a and b only. 

tions. 

V ~  

Applications to function-theory. 

17. In  what  follows we are concerned with in tegrable  and per iodic  func- 

W e  take the period to be 2~r. 



We write 

(I 7. I) 

(I 7. 2) 

( I 7 . 3 )  
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t 

.o<ltl~,~ t- f(O + x )dx  , 
0 

t 

2(0) = M(O,i) = ~iax [ ~- f I~O + x) ldx), 
o<ltl-~ ~ t J 

0 

t 

.(o)--_ ; i;(o + .) I.x). 
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0 

I t  is to be understood that  'Max' is used here in the sense of upper bound and 

that  the mean value in (~7.3) is to be interpreted as if(0)] when t ~ o .  

The three functions are all of the same type as the function's O(x,f)  of 

Theorems 5 and 7. There are, however, slight differences; and it is convenient 

to use O as the fundamental variable when we are considering periodic func- 

tions. We are therefore compelled ~o vary our notation to a certain extent, and 

it will probably be least confusing to change it completely. 

The differences between the three functions are comparatively trivial. Thus 

(~ 7.4) N(O) = Max (~r(O), if(O)]), 

the value t-~ o being relevant to N but not to )~r. Sometimes one function 

presents itself most naturully and sometimes another, and it is eonvenient to 

have all three at our disposal. I t  is obvious that  

(I7.5) M-<  M_< N - -  Max (JT, Ifl). 

x8. We denote by A(k) a number depending only on k (or any other 

parameters shown), by A a positive absolute constant, not always the same from 

one occurrence to another, x 

Theorem 13. I f  .k > i and 

1 A will not occur again in the sense of Section III.  Constants B, C in future preserve 
�9 their identity. 



104 G. H. Hardy and J. E. Littlewood. 

then 

I fFkdO~ 
2 ~  

A (k) o k, 

where F is any one of M, M, N. 

We take F----N, which is, by (I 7. 5), the most unfavourable case. 

is the upper bound of 
0 + t  

Now N 

an average of Ifl  over a range included in ( - - 2 z ,  2z). Hence, by Theorem Io, 

Nk dO ~ 2 
�9 2 7 g  

which proves the theorem. 

Similarly Theorem I2 gives 

Theorem 14. I f  

then 

2= f If] l~ If] dO _--<C 

 fFdo < A C + A .  

19. A number of important functions associated with f(0) are expressible 

in terms of f(0) by a formula of the type 

(19. I) if h(e,p)-= 7~z f{O+ t)z(t,p)dt, 

- -  ~rg 

where ~o is a parameter, and Z, the 'kernel', satisfies 

if (I 9.2) ~ z( t ,p)d t= I. 
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Examples are s,(O), the 'Fourier polynomial' off(O), a,,(O), the 'Fej6r polynomial '1, 

and u(r, O), the 'Poisson integral', or the harmonic function having f(O)as 
'boundary function'. For s,~(O), 

(I9.3) p - - n ,  Z . . . .  ; 
1 

sin-  t 
2 

for a,, (0) 

(19.4) p - - n ,  Z =  
sin~ I n t 

2 

n s i n  ~ I_ t 
2 

and for u(r, O), 

I ~ 1.2 
(19.5) p = r ,  Z =  

I - - 2 r c o s t j r  ~ ''~ 

20. The applications of our maximal theorems depend upon the fact that 

a number of functions h(O,p) satisfy inequalities 

(20 .  i )  I h(O, P) I ~ KN(O), 

where K is independent of 0 and p.  These inequalities in their turn depend 

upon inequalities 

(20. 2) 2 ~  I o t  = 

in which B is independent of p, and w is either Z itself or some majorant X 

of Z. Thus when h(O,p)~u(r,O), Z satisfies (2o. 2). When h(O,p)=a,,(O), Z does 

not itseff satisfy (20. I), but 

A 
(20 .  3) o < z < - -  - -  x ,  

= I + n ~ t  ~ 

and X satisfies (20. 2). When h(O,p)=sn(O), there is no such majoraut. I t  is 

familiar that  the differences between the 'convergence theory' of Fourier series 

1 sn(O) i s  f o r m e d  f r o m  t h e  f i r s t  n +  l t e r m s  o f  t h e  F o u r i e r  s e r i e s  o f  f(O),  an(O) f r o m  t h e  

f i r s t  n .  

�9 1 4 - - 2 9 6 4 3 .  Acta mathematica. 54. I m p r i m 6  le 22 m a r s  1930. 
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and the  ' summabil i ty  theory '  depend  pr imari ly  on the  fact  t ha t  f lxldt is 

bounded  in one case and not  in the other;  here we push this dis t inct ion a 
lit t le fur ther .  

2I. We  begin by consider ing the case in which ' ; /  i tself  satisfies (20. 2). 

Lemm& 8. I f  g is periodic and satisfies (19. 2) and (20. 2), then 

(2x. 1) Iz(~)l--< B +  i,  

]g 

(2 I .  2) ~ z l d t <  2B+ I. 

(i) We have 

2~r[tZ]__ --  zd t  + [" dZ 

f rom which (2I. I) follows immediately.  

(ii) Also 

Theorem 15. 22. 

(22. I) 

Lel; 

Then  

- , /  , 

iflo  I =< Ix(~)l + ~ t y  i dt<= 2 B +  I. 

I f  Z is periodic and satisfies (19. 2) and (20. 2), then 

[ h(O,p) [ N (AB + A)M(O). 

t 

Aft) =A(t ,  o) = f f(6 + ~) 
0 

du. 
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say. 

and 

Here  

~g 

h =  I L f ~  "~ 2~  If '  (t)Z] L,~ �9 t O-t-" 

IIf I Ih~l=lx(z)l  ~ f(O+u)du 

d t = hi + h~, 

0 

{l'f I l~f,( = < ( B + l ) M a x  ~ f ( O + u ) d u  ,. 0 

0 - - ~  

( B +  I)M(O); 

fl i t ~  dt < Ih~l _-< M(0)-2-;4 
--,-,g 

Hence we obtain (22. I). 

BM(O). 

+u)dul} 

23. We  can now prove our principal results concerning the harmonic f u n c -  

tion u(r, 0). 

T h e o r e m  1 6 . - I f  u(r, O) is the harmonic function whose boundary function 

is f(O), then 

(23. :) lu(r, O) l < AM(O) 

for  r < I .  

Here  

I f  I f  = 2~  z d t  . . . . .  2 z  l ~ 2 i : e o T t q - ~  i d t  i ,  

0 % 2 r ( I - -  r z) t s i n  t 
t~-~ ( i _ 2 r  cos t+r , )~ =< o, 

2~  --  -2 z t o t  d t - -  I q--r < I. 

Hence g satisfies the conditions of Theorem 15, with B =  I, and the conclusion 

follows. 
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Theorem 17. I f  k > I and 

(2 3 . 2) 

then 

(~3.3) 

v(8) = ~ax I~(% 8) 1, 
�9 r < l  

The result is false for  k ~- I.  

The positive assertion is an immediate corollary of Theorems 13 and I6. 

To prove the result false for k ~  I, take 

~ 2  _ _  r 2 

U ~--- R ~ _ 2 R r c o s 0  + r ~ ( R >  I) .  

An elementary calculation shows that  u is a maximum, for a given 0 and r =< I, 

when 

�9 r = R ( see  0 - ] t a n  8 I ) , .  

provided that  this i s positive and less than I, that  is to say provided 

~ - - I  I 
a :  arc sin ~ < 181 < ~ : ;  

and that  then U = cosec O. Hence 

If,lo, o R..I 
2zr 2~r R ~- ~ 2 R  cos 0 + I 

Since the first integr',fl tends to infinity when R ~  I, a ~ o ,  we can falsify (2 3. 3), 

for k =  : and any A, by taking R sufficiently near to I. 

The  theorem corresponding to the case k =  i is 

t When [01 < a  the maximum is given by r : - I ,  and when [O[> I by r = o .  
2 
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T h e o r e m  18. I f  f(O) belongs to Z and 

then 

rg 

f lf(O)llog+lf(O)ldO  C, 

rf 2~ U(O) dO < A C + A .  

This  is a coro l l a ry  of  T h e o r e m s  14 a n d  x6. 

24. Be fo re  g o i n g  f u r t h e r  w i t h  t he  t h e o r y  of  h a r m o n i c  a n d  ana ly t i c  func-  

t ions ,  we cons ide r  t h e  case h(O,p)=a,,(#), which  is t yp i ca l  of  the  second  possib-  

i l i ty  m e n t i o n e d  in w �9 I n  th i s  case  Z does  no t  sa t i s fy  (2o. 2); bu t  

I 
sin ~ n t 

2 An 
(24. I) 0 _____< Z = n sin 2 I_ t < I + nZt ~ XX' 

2 

a n d  

(24. 2) o < X ( ~ )  = X ( - - ~ )  _--< B 

x b Y  ~ ~ (i + ' 2-,-~ t d t  = J ( x  ~- n i ~ )  2 < u~) ~ 

ill I (24. 3) -2~ t-07 dt <= C, 

T h e o r e m  19. 

and (24. 3), then 

where  B a n d  C are  i n d e p e n d e n t  of  n .  

I f  Z is periodic and has a majorant X which satisfies (24 .2)  

(24. 4) [ h(0,v)[ _-< (B + C)M(0). 

x The usefulness of a kernel of the type of X was first pointed out by Fej6r. See L. Fej~r, 
'l~ber die arithmetischen Mittel erster Ordnung der Fourierreihe', G6ttin.qer Naehriehten, I925, 
I3- - I  7. 
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We have 

(~4. s) 

say. If  now 

(24. 5) gives 

say. Here 

and 

Ih(O,p)l <= • f t)l X d  t = H(o,  p) ,  

A(t) = Z ( t ,  O) = f If(O + u) l du, 

?g 

i 
2 ~ - -  . t - ~  . H(O, p) = 2'~ [fl(t)X]"__~ - -  - -  d t =  Hl + H~, 

fl I H,  I = x ( ~ ) .  i.. f (o  + u) l d u  
2 ~  

0 

f lf(O+u)ldu, f 
0 - - ~  

<= B Yt(o), 

Hence we obtain (24.4). 

25. Theorem 20. I f  a,,(0) is the Fej& polynomial formed from the first n 

terms of the ~ series of f(O), then 

(25. ~) - I~.(o) l =< A~r(o) .  

This is a corollary of Theorem 10, since we have already verified that  ~he 

kernel of a,,(8) satisfies the conditions of Theorem I9, with B ~ A ,  C = A .  

The theorems Corresponding to Theorems 17 and 18 are 

Theorem 21. I f  k > 1  and 



(2 5 . 2] 

then 

(~5. 3) 
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z(o) - -  Ma~ I a~(o) I, 
(n) 

f if i zk(e)de <= A ( k ) ~  2 ~ If(P) Ikde" 
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The result is false for k = i. 

Theorem 29.. I f  f (e) satisfies the conditions of Theorem 18, then 

(25.4) i2zc f 2(0)de < A C + A. 

The positive assertions are corollaries of Theorems 13, 14 and 2o. The  

negative one becomes obvious when we remember that a bound of an(O)for 
v~rying n is also a bound of u(r,O)for varying r, so that V(O)<=2~(O). For 

the same reason (23.3) is a corollary of (25.3). 

Theorem 23. The results of Theorems 20, 2i and 22 remain true when 
an(O) denotes a Ces~tro mean of any positive order 6, provided that A and A(k) are 
replaced by A(6) and A(k, 6). 

I t  is only necessary to verify that  t h e g  now corresponding to an(O) has a 

majorant X which satisfies (24. 2) and (24. 3), with values of B and C of the 

type A(6). 

We may suppose 6 < I (an upper bound of a lower mean being a fortiori 
one of a higher mean). We have then 1 

{ ( i )  } 
r ( 6 + i ) r ( n + ! ) s i n  n+216+ t--I-d~2 

Z = z, + Z~-- F ( n + 6 +  I) 2' (sin 2I ) d+ l t  "}- 22, 

I z I < A(6ln,  I z., I < A (6) = = nt 2 

1 E. Kogbet l iantz  , 'Les s~ries t r igonom~triques et  les s~ries sph6riques' ,  Annales de l'Ecole 
Normale (3), 4o (I923), 259--323. 
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Hence [Z[--<A(~)n if [ n t [ ~  I and 

if ]nt] > I. We may therefore take 

x -  A(a)n 
I + ns]t] ~+1' 

and it may be verified at once that this X has the properties required. 

26. We return now to the case h=u(r,O). We suppose that  o_--<a< I -7g  
2 

and that S~(0) is the kite-shaped area defined by drawing two lines through e t~ 

at angles a with the radius vector and dropping perpendiculars upon them from 

t h e  origin1; and we denoterby U(O,a) the upper bound of ]u(r,O)] for z = r d  ~ 
interior to S~(0). 

Theorem 24. I f  k > i then 

(26. i) / if I Uk(O,a)dO< A(k ,a)2z  if(O)jkdO. 
- - $ g  - - ~ .  

If z l=r l  d~ is any point in S~(0), then 

I f  u(z,)= ~ f(O+ t)z(t,z~)dt, 

where 
42 

I - - 9 ~  

z(t, z~) - ( - 2 r l  cos(t-O+O~) + r~ 

I t  is easily verified that  z(t, zl) satisfies (I9: 2) and. (20. 2), the B being of the 

form A(k, a). This proves the theorem. 

27 . An equivalent form of Theorem 24 is as follows. 

1 There is of course no par t icular  poin t  in the precise shape  of Sa(0); i t  is an area of fixed 

size and shape  including all 'Stolz-paths '  to e io inside an  angle 2er The radius  vector cor- 
responds to a = o  
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Theorem 25. I f  k > I ,  U ( r  I O) i8 harmonic for r < I and satisfies 

(2 7. I) 
i j'l  (r 

- -  u O) lkdO < C a, 
27g ' 

and U(O, a) is the upper bound of lu I in S.(O), then 

(27. e) A_2  f u (o, .)do =< A(k, 

Let S.(r, O) be the region related to re ~~ us S:(O) is to e ~~ and let U(r, 0, a) 

be the upper bound of l u[ in S.(r,O). By Theorem 24, 

, U~(r, o, .) dO <= A(k,  ~ lu(r, O) l*dO < A(k, a) C a. 

But U(r, O, a) tends by increasing values to U(O, a), and we may take limits 

under the integral sign. This proves (e7.2). 

58. Theorem 26. I f  k > i, w(r; 0) is positive and subhm'monie for r < I ,  

I . _  / k . (2s. i) w 0, O)dO = < (_:a 
J 2 ~  

for r <  I, and W(O, a) is the upper bound of w in S~(O), then 

(2a. 2) • w a ( ~  . ) d O  <= A ( k , . ) C  k. 

There is a harmonic function u(r, O) such that  

I j ' ua  O)dO<C a w < = u ,  - -  (r, = . 
2 ~  

Hence Theorem 25 is a corollary of Theorem 25. 

~ J. E. Li t t lewood,  'On funct ions  subharmonie  in a circle', J o u r n a l  Lond .  Math .  Soe., 2 

(1927), I92--196.  
~ We ean if we please avoid any appeal  to th is  theorem of Li t t lewood.  Suppose  for s impl ic i ty  

of wr i t ing  tha t  ,Y = o and tha t  all in tegra t ions  are over ( - -~ ,  ~), and let  

15--29613. Ar  ~r~thematie~. 54. Imprim~ lo 23 mars 19-~0. ~ 
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29. Theorem 9.7. Suppose that Z > o ,  that f(z) is an 

regular for r < I, that 

(2 9 . I) ( r <  I ) ,  

and that 

' f , <z ) 2~ f IzdO < C~ 

analytic function 

(2 9 . 2) 

Then 

(29.3) 

F =  F(o ,  ,~)= Ma~ tf(~) I. 
s~(o) 

The most important case is that  in which a-~o ,  S~(O) is the radius vector, 

and A(Z, a)=A(Z).  I t  is to be observed that Z, unlike the k of previous theorems, 

is not restricted to be greater than I. 

Theorem 27 is an immediate corollary of Theorem 26, since 

w = I l l  ~ 

is a positive subharmonic function satisfying 

' fwo o 2~ 
- -  r - - 7 r  

<_ C :~" 

i f w(e, 9)dq~ ue(r,O)= ~ O., 2 r e c o s ( ~ p _ 0 ) + r ~  ( o < r < ~ ) .  

Then uQ is harmonic and assumes the  values w for r = Q ,  and, by F. Riesz's fundamental  theorem 
on sub-harmonic functions, w_-- < uQ. Hence, using capital letters to denote radial maxima, and 

observing t ha t  f u~(r, O)dO increases wi th  r, we have 
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The theorem is, however, the most obviously interest ing of all t h o s e  which we 

have proved, and it may be desirable to give a proof independent  of the theory 

of sub-harmonic functions. 

(i) Suppose t h a t  ,~ = 2, f =  u +i~:. Then ]f]~---- u s + v ~, F ~ _--< U ~ + V ~, 

and by Theorem 25, 

<= A (,~) C ~. 

This proves the theorem in the part icular  case Z =  2. 

(ii) Suppose next tha t  Z is any positive number  and tha t  f has no zeros 

for r < I .  Then 

f~ = y  

is reg.ular for r < I  and ] f lZ=g ~, F Z ~ G  2, so tha t  the theorem follows f rom (i). 

(iii) Finally consider the general case. I t  was proved by F. Riesz 1 tha t  

an f sat isfying (29.1) can be expressed as a product, gh,  where ]hl--<I for 

" r<  I ,  while g has no .zeros for r <  I and satisfies (29. I). Hence F ~  G and, 

from case (ii), 

F~dO <= I GZdO <= A(~, a) CZ. 

30. I t  is well known tha t  a funct ion f(z) satisfying (29. I) tends to a 

>>boundary function>~ f(e~~ for almost all 0, as z tends radially to e i~ Theorem 27 

carries with it as corollaries several well known theorems concerning the behaviour 

of f n e a r  the boundary,  which can be read out of i t  with the help of a well- 

known principle. Thus, the functions 

I f(z)  l ~, ]f(z)  - f (e '~  l ~ " 

1 F. Riesz, 'Ober die Randwerte einer analytischen Funktion', Math. Z~tschrifl, I8 (I923), 

37--95. 
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are majorized by A(~)Fa(O), an integruble funct ion;  their  convergence to their  

l imit  functions If(e ie) I ~ and o is >>dominated>> convergence, and we may proceed 

to the limit under  the sign of integrution. The three ra ther  subtle results 

' ,, Lf,,  , ,  
,.do adO= e,O adO, 

r ~ l  27"g 

lim 2!~: f If(re 'e) -- f(e'e)[adO=o, 

and 

lim ~ -  ( [ f ( rd~  = o 
r ~ l  2 7 g J  

F (r) 

t h u s  become immediate.  I n  the last  of them E(r) denotes a set of 0, varying 

with r ,  whose measure tends to zero as r--* I .  

In  the same way the convergence of 

[a.(O) I ~, ] a,,(O) -- f(O)I ~ 

to [f(O)[ k and o is ~dominated* convergence when k > I ;  and we may infer at  

once the Well-known results 

lira I ; ] - ~ ( O )  - f ( O ) I ~ d O  = o .  
n--| 2~ J 

A 
v 


