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I:
Introduction.

1. The kernel of this paper is 'elementary’, but it originated in attempts,
ultimately successful, to solve a problem in the theory of functions. We begin
by stating this problem in its apparently most simple form.

Suppose that A >0, that

fle)=f(re?)
is -an analytic function regular for » <1, and that

F(0) = Max | f(re'?)]

0=sr=1

is the maximum of |f| on the radius 6. Is it true that

7
e l w A
L[ Peaes an flfe 1o,

—7

where A(A) is a function of A only? The problem is very interesting in itself,
"and the theorem suggested may be expected, if it is true, to have important
applications to the theory of functions.

The answer to the question is affirmative, and is contained in Theorems

17 and 24—27 below (where the problem is considered in various more general
11—-29643. Acta mathematica. 54. Imprimé le 20 mars 1930.
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forms). There seems to be no really easy proof; the one we have found depends
entirely on the difficult, though strictly elementary, argument of section II.'
Here we solve a curious, and at first sight rather artificial, maximal problem.
The key theorem is Theorem 2; a certain sum, defined by means of averages
of a given finite set of positive numbers, is greatest when the numbers are
arranged in descending order. It is this theorem which containg the essential
novelty of our analysis; once it is proved, the rest of cur work is comparatively
a matter of routine. We have therefore written out the proof with the maximum
of attention to detail. | '

It is noteworthy that the central idea of the solution is appropriate only
for sums. What is required for the function-theoretic applications is not Theorem
2 itself but its analogue for integrals, Theorem 5. The proof for integrals, how-
ever, cannot run parallel to that for sums, a peculiarity very unusual in inequality
theorems, and one which makes the final function-theoretic results rest on founda-
tions very alien to their own content. It seems here to be essential to deduce
the integral theorem from the sum theorem by a limiting process, and this
transition is set out in section III. The argument is not quite trivial, but it
is comparatively straightforward and involves no novel idea; we have therefore
treated it less expansively, and have omitted a certain amount of detail which
an experienced reader will easily suppiy for himself. ‘

In section IV we deduce some inequalities for real integrals which are
required later. The typical theorem is Theorem 10; if f(x) is positive and be-
longs to the Lebesgue class L*, where £>1, in (@, b), and O(z) is v’the.maximum
average of f(x) about the point z’, then @(x) also belongs to L* and

f@kdng(k)ffkdx,'

where A(k) depends only on k. This is false when k=1, and we investigate
also the theorem which then replaces it.

Finally, in section V we make some applications of the theorems which
precede to the theory of functions. We have other such applications in view;
here we go so far only as is necessary to solve the problem from which we
started, - the analogous problems for harmonic and sub-harmonic functions, and
a similar problem which naturally suggests itself concerning the Cesiro means
of a Fourier series. '

! Anothér proof has since been found by Mr. R. E. A. C. Paley, and will be published in
the Proceedings of the London Mathematical Sociely.
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1I.
The maximal problem.

2. The problem is most easily grasped when stated in the language of
cricket, or any other game in .which a player compiles a series of scores of
which an average is recorded.! It will be convenient to begin by giving the
solution of a much simpler problem: ' :

Suppose that a batsman plays, in a given season, a given 'stock’ of innings

(2. 1) ay, Gy, . - ., Gn

(determined in everything -except arrangement). Let @, be his average after the
»-th innings, so that

(2. 2) @y = "= T

Let s(x) be a positive fupction which increases (in the wide sense) with z, and
let his ’satisfaction’ after the »-th innings be measured by

(2.3) 8y = s(a,).

Finally, let his ‘total satisfaction for the season be measured by

(2. 4) S= Es;., = Ss(a,).

It is then easily verified that S zs a maximum, for a given stock of innings, when
the innings are played in decreasing order. For suppose that

ay < Gy, u<v,

If we interchange a, and a,, then s, s, ..., S4—1 and s, Sy31, ..., Sy are un-
altered, and s, Sut1, . - , 8y—1 are increased, so that S is increased.

This problem is trivial and the result well known. We state it, for con-
venience of reference, as a formal theorem.

! The arguments used in §§ 5—6 are indeed mostly of the type which are intuitive to a
student of cricket averages. A batsman’s average is increased by his playing an innings greater
than his present average; if his average is increased by playing an innings @, it is further in-.
creased by playing next an innings y > z; and so forth.
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Theorem 1. If a,, a,, ..., an are positive, wn the wide sense, and given
except in arrangement, s(x) is any increasing function of x, and a,, sy, S are de-

fined by (2.2), (2.3), and (2. 4), then S vs a maximum when the a, are arranged in
descending order.

3. We obtain a non-trivial problem by a slight change in our definitions
of @, and s,. Suppose now that «, is not the batsman's average for the complete
season to date, but his maximum average for any consecutive series of immings
ending at the v-th, so that

aptaptrt -+ a,
’

(3 I) :av‘+a,*+‘+...+

a
o, * — Max

‘V—V*'*'I usw V—[L‘*‘I
we may agree that, in case of ambiguity, »* is to be chosen as small as possible.?!
Let s, and S be then defined by (2. 3) and (2. 4) as before. The same maximal
problem presents itself, and its solution is now much less obvious. Theorem 2,
however, shows that S is still a maximum when the innings are played in descend-

tng order.

Theorem 2. If a,,a,, ..., an are positive, in the wide sense, and given
except in arrangement, s(x) is amy increasing function of x, and @, s,, S are
defined by (3. 1), (2. 3), and (2. 4), then S is a maximum when the a, are arranged
in descending order.

- Preliminary notes and definitions.

4. We suppose that a,, as, ..., an form N descending pieces C;, where
=1, 2,..., N, C; containing »; terms a, (v; =v <+ m;) such that

Qy, = Ay;+1 == Oy 4n—1-

A piece may contain one term only; thus, if the a, increase strictly, each a, con-
stitutes a piece and N=n. In any case '

mtngt - +uy=mn.

We shall prove that, sf N> 1, we can rearrange the a, so that N is decreased

! Tf the innings to date are 82, 4, 133, 0, 43, 58, 65, 53, 86, 30, the batsman says to himself
‘at any rate my average for my last 8 innings is 58.5’ (a not uncommon psychology).
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and with advantage, 1. e. with increase of S. Here 'advantage’, 'increase’ are used

widely (so that 'with increase’ means 'without decrease’) but 'N is decreased’ is

to be interpreted in the strict sense. It is plain that this will prove the theorem.
We denote the average of the terms of C; by y; and write

Yi= A’U(C;)

We use this notation systematically for averages; thus Av(C;, Ci+:) means the
average of all the terms of the two successive pieces C;, Ci+1, and Av(a,—1, C)
means the average of the terms of C; and the immediately preceding term.

We call a,,, the left hand end of C;, the summit of C;; it is, in the wide
sense, the greatest term of C;.

The set of terms

Ak, Qy3t1, ...y Ay

which defines the «, associated with @, will be called the stretch o, of a,, a, the
source of -a,, and a,+ the end of o,.

It is almost obvious (see Lemma 1 below) that any end of a stretch is a
summit of a piece, so that any stretch which enters a piece (contains at least
one term of the piece), other than the piece to which its source belongs, passes
through that f)iece (contains all its terms). Here again 'passes through’ is used
widely; the stretch extends at least to the summit of the piece.

To combine two consecutive pieces Ci, Ciyy is to rearrange the aggregate
of their terms as a descending sequence, thereby replacing the two pieces by a
single piece and decreasing N. Sifnilarly we may combine C; with part of Ciyy,
or Ci+1 with part of Cj; this will not in general decrease N.

Lemmas for Theorem 2.

5.1. Lemma 1. Any end of a stretch is a summit of a piece.
Suppose, if possible, that ., a,+1 belong to the same piece, and that a
stretch o, ends at au4+1. Then '

Qui1 = Av(ausa, Guys, . . ., @)
and so

Gy = Qu+1 = Av(aﬁl, Qutdy « oy av).

Hence ¢, goes on to include a,, a contradiction.
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5.2. Lemma 2, If a, and a,i1 belong to the same piece Ci, then 6,11
extends at least as far to the left as 6, (and so includes ©t).

Suppose, if possible, that o, ends at the summit of Ci;q, while 6,41 ends
at ’tha.t of Ci—p, with o=p<gq. Call ]

Of—q -+ Ci—q+1 + -+ Ci—p—l 01,
Oi—p -+ Oi_.p+1 + 4 Oy 02,
C; (up to a,) ‘ C*.

Since g, goes back to C;—,, instead of stopping in (i, we have
(5.21) Av(CY) = Av(C?, C%);
and since 0,+; does not do so
(5. 22) Av(CY) < Av(C?, C3, ay41).
On the other hand, since 6,4, does go back to Ci—p, we have
(5. 23) Av(0?) = 4v(C?, avry).
It.follqws from (5.22) and (5.23) that
(5. 24) Av(C?) < 4v(0Y),
and from (5. 21) and (5. 24) that
(5. 25) _ Av(C% < Av(CY).
Also (5.21) and (5. 2?) show that
(5.26) . ay1.> Av(C?, CF),
and then (5.25) and (5. 26) show that
(5.27) ay+1 > Av(C3).

This is a contradiction, since a,+; cannot exceed any term of C3.

5.3. Lemma 3. Suppose that y.—» = y:.. Then any o, whose source lies to
the right of Ci (in Ciy1, Cita, ...), and which enters C;, will pass through Ci.
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If not, it stops in (at the summit of) ;. Let C’ be the part of o, between
C: and its source, and y' the average of (". Then y; =7/, and so yi =y, 2y
Hence '
yia = Av(C;, C);

which is a contradiction, since g, does not enter Cii.

5.4. Lemma 4. Suppose that Ci—, and C; are consecutive pieces, and that
the stretches of the terms of C: all pass through Ci—y. Then combination of Ci—
and C; increases the contribution of their terms to S.

The contributions of C;, Cis, ... are obviously "not changed. Those of
Ci+1, Ci+a, ... may be, but we are not concerned with that here.

It is easiest to prove more. Consider any arrangement of the terms of
Ci—1 and C;, say

by, bey oo Buy ... by,

and associate with each u a stretch {, going back at least as far as b, and a

corresponding average B,. Among all possible arrangements of the b, that which
makes

5(8) + s(8) + - + s(6)

greatest is the decreasing arrangement..

For suppose (e.g.) buy1>b,. 1f we exchange b, and b,4:, then plainly
B. is increased and the remaining § are unaltered. It follows (going back to
the state of affairs in the lemma) that, when we have combined C;—; and C},
there is some set of stretches ¢’,, with corresponding averages 'a'.,,' which makes

Zs(a’y)

at least as great as the original contribution of C;—, and C& This set of o, is
not necessarily identical with the set of o, actually associated with the piece -
replacing C;—; and C;; but

Ss(e)) = Is(a'y),

by the definition of a,, and is therefore at least as great as the original contribu-
tion. This proves the lemma. -
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5.5. Lemma 5. If Ci—y and C; are two consecutive pieces, and the stretches
of the terms of each piece extend to the swmmits of these pieces only, then combma
tion of Ci—1 and C; increases their contribution to S.

This is the least trivial of our lemmas. It is obviously included in the
following lemma.

Lemma 6. Suppose that

012622"'201), dlgdgg"'gdq,
and that

€ =6 = = epig
ts the set of ¢ and d arranged in descendi'ng order. Let
(5.51) Co=c,+c+ - +o,

and simelarly with the other letters. Then

(5. 52) (C,)+s(§2) 4.4 S(%) + s(D,) + s(&) +ok s(pg)

2 q
E ¥
< (R Lo | . 4 ofLrta).
=s(L,)+s(2)+ +¢(p+q)

We prove Lemma 6! by induction from p+q—1 to p+gq.- Suppose that
it has been proved for p+g—1, but that (5. 52) itself is false. Plainly

Lyto - Min (C" D") Dy
q

rre” Ty ¢

say. Writing (5 52) with '>’ in place of '=<’, and suppressing the last term on
each side, we ‘obtain
P 9—1 p+e—1
D, E,
(5.53) s ( ) s (—) >Zs(-—-)'
_ 1 1 4 1 4
If ep=d,, (5.53) contains the same ¢ and d on its two sides, and accord-

ihgly contradicts our assumptions. We must therefore have d;>¢;. Then d,
is missing from the left of (5. 5 3) and ¢, from the right. Let us suppose that

! Our original proof of this lemma was mnch-lesg satisfactory; the present one is due in
substance to Mr T. W. Chaundy.
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= dq=c+1; the argument requires only an obvious modification when d, is
greater than every ¢. Then the terms involving d, on the right of (5.353) are

' cl+---+ct+d1+~~+dq) c1+~'--+c,+1+d,+~--+dq)
(5'54) S( t+q ts T ttgt1
+‘_'+8(c,+~--+cp_1+dl+~-~+dq)'
ptg—1

If the E on the 'right of (5.53) were constructed in the manner of the theorem
from ¢, ¢5, ..., ¢, dy, ..., dg—1, then the right of (5.53) would contain, instead
of the terms just written, the terms

t+gq t+q+1

+...+S(c]+"'+0p+d1+"'+dq—1).
btg—1

S(Gl'l'"’+ct+0t,+l+d1+"‘+dq—1) +8(01+"'+Gt+2+d1+"'+dq—1)

Since dg=e¢1=cy2=---, none of these terms exceeds the corresponding term
of (5.54). Hence (5.53) is true with the new interpretation of the E, when it
contradicts our assumptions. We have thus arrived in any case at a contradic-
tion which establishes the lemma.

Pi-oof of Theorem 2.

6. ‘We. arrange the proof in three stages; (1) is a special case of (2), but
is proved separately for the sake of clearness.

(1) If 7,=y,, then C, and C, may be combined with advantage.

We begin with two preliminary observations.

(a) A stretch from a sowrce in Cy, C,, ... either never enters Cy or passes
through C, and C,. ' .

This follows from Lemma 3.

(b) Any rearrangement of C, and C,, and in particular their combination,
increases the contribution of C,, C,, . .. .

For if a, belongs to Cy, C,,...,0,, by (a), stops short of C"s or passes
through C; and C;. In either case the new e, is the maximum of a set of
values which includes the value which determined the old maximum.

We observe next that C, consists of two parts Cy and C,” (either of which
may be nul) such that (i) C,” lies to the right of €, and (ii) the o, of C, stop

at the summit of O, while those of C,” pass through to the summit of C,. All
12-~29643. Acta mathematica. 54. Tmprimé le 20 mars 1930,
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this follows from Lemma 2. We now prove (1) by operating in two stages, first
combining C; and C, into a single piece C,’, and then combining C," and C,”,
and showing that each combination is advantageous. ‘

First combine €, and €, into C,. The o, of C,” continue to pass through

C,, and the contribution of C;” is unchanged. The contribution of C;, C,, ...
is increased, by (b) above; and that of C, and C, is increased, by Lemma s.

Hence the combination is advantageous. , '
Next combine O, and C,”. The g, of C,” pass thrdugh C,, so that, by
Lemma 4, the contribution of C,' and C,” is increased. The contribution of
Gy, C,, ... is increased, by (b) above. Hence the combination of C, and C,” is
also a,dvanta,géous. This completes the proof of (1).

(2) If yi<pa<< -+ <9yg, Y6=yk+1, then Cr and Cri1 may be combined with

advantage. )
We note first that the o, of C; all stop at the summit of Ck.
(a) A stretch from a source in Ciya, Ciys, ... either never enters Ciiy or -

pdsseskthrough Cry1 and Cg. :

This, like (a) under (1), follows from Lemma 3. ‘

(b) Any rearrangement of C. and  Cry: increases the contribution of Ciis,
Cr+s, - .. ’

The proof is the same as that of (b) under (1).

We now argue as before. Cii; divides into C'x4+1 and C”py1, the o, of
C'v+1 stopping in iy while those of (”ii; pass through Ciy; and C.. We
first combine C; and (Vg4 into Cx. The o, of "ty continue to pass through
C't, and the contribution of C”iy; is unchanged. Since pir1=yk>pro1> -,
the g, of (', will still stop in ;. By Lemma 3, the cqntribution of C; and
Cis1 will be increased. Finally the contribution of Cpys, Ciss, . .. is increased,
by (b) above. Thus combination of C; and (34 is advantageous.

.. Next combine C: and C"i11. The o, ‘of each of these pass through at
least to the summit of C';. Hence, by Lemma 4, the contribution of C’; and
C"t+1 is increased. That of Ciyig, Ciys, ... is increased, by (b) above. Hence
combination of (’; and ("4, is advantageous. This completes the proof of (2).-

(3) It follows that we can decrease N by a ¢ombination of two pieces
except  perhaps when y, <y, <<---<yy. But in this case every stretch stops at
the summit of the piece in which it originates; and this continues to be
80..when we combine any two consecutive pieces. By Lemma 5, any. such
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combination is advantageous. We can therefore in any case decrease N with
advantage, and the theorem follows.

7. It is sometimes convenient to use Theorem 2 in a different but obviously
equivalent form. Suppose that

apt au+1t -+ av
A = A , L ot B ,
(‘V, .u') (‘V L, a) y—p+ 1

and that at,a},...,an are a,,a,, ..., an rearranged in descending order of
magnitude. Then Theorem 2 may be restated as follows.

Theorem 3. If u=u(v) vs any function of v which is a positive integer for
every positive tntegral v, and never exceeds v, then '

) n n
Zs (AW, u,a)) = ZS‘V{A v, 1,a*)}."
1 . 1

IIL.
The maximal problem for integrals.

8. Suppose that f{x) is positive, bounded, and measurable in (o, a), and
let m(y) be the measure of the set in which f(x)=y, so that m(y) is a decreasing
function of y which vanishes for sufficiently large y. We define f*(z), for
o=zx=a, by

if m(y) has a discontinuity, with a jump from u, to u,, then f*(x) is constant
in (u,,ps). It is plain that f*(z) is a decreasing function. We call S*(x) the
rearrangement of f(x) in decreasing order. Thus if flx) is 1—x ino=z <1, and

. NS S
2—z in 1=x =2, then f*(x) is S%in o=zx=2.

Sets of zero measure are irrelevant in the definition of f*(x). The upper
bound of f*(x) is the effective upper bound of f(z), that is to say the least §
such that f(x) <§ except in a nul set.

The definition applies also to -unbounded integrable functions, for which
m(y) >0 when y—. If f(x) is effectively unbounded, that is to say if f(z)> G,
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for every G, in a set of positive measure, then f*(x) is a decreasing function
with an infinite peak at the origin.

It is evident that f and f* are 'equimeasurable’, ¢.e. the measures of the
gets in which they assume values lying in any given interval are equal; and that

jW(ﬂdx=faUJ(f*)dx

for any positive function 1, whenever either integral exists.
We write

6.1 - A=Al 5 S = §ff Ydt ost<a), Alw, o) —fla).
If flx) is bounded, A(x, &) is bounded; in any case it is continuous in § exceptb

perhaps for §=x.  We define O(x ) by

(8.2) . 0()— O, ) — Max A(e, 8 — bownd Az, 8).

0sf=x o=isz
When fl(x; decreases, Ox)=A(x,0).

0. “The theorems for integrals corresponding to Theorems 1, 2 and 3 are
as follows.

Theorem 4. If s(x) 4s continuous and increasing, then

a

a ,
f s{A(z, 0,f))dz < f s{A(z,0,f*)) dz.
0 0

Theorem 5. If s(x) ¢s continuous and increasing, then

fas..{O(x,f)}dxéfs-'{‘@(cc,f*)}dx.

! Tn what follows the' symbol 'Max’, when it refers to an infinite aggregate of yalues, is
always to be interpreted in the sense of upper bound.



A maximal theorem with function-theoretic applications. .93

Theorem 6. If &= &(x) is any measurable function such that o<E=<ux, then

a

f s{A(, £ [} do < f LAz, 0, f*)} da.

Of these theorems, Theorem 4 corresponds to the trivial Theorem 1, and
is included in Theorem 6, which is an alternative form of Theorem 5, and cor-
responds to Theorem 3 as Theorem 5 corresponds to Theorem 2. The results
are always to be interpreted as meaning 'if the integral on the right hand side
is finite, then that on the left is finite and satisfies the inequality’.

10. We can deduce Theorems 5 and 6 from Theorems 2 and 3 by fairly
straightforward processes, but 'a little care is required, since a change of f in
a set of small measure may alter f* throughout the whole interval. We begin
by proving the theorems for continuous f. It is easy to see that f* is continuous
if f is continuous; for if f* has a jump, say from y —d to y + J, the measure
of the set in which f lies between y —d and y + 6 is zero, and this is impossible,
since f is continuous and assumes the value y.

We may take a=1. If Theorem 6 is not true for continuous f, there is
.a continuous f and an assocmted & such that

1 h 1

T(Ef) = j's{A(x, £ ) do > f s{A(z, 0.fM) dw = T (0,/*).
Let

a.,=f(;) v=1,2,...,n);

and

Av::A(‘Vv.u’v a)::fz”:—*-a“i—t}-*- -tav
. Yy —pu+1
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We can choose # so that S=3s(4,) and §*=3s(4;) differ by as little as we
please from J(£, f) and J(o,f*)!, and therefore so that S>> S* in contradiction
to Theorem 3. Hence Theorems 5 and 6 are true for contmuous /-

11. We prove next that the theorems are true for any bounded measur-
able f. We can approximate to f by a continuous fn which (a) differs from f
by less than &, except in a set of measure less than 0, and (b) tends to f, when
n-— o, for almost all x. Here & and 6, are positive and tend to zero when
n—> 00, .
~ We consider

1

(11 1) T = T & fo) = f (A, & fi)) dz,

0

and make n— o (keeping £(x) the same function of x throughout). The integrand
is uniformly bounded; and, whether §<x or =, the functions A(x, &, f,) and
s(A) tend almost always to the corresponding functions with f in place of fa.
1t follows that J(fn)—J(f). It isltherefore sufficient to prove that

(11.2) : ’ J(fu) < J(f) + 9

for any positive 7 and -sufficiently large n.

We have fo,<f+é& except in a set E of measure 0<d,. We define
g=yglx,n) as f+ & except in E éuid as M + 2¢&,, where M is the upper bound
of f, in E. Then fr=g and so fr=g% so that

J(fa) = J(f2) = I (g%).
A mo:ment"s consideration shows that

| g (@) =M+ 280 0<z<d), g*(x) =S *x—0) + &n d<z< 1‘). E

Since f; 4, s(4) are uniformly bounded; we can choose i so that

A

(11.3) fs{A(x, 0,9¥)}dx < éq; ,

0

! We suppress the straightforward but tiresome details of the proof.
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and we may suppose d<<i. For x>dJ we have

(M+ 2¢n)

Az, 0,9%) = ff* (t—d)dt + en

6M+28" ff* dt+8n

Hence

lim A(x, 0, g*) = A(x, 0, f*),

N~

and so, by (11.3)

1 1 1

li_mfs{A(x, o,g*)}dwé—;n + lEfs(A(x, 0,9%)}dx < ;7} + fs{A(x, o, f¥)}dzx.

This is equivalent to (11.2), so that the theorem is proved for any bounded
measurable f.

12. We have finally to make the tramsition to unbounded functions.. If
Ja=Min(f, n), fn increases with » and tends to f for almost all z. If §=§(z)
_is independent of #, An=A(x,&, fu) and s(4,) also increase with » and tend to

Afx, &, f) and s(A4) for almost all =, and ‘

J () = J(f)

whenever the right hand side exists. Hence, for sufficiently large =,

T < T +es TN +e= () +e,
and so

J(f) = J(f%).

13. We add a few supplementary theorems which are trivial corollaries of
Theorem 5, but which are useful in applications.

Theorem.7. If O(x) zs the upper bound of

s =7" [roa
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Jor a=E<Db, then

b

fs{@( )}dx<2f ——ff* dt -

a

 The constant 2 is the best possible constant.

- We may take a=o0, b=1. Then

O = Max(0,, 60,), s(6) = Max(s(0,), s(6,)), .

where @; and ©, are the upper bounds of

‘ngfdtogx ffdt <1)

(the averages being réplaced by f(x) when §=2x). Tt follows from Theorem g that

js{@l (x)}dxéfls(;—cff*(t)dt) dx;
o o b

and it is obvious from symmetry that the correspondmg integral with @2 has

the same upper bound.' This proves the theorem.
The factor 2 is the best possible constant. For suppose that a=o, b=1,

and that f(x) is 1 between ‘—; (1—4d) and (I + ) and o elsewhere, so that f*(z)

is 1 between 0 and §. An elementary calculation shows that the two integrals
of Theorem 7 are then

1+0
20

6+610g%a d + 2dlog

respectively, and their ratio tends to 2 when J—o.

! 0; depends on averages over intervals to ‘the right from z, and the f* which arises then
is an increasing function: this does not affect the final result.
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Iv.
Inequalities deduced from the maximal theorems.
14. Suppose in particular that
(14. 1) ‘ slx)=2o* (lc.> 1).

It is known! that

* S (o ta, o+ a)\E E VS
(14. 2 5 (atatte)y o (B ) S
. 1

and

(14. 3 | f (2 f fyat) de = (,C%I) f Pz,

for finite or infinite » and a. Since

a; +a2 - ay
: n

AW, 1,a%) =

and 3a %= 3af, with analogous formulae for integrals, we obtain the following
theorems.

Theorem 8. If A,u=u(y), and a, are defined as in Theorems 2 and 3, then

n

ZA’C(W, u, a) = (k_k_l)'kéa’f,

1

and

3

II/\
/-\
v

B
YR
e

Here n may be finite or infinite.

! See for example G. H. Hardy, 'Note on a theorem of Hilbert', Math. Zeitschrift, 6 (1919),
314—317, and 'Notes on some points in the integral caleulus’, Messenger of Math., 54 (1925), 150
—156; and E. B. Elliott; 'A simple exposition of some recently proved facts as to convergency’,
Jowrnal London Math. Soc., 1 (1926), 93—96. A considerable number of other proofs have been
given by other writers in the Journal of the London Mathematical Society.

13—29643. Acta mathematica. 54. Tmprimé le 22 mars 1930.
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Theorem 9. If A,&=&(x), and @ are defined as in Theorems 5 and 6, then

jA"(ac, £ fdx = (»/-C-é;)kfafk(x)dx

and

f@"(x) dx = (kfl)kff"(x)dx

Here a may be finite or infinite.

Theorem 10. If @.¢s defined as tn Theorem 7, then

f@"(az) dx = 2 (k—i—l)kfbf"(x) dz.

Here a and b may be finite or infinite.
We do not assert that the 2 here is a best possible constant.

15. 1. All the theorems of the last section become false for k=1.

ffd:c (o<a<i)

—2

is convergent when f= ! (log i) , but

a

J(iffdt) dz

Thus

is divergent. There is, however, an interesting theorem corresponding to this case.

We shall say that f(z) belongs to Z in a finite interval (a, b) if

b
J1ntogistaz
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exists. Here, as usual, log* |f] is log|f] if |f]| = 1 and zero otherwise. Since
/1= Max (e, |f] log* | D),

any function of Z is integrable.! The importance of the class Z in the theory
of functions has been shown recently by Zygmund.?

The following theorem contains rather more than we shall actually require,
but is of sufficient interest to be stated completely.

Theorem 11. Suppose that a is positive and finite; that B= B(a) denotes
generally a number depending on a only; that flx) is positive; and that

(15. 11) file) = ff(t)dt,

(15.12) J=fflog+fdx, K=fi—n‘dx.
0 0

() If J is finite then K is also finite, and
(15.13) K < BJ + B.

(ii) When f is a decreasing function the converse is also true: if K s finite
then J s also finite and

(15.14) J< BKlog* K + B.

(i) 4 neces&ary and sufficient condition that f should belong to Z is that

a

(15. 135) fA(x, o,f¥dz,

0

the integral of Theorem 6, with s(x)=ux, should be finite.

Tt is not necessary to state explicitly that f is integrable; in case (i) because
- we have seen that any function of Z is integrable, and in case (ii) because the
integrability of f is implied in the existence of K.

! This would not necessarily be true if the interval were infinite.
* A. Zygmund, 'Sur les fonctions conjuguées’, Fundamente Math., 13 (1929), 284—303.
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15.2. We begin by proving a lemma.

Lemma 7. If a>o0 and f is positive and integrable, then
Tiz= [h 1
(15.21) fflogxdx——,fxdac +f1(a)loga
0 [

whenever either integral is finite.

By partial integration
a ) af
Tagr— |4 1 I
(15.22) fflogxdx fxdx +f1(a)loga fl(s)loge

for o<e<a. The conclusion follows if only
' 1
(15.23) file)log——o

when ¢ —o0. If the second integral in (15.21) is finite, and e<<1, (15. 22) gives
a af
1 1
SR < S 1 =,
fflog Sdr = fx dx + f,(a)log .
L : 0 .

so that the first integral is also finite. If, conversely, the first integral is
finite, then

fl(e)log;1=log;l—ffdx§fflogid:z:
0 0

tends to o with ¢, which proves (15.23) and therefore (15.21).

15.3. (i) Suppose now first that f belongs to Z. We have

(15.31) ffdmgff(log%f+e)dx<J+ B.

Next,

uv = ulogu + 1
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for all positive % and real ».» Taking u=F, v=é logé , we obtain

I

1 I
-flog- = flog f + = = flogt f+
Sl =Slogf+ == flogh f

1

g |
eV
and so

a a

fflog;dxészlog*“fdx—f #.
0

0

Hence, by (15. 21),

a a a
_fédxé2fflog+fdx+‘#+|logc—ll|ffdx;
0 0 . 0

and plainly this, with (15.31), gives (15. 13).

(ii) Suppose now that f is a decreasing function, and that K is finite. Then

2 fla) < f fat=f(a),

ﬁ(a)=ffdx§f§ldx=x,

z

f(x)éiffdtég,

logt f= log“;i + log* K,

J= fflog*“fdxéfflog’L;dx+log+Kffd_x
0 0 0

b
= fflog+idx + Klog* K,
0

! This very useful inequality is due to W. H. Young, 'On a certain series of Fourier', Proc.
London Math. Soc. (2), 11 (1913), 357—366.
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where b = Min (@, 1). We distinguish the cases a=1 and a< 1, using Lemma 7
in either case. If a=1, we have b=1 and

1
Jé’fflogidan Klog* K
0
1
=f£‘dw+Klog+K§Klog+K+K-.
0
If a<1, we have b=a and

a
Jéfflogidx + Klog* K
0

a
— f% dz + f,(a) log:; + Klog* K < Klog* K + BK.
0

Since K< BKlog* K+ B, we obtain (15.14) in either case.

(iii) The last clause of the theorem is now obvious, since f* is a decreasing

function and belongs to Z if and only if f does so.

16. It is plain that we can now assert theorems corresponding to Theorems
9 and 10. That which corresponds to Theorem 10 is

Theorem 12. If O s defined as in Theorems 7 and 10, then

b

b
f@dméBfflog+fdx+B,
. a

a

where B=Bla, b) depends on a and b only.

V.
Applications to function-theory.

17. In what follows we are concerned with integrable and periodic. func-
tions. We take the period to be 27.
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We write
I
(17.1) M(0) = M(.f) = Max ?ff(0+x)dx ,
— — 1
(17. 2 (0= 30/ = Mox (: f 16+ )l da),
(17.3) N() = N6, f)— |1}I[ax f|f0+x Idac)

It is to be understood that 'Max’ is used here in the sense of upper bound, and
that the mean value in (17.3) is to be interpreted as |f(f)] when ¢t=o0

The three functions are all of the same type as the functions O(z,f) of
Theorems 5 and 7. There are, however, slight differences; and it is convenient
to use 0 as the fundamental variable when we are considering periodic funec-
tions. We are therefore compelled to vary our notation to a certain extent, and
it will probably be least confusing to change it completely.

The differences between the three functions are comparatively trivial. Thus

(17.4) N(6) = Max (M (), | 16))),

the value f=o0 being relevant to N but not to M. Sometimes one function
presents itself most naturally and sometimes another, and it is convenient to
have all three at our disposal. It is obvious that

(17.5) M < M < N = Max (M, |f]).

18. We denote by A(k) a number depending only on % (or any other
parameters shown), by A a positive absolute constant, not always the same from
one occurrence to another.!

Theorem 13. If k> 1 and

I_ "k < (Yk
Mflfl«w:c,

1 A will not occur again in the sense of Section III. Constants B, ¢ in future preserve
-their identity.
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Lkadog A(R) C*
27

where F zs any one of M, M, N.
We take F=N, which is, by (17. 5), the most unfavourable case. Now N

is the upper bound of
6+t
I
7 [ 1w,
]

an average of |f| over a range included in (—27, 27). Hence, by Theorem 10,

— k < ke
dea 2\ 2ﬂf|f|d0

which proves the theorem.

then

Similarly Theorem 12 gives

Theorem 14. If
1 + <
Mflfllog Ifld6 =
—_—T
then
x f Fd< AC+ A.
27

19. A number of important functions associated with f{f) are expressible
in terms of f{6) by a formula of the type

(19. 1) W00 = [ 0+ Dzttt

where » is a parameter, and y, the 'kernel’, satisfies

b

(19.2) — | x2lt, pdt=
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Examples are sq(6), the 'Fourier polynomial’ of f(6), 6.(6), the 'Fejér polynomial'*,
and w(r, 6), the 'Poisson integral’, or the harmonic function having f(f) as
'boundary function’. For s.(6),

2
(19. 3) p=mn, y=———"—;
sin-~ ¢
for o, (6)
singant
(19. 4) b=mn, Z=“—I;
nein® -
and for w(r, 0),
11—

1Q. == 3 _—
(x9. 5) p=r I—29cost+9°

20. The applications of our maximal theorems depend upon the fact that
a number of functions h(f, p) satisfy inequalities

(20. 1) |26, p)| =< KN(@),

where K is independent of 6 and p. These inequalities in their turn depend

upon inequalities

(20. 2) ~—f|t—— dt< B (w=1y or X),

in which B is independent of p, and w is either y itself or some majorant X
of y. Thus when h(f, p)=u(r, 6), x satisfies (20.2). When h(f, p)=0.(0), x does
not itself satisfy (z20. 1), but

<-4 _x.
(20..3) O<y= TR )
and X satisfies (20.2). When h(0, p)=s,(0), there is no such majorant. It is
familiar that the differences between the 'convergence theory’' of Fourier series

! sn() is formed from the first n + I terms of the Fourier series of fi6), on(6) from the
first n.

" 14—29643. Acta mathematica. 54. Imprimé le 22 mars 1930.
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and the ’summability theory’ depend primarily on the fact that f |zl dt is

bounded in one case and not in the other; here we push this distinction a
little further.

21. We begin by considering the case in which y itself satisfies (20. 2).

Lemma 8. If y is periodic and satisfies (19.2) and (20. 2), then

(21.1) lx(#)|=B+1,
1
— <
(21.2) | 2nf|;¢|d15=2B+1.
—_n
(i) We have
' P .o P
Y X
x(n)—~2n[tx]__n py- fxdt-i— ft(?t dt,
—x —n )

from which (21. 1) follows immediately.

(i) Also

1 d
f|x|dt— (el f oIl
I ; oy
— -— = + 1.
n)|+2”f|tat dt<2B+1
—_

22. Theorem 15. If y is perdodic and satisfies (19.2) and (20. 2), then

(22. 1) |R6,p)| = (AB+ A)M(6).
Let
A =£i(t,6) = f £+ u)du

Then
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. I 1 - t) 0
h=2—n[l(t)x]iﬂ——f‘w-t—-x-dt=h1+h2,

27 t ot
say. Here
Vsl =Ll| 2 [ 710+ e
=B+ I)Max{ i[f(0+u)du ,. I}tffw—i-u)du }
= (B+1)M0);
and

[0, <
|hz|§M(0)2nf|tdt|dt=BM(0).

—a

Hence we obtain (22. 1).

23. We can now pfov’e our principal results concerning the harmonic func-
tion wu(r, 6).

Theorem 16. - If u(r,0) ¢s the harmonic function whose boundary function
is f6), then
(23.1) [u(r,0)| = 4 M(6)

Jor r<1.
Here

1 1 [ [ — 2
2m | 240, f [ =areostr YT
i) 4 _
27 (1—r?) tsint

- [ G — _O
(1—27cost+282~ 7’

n n
1 Oy o 1 oy ,,__ 21
27vf|t0t_ di = 2nft0tdt_l+r<l'

-_n

oy
boy =

Hence y satisfies the conditions of Theorem 15, with B=1, and the conclusion

follows.
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Theorem 17. If k> 1 and

(23.2) | U(6) = Max | u(r, )],
then
(23.3) — | vrp)a0 = A(k)—;; f |£16) [Fab.

The result is false for k=1.
The positive assertion is an immediate corollary of Theorems 13 and 16.
To prove the result false for k=1, take ‘

R2— 2
R?*—2Rrcosf+1r?

U —

(R>1).

An elementary calculation shows that » is a maximum, for a given f and r =<1,
~when :
r = R(secd — [tan6]),

provided that this is positive and less than 1, that is to say provided

—1 1
R2+I<I0I<£n1;

0 = are 8in

and that then U = cosecf. Hence

I d0
571:‘[ U(e)ao sin@’
R*—1 :
ff = fRL—chosO+1d0'I'

Since the first integral tends to infinity when B—1, ¢—o0, we can falsify (23. 3),
for k=1 and any A, by taking R sufficiently near to I.
' The theorem corresponding to the case k=1 is

; 1
! When |0| <o the maximum is given by =1, and when |0] > 5 by r=o.
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Theorem 18. If f(6) belongs to Z and

2 [Vroleglrla < ¢,

then

T

‘f U@)do < AC+ A.
27T

—r
This is a corollary of Theorems 14 and 16.

24. Before going further with the theory of harmonic and analytic fune-
tions, we consider the case h(f, p)=0a(0), which is typical of the second possib-
ility mentioned in § 20. In this case y does not satisfy (20.2); but

. g1
sin®  #nt An
< = - i — 1
(24.1) °o=1 . gl R
nsin® -t
2
and
(24. 2) 0< X(n)=X(—n) =B
: 0X dt*— n*t*dt <4 A [ Wdu
2n R EE (1+u +u2)’
—_— p—

(24. 3) —f| —ldt < C,

where B and C are independent of %.

Theorem 19. If y is periodic and has a majorant X which satisfies (24. 2)
and (24.3), then

ad) IS B+ 0.

! The usefulness of a kernel of the type of X was first pointed out by Fejér. See L. Fejér,
"Uber die arithmetischen Mittel erster Ordnung der Fourierreihe’, Gottinger Nachrichten, 1925,
13—17.
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We have
7 .
(24. 5 16,011 = 3 [ 170+ 01 Xat =106, .
say. If now

A =A(t,0)= f 116 + )| du,

(24. 5) gives

HO, )= [£(HX ff' .dt=H, + H,,
say. Here
|H1|=x<n);,;f|ﬂo+u>|da
éBMax(iflfWﬁ—u)ldu, ;‘;f|f(o+u)|du)
< BM(6), i -
and

[ H,| < 31(6) flt— it= o).

Hence we obtain (24. 4).

25. Theorem 20. If 0.(0) ¢s the Fejér polynomial formed from the first n
terms of the Fourier series of f(6), then :

(25.1) o0 < AM(0).
This is a corollary of Theorem 19, since we have already verified that the

kernel of ¢,(f) satisfies the conditions of Theorem 19, with B=A, C=A.
The theorems corresponding to Theorems 17 and 18 are

Theorem 21. If k> 1 and
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(25. 25 2(0) — M(a)x I o‘n(f)) L
then
s3] 2] 8= a0 [Lora.

The result is false for k=1.

Theorem 22. If f(6) .satz'sﬁes the conditions of Theorem 18, then

(25. 4) ﬁfE(&)d0<A0+A.
—n

The positive assertions are corollaries of Theorems 13, 14 and 20. The
negative one becomes obvious when we remember that a bound of 6,(6) for
varying » is also a bound of u(r, ) for varying r, so that U(f) < 3(6). TFor
the same reason (23.3) is a corollary of (23.3).

Theorem 23. The results of Theorems 20, 21 and 22 remain true when
0a(0) denotes a Cesdro mean of any positive order 8, provided that A and A(k) are
replaced by A(8) and A(k, ).

It is only necessary to verify that the y now corresponding to 0.(f) has a
majorant X which satisfies (24.2) and (24. 3), with values of B and € of the
type A(d). ;

We may suppose d <1 (an upper bound of a lower mean being a fortior:
one of a higher mean). We have then'

s o] (n+ o+ )= oal
r@+1)rin+r 2 2 2 oy

In+d+1) 23 (Sin 1 t)dﬂ 2
, 2

LA=XT 2=

A(9)
nt®

Sl = A0)n, |wl=

. ! E. Kogbetliantz, 'Les séries trigonométriques et les séries sphériques’, Annales de I Ecole -
Normale (3), 40 (1923), 259—323.
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Hence || < A(0)n if |nt] <1 and
1 I A(9)
< LS | ek
Izl = 4(0) Ma‘x(nd‘ltld‘+1 nﬁ) ~ WP

if |n¢]| > 1. We may therefore take

___A(o)n
X = + |t

and it may be verified at once that this X has the properties required.

26. We return now to the case h=wu(r,0). We suppose that o <a < ;-n

and that S,(0) is the kite-shaped area defined by drawing two lines through e®
at angles o with the radius vector and dfopping perpendiculars upon them from
the origin!; and we denote by U(6, ¢) the upper bound of |u(r,8)| for z=re®
interior to S.(6). '

Theorem 24. If k> 1 then

P .

(6. 1) 2 vre, 0)a0 = Ak, a);nflf@) cq0.

27
—n

If zy=r,¢"% is any point in S,(f), then

we) = [0+ 02t z)a,

where

1—7)
1—27, cos{t—0+8,)+r

Z(t7 Zl) =

It is easily verified that y(t,2z,) satisfies (19.2) and-(20.2), the B being of the
form A(k,e). This proves the theorem. '

27. An equivalent form of Theorem 24 is as follows.

! There is of course no particular point in the precise shape of Si(f); it is an area of fixed
size and shape including all 'Stolz-paths’ to ¢/® inside an angle 2. The radius vector cor-
responds to a«=o0
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Theorem 25. If k> 1, u(r,0) vs harmonic for <1 and satisfies
' 1 f 1 k
(27.1) M]M(r_,ﬂ)ldﬂéC,

and U0, a) is the upper bound of |u| in S.(0), then

(27.2) L f U*(6, _a)das A(k, o) C*.

27
—n
Let Sa(r, 6) be the region related to re'® as S,(0) is to ¢'°, and let U(r, 6, o)
be the nupper bound of [«[ in S,(r,6). By Theorem 24, '

LI e < X . Ok - %
MfU (r,0,a)d0=A(k,a)znf|u(7,0)| 46 < A(k, o) C*.

—n

But U(r, 0, a) tends by increasing values to U(f,q), and we may take limits
under the integral sign. This proves (27. 2).

28. Theorem 26. If k>1, w(r;6) s posiﬁve and subharmonic for r <1,
x ’

,IA. k(ye Yk
(28. 1) znfw (r,0)d6 < C
Jor r<1, and WI(0,a) is the upper bound of w in S.(6), then

n
(28. 2) - ﬁ WH0, o)d8 < A(k, o) CF.
—
There is a harmonic function %(r,6) such that
x
w<u, — w*(r, 0)d0 = C*.*

—_—n

Hence Theorem 26 is a corollary of Theorem 25.

! J. E. Littlewood, 'On functions subharmonic in a circle’, Journal Lond. Math. Soc., 2
(1927), 192—1g6. .
*  We can if we please avoid any appeal to this theorem of Littlewood. Suppose for simplicity
of writing that « =0 and that all integrations are over (—=, ), and let

15—29643. Acta mathematics. 654. Imprimé le 23 mars 1930.
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29. Theorem 27. Suppose that A>o, that f(z) ds an analytic funvétz'on
regular for r<<1, that

1 2 . .
o) e [ebws o <),
and that
(20.2) F = F (6, ¢) = Max | f(2)|.
Sa(6)
Then
(20. 3) L Fra6 < AQ, o) O
27t

—7

The most important ease is that in which e=o0, S,{(f) is the radius vector,
and A(A, @¢)=A(1). It is to be observed that A, unlike the k of previous theorems,
is not restricted to be greater than 1.

Theorem 27 is an immediate corollary of Theorem 26, since

w =/

is a positive subharmonic function satisfying

RN SIS S NP
'anwdﬁ 2nf|f|d0=C.
—x —n

: _ 1 wig, p)dep !
el 0) = 2m f 0> —2rg cos (p—0)+r* o<r<e).

Then up is harmonic and assumes the values w for r=g, and, by F. Riesz's fundamental theorem
on sub-harmonie functions, w = up. Hence, using capital letters to denote radial maxima, and

observing that f uZ(r, 0)d g increases with », we have

fWk(r,G)daé f 'Ug(r, 0)do = A(k)fug(r, 6)do

= A(k)fu’;@, 0 do = A(k)fwk(p, 0)do = AK)CE.



A maximal theorem with function-theoretic applications. 115

The theorem is, however, the most obviously interesting of all those which we
have proved, and it may be desirable to give a proof independent of the theory
of sub-harmonie functions.

(i) Suppose that A=2, f=wu+%v. Then |f|P=u®+ % F:< Ut Ve,

k4 T
ifumag ce, —Lfvgd0§ e,
27T 27

and by Theorem 25,

T

Ei4 Hi4
ifFZda.g—‘-f U*do + Lj V240 < Afa) C*..
27T 27T 27

— —_

This proves the theorem in the particular case A= 2.

(i) Suppose next that A is any positive number and that f has no zeros

for << 1. Then

i__.
=9

(S

S
is regular for » <1 and |f|}=g?% F*=G%, so that the theorem follows from (i).

(iii) Finally consider the general case. It was proved by F. Riesz ! that
an f satisfying (29.1) can be expressed as a product. gh, where |h|<1 for
<1, while g has no zeros for »<<1 and satisfies (29.1). Hence F'=< G and,
from case (ii),

ifFldegifGldog AR, a) O
27 27T
—7n

—

30. It is well known that a function f(z) satisfying (29. 1) tends to a
»boundary functions f(¢%), for almost all 6, as z tends radially to ¢’°. Theorem 27
carries with it as corollaries several well known theorems concerning the behaviour
of f near the boundary, which can be read out of it with the help of a well-
known principle. Thus, the functions ’

lA&P, 1) — Sl

! F. Riesz, 'Uber die Randwerte einer analytischen Funktion', Math. Zeitschrifi, 18 (1923),
87—95. ’ '
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are majorized by A(A) F*(6), an integrable function; their convergence to their
limit functions |f{¢*®)|* and o is »dominated» convergence, and we may proceed
to the limit under the sign of integration. The three rather subtle results

S AR IO — i6\ |4
im ) [Wrerpas =" [Isepas

r—12

lim Iy;f | £ ) — fle) [fd6 = o,
and : :

s L i0)|AJH —

tim - [ 1Are9ban =o
E(r)

thus. become immediate. In the last of them E(r) denotes a set of 8, varying

with 7, whose measure tends to zero as r—1.

In the same way the convergence of
ox@F, 10x(6) —710)

to |f0)|F and o is »dominated» convergence when %> 1; and we may infer at
once the well-known results

I

lim f low@) a6 =1 f 17648,

N0 2 2

lim - f | 6a(6) — A16) |46 = o.

n—w27T



