CONCENTRATION OF MASS AND CENTRAL LIMIT PROPERTIES OF ISOTROPIC CONVEX BODIES

G. PAOURIS

Abstract

We discuss the following question: Do there exist an absolute constant $c>0$ and a sequence $\phi(n)$ tending to infinity with n, such that for every isotropic convex body K in \mathbb{R}^{n} and every $t \geq 1$ the inequality $\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq c \sqrt{n} L_{K} t\right\}\right) \leq \exp (-\phi(n) t)$ holds true? Under the additional assumption that K is 1-unconditional, Bobkov and Nazarov have proved that this is true with $\phi(n) \simeq \sqrt{n}$. The question is related to the central limit properties of isotropic convex bodies. Consider the spherical average $f_{K}(t)=\int_{S^{n-1}}\left|K \cap\left(\theta^{\perp}+t \theta\right)\right| \sigma(d \theta)$. We prove that for every $\gamma \geq 1$ and every isotropic convex body K in \mathbb{R}^{n}, the statements (A) "for every $t \geq 1, \operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq \gamma \sqrt{n} L_{K} t\right\}\right) \leq \exp (-\phi(n) t)$ " and (B) "for every $0<t \leq c_{1}(\gamma) \sqrt{\phi(n)} L_{K}, f_{K}(t) \leq \frac{c_{2}}{L_{K}} \exp \left(-t^{2} /\left(c_{3}(\gamma)^{2} L_{K}^{2}\right)\right)$, where $c_{i}(\gamma) \simeq \gamma "$, are equivalent.

1. Introduction

Let K be an isotropic convex body in \mathbb{R}^{n}. This means that K has volume equal to 1 , its centre of mass is at the origin and its inertia matrix is a multiple of the identity. Equivalently, there exists a positive constant L_{K} such that

$$
\begin{equation*}
\int_{K}\langle x, \theta\rangle^{2} d x=L_{K}^{2} \tag{1.1}
\end{equation*}
$$

for every $\theta \in S^{n-1}$. As a direct consequence of (1.1) we have

$$
\begin{equation*}
\int_{K}\|x\|_{2}^{2} d x=n L_{K}^{2} \tag{1.2}
\end{equation*}
$$

where $\|\cdot\|_{2}$ denotes the Euclidean norm. Applying Markov's inequality we see that $\left|K \cap\left(3 \sqrt{n} L_{K}\right) B_{2}^{n}\right| \geq 8 / 9$, and Borell's lemma (see [12], Appendix I) proves the following:
FACT 1: If K is an isotropic convex body in \mathbb{R}^{n}, then

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq 3 \sqrt{n} L_{K} t\right\}\right) \leq \exp (-t) \tag{1.3}
\end{equation*}
$$

for every $t \geq 1$.
Alesker [1] showed that if K is isotropic, then the Euclidean norm $f(x)=\|x\|_{2}$ satisfies the ψ_{2}-estimate

$$
\begin{equation*}
\|f\|_{\psi_{2}} \leq c\|f\|_{1} \leq c \sqrt{n} L_{K} \tag{1.4}
\end{equation*}
$$

Date: July 30, 2003.
1991 Mathematics Subject Classification. Primary 52A20; Secondary 52A38, 52A40.
Key words and phrases. Isotropic convex bodies, concentration of volume, central limit theorem.
where $c>0$ is an absolute constant and

$$
\begin{equation*}
\|f\|_{\psi_{2}}=\inf \left\{\lambda>0: \int_{K} \exp \left((|f(x)| / \lambda)^{2}\right) d x \leq 2\right\} \tag{1.5}
\end{equation*}
$$

In particular, we have the following improvement of the estimate in Fact 1:
FACT 2: There exists an absolute constant $c>0$ such that if K is an isotropic convex body in \mathbb{R}^{n}, then

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq c \sqrt{n} L_{K} t\right\}\right) \leq 2 \exp \left(-t^{2}\right) \tag{1.6}
\end{equation*}
$$

for every $t \geq 1$.
Bobkov and Nazarov [7] have recently obtained a striking stronger result in the case of 1-unconditional isotropic convex bodies.
FACT 3: There exists an absolute constant $c>0$ such that if K is a 1-unconditional isotropic convex body in \mathbb{R}^{n}, then

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq c \sqrt{n} t\right\}\right) \leq \exp (-\sqrt{n} t) \tag{1.7}
\end{equation*}
$$

for every $t \geq 1$.
Note that $L_{K} \simeq 1$ in the case of 1-unconditional convex bodies (see [11]). Since the circumradius $R(K)$ of an isotropic convex body K in \mathbb{R}^{n} is always bounded by $(n+1) L_{K}[10]$, the estimate in Fact 3 is stronger than the previous ones for all $t \geq 1$. A question which arises naturally and was actually stated in [7] is the following:
QUESTION: Do there exist an absolute constant $c>0$ and a function $\phi: \mathbb{N} \rightarrow \mathbb{R}^{+}$ with $\phi(n) \rightarrow \infty$ as $n \rightarrow \infty$, such that for every isotropic convex body K in \mathbb{R}^{n} the inequality

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq c \sqrt{n} L_{K} t\right\}\right) \leq \exp (-\phi(n) t) \tag{1.8}
\end{equation*}
$$

holds true for every $t \geq 1$?
As we shall see, the question is related to the central limit properties of isotropic convex bodies. It has been conjectured that the $(n-1)$-dimensional volume $f_{K, \theta}(t)$ of the intersections $K \cap\left(\theta^{\perp}+t \theta\right)$ of an isotropic convex body K with hyperplanes perpendicular to a fixed direction $\theta \in S^{n-1}$, seen as a function of the distance $t \geq 0$ of the hyperplanes to the origin, is - with high probability - close to the centered Gaussian density of variance L_{K}^{2}. This conjecture can be stated precisely in several different ways (see [8], [2]) and has been verified only for some special classes of bodies. Bobkov and Koldobsky [6] (see also [8]) have considered the spherical average

$$
\begin{equation*}
f_{K}(t)=\int_{S^{n-1}} f_{K, \theta}(t) \sigma(d \theta) \tag{1.9}
\end{equation*}
$$

and showed that if K is an isotropic convex body in \mathbb{R}^{n}, then

$$
\begin{equation*}
\left|f_{K}(t)-\frac{1}{\sqrt{2 \pi} L_{K}} \exp \left(-t^{2} /\left(2 L_{K}^{2}\right)\right)\right| \leq C\left(\frac{\sigma_{K} L_{K}}{t^{2} \sqrt{n}}+\frac{1}{n}\right) \tag{1.10}
\end{equation*}
$$

for all $0<t \leq c \sqrt{n}$, where $c, C>0$ are absolute constants and the parameter σ_{K} is defined by

$$
\begin{equation*}
\sigma_{K}^{2}=\frac{\operatorname{Var}\left(\|x\|_{2}^{2}\right)}{n L_{K}^{4}} \tag{1.11}
\end{equation*}
$$

It is conjectured that σ_{K} is bounded by an absolute constant (this has been verified for all ℓ_{p}^{n}-balls by Ball and Perissinaki [3]).

The main result of this note shows that the original question is closely related to the behavior of the function f_{K}.

Theorem 1.1. Let $1 \ll \phi(n) \ll n$ be a positive constant. For every isotropic convex body K in \mathbb{R}^{n}, the following statements are equivalent:
(a) For some $\gamma \geq 1$ and for every $t \geq 1$,

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq \gamma \sqrt{n} L_{K} t\right\}\right) \leq \exp (-\phi(n) t) \tag{1.12}
\end{equation*}
$$

(b) For every $0<t \leq c_{1}(\gamma) \sqrt{\phi(n)} L_{K}$,

$$
\begin{equation*}
f_{K}(t) \leq \frac{c_{2}}{L_{K}} \exp \left(-t^{2} /\left(c_{3}(\gamma)^{2} L_{K}^{2}\right)\right) \tag{1.13}
\end{equation*}
$$

where $c_{i}(\gamma) \simeq \gamma$.
(c) For every $2 \leq q \leq c_{4} \phi(n)$,

$$
\begin{equation*}
I_{q}(K)=\left(\int_{K}\|x\|_{2}^{q} d x\right)^{1 / q} \leq c_{5}(\gamma) \sqrt{n} L_{K} \tag{1.14}
\end{equation*}
$$

where $c_{5}(\gamma) \simeq \gamma$.
In a few words, the volume of an isotropic convex body outside a ball of radius $\sqrt{n} L_{K}$ "suddenly" decreases if and only if f_{K} is subgaussian for a "long initial interval". Both conditions are in turn equivalent to the fact that the moments I_{q} of the Euclidean norm remain of the order of $\sqrt{n} L_{K}$ for large values of q. The dependence of the constants $c(\gamma)$ on γ is linear in each of the implications of the theorem; this will become clear in $\S 3$.

We do not know if the question has an affirmative answer. However, our result has the following consequence (which gives some positive evidence, combined with the conjectured bound for the parameter σ_{K}).
Theorem 1.2. Let K be an isotropic convex body in \mathbb{R}^{n}. Then,

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq C \sqrt{n} L_{K} t\right\}\right) \leq \exp (-\phi(K) t) \tag{1.15}
\end{equation*}
$$

for all $t \geq 1$, where

$$
\begin{equation*}
\phi(K)=\min \left\{\log \left(\frac{n^{2}}{\operatorname{Var}\left(\|x\|_{2}^{2}\right)}\right), \log n\right\} \tag{1.16}
\end{equation*}
$$

and $C>0$ is an absolute constant.
It is easy to check that if σ_{K} and L_{K} are uniformly bounded, then $\phi(K) \simeq \log n$, in which case

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq C_{1} \sqrt{n} t\right\}\right) \leq n^{-t} \tag{1.17}
\end{equation*}
$$

for all $t \geq 1$, where $C_{1}>0$ is an absolute constant.
Notation. We work in \mathbb{R}^{n}, which is equipped with a Euclidean structure $\langle\cdot, \cdot\rangle$. We denote by $\|\cdot\|_{2}$ the corresponding Euclidean norm, and write B_{2}^{n} for the Euclidean unit ball, and S^{n-1} for the unit sphere. Volume is denoted by $|\cdot|$. We write ω_{n} for the volume of B_{2}^{n} and σ for the rotationally invariant probability measure on S^{n-1}. The circumradius of K is the quantity $R(K)=\max \left\{\|x\|_{2}: x \in K\right\}$.

Whenever we write $a \simeq b$, we mean that there exist absolute constants $c_{1}, c_{2}>0$ such that $c_{1} a \leq b \leq c_{2} a$ (also, $a \gg b$ means that a exceeds $C b$ for some (large)
absolute constant $C>1$). The letters $c, c^{\prime}, C, c_{1}, c_{2}$ etc. denote absolute positive constants which may change from line to line. We refer to [12], [14] for background information on convex bodies and finite dimensional normed spaces, and to [11] for more information on the isotropic position.

2. Preliminaries

Let $\mathcal{P}_{d, n}$ denote the space of polynomials $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of degree less than or equal to d. Bourgain [5] (see also Bobkov [4]) proved that for every $1 \leq q, r \leq \infty$ there exists a constant $c_{q, r, d}>0$ depending only on q, r and d, such that $\|f\|_{L^{q}(K)} \leq$ $c_{q, r, d}\|f\|_{L^{r}(K)}$ for every $f \in \mathcal{P}_{d, n}$ and every convex body K of volume 1 in \mathbb{R}^{n}. Carbery and Wright [9] have recently established the best possible dependence of the constant $c_{q, r, d}$ on q, r and d. We will use some estimates which follow directly from their work.

Lemma 2.1. There exists an absolute constant $\alpha>0$ such that for every convex body K of volume 1 in \mathbb{R}^{n} and for every $f \in \mathcal{P}_{d, n}$

$$
\begin{equation*}
\left\|f^{\#}\right\|_{q} \leq \alpha \frac{q}{r}\left\|f^{\#}\right\|_{r} \tag{2.1}
\end{equation*}
$$

whenever $1 \leq r \leq q<\infty$, and

$$
\begin{equation*}
\left\|f^{\#}\right\|_{\infty} \leq \alpha\left\|f^{\#}\right\|_{n} \tag{2.2}
\end{equation*}
$$

where $f^{\#}(x)=|f(x)|^{1 / d}$.
Using Lemma 2.1 one can obtain a variety of tail estimates for polynomials $f \in \mathcal{P}_{d, n}$.
Lemma 2.2. Let K be a convex body of volume 1 in \mathbb{R}^{n} and let $f \in \mathcal{P}_{d, n}$. Then,

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K: f^{\#}(x) \geq 3 \alpha\left\|f^{\#}\right\|_{q} \cdot s\right\}\right) \leq e^{-q s} \tag{2.3}
\end{equation*}
$$

for all $q \geq 1$ and $s \geq 1$, where α is the constant in Lemma 2.1.
Proof. Let $q \geq 1$. Lemma 2.1 implies that

$$
\begin{equation*}
\int_{K} f^{\#}(x)^{q p} d x \leq(\alpha p)^{q p}\left\|f^{\#}\right\|_{q}^{q p} \tag{2.4}
\end{equation*}
$$

for every $p \geq 1$. With a simple application of Markov's inequality we get

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K: f^{\#}(x) \geq 3 \alpha\left\|f^{\#}\right\|_{q} \cdot s\right\}\right) \leq\left(\frac{p}{3 s}\right)^{q p} \tag{2.5}
\end{equation*}
$$

Then, the choice $p=3 s / e \geq 1$ gives the assertion of the lemma.
For every $q>0$ we consider the q-th moment of the Euclidean norm

$$
\begin{equation*}
I_{q}(K)=\left(\int_{K}\|x\|_{2}^{q} d x\right)^{1 / q} \tag{2.6}
\end{equation*}
$$

Applying Lemma 2.2 for the linear functionals $x \mapsto\langle x, \theta\rangle$ and for the polynomial $f(x)=\|x\|_{2}^{2}$, we have the following immediate consequence.

Lemma 2.3. Let K be a convex body of volume 1 in \mathbb{R}^{n}. If $q \geq 1$, then

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:|\langle x, \theta\rangle| \geq 3 \alpha\|\langle\cdot, \theta\rangle\|_{q} s\right) \leq e^{-q s}\right. \tag{2.7}
\end{equation*}
$$

for all $\theta \in S^{n-1}$ and $s \geq 1$, and

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq 3 \alpha I_{q}(K) s\right\}\right) \leq e^{-q s} \tag{2.8}
\end{equation*}
$$

for all $s \geq 1$, where α is the constant in Lemma 2.1.

Definition. Let K be an isotropic convex body in \mathbb{R}^{n}. For every $q>0$ and $t>0$ we define

$$
\begin{equation*}
Z(q)=\left(\int_{S^{n-1}} \int_{K}|\langle x, \theta\rangle|^{q} d x \sigma(d \theta)\right)^{1 / q} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
Z(q, t)=\left(\int_{S^{n-1}} \int_{B_{K, \theta}(t)}|\langle x, \theta\rangle|^{q} d x \sigma(d \theta)\right)^{1 / q} \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{K, \theta}(t)=\{x \in K:|\langle x, \theta\rangle| \leq t\} . \tag{2.11}
\end{equation*}
$$

Lemma 2.4. Let K be a convex body of volume 1 in \mathbb{R}^{n}. For every $t>0$ we have the identity

$$
\begin{equation*}
Z^{q}(q, t)=2 \int_{0}^{t} r^{q} f_{K}(r) d r \tag{2.12}
\end{equation*}
$$

Proof. It is an immediate consequence of Fubini's theorem:

$$
\begin{aligned}
Z^{q}(q, t) & =2 \int_{S^{n-1}} \int_{0}^{t} r^{q} f_{K, \theta}(r) d r \sigma(d \theta)=2 \int_{0}^{t} r^{q} \int_{S^{n-1}} f_{K, \theta}(r) \sigma(d \theta) d r \\
& =2 \int_{0}^{t} r^{q} f_{K}(r) d r,
\end{aligned}
$$

by the definition of f_{K}.

The quantities $Z(q)$ and $I_{q}(K)$ are related through the following simple lemma (for a proof see [13]).

Lemma 2.5. Let K be a convex body of volume 1 in \mathbb{R}^{n}. Then,

$$
\begin{equation*}
Z(q) \simeq \sqrt{\frac{q}{q+n}} I_{q}(K) . \tag{2.13}
\end{equation*}
$$

for every $q \geq 1$.
For every $\theta \in S^{n-1}$ and $q \geq 1$ we write $H_{q}(\theta)=\|\langle\cdot, \theta\rangle\|_{q}$. The next lemma shows that integration of the function $|\langle\cdot, \theta\rangle|^{q}$ on the strip $B_{K, \theta}\left(3 \alpha H_{q}(\theta) s\right)$ essentially captures the value of $H_{q}^{q}(\theta)$.

Lemma 2.6. Let K be a convex body of volume 1 in \mathbb{R}^{n}. Then, for every $\theta \in S^{n-1}$ and every $q, s \geq 1$,

$$
\begin{equation*}
\left(1-e^{-q s / 2}(2 \alpha)^{q}\right) H_{q}^{q}(\theta) \leq \int_{B_{K, \theta}\left(3 \alpha H_{q}(\theta) s\right)}|\langle x, \theta\rangle|^{q} d x, \tag{2.14}
\end{equation*}
$$

where $\alpha>0$ is the constant in Lemma 2.1.
Proof. Lemma 2.3 shows that

$$
\begin{equation*}
\left|K \backslash B_{K, \theta}\left(3 \alpha H_{q}(\theta) s\right)\right| \leq \exp (-q s) \tag{2.15}
\end{equation*}
$$

for all $q, s \geq 1$. We write

$$
\begin{aligned}
H_{q}^{q}(\theta) & =\int_{B_{K, \theta}\left(3 \alpha H_{q}(\theta) s\right)}|\langle x, \theta\rangle|^{q} d x+\int_{K \backslash B_{K, \theta}\left(3 \alpha H_{q}(\theta) s\right)}|\langle x, \theta\rangle|^{q} d x \\
& \leq \int_{B_{K, \theta}\left(3 \alpha H_{q}(\theta) s\right)}|\langle x, \theta\rangle|^{q} d x+\exp (-q s / 2)\left(\int_{K}|\langle x, \theta\rangle|^{2 q} d x\right)^{1 / 2} \\
& \leq \int_{B_{K, \theta}\left(3 \alpha H_{q}(\theta) s\right)}|\langle x, \theta\rangle|^{q} d x+\exp (-q s / 2)(2 \alpha)^{q} H_{q}^{q}(\theta)
\end{aligned}
$$

where we have used (2.15), Cauchy-Schwarz inequality and Lemma 2.1 (for the pair $q, 2 q)$.

Our main technical lemma is the next one: it shows that $Z(q) \simeq Z(q, t)$ when t becomes of the order of $Z(q)$.
Lemma 2.7. There exists an absolute constant $\beta>0$ with the following property: for every convex body K of volume 1 in \mathbb{R}^{n} and every $q \geq 1$,

$$
\begin{equation*}
Z^{q}(q) \leq 2 Z^{q}(q, \beta Z(q)) \tag{2.16}
\end{equation*}
$$

Proof. For every $t>0$ we set $U_{t}=\left\{\theta \in S^{n-1}: H_{q}(\theta) \geq t Z(q)\right\}$. Markov's inequality shows that $\sigma\left(U_{t}\right) \leq t^{-q}$. Using Lemma 2.6, for every $s \geq 1$ we write

$$
\begin{aligned}
\left(1-e^{-q s / 2}(2 \alpha)^{q}\right) Z^{q}(q) \leq & \int_{S^{n-1} \backslash U_{t}} \int_{B_{K, \theta}\left(3 \alpha H_{q}(\theta) s\right)}|\langle x, \theta\rangle|^{q} d x \sigma(d \theta) \\
& +\int_{U_{t}} \int_{B_{K, \theta}\left(3 \alpha H_{q}(\theta) s\right)}|\langle x, \theta\rangle|^{q} d x \sigma(d \theta) \\
\leq & \int_{S^{n-1}} \int_{B_{K, \theta}(3 \alpha t s Z(q))}|\langle x, \theta\rangle|^{q} d x \sigma(d \theta) \\
& +\sigma\left(U_{t}\right)^{1 / 2}\left(\int_{S^{n-1}} \int_{K}|\langle x, \theta\rangle|^{2 q} d x \sigma(d \theta)\right)^{1 / 2} \\
\leq & Z^{q}(q, 3 \alpha t s Z(q))+t^{-q / 2} Z^{q}(2 q) \\
\leq & Z^{q}(q, 3 \alpha t s Z(q))+(c \alpha)^{q} t^{-q / 2} Z^{q}(q)
\end{aligned}
$$

because $Z(2 q) \leq c \alpha Z(q)$, where $c>0$ is an absolute constant (this follows from Lemma 2.5 and the fact that $I_{2 q}(K) \leq 2 \alpha I_{q}(K)$ by Lemma 2.1 applied to the polynomial $\left.f(x)=\|x\|_{2}^{2}\right)$.

We now choose s, t so that $\sqrt{t}=4 c \alpha e^{s / 2}=8 \alpha$. Then,

$$
\begin{equation*}
\left(1-4^{-q}\right) Z^{q}(q) \leq Z^{q}(q, 3 \alpha t s Z(q))+4^{-q} Z^{q}(q) \tag{2.17}
\end{equation*}
$$

Inserting the values of t, s in (2.17) we compute the value of β.
Finally, we will use an integral formula for f_{K} (see [6], [8]).
Lemma 2.8. Let K be a convex body of volume 1 in \mathbb{R}^{n}. Then, for every $t>0$,

$$
\begin{equation*}
f_{K}(t)=c_{n} \int_{U_{K}(t)} \frac{1}{\|x\|_{2}}\left(1-\frac{t^{2}}{\|x\|_{2}^{2}}\right)^{\frac{n-3}{2}} d x \tag{2.18}
\end{equation*}
$$

where $c_{n} \simeq \sqrt{n}$ as $n \rightarrow \infty$ and $U_{K}(t)=\left\{x \in K:\|x\|_{2} \geq t\right\}$.
Remark: From Lemma 2.8 we readily see that f_{K} is a decreasing function.

3. Proofs of Theorems 1.1 and 1.2

Theorem 1.1 is a direct consequence of the following three Propositions.
Proposition 3.1. Let $\gamma \geq 1$ and let K be an isotropic convex body in \mathbb{R}^{n}. If $1 \ll \phi(n) \ll n$ and

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq \gamma \sqrt{n} L_{K} t\right\}\right) \leq \exp (-\phi(n) t) \tag{3.1}
\end{equation*}
$$

for every $t \geq 1$, then

$$
\begin{equation*}
f_{K}(t) \leq \frac{c_{1}}{L_{K}} \exp \left(-c_{2} t^{2} / \gamma^{2} L_{K}^{2}\right) \tag{3.2}
\end{equation*}
$$

for all $0<t \leq c_{3} \gamma \sqrt{\phi(n)} L_{K}$.
Proof. We assume that $n>3$. From Lemma 2.8 we have

$$
\begin{equation*}
f_{K}(t)=c_{n} \int_{U_{K}(t)} g_{t}\left(\|x\|_{2}\right) d x \tag{3.3}
\end{equation*}
$$

for all $t>0$, where g_{t} is defined by

$$
\begin{equation*}
g_{t}(s)=\frac{1}{s}\left(1-\frac{t^{2}}{s^{2}}\right)^{\frac{n-3}{2}} \tag{3.4}
\end{equation*}
$$

on $[t, \infty)$. Differentiating g_{t} we see that it is increasing on $[t, t \sqrt{n-2}]$ and then decreasing. Let $0<t \leq c_{3} \gamma \sqrt{\phi(n)} L_{K}$, where the absolute constant $c_{3}>0$ is to be chosen. Assume first that $\gamma \sqrt{n} L_{K} \leq t \sqrt{n-2}$ (this is satisfied if $t \geq \sqrt{2} \gamma L_{K}$). Then, we write

$$
\begin{aligned}
f_{K}(t) & =c_{n} \int_{K \cap\left\{t \leq\|x\|_{2} \leq \gamma \sqrt{n} L_{K}\right\}} g_{t}\left(\|x\|_{2}\right) d x+c_{n} \int_{U_{K}\left(\gamma \sqrt{n} L_{K}\right)} g_{t}\left(\|x\|_{2}\right) d x \\
& \leq c_{n} g_{t}\left(\gamma \sqrt{n} L_{K}\right)+\exp (-\phi(n)) c_{n} g_{t}(t \sqrt{n-2}) \\
& =\frac{c_{n}}{\gamma \sqrt{n} L_{K}}\left(1-\frac{t^{2}}{\gamma^{2} n L_{K}^{2}}\right)^{\frac{n-3}{2}}+\exp (-\phi(n)) \frac{c_{n}}{t \sqrt{n-2}}\left(1-\frac{1}{n-2}\right)^{\frac{n-3}{2}} \\
& \leq \frac{c_{1}}{L_{K}} \exp \left(-c_{2} t^{2} / \gamma^{2} L_{K}^{2}\right)+\frac{c_{1}}{L_{K}} \exp (-\phi(n)) \\
& \leq \frac{2 c_{1}}{L_{K}} \exp \left(-c_{2} t^{2} / \gamma^{2} L_{K}^{2}\right)
\end{aligned}
$$

because $\phi(n) \geq c_{2} t^{2} / \gamma^{2} L_{K}^{2}$ if we choose $c_{3}=1 / \sqrt{c_{2}}$ (we have also used the fact that $\left.c_{n} \simeq \sqrt{n}\right)$.

If $0<t \leq \min \left\{\sqrt{2} \gamma L_{K}, c_{3} \gamma \sqrt{\phi(n)} L_{K}\right\}$, then

$$
\begin{equation*}
f_{K}(t) \leq \frac{c_{5}}{L_{K}} \leq \frac{2 c_{5}}{L_{K}} \exp \left(-c_{7} t^{2} / \gamma^{2} L_{K}^{2}\right) \tag{3.5}
\end{equation*}
$$

because $f_{K, \theta}(t) \leq c_{5} / L_{K}$ for all $\theta \in S^{n-1}$ (see [11]) and $\exp \left(-c_{7} t^{2} / \gamma^{2} L_{K}^{2}\right) \geq$ $\exp \left(-2 c_{7}\right) \geq 1 / 2$ if $c_{7}>0$ is suitably chosen. It follows that (3.2) holds true for all $0<t \leq c_{3} \gamma \sqrt{\phi(n)} L_{K}$.
Proposition 3.2. Let $\gamma \geq 1$ and let K be an isotropic convex body in \mathbb{R}^{n}. Assume that $\beta \leq \gamma \psi(n)<R(K) / L_{K}$, where $\beta>0$ is the constant in Lemma 2.7, and

$$
\begin{equation*}
f_{K}(t) \leq \frac{c_{1}}{L_{K}} \exp \left(-t^{2} / \gamma^{2} L_{K}^{2}\right) \tag{3.6}
\end{equation*}
$$

for all $0<t \leq \gamma \psi(n) L_{K}$. Then, for every $2 \leq q \leq c_{2} \psi^{2}(n)$ we have

$$
\begin{equation*}
I_{q}(K) \leq c_{3} \gamma \sqrt{n} L_{K} \tag{3.7}
\end{equation*}
$$

Proof. Note that $Z(2)=L_{K}$ and $\lim _{s \rightarrow \infty} Z(s)=R(K)$. Since $\beta \leq \gamma \psi(n)<$ $R(K) / L_{K}$, there exists $s \geq 2$ such that $\beta Z(s)=\gamma \psi(n) L_{K}$. Then Lemmas 2.7 and 2.4 show that

$$
\begin{aligned}
Z^{s}(s) & \leq 2 Z^{s}(s, \beta Z(s))=4 \int_{0}^{\beta Z(s)} r^{s} f_{K}(r) d r \\
& \leq 4 \int_{0}^{\gamma \psi(n) L_{K}} r^{s} f_{K}(r) d r \\
& \leq \frac{4 c_{1}}{L_{K}} \int_{0}^{\gamma \psi(n) L_{K}} r^{s} \exp \left(-r^{2} / \gamma^{2} L_{K}^{2}\right) d r \\
& \leq \frac{4 c_{1}}{L_{K}} \int_{0}^{\infty} r^{s} \exp \left(-r^{2} / \gamma^{2} L_{K}^{2}\right) d r \\
& \leq\left(c_{1}^{\prime} \gamma \sqrt{s} L_{K}\right)^{s}
\end{aligned}
$$

In other words,

$$
\begin{equation*}
Z(s) \leq c_{1}^{\prime} \gamma \sqrt{s} L_{K} \tag{3.8}
\end{equation*}
$$

Lemma 2.5 implies that

$$
\begin{equation*}
I_{s}(K) \leq c_{1}^{\prime \prime} \sqrt{n / s} Z(s) \leq c_{3} \gamma \sqrt{n} L_{K} \tag{3.9}
\end{equation*}
$$

and Hölder's inequality gives

$$
\begin{equation*}
I_{q}(K) \leq I_{s}(K) \leq c_{3} \gamma \sqrt{n} L_{K} \tag{3.10}
\end{equation*}
$$

for all $q \leq s$. On the other hand, by the definition of s nd (3.8),

$$
\begin{equation*}
s \geq \frac{Z^{2}(s)}{c_{3}^{2} \gamma^{2} L_{K}^{2}}=\frac{\psi^{2}(n)}{c_{3}^{2} \beta^{2}}=: c_{2} \psi^{2}(n) \tag{3.11}
\end{equation*}
$$

which completes the proof.
Remark: The range $\beta \leq \gamma \psi(n) \leq R(K) / L_{K}$ is the interesting range for the parameter $\psi(n)$. If $0<\gamma \psi(n)<\beta$, then the conclusion of Proposition 3.1 is trivially true. If $\gamma \psi(n) \geq R(K) / L_{K}$, then we have (3.6) for every $t>0$. Following the previous argument, we check that $I_{n}(K) \simeq Z(n) \leq c \gamma \sqrt{n} L_{K}$. But $I_{n}(K) \simeq R(K)$, and this implies (3.7) for every $q \geq 2$.
Proposition 3.3. Let $\gamma \geq 1$ and let K be an isotropic convex body in \mathbb{R}^{n}. If

$$
\begin{equation*}
I_{q}(K) \leq \gamma \sqrt{n} L_{K} \tag{3.12}
\end{equation*}
$$

for all $2 \leq q \leq \phi(n)$, then

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq c \gamma \sqrt{n} L_{K} t\right\}\right) \leq \exp (-\phi(n) t) \tag{3.13}
\end{equation*}
$$

for every $t \geq 1$, where $c>0$ is an absolute constant.
Proof. From Lemma 2.3 we have

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq 3 \alpha I_{q}(K) t\right\}\right) \leq e^{-q t} \tag{3.14}
\end{equation*}
$$

for every $t \geq 1$, where $\alpha>0$ is the constant in Lemma 2.1. Setting $q=\phi(n)$ and using (3.12), we get

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq 3 \alpha \gamma \sqrt{n} L_{K} t\right\}\right) \leq \exp (-\phi(n) t) \tag{3.15}
\end{equation*}
$$

for every $t \geq 1$, and the result follows with $c:=3 \alpha$.
Theorem 1.1 and the result of Boblov and Nazarov [7] show that f_{K} is subgaussian on $[0, c \sqrt[4]{n}]$ in the 1-unconditional case.
Corollary 3.4. There exist absolute constants $c_{i}>0$ such that if K is an isotropic 1-unconditional convex body in \mathbb{R}^{n}, then

$$
\begin{equation*}
f_{K}(t) \leq c_{1} \exp \left(-c_{2} t^{2}\right) \tag{3.16}
\end{equation*}
$$

for all $0<t \leq c_{3} \sqrt[4]{n}$.
Note: We can construct examples of isotropic 1-unconditional convex bodies in \mathbb{R}^{n} for which the length of the interval of t 's on which (3.16) holds cannot have order greater than $\sqrt[4]{n}$.
For our last remark, recall the estimate of Bobkov and Koldobsky [6]: if K is an isotropic convex body in \mathbb{R}^{n} then, for every $0<t \leq c \sqrt{n}$,

$$
\begin{equation*}
\left|f_{K}(t)-\frac{1}{\sqrt{2 \pi} L_{K}} \exp \left(-t^{2} /\left(2 L_{K}^{2}\right)\right)\right| \leq C\left(\frac{\sigma_{K} L_{K}}{t^{2} \sqrt{n}}+\frac{1}{n}\right) \tag{3.17}
\end{equation*}
$$

where $c, C>0$ are absolute constants and $\sigma_{K}^{2}=\operatorname{Var}\left(\|x\|_{2}^{2}\right) /\left(n L_{K}^{4}\right)$. Using Theorem 1.1 we get the following.

Theorem 3.5. Let K be an isotropic convex body in \mathbb{R}^{n}. Then,

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq C_{1} \sqrt{n} L_{K} t\right\}\right) \leq \exp (-\phi(K) t) \tag{3.18}
\end{equation*}
$$

for every $t \geq 1$, where

$$
\begin{equation*}
\phi(K) \simeq \min \left\{\log \left(n^{2} / \operatorname{Var}\left(\|x\|_{2}^{2}\right)\right), \log n\right\} \tag{3.19}
\end{equation*}
$$

and $C_{1}>0$ is an absolute constant.
Proof. Let C be the constant in (3.17) and let $c>0$ be an absolute constant to be chosen (small enough). From (3.19) and the definition of σ_{K} we have

$$
\begin{equation*}
\phi(K) \leq \log \left(\frac{n}{\sigma_{K}^{2} L_{K}^{4}}\right)=\frac{1}{2} \log \left(\frac{\sqrt{n}}{\sigma_{K} L_{K}^{2}}\right) \tag{3.20}
\end{equation*}
$$

If $\sqrt{C} \leq t \leq c \sqrt{\phi(K)} L_{K}$, then (3.20) shows that

$$
\begin{equation*}
\frac{\sigma_{K} L_{K}^{2}}{\sqrt{n}} \leq e^{-2 t^{2} / c^{2} L_{K}^{2}} \tag{3.21}
\end{equation*}
$$

Observe that $C / t^{2} \leq 1$, and hence,

$$
\begin{equation*}
C \frac{\sigma_{K} L_{K}}{t^{2} \sqrt{n}} \leq \frac{1}{L_{K}} e^{-2 t^{2} / c^{2} L_{K}^{2}} \tag{3.22}
\end{equation*}
$$

Also, if c is small enough and $n \gg 1$, we have $\exp \left(2 t^{2} / L_{K}^{2}\right) \leq n^{2 c^{2}} \leq n /\left(C L_{K}\right)$ since $c_{1} \leq L_{K} \leq c_{2} \sqrt{n}$ (these are the simple bounds on L_{K}; see [11]). This implies

$$
\begin{equation*}
\frac{C}{n} \leq \frac{1}{L_{K}} \exp \left(-2 t^{2} / L_{K}^{2}\right) \tag{3.23}
\end{equation*}
$$

Therefore, (3.17) gives

$$
\begin{aligned}
f_{K}(t) & \leq \frac{1}{\sqrt{2 \pi} L_{K}} \exp \left(-t^{2} /\left(2 L_{K}^{2}\right)\right)+C \frac{\sigma_{K} L_{K}}{t^{2} \sqrt{n}}+\frac{C}{n} \\
& \leq \frac{c^{\prime}}{L_{K}} \exp \left(-c^{\prime \prime} t^{2} / L_{K}^{2}\right)
\end{aligned}
$$

for all $t \in\left[\sqrt{C}, c \sqrt{\phi(K)} L_{K}\right]$, where $c^{\prime}, c^{\prime \prime}>0$ are absolute constants. A similar bound is trivially true if $0<t \leq \sqrt{C}$. We can now use the implication (b) \Rightarrow (a) of Theorem 1.1 to conclude the proof.

Assuming that σ_{K} and L_{K} are uniformly bounded, we have $\phi(K) \simeq \log n$. Then, Theorem 1.2 would give a positive answer to our original question: for every isotropic convex body K in \mathbb{R}^{n},

$$
\begin{equation*}
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geq C_{2} \sqrt{n} t\right\}\right) \leq n^{-t} \tag{3.22}
\end{equation*}
$$

for every $t \geq 1$, where $C_{2}>0$ is an absolute constant.

References

1. S. Alesker, ψ_{2}-estimate for the Euclidean norm on a convex body in isotropic position, Geom. Aspects of Funct. Analysis (Lindenstrauss-Milman eds.), Oper. Theory Adv. Appl. 77 (1995), 1-4.
2. M. Anttila, K.M. Ball and I. Perissinaki, The central limit problem for convex bodies, Trans. Amer. Math. Soc. (to appear).
3. K.M. Ball and I. Perissinaki, The subindependence of coordinate slabs in ℓ_{p}^{n} balls, Israel J. Math. 107 (1998), 289-299.
4. S.G. Bobkov, Remarks on the growth of L^{p}-norms of polynomials, Geom. Aspects of Funct. Analysis (Milman-Schechtman eds.), Lecture Notes in Math. 1745 (2000), 27-35.
5. J. Bourgain, On the distribution of polynomials on high dimensional convex sets, Geom. Aspects of Funct. Analysis (Lindenstrauss-Milman eds.), Lecture Notes in Math. 1469 (1991), 127-137.
6. S.G. Bobkov and A. Koldobsky, On the central limit property of convex bodies, Geom. Aspects of Funct. Analysis (Milman-Schechtman eds.), Lecture Notes in Math. 1807 (2003), 44-52.
7. S.G. Bobkov and F.L. Nazarov, On convex bodies and log-concave probability measures with unconditional basis, Geom. Aspects of Funct. Analysis (Milman-Schechtman eds.), Lecture Notes in Math. 1807 (2003), 53-69.
8. U. Brehm and J. Voigt, Asymptotics of cross sections for convex bodies, Beiträge Algebra Geom. 41 (2000), 437-454.
9. A. Carbery and J. Wright, Distributional and L^{q}-norm inequalities for polynomials over convex bodies in \mathbb{R}^{n}, Math. Res. Lett. 8 (2001), 233-248.
10. R. Kannan, L. Lovasz and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom. 13 (1995), 541-559.
11. V.D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, Geom. Aspects of Funct. Analysis (LindenstraussMilman eds.), Lecture Notes in Math. 1376 (1989), 64-104.
12. V.D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math. 1200, Springer, Berlin (1986).
13. G. Paouris, Ψ_{2}-estimates for linear functionals on zonoids, Geom. Aspects of Funct. Analysis (Milman-Schechtman eds.), Lecture Notes in Math. 1807 (2003), 211-222.
14. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge (1993).

Department of Mathematics, University of Crete, Iraklion 714-09, Greece. E-mail: paouris@math.uoc.gr

