CONCENTRATION OF MASS AND CENTRAL LIMIT PROPERTIES OF ISOTROPIC CONVEX BODIES

G. PAOURIS

Abstract. We discuss the following question: Do there exist an absolute constant $c > 0$ and a sequence $\phi(n)$ tending to infinity with n, such that for every isotropic convex body K in \mathbb{R}^n and every $t \geq 1$ the inequality

$$\text{Prob}\left\{ \{ x \in K : \|x\|_2 \geq c\sqrt{n}L_K t \} \right\} \leq \exp\left(-\phi(n)t\right)$$

holds true? Under the additional assumption that K is 1-unconditional, Bobkov and Nazarov have proved that this is true with $\phi(n) \approx \sqrt{n}$. The question is related to the central limit properties of isotropic convex bodies. Consider the spherical average $f_K(t) = \int_{S^{n-1}} |K \cap \theta + \theta| \rho(\theta)$. We prove that for every $\gamma \geq 1$ and every isotropic convex body K in \mathbb{R}^n, the statements (A) “for every $t \geq 1$, Prob $\left(\{ x \in K : \|x\|_2 \geq \gamma \sqrt{n}L_K t \} \right) \leq \exp\left(-\phi(n)t\right)$ and (B) “for every $0 < t \leq c_1(\gamma) \sqrt{\phi(n)L_K}$, $f_K(t) \leq \frac{c_2}{L_K^2} \exp\left(-c_3(\gamma) \gamma^2 L_K^2 \right)$, are equivalent.

1. Introduction

Let K be an isotropic convex body in \mathbb{R}^n. This means that K has volume equal to 1, its centre of mass is at the origin and its inertia matrix is a multiple of the identity. Equivalently, there exists a positive constant L_K such that

$$\int_K \langle x, \theta \rangle^2 dx = L_K^2$$

for every $\theta \in S^{n-1}$. As a direct consequence of (1.1) we have

$$\int_K \|x\|^2_2 dx = nL_K^2,$$

where $\| \cdot \|_2$ denotes the Euclidean norm. Applying Markov’s inequality we see that $|K \cap (3\sqrt{n}L_K \mathbb{B}_2^n)| \geq 8/9$, and Borell’s lemma (see [12], Appendix 1) proves the following:

Fact 1: If K is an isotropic convex body in \mathbb{R}^n, then

$$\text{Prob}\left(\{ x \in K : \|x\|_2 \geq 3\sqrt{n}L_K t \} \right) \leq \exp(-t)$$

for every $t \geq 1$.

Alesker [1] showed that if K is isotropic, then the Euclidean norm $f(x) = \|x\|_2$ satisfies the ψ_2-estimate

$$\|f\|_{\psi_2} \leq c\|f\|_1 \leq c\sqrt{n}L_K.$$

Date: July 30, 2003.

1991 Mathematics Subject Classification. Primary 52A20; Secondary 52A38, 52A40.

Key words and phrases. Isotropic convex bodies, concentration of volume, central limit theorem.
where \(c > 0 \) is an absolute constant and
\[
\|f\|_{\psi_2} = \inf \left\{ \lambda > 0 : \int_{\mathbb{R}^n} \exp \left(\left(\frac{|f(x)|}{\lambda} \right)^2 \right) \, dx \leq 2 \right\}.
\]

In particular, we have the following improvement of the estimate in Fact 1:

Fact 2: There exists an absolute constant \(c > 0 \) such that if \(K \) is an isotropic convex body in \(\mathbb{R}^n \), then
\[
\text{Prob} \left(\left\{ x \in K : \|x\|_2 \geq c\sqrt{n}L_K t \right\} \right) \leq 2\exp(-t^2)
\]
for every \(t \geq 1 \).

Bobkov and Nazarov [7] have recently obtained a striking stronger result in the case of 1-unconditional isotropic convex bodies.

Fact 3: There exists an absolute constant \(c > 0 \) such that if \(K \) is a 1-unconditional isotropic convex body in \(\mathbb{R}^n \), then
\[
\text{Prob} \left(\left\{ x \in K : \|x\|_2 \geq c\sqrt{n}t \right\} \right) \leq \exp \left(-\sqrt{n}t \right)
\]
for every \(t \geq 1 \).

Note that \(L_K \approx 1 \) in the case of 1-unconditional convex bodies (see [11]). Since the circumradius \(R(K) \) of an isotropic convex body \(K \) in \(\mathbb{R}^n \) is always bounded by \(n+1)L_K [10] \), the estimate in Fact 3 is stronger than the previous ones for all \(t \geq 1 \). A question which arises naturally and was actually stated in [7] is the following:

Question: Do there exist an absolute constant \(c > 0 \) and a function \(\phi : \mathbb{N} \to \mathbb{R}^+ \) with \(\phi(n) \to \infty \) as \(n \to \infty \), such that for every isotropic convex body \(K \) in \(\mathbb{R}^n \) the inequality
\[
\text{Prob} \left(\left\{ x \in K : \|x\|_2 \geq c\sqrt{n}L_K t \right\} \right) \leq \exp \left(-\phi(n)t \right)
\]
holds true for every \(t \geq 1 \)?

As we shall see, the question is related to the central limit properties of isotropic convex bodies. It has been conjectured that the \((n-1)\)th-dimension volume \(f_{K,\theta}(t) \) of the intersections \(K \cap (\theta^t + t\theta) \) of an isotropic convex body \(K \) with hyperplanes perpendicular to a fixed direction \(\theta \in S^{n-1} \), seen as a function of the distance \(t \geq 0 \) of the hyperplanes to the origin, is - with high probability - close to the centered Gaussian density of variance \(L_K^2 \). This conjecture can be stated precisely in several different ways (see [8], [2]) and has been verified only for some special classes of bodies. Bobkov and Koldobsky [6] (see also [8]) have considered the spherical average
\[
f_K(t) = \int_{S^{n-1}} f_{K,\theta}(t) \sigma(d\theta),
\]
and showed that if \(K \) is an isotropic convex body in \(\mathbb{R}^n \), then
\[
\left| f_K(t) - \frac{1}{\sqrt{2\pi}L_K} \exp(-t^2/(2L_K^2)) \right| \leq C \left(\frac{\sigma_K L_K}{t^2} \sqrt{n} + \frac{1}{n} \right)
\]
for all \(0 < t \leq c\sqrt{n} \), where \(c, C > 0 \) are absolute constants and the parameter \(\sigma_K \) is defined by
\[
\sigma_K^2 = \frac{\text{Var}(\|x\|_2^2)}{nL_K^2}.
\]
It is conjectured that \(\sigma_K \) is bounded by an absolute constant (this has been verified for all \(c_\gamma^n \)-balls by Ball and Perissimaki [3]).

The main result of this note shows that the original question is closely related to the behavior of the function \(f_K \).

Theorem 1.1. Let \(1 \ll \phi(n) \ll n \) be a positive constant. For every isotropic convex body \(K \) in \(\mathbb{R}^n \), the following statements are equivalent:

(a) For some \(\gamma \geq 1 \) and for every \(t \geq 1 \),

\[
\text{Prob}\left(\{ x \in K : \| x \|_2 \geq \gamma \sqrt{nL_K t} \} \right) \leq \exp \left(-\phi(n)t \right).
\]

(b) For every \(0 < t \leq c_1(\gamma) \sqrt{nL_K} \),

\[
f_K(t) \leq \frac{c_2}{L_K} \exp \left(-t^2/(c_3(\gamma)^2L_K^2) \right),
\]

where \(c_i(\gamma) \simeq \gamma \).

(c) For every \(2 \leq q \leq c_4 \phi(n) \),

\[
I_q(K) = \left(\int_K \| x \|^q_2 \, dx \right)^{1/q} \leq c_5(\gamma) \sqrt{nL_K},
\]

where \(c_5(\gamma) \simeq \gamma \).

In a few words, the volume of an isotropic convex body outside a ball of radius \(\sqrt{nL_K} \) “suddenly” decreases if and only if \(f_K \) is subgaussian for a “long initial interval”. Both conditions are in turn equivalent to the fact that the moments \(I_q \) of the Euclidean norm remain of the order of \(\sqrt{nL_K} \) for large values of \(q \). The dependence of the constants \(c(\gamma) \) on \(\gamma \) is linear in each of the implications of the theorem; this will become clear in \(\S 3 \).

We do not know if the question has an affirmative answer. However, our result has the following consequence (which gives some positive evidence, combined with the conjectured bound for the parameter \(\sigma_K \)).

Theorem 1.2. Let \(K \) be an isotropic convex body in \(\mathbb{R}^n \). Then,

\[
\text{Prob}\left(\{ x \in K : \| x \|_2 \geq C \sqrt{nL_K} t \} \right) \leq \exp \left(-\phi(K)t \right)
\]

for all \(t \geq 1 \), where

\[
\phi(K) = \min \left\{ \log \left(\frac{n^2}{\text{Var}(\| x \|_2^2)} \right), \log n \right\}
\]

and \(C > 0 \) is an absolute constant.

It is easy to check that if \(\sigma_K \) and \(L_K \) are uniformly bounded, then \(\phi(K) \simeq \log n \), in which case

\[
\text{Prob}\left(\{ x \in K : \| x \|_2 \geq C_1 \sqrt{n} t \} \right) \leq n^{-t},
\]

for all \(t \geq 1 \), where \(C_1 > 0 \) is an absolute constant.

Notation. We work in \(\mathbb{R}^n \), which is equipped with a Euclidean structure \(\langle \cdot, \cdot \rangle \). We denote by \(\| \cdot \|_2 \) the corresponding Euclidean norm, and write \(B^n_2 \) for the Euclidean unit ball, and \(S^{n-1} \) for the unit sphere. Volume is denoted by \(| \cdot | \). We write \(\omega_n \) for the volume of \(B^n_2 \) and \(\sigma \) for the rotationally invariant probability measure on \(S^{n-1} \). The circumradius of \(K \) is the quantity \(R(K) = \max \{ \| x \|_2 : x \in K \} \).

Whenever we write \(a \simeq b \), we mean that there exist absolute constants \(c_1, c_2 > 0 \) such that \(c_1 a \leq b \leq c_2 a \) (also, \(a \gg b \) means that \(a \) exceeds \(Cb \) for some (large)
absolute constant $C > 1)$. The letters c, c', C, c_1, c_2 etc. denote absolute positive constants which may change from line to line. We refer to [12], [14] for background information on convex bodies and finite dimensional normed spaces, and to [11] for more information on the isotropic position.

2. Preliminaries

Let $P_{d,n}$ denote the space of polynomials $f : \mathbb{R}^n \to \mathbb{R}$ of degree less than or equal to d. Bourgain [5] (see also Bobkov [4]) proved that for every $1 \leq q, r \leq \infty$ there exists a constant $c_{q,r,d} > 0$ depending only on q, r and d, such that $\|f\|_{L^q(K)} \leq c_{q,r,d} \|f\|_{L^r(K)}$ for every $f \in P_{d,n}$ and every convex body K of volume 1 in \mathbb{R}^n. Carbery and Wright [9] have recently established the best possible dependence of the constant $c_{q,r,d}$ on q, r and d. We will use some estimates which follow directly from their work.

Lemma 2.1. There exists an absolute constant $\alpha > 0$ such that for every convex body K of volume 1 in \mathbb{R}^n and for every $f \in P_{d,n}$

\[
\|f^\#\|_q \leq \alpha \frac{q}{r} \|f^\#\|_r
\]

whenever $1 \leq r \leq q < \infty$, and

\[
\|f^\#\|_\infty \leq \alpha \|f^\#\|_n,
\]

where $f^\#(x) = |f(x)|^{1/d}$.

Using Lemma 2.1 one can obtain a variety of tail estimates for polynomials $f \in P_{d,n}$.

Lemma 2.2. Let K be a convex body of volume 1 in \mathbb{R}^n and let $f \in P_{d,n}$. Then,

\[
\text{Prob}\left(\{x \in K : f^\#(x) \geq 3\alpha \|f^\#\|_q \cdot s\}\right) \leq e^{-qs}
\]

for all $q \geq 1$ and $s \geq 1$, where α is the constant in Lemma 2.1.

Proof. Let $q \geq 1$. Lemma 2.1 implies that

\[
\int_K f^\#(x)^pdx \leq (\alpha p)^p \|f^\#\|_q^p.
\]

for every $p \geq 1$. With a simple application of Markov’s inequality we get

\[
\text{Prob}\left(\{x \in K : f^\#(x) \geq 3\alpha \|f^\#\|_q \cdot s\}\right) \leq \left(\frac{p}{3q}\right)^p.
\]

Then, the choice $p = 3s/e \geq 1$ gives the assertion of the lemma.

For every $q > 0$ we consider the q-th moment of the Euclidean norm

\[
I_q(K) = \left(\int_K \|x\|^q dx\right)^{1/q}.
\]

Applying Lemma 2.2 for the linear functionals $x \mapsto \langle x, \theta \rangle$ and for the polynomial $f(x) = \|x\|^2$, we have the following immediate consequence.

Lemma 2.3. Let K be a convex body of volume 1 in \mathbb{R}^n. If $q \geq 1$, then

\[
\text{Prob}\left(\{x \in K : \|x\|_2 \geq 3\alpha I_q(K)s\}\right) \leq e^{-qs}
\]

for all $q \in \mathbb{R}^n$ and $s \geq 1$, and

\[
\text{Prob}\left(\{x \in K : \|x\|_2 \geq 3\alpha I_q(K)s\}\right) \leq e^{-qs}
\]

for all $s \geq 1$, where α is the constant in Lemma 2.1.
Definition. Let K be an isotropic convex body in \mathbb{R}^n. For every $q > 0$ and $t > 0$ we define

$$Z(q) = \left(\int_{S^{n-1}} \int_K |\langle x, \theta \rangle|^q \, dx \, d\theta \right)^{1/q}$$

and

$$Z(q,t) = \left(\int_{S^{n-1}} \int_{B_{K,t}(t)} |\langle x, \theta \rangle|^q \, dx \, d\theta \right)^{1/q}$$

where

$$B_{K,t}(t) = \{ x \in K : |\langle x, \theta \rangle| \leq t \}.$$

Lemma 2.4. Let K be a convex body of volume 1 in \mathbb{R}^n. For every $t > 0$ we have the identity

$$Z^q(q,t) = 2 \int_0^t r^q f_K(r) \, dr.$$

Proof. It is an immediate consequence of Fubini’s theorem:

$$Z^q(q,t) = 2 \int_{S^{n-1}} \int_0^t r^q f_{K,t}(r) \, dr \, d\theta = 2 \int_0^t r^q \int_{S^{n-1}} f_{K,t}(r) \, d\sigma(\theta) \, dr = 2 \int_0^t r^q f_K(r) \, dr,$$

by the definition of f_K.

The quantities $Z(q)$ and $I_q(K)$ are related through the following simple lemma (for a proof see [13]).

Lemma 2.5. Let K be a convex body of volume 1 in \mathbb{R}^n. Then,

$$Z(q) \simeq \sqrt{\frac{q}{q+n}} I_q(K).$$

for every $q \geq 1$.

For every $\theta \in S^{n-1}$ and $q \geq 1$ we write $H_\theta(q) = \|\langle \cdot, \theta \rangle\|_q$. The next lemma shows that integration of the function $|\langle \cdot, \theta \rangle|^q$ on the strip $B_{K,t}(3\alpha H_\theta(q)s)$ essentially captures the value of $H_\theta(q)$.

Lemma 2.6. Let K be a convex body of volume 1 in \mathbb{R}^n. Then, for every $\theta \in S^{n-1}$ and every $q, s \geq 1$,

$$\left(1 - e^{-q s/2(2\alpha)^q}\right) H_\theta^q(\theta) \leq \int_{B_{K,s}(3\alpha H_\theta(q)s)} |\langle x, \theta \rangle|^q \, dx,$$

where $\alpha > 0$ is the constant in Lemma 2.1.

Proof. Lemma 2.3 shows that

$$|K \setminus B_{K,s}(3\alpha H_\theta(q)s)| \leq \exp(-qs).$$
for all \(q, s \geq 1 \). We write

\[
H^q_s(\theta) = \int_{B_{K,s}(\theta)} |(x, \theta)|^q \, dx + \int_{K \setminus B_{K,s}(\theta)} |(x, \theta)|^q \, dx
\]

\[
\leq \int_{B_{K,s}(\theta)} |(x, \theta)|^q \, dx + \exp(-qs/2) \left(\int_{K} |(x, \theta)|^2 \, dx \right)^{1/2}
\]

\[
\leq \int_{B_{K,s}(\theta)} |(x, \theta)|^q \, dx + \exp(-qs/2)(2\alpha)^q H_s^q(\theta),
\]

where we have used (2.15), Cauchy-Schwarz inequality and Lemma 2.1 (for the pair \(q, 2q \)).

Our main technical lemma is the next one: it shows that \(Z(q) \simeq Z(q,t) \) when \(t \) becomes of the order of \(Z(q) \).

Lemma 2.7. There exists an absolute constant \(\beta > 0 \) with the following property: for every convex body \(K \) of volume 1 in \(\mathbb{R}^n \) and every \(q \geq 1 \),

\[
(2.16)
Z^q(q) \leq 2Z^q(\beta Z(q)).
\]

Proof. For every \(t > 0 \) we set \(U_t = \{ \theta \in S^{n-1} : H_{\|\theta\|}(\theta) \geq tZ(\theta) \} \). Markov’s inequality shows that \(\sigma(U_t) \leq t^{-1} \). Using Lemma 2.6, for every \(s \geq 1 \) we write

\[
(1 - e^{-\frac{qs}{2}}(2\alpha)^q)Z^q(q) \leq \int_{S^{n-1}\setminus U_t} \int_{B_{K,s}(\theta)} |(x, \theta)|^q \, d\sigma(d\theta)
\]

\[
+ \int_{U_t} \int_{B_{K,s}(\theta)} |(x, \theta)|^q \, d\sigma(d\theta)
\]

\[
\leq \int_{S^{n-1}} \int_{B_{K,s}(\theta)} |(x, \theta)|^q \, d\sigma(d\theta)
\]

\[
\leq \int_{S^{n-1}} \int_{K} |(x, \theta)|^q \, d\sigma(d\theta)
\]

\[
\leq Z^q(q, 3\alpha t \sigma Z(\theta)) + t^{-q/2}Z^q(q) \leq Z^q(q, 3\alpha t \sigma Z(\theta)) + (\alpha \sigma t)^q Z^q(q),
\]

because \(Z(2q) \leq c\sigma Z(q) \), where \(c > 0 \) is an absolute constant (this follows from Lemma 2.5 and the fact that \(I_{2q}(K) \leq 2\alpha I_1(K) \) by Lemma 2.1 applied to the polynomial \(f(x) = ||x||^2 \)).

We now choose \(s, t \) so that \(\sqrt{t} = 4\alpha \sigma e^{t/2} = 8\alpha \). Then,

\[
(2.17)
(1 - 4^{-q/2})Z^q(q) \leq Z^q(q, 3\alpha t \sigma Z(\theta)) + 4^{-q}Z^q(q).
\]

Inserting the values of \(t, s \) in (2.17) we compute the value of \(\beta \).

Finally, we will use an integral formula for \(f_K \) (see [6], [8]).

Lemma 2.8. Let \(K \) be a convex body of volume 1 in \(\mathbb{R}^n \). Then, for every \(t > 0 \),

\[
(2.18)
f_K(t) = c_n \int_{U_K(t)} \frac{1}{||x||^2} \left(1 - \frac{t^2}{||x||^2} \right)^{\frac{n-2}{2}} \, dx,
\]

where \(c_n \approx \sqrt{n} \) as \(n \to \infty \) and \(U_K(t) = \{ x \in K : ||x|| \geq t \} \).

Remark: From Lemma 2.8 we readily see that \(f_K \) is a decreasing function.
3. Proofs of Theorems 1.1 and 1.2

Theorem 1.1 is a direct consequence of the following three Propositions.

Proposition 3.1. Let \(\gamma \geq 1 \) and let \(K \) be an isotropic convex body in \(\mathbb{R}^n \). If \(1 \ll \phi(n) \ll n \) and

\[
\text{Prob} \left(\{ x \in K : \| x \|_2 \geq \gamma \sqrt{n} L_K t \} \right) \leq \exp \left(- \phi(n) t \right)
\]

for every \(t \geq 1 \), then

\[
f_K(t) \leq \frac{c_1}{L_K} \exp \left(-c_2 t^2 / \gamma^2 L_K^2 \right)
\]

for all \(0 < t \leq c_3 \gamma \sqrt{\phi(n)} L_K \).

Proof. We assume that \(n > 3 \). From Lemma 2.8 we have

\[
f_K(t) = c_n \int_{U_K(t)} g_t(||x||_2) dx
\]

for all \(t > 0 \), where \(g_t \) is defined by

\[
g_t(s) = \frac{1}{s} \left(1 - \frac{t^2}{s^2} \right)^{\frac{n-2}{2}}
\]

on \([t, \infty)\). Differentiating \(g_t \) we see that it is increasing on \([t, t \sqrt{n - 2}]\) and then decreasing. Let \(0 < t \leq c_3 \gamma \sqrt{\phi(n)} L_K \), where the absolute constant \(c_3 > 0 \) is to be chosen. Assume first that \(\gamma \sqrt{n} L_K \leq t \sqrt{n - 2} \) (this is satisfied if \(t \geq \sqrt{2} \gamma L_K \)). Then, we write

\[
f_K(t) = c_n \int_{K \cap \{ \| x \|_2 \leq \gamma \sqrt{n} L_K \}} g_t(||x||_2) dx + c_n \int_{U_K(\gamma \sqrt{n} L_K)} g_t(||x||_2) dx
\]

\[
\leq c_n g_t(\gamma \sqrt{n} L_K) + \exp(-\phi(n)) c_n g_t(t \sqrt{n - 2})
\]

\[
= \frac{c_n}{\gamma \sqrt{n} L_K} \left(1 - \frac{t^2}{\gamma^2 n L_K^2} \right)^{\frac{n-2}{2}} + \exp(-\phi(n)) \frac{c_n}{t \sqrt{n - 2}} \left(1 - \frac{1}{n - 2} \right)^{\frac{n-2}{2}}
\]

\[
\leq \frac{c_1}{L_K} \exp(-c_2 t^2 / \gamma^2 L_K^2) + \frac{c_1}{L_K} \exp(-\phi(n))
\]

\[
\leq \frac{2c_1}{L_K} \exp(-c_2 t^2 / \gamma^2 L_K^2),
\]

because \(\phi(n) \geq c_2 t^2 / \gamma^2 L_K^2 \) if we choose \(c_3 = 1 / \sqrt{2} \) (we have also used the fact that \(c_n \approx \sqrt{n} \)).

If \(0 < t \leq \min \{ \sqrt{2} \gamma L_K, c_3 \gamma \sqrt{\phi(n)} L_K \} \), then

\[
f_K(t) \leq \frac{c_5}{L_K} \leq \frac{2c_5}{L_K} \exp(-c_7 t^2 / \gamma^2 L_K^2),
\]

because \(f_{K, \theta}(t) \leq c_5 / L_K \) for all \(\theta \in S^{n-1} \) (see [1.1]) and \(\exp(-c_7 t^2 / \gamma^2 L_K^2) \geq \exp(-2c_7) \geq 1 / 2 \) if \(c_7 > 0 \) is suitably chosen. It follows that (3.2) holds true for all \(0 < t \leq c_5 \gamma \sqrt{\phi(n)} L_K \).

Proposition 3.2. Let \(\gamma \geq 1 \) and let \(K \) be an isotropic convex body in \(\mathbb{R}^n \). Assume that \(\beta \leq \gamma \psi(n) < R(K)/L_K \), where \(\beta > 0 \) is the constant in Lemma 2.7, and

\[
f_K(t) \leq \frac{c_1}{L_K} \exp(-t^2 / \gamma^2 L_K^2)
\]
for all $0 < t \leq \gamma \psi(n)L_K$. Then, for every $2 \leq q \leq c_2 \psi^2(n)$ we have

$$I_q(K) \leq c_3 \gamma \sqrt{q} L_K. \tag{3.7}$$

Proof. Note that $Z(2) = L_K$ and $\lim_{s \to \infty} Z(s) = R(K)$. Since $\beta \leq \gamma \psi(n) < R(K)/L_K$, there exists $s \geq 2$ such that $\beta Z(s) = \gamma \psi(n)L_K$. Then Lemmas 2.7 and 2.4 show that

$$Z^s(s) \leq 2Z^s(s, \beta Z(s)) = 4 \int_0^{\beta Z(s)} r^s f_K(r) dr$$

$$\leq 4 \int_0^{\gamma \psi(n)L_K} r^s f_K(r) dr$$

$$\leq \frac{4c_1}{\sqrt{L_K}} \int_0^{\gamma \psi(n)L_K} r^s \exp(-r^2 / \gamma^2 L^2_K) dr$$

$$\leq \frac{4c_1}{\sqrt{L_K}} \int_0^{\infty} r^s \exp(-r^2 / \gamma^2 L^2_K) dr$$

$$\leq (c'_1 \gamma \sqrt{s} L_K)^s.$$

In other words,

$$Z(s) \leq c_1 \gamma \sqrt{s} L_K. \tag{3.8}$$

Lemma 2.5 implies that

$$I_q(K) \leq c'_q \sqrt{n/s} Z(s) \leq c_3 \gamma \sqrt{n} L_K, \tag{3.9}$$

and Hölder’s inequality gives

$$I_q(K) \leq I_s(K) \leq c_3 \gamma \sqrt{n} L_K \tag{3.10}$$

for all $q \leq s$. On the other hand, by the definition of s and (3.8),

$$s \geq \frac{Z^2(s)}{c^2_3 \gamma^2 L^2_K} = \frac{\psi^2(n)}{c^2_3 \beta^2} = c_2 \psi^2(n), \tag{3.11}$$

which completes the proof. \hfill \Box

Remark: The range $\beta \leq \gamma \psi(n) \leq R(K)/L_K$ is the interesting range for the parameter $\psi(n)$. If $0 < \gamma \psi(n) < \beta$, then the conclusion of Proposition 3.1 is trivially true. If $\gamma \psi(n) \geq R(K)/L_K$, then we have (3.6) for every $t > 0$. Following the previous argument, we check that $I_n(K) \simeq Z(n) \leq c \gamma \sqrt{n} L_K$. But $I_n(K) \simeq R(K)$, and this implies (3.7) for every $q \geq 2$.

Proposition 3.3. Let $\gamma \geq 1$ and let K be an isotropic convex body in \mathbb{R}^n. If

$$I_q(K) \leq \gamma \sqrt{n} L_K \tag{3.12}$$

for all $2 \leq q \leq \phi(n)$, then

$$\text{Prob} \left\{ \{x \in K : \|x\|_2 \geq c\gamma \sqrt{n} L_K t \} \right\} \leq \exp \left(-\phi(n)t \right) \tag{3.13}$$

for every $t \geq 1$, where $c > 0$ is an absolute constant.

Proof. From Lemma 2.3 we have

$$\text{Prob} \left\{ \{x \in K : \|x\|_2 \geq 3\alpha I_q(K)t \} \right\} \leq c^{-\alpha t} \tag{3.14}$$

for every $t \geq 1$, where $\alpha > 0$ is the constant in Lemma 2.1. Setting $q = \phi(n)$ and using (3.12), we get

$$\text{Prob} \left\{ \{x \in K : \|x\|_2 \geq 3\alpha \gamma \sqrt{n} L_K t \} \right\} \leq \exp(-\phi(n)t) \tag{3.15}$$
for every $t \geq 1$, and the result follows with $c := 3\alpha$. \hfill \Box$

Theorem 1.1 and the result of Bobkov and Nazarov [7] show that f_K is subgaussian on $[0, c \sqrt{n}]$ in the 1-unconditional case.

Corollary 3.4. There exist absolute constants $c_i > 0$ such that if K is an isotropic 1-unconditional convex body in \mathbb{R}^n, then

\[(3.16) \quad f_K(t) \leq c_1 \exp(-c_2 t^2)\]

for all $0 < t \leq c_3 \sqrt{n}$. \hfill \Box

Note: We can construct examples of isotropic 1-unconditional convex bodies in \mathbb{R}^n for which the length of the interval of t's on which (3.16) holds cannot have order greater than \sqrt{n}.

For our last remark, recall the estimate of Bobkov and Koklobsky [6]: if K is an isotropic convex body in \mathbb{R}^n then, for every $0 < t \leq c \sqrt{n}$,

\[(3.17) \quad \left| f_K(t) - \frac{1}{\sqrt{2\pi L_K}} \exp\left(-\frac{t^2}{2L_K^2}\right) \right| \leq C \left(\frac{\sigma_K L_K}{t^2 \sqrt{n}} + \frac{1}{n} \right),\]

where $c, C > 0$ are absolute constants and $\sigma_K^2 = \text{Var}(\|x\|^2)/(nL_K^4)$. Using Theorem 1.1 we get the following.

Theorem 3.5. Let K be an isotropic convex body in \mathbb{R}^n. Then,

\[(3.18) \quad \text{Prob} \left\{ x \in K : \|x\|^2 \geq c_1 \sqrt{n} L_K t \right\} \leq \exp\left(-\phi(K)t\right)\]

for every $t \geq 1$, where

\[(3.19) \quad \phi(K) \simeq \min\{\log(n^2/\text{Var}(\|x\|^2)), \log n\},\]

and $c_1 > 0$ is an absolute constant.

Proof. Let C be the constant in (3.17) and let $c > 0$ be an absolute constant to be chosen (small enough). From (3.19) and the definition of σ_K we have

\[(3.20) \quad \phi(K) \leq \log\left(\frac{n}{\sigma_K^2 L_K^4} \right) = \frac{1}{2} \log\left(\frac{\sqrt{n}}{\sigma_K L_K^2} \right).\]

If $\sqrt{C} \leq t \leq c \sqrt{\phi(K)L_K}$, then (3.20) shows that

\[(3.21) \quad \frac{\sigma_K L_K^2}{\sqrt{n}} \leq e^{-2t^2/c^2 L_K^2}.

Observe that $C/t^2 \leq 1$, and hence,

\[(3.22) \quad C \frac{\sigma_K L_K}{t^2 \sqrt{n}} \leq \frac{1}{L_K} e^{-2t^2/c^2 L_K^2}.

Also, if c is small enough and $n \gg 1$, we have $\exp(2t^2/L_K^2) \leq n^{2c^2} \leq n/(CL_K)$ since $c_1 \leq L_K \leq c_2 \sqrt{n}$ (these are the simple bounds on L_K; see [11]). This implies

\[(3.23) \quad \frac{C}{n} \leq \frac{1}{L_K} \exp(-2t^2/L_K^2).

Therefore, (3.17) gives

\[
\begin{align*}
f_K(t) & \leq \frac{1}{\sqrt{2\pi L_K}} \exp\left(-\frac{t^2}{2L_K^2}\right) + C \frac{\sigma_K L_K}{t^2 \sqrt{n}} + \frac{C}{n} \\
& \leq \frac{d'}{L_K} \exp\left(-c'' t^2 / L_K^2\right),
\end{align*}
\]
for all $t \in [\sqrt{C}, c\sqrt{\phi(K) L_K}]$, where $c', c'' > 0$ are absolute constants. A similar bound is trivially true if $0 < t \leq \sqrt{C}$. We can now use the implication (b)\Rightarrow(a) of Theorem 1.1 to conclude the proof. \hfill \Box

Assuming that σ_K and L_K are uniformly bounded, we have $\phi(K) \approx \log n$. Then, Theorem 1.2 would give a positive answer to our original question: for every isotropic convex body K in \mathbb{R}^n,

$$\text{(3.22)} \quad \text{Prob} \left(\{ x \in K : \| x \|_2 \geq C_2 \sqrt{mt} \} \right) \leq n^{-t},$$

for every $t \geq 1$, where $C_2 > 0$ is an absolute constant.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRETE, HERAKLION 714-09, GREECE. E-mail: paouris@math.uoc.gr