
CONCENTRATION OF MASS AND CENTRAL LIMITPROPERTIES OF ISOTROPIC CONVEX BODIESG. PAOURISAbstrat. We disuss the following question: Do there exist an absoluteonstant  > 0 and a sequene �(n) tending to in�nity with n, suh thatfor every isotropi onvex body K in Rn and every t � 1 the inequalityProb ��x 2 K : kxk2 � pnLK t	� � exp � � �(n)t� holds true? Under theadditional assumption that K is 1-unonditional, Bobkov and Nazarov haveproved that this is true with �(n) ' pn. The question is related to theentral limit properties of isotropi onvex bodies. Consider the spherial av-erage fK(t) = RSn�1 jK \ (�? + t�)j�(d�). We prove that for every  � 1and every isotropi onvex body K in Rn, the statements (A) \for everyt � 1, Prob ��x 2 K : kxk2 � pnLK t	� � exp � � �(n)t�" and (B) \forevery 0 < t � 1()p�(n)LK , fK(t) � 2LK exp � � t2=(3()2L2K)�, wherei() ' ", are equivalent. 1. IntrodutionLet K be an isotropi onvex body in Rn . This means that K has volume equalto 1, its entre of mass is at the origin and its inertia matrix is a multiple of theidentity. Equivalently, there exists a positive onstant LK suh that(1:1) ZKhx; �i2dx = L2Kfor every � 2 Sn�1. As a diret onsequene of (1.1) we have(1:2) ZK kxk22dx = nL2K ;where k � k2 denotes the Eulidean norm. Applying Markov's inequality we see thatjK \ (3pnLK)Bn2 j � 8=9, and Borell's lemma (see [12℄, Appendix I) proves thefollowing:Fat 1: If K is an isotropi onvex body in Rn , then(1:3) Prob ��x 2 K : kxk2 � 3pnLKt	� � exp(�t)for every t � 1.Alesker [1℄ showed that if K is isotropi, then the Eulidean norm f(x) = kxk2satis�es the  2-estimate(1:4) kfk 2 � kfk1 � pnLK ;Date: July 30, 2003.1991 Mathematis Subjet Classi�ation. Primary 52A20; Seondary 52A38, 52A40.Key words and phrases. Isotropi onvex bodies, onentration of volume, entral limittheorem. 1



2 G. PAOURISwhere  > 0 is an absolute onstant and(1:5) kfk 2 = inf �� > 0 : ZK exp �(jf(x)j=�)2� dx � 2�:In partiular, we have the following improvement of the estimate in Fat 1:Fat 2: There exists an absolute onstant  > 0 suh that if K is an isotropionvex body in Rn , then(1:6) Prob ��x 2 K : kxk2 � pnLKt	� � 2 exp(�t2)for every t � 1.Bobkov and Nazarov [7℄ have reently obtained a striking stronger result in the aseof 1-unonditional isotropi onvex bodies.Fat 3: There exists an absolute onstant  > 0 suh that if K is a 1-unonditionalisotropi onvex body in Rn , then(1:7) Prob ��x 2 K : kxk2 � pnt	� � exp ��pnt�for every t � 1.Note that LK ' 1 in the ase of 1-unonditional onvex bodies (see [11℄). Sinethe irumradius R(K) of an isotropi onvex body K in Rn is always boundedby (n + 1)LK [10℄, the estimate in Fat 3 is stronger than the previous ones forall t � 1. A question whih arises naturally and was atually stated in [7℄ is thefollowing:Question: Do there exist an absolute onstant  > 0 and a funtion � : N ! R+with �(n) ! 1 as n ! 1, suh that for every isotropi onvex body K in Rn theinequality(1:8) Prob ��x 2 K : kxk2 � pnLKt	� � exp �� �(n)t�holds true for every t � 1?As we shall see, the question is related to the entral limit properties of isotropionvex bodies. It has been onjetured that the (n�1)-dimensional volume fK;�(t)of the intersetions K \ (�? + t�) of an isotropi onvex body K with hyperplanesperpendiular to a �xed diretion � 2 Sn�1, seen as a funtion of the distanet � 0 of the hyperplanes to the origin, is - with high probability - lose to theentered Gaussian density of variane L2K . This onjeture an be stated preiselyin several di�erent ways (see [8℄, [2℄) and has been veri�ed only for some speiallasses of bodies. Bobkov and Koldobsky [6℄ (see also [8℄) have onsidered thespherial average(1:9) fK(t) = ZSn�1 fK;�(t)�(d�);and showed that if K is an isotropi onvex body in Rn , then(1:10) ����fK(t)� 1p2�LK exp(�t2=(2L2K))���� � C ��KLKt2pn + 1n�for all 0 < t � pn, where ; C > 0 are absolute onstants and the parameter �Kis de�ned by(1:11) �2K = Var(kxk22)nL4K :



CONCENTRATION OF MASS ON ISOTROPIC CONVEX BODIES 3It is onjetured that �K is bounded by an absolute onstant (this has been veri�edfor all `np -balls by Ball and Perissinaki [3℄).The main result of this note shows that the original question is losely relatedto the behavior of the funtion fK .Theorem 1.1. Let 1 � �(n) � n be a positive onstant. For every isotropionvex body K in Rn , the following statements are equivalent:(a) For some  � 1 and for every t � 1,(1:12) Prob ��x 2 K : kxk2 � pnLKt	� � exp �� �(n)t�:(b) For every 0 < t � 1()p�(n)LK,(1:13) fK(t) � 2LK exp �� t2=(3()2L2K)�;where i() ' .() For every 2 � q � 4�(n),(1:14) Iq(K) = �ZK kxkq2dx�1=q � 5()pnLK ;where 5() ' .In a few words, the volume of an isotropi onvex body outside a ball of radiuspnLK \suddenly" dereases if and only if fK is subgaussian for a \long initialinterval". Both onditions are in turn equivalent to the fat that the moments Iqof the Eulidean norm remain of the order of pnLK for large values of q. Thedependene of the onstants () on  is linear in eah of the impliations of thetheorem; this will beome lear in x3.We do not know if the question has an aÆrmative answer. However, our resulthas the following onsequene (whih gives some positive evidene, ombined withthe onjetured bound for the parameter �K).Theorem 1.2. Let K be an isotropi onvex body in Rn . Then,(1:15) Prob ��x 2 K : kxk2 � CpnLKt	� � exp �� �(K)t�for all t � 1, where(1:16) �(K) = min� log� n2Var(kxk22)� ; logn	and C > 0 is an absolute onstant.It is easy to hek that if �K and LK are uniformly bounded, then �(K) ' logn,in whih ase(1:17) Prob ��x 2 K : kxk2 � C1pnt	� � n�t;for all t � 1, where C1 > 0 is an absolute onstant.Notation. We work in Rn , whih is equipped with a Eulidean struture h�; �i. Wedenote by k � k2 the orresponding Eulidean norm, and write Bn2 for the Eulideanunit ball, and Sn�1 for the unit sphere. Volume is denoted by j � j. We write !nfor the volume of Bn2 and � for the rotationally invariant probability measure onSn�1. The irumradius of K is the quantity R(K) = maxfkxk2 : x 2 Kg.Whenever we write a ' b, we mean that there exist absolute onstants 1; 2 > 0suh that 1a � b � 2a (also, a � b means that a exeeds Cb for some (large)



4 G. PAOURISabsolute onstant C > 1). The letters ; 0; C; 1; 2 et. denote absolute positiveonstants whih may hange from line to line. We refer to [12℄, [14℄ for bakgroundinformation on onvex bodies and �nite dimensional normed spaes, and to [11℄ formore information on the isotropi position.2. PreliminariesLet Pd;n denote the spae of polynomials f : Rn ! R of degree less than or equalto d. Bourgain [5℄ (see also Bobkov [4℄) proved that for every 1 � q; r � 1 thereexists a onstant q;r;d > 0 depending only on q; r and d, suh that kfkLq(K) �q;r;dkfkLr(K) for every f 2 Pd;n and every onvex body K of volume 1 in Rn .Carbery and Wright [9℄ have reently established the best possible dependene ofthe onstant q;r;d on q; r and d. We will use some estimates whih follow diretlyfrom their work.Lemma 2.1. There exists an absolute onstant � > 0 suh that for every onvexbody K of volume 1 in Rn and for every f 2 Pd;n(2:1) kf#kq � �qr kf#krwhenever 1 � r � q <1, and(2:2) kf#k1 � �kf#kn;where f#(x) = jf(x)j1=d. �Using Lemma 2.1 one an obtain a variety of tail estimates for polynomials f 2 Pd;n.Lemma 2.2. Let K be a onvex body of volume 1 in Rn and let f 2 Pd;n. Then,(2:3) Prob ��x 2 K : f#(x) � 3�kf#kq � s	� � e�qsfor all q � 1 and s � 1, where � is the onstant in Lemma 2.1.Proof. Let q � 1. Lemma 2.1 implies that(2:4) ZK f#(x)qpdx � (�p)qpkf#kqpq :for every p � 1. With a simple appliation of Markov's inequality we get(2:5) Prob ��x 2 K : f#(x) � 3�kf#kq � s	� � � p3s�qp :Then, the hoie p = 3s=e � 1 gives the assertion of the lemma.For every q > 0 we onsider the q-th moment of the Eulidean norm(2:6) Iq(K) = �ZK kxkq2dx�1=q :Applying Lemma 2.2 for the linear funtionals x 7! hx; �i and for the polynomialf(x) = kxk22, we have the following immediate onsequene.Lemma 2.3. Let K be a onvex body of volume 1 in Rn . If q � 1, then(2:7) Prob ��x 2 K : jhx; �ij � 3�kh�; �ikqs� � e�qsfor all � 2 Sn�1 and s � 1, and(2:8) Prob ��x 2 K : kxk2 � 3�Iq(K)s	� � e�qsfor all s � 1, where � is the onstant in Lemma 2.1. �



CONCENTRATION OF MASS ON ISOTROPIC CONVEX BODIES 5De�nition. Let K be an isotropi onvex body in Rn . For every q > 0 and t > 0we de�ne(2:9) Z(q) = �ZSn�1 ZK jhx; �ijqdx �(d�)�1=qand(2:10) Z(q; t) =  ZSn�1 ZBK;�(t) jhx; �ijqdx �(d�)!1=qwhere(2:11) BK;�(t) = fx 2 K : jhx; �ij � tg:Lemma 2.4. Let K be a onvex body of volume 1 in Rn . For every t > 0 we havethe identity(2:12) Zq(q; t) = 2 Z t0 rqfK(r)dr:Proof. It is an immediate onsequene of Fubini's theorem:Zq(q; t) = 2 ZSn�1 Z t0 rqfK;�(r)dr�(d�) = 2 Z t0 rq ZSn�1 fK;�(r)�(d�)dr= 2 Z t0 rqfK(r)dr;by the de�nition of fK .The quantities Z(q) and Iq(K) are related through the following simple lemma(for a proof see [13℄).Lemma 2.5. Let K be a onvex body of volume 1 in Rn . Then,(2:13) Z(q) 'r qq + nIq(K):for every q � 1. �For every � 2 Sn�1 and q � 1 we write Hq(�) = kh�; �ikq . The next lemma showsthat integration of the funtion jh�; �ijq on the strip BK;�(3�Hq(�)s) essentiallyaptures the value of Hqq (�).Lemma 2.6. Let K be a onvex body of volume 1 in Rn . Then, for every � 2 Sn�1and every q; s � 1,(2:14) �1� e�qs=2(2�)q�Hqq (�) � ZBK;�(3�Hq(�)s) jhx; �ijqdx;where � > 0 is the onstant in Lemma 2.1.Proof. Lemma 2.3 shows that(2:15) jK nBK;�(3�Hq(�)s)j � exp(�qs)



6 G. PAOURISfor all q; s � 1. We writeHqq (�) = ZBK;�(3�Hq(�)s) jhx; �ijqdx+ ZKnBK;�(3�Hq(�)s) jhx; �ijqdx� ZBK;�(3�Hq(�)s) jhx; �ijqdx+ exp(�qs=2)�ZK jhx; �ij2qdx�1=2� ZBK;�(3�Hq(�)s) jhx; �ijqdx+ exp(�qs=2)(2�)qHqq (�);where we have used (2.15), Cauhy-Shwarz inequality and Lemma 2.1 (for the pairq; 2q).Our main tehnial lemma is the next one: it shows that Z(q) ' Z(q; t) when tbeomes of the order of Z(q).Lemma 2.7. There exists an absolute onstant � > 0 with the following property:for every onvex body K of volume 1 in Rn and every q � 1,(2:16) Zq(q) � 2Zq(q; �Z(q)):Proof. For every t > 0 we set Ut = f� 2 Sn�1 : Hq(�) � tZ(q)g. Markov'sinequality shows that �(Ut) � t�q. Using Lemma 2.6, for every s � 1 we write(1� e�qs=2(2�)q)Zq(q) � ZSn�1nUt ZBK;�(3�Hq(�)s) jhx; �ijqdx�(d�)+ ZUt ZBK;�(3�Hq(�)s) jhx; �ijqdx�(d�)� ZSn�1 ZBK;�(3�tsZ(q)) jhx; �ijqdx�(d�)+�(Ut)1=2�ZSn�1 ZK jhx; �ij2qdx�(d�)�1=2� Zq(q; 3�tsZ(q)) + t�q=2Zq(2q)� Zq(q; 3�tsZ(q)) + (�)qt�q=2Zq(q);beause Z(2q) � �Z(q), where  > 0 is an absolute onstant (this follows fromLemma 2.5 and the fat that I2q(K) � 2�Iq(K) by Lemma 2.1 applied to thepolynomial f(x) = kxk22).We now hoose s; t so that pt = 4� es=2 = 8�. Then,(2:17) (1� 4�q)Zq(q) � Zq(q; 3�tsZ(q)) + 4�qZq(q):Inserting the values of t; s in (2.17) we ompute the value of �.Finally, we will use an integral formula for fK (see [6℄, [8℄).Lemma 2.8. Let K be a onvex body of volume 1 in Rn . Then, for every t > 0,(2:18) fK(t) = n ZUK (t) 1kxk2 �1� t2kxk22�n�32 dx;where n ' pn as n!1 and UK(t) = fx 2 K : kxk2 � tg. �Remark: From Lemma 2.8 we readily see that fK is a dereasing funtion.



CONCENTRATION OF MASS ON ISOTROPIC CONVEX BODIES 73. Proofs of Theorems 1.1 and 1.2Theorem 1.1 is a diret onsequene of the following three Propositions.Proposition 3.1. Let  � 1 and let K be an isotropi onvex body in Rn . If1� �(n)� n and(3:1) Prob ��x 2 K : kxk2 � pnLKt	� � exp �� �(n)t�for every t � 1, then(3:2) fK(t) � 1LK exp ��2t2=2L2K�for all 0 < t � 3p�(n)LK.Proof. We assume that n > 3. From Lemma 2.8 we have(3:3) fK(t) = n ZUK (t) gt(kxk2)dxfor all t > 0, where gt is de�ned by(3:4) gt(s) = 1s �1� t2s2�n�32on [t;1). Di�erentiating gt we see that it is inreasing on [t; tpn� 2℄ and thendereasing. Let 0 < t � 3p�(n)LK , where the absolute onstant 3 > 0 is tobe hosen. Assume �rst that pnLK � tpn� 2 (this is satis�ed if t � p2LK).Then, we writefK(t) = n ZK\ft�kxk2�pnLKg gt(kxk2)dx + n ZUK(pnLK) gt(kxk2)dx� ngt(pnLK) + exp(��(n))ngt(tpn� 2)= npnLK �1� t22nL2K�n�32 + exp(��(n)) ntpn� 2 �1� 1n� 2�n�32� 1LK exp(�2t2=2L2K) + 1LK exp(��(n))� 21LK exp(�2t2=2L2K);beause �(n) � 2t2=2L2K if we hoose 3 = 1=p2 (we have also used the fatthat n ' pn).If 0 < t � minfp2LK ; 3p�(n)LKg, then(3:5) fK(t) � 5LK � 25LK exp(�7t2=2L2K);beause fK;�(t) � 5=LK for all � 2 Sn�1 (see [11℄) and exp(�7t2=2L2K) �exp(�27) � 1=2 if 7 > 0 is suitably hosen. It follows that (3.2) holds true for all0 < t � 3p�(n)LK .Proposition 3.2. Let  � 1 and let K be an isotropi onvex body in Rn . Assumethat � �  (n) < R(K)=LK, where � > 0 is the onstant in Lemma 2.7, and(3:6) fK(t) � 1LK exp ��t2=2L2K�



8 G. PAOURISfor all 0 < t �  (n)LK. Then, for every 2 � q � 2 2(n) we have(3:7) Iq(K) � 3pnLK :Proof. Note that Z(2) = LK and lims!1 Z(s) = R(K). Sine � �  (n) <R(K)=LK, there exists s � 2 suh that �Z(s) =  (n)LK . Then Lemmas 2.7 and2.4 show that Zs(s) � 2Zs(s; �Z(s)) = 4 Z �Z(s)0 rsfK(r)dr� 4 Z  (n)LK0 rsfK(r)dr� 41LK Z  (n)LK0 rs exp(�r2=2L2K)dr� 41LK Z 10 rs exp(�r2=2L2K)dr� (01psLK)s:In other words,(3:8) Z(s) � 01psLK :Lemma 2.5 implies that(3:9) Is(K) � 001pn=sZ(s) � 3pnLK ;and H�older's inequality gives(3:10) Iq(K) � Is(K) � 3pnLKfor all q � s. On the other hand, by the de�nition of s nd (3.8),(3:11) s � Z2(s)232L2K =  2(n)23�2 =: 2 2(n);whih ompletes the proof.Remark: The range � �  (n) � R(K)=LK is the interesting range for theparameter  (n). If 0 <  (n) < �, then the onlusion of Proposition 3.1 is triviallytrue. If  (n) � R(K)=LK , then we have (3.6) for every t > 0. Following theprevious argument, we hek that In(K) ' Z(n) � pnLK . But In(K) ' R(K),and this implies (3.7) for every q � 2.Proposition 3.3. Let  � 1 and let K be an isotropi onvex body in Rn . If(3:12) Iq(K) � pnLKfor all 2 � q � �(n), then(3:13) Prob ��x 2 K : kxk2 � pnLKt	� � exp �� �(n)t�for every t � 1, where  > 0 is an absolute onstant.Proof. From Lemma 2.3 we have(3:14) Prob ��x 2 K : kxk2 � 3�Iq(K)t	� � e�qtfor every t � 1, where � > 0 is the onstant in Lemma 2.1. Setting q = �(n) andusing (3.12), we get(3:15) Prob ��x 2 K : kxk2 � 3�pnLKt	� � exp(��(n)t)



CONCENTRATION OF MASS ON ISOTROPIC CONVEX BODIES 9for every t � 1, and the result follows with  := 3�.Theorem 1.1 and the result of Boblov and Nazarov [7℄ show that fK is subgaussianon [0;  4pn℄ in the 1-unonditional ase.Corollary 3.4. There exist absolute onstants i > 0 suh that if K is an isotropi1-unonditional onvex body in Rn , then(3:16) fK(t) � 1 exp(�2t2)for all 0 < t � 3 4pn. �Note: We an onstrut examples of isotropi 1-unonditional onvex bodies in Rnfor whih the length of the interval of t's on whih (3.16) holds annot have ordergreater than 4pn.For our last remark, reall the estimate of Bobkov and Koldobsky [6℄: if K is anisotropi onvex body in Rn then, for every 0 < t � pn,(3:17) ����fK(t)� 1p2�LK exp(�t2=(2L2K))���� � C ��KLKt2pn + 1n� ;where ; C > 0 are absolute onstants and �2K = Var(kxk22)=(nL4K). Using Theorem1.1 we get the following.Theorem 3.5. Let K be an isotropi onvex body in Rn . Then,(3:18) Prob ��x 2 K : kxk2 � C1pnLKt	� � exp �� �(K)t�for every t � 1, where(3:19) �(K) ' minflog(n2=Var(kxk22)); logng;and C1 > 0 is an absolute onstant.Proof. Let C be the onstant in (3.17) and let  > 0 be an absolute onstant to behosen (small enough). From (3.19) and the de�nition of �K we have(3:20) �(K) � log� n�2KL4K� = 12 log� pn�KL2K� :If pC � t � p�(K)LK , then (3.20) shows that(3:21) �KL2Kpn � e�2t2=2L2K ;Observe that C=t2 � 1, and hene,(3:22) C �KLKt2pn � 1LK e�2t2=2L2K :Also, if  is small enough and n � 1, we have exp(2t2=L2K) � n22 � n=(CLK)sine 1 � LK � 2pn (these are the simple bounds on LK ; see [11℄). This implies(3:23) Cn � 1LK exp(�2t2=L2K):Therefore, (3.17) givesfK(t) � 1p2�LK exp(�t2=(2L2K)) + C �KLKt2pn + Cn� 0LK exp(�00t2=L2K);
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