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Near-Optimal Estimation of Linear Functionals

with Log-Concave Observation Errors

Simon Foucart∗ and Grigoris Paouris† — Texas A&M University

Abstract

This note addresses the question of optimally estimating a linear functional of an object

acquired through linear observations corrupted by random noise, where optimality pertains to

a worst-case setting tied to a symmetric, convex, and closed model set containing the object. It

complements the article “Statistical Estimation and Optimal Recovery” published in the Annals

of Statistics in 1994. There, Donoho showed (among other things) that, for Gaussian noise, linear

maps provide near-optimal estimation schemes relatively to a performance measure relevant in

Statistical Estimation. Here, we advocate for a different performance measure arguably more

relevant in Optimal Recovery. We show that, relatively to this new measure, linear maps still

provide near-optimal estimation schemes even if the noise is merely log-concave. Our arguments,

which make a connection to the deterministic noise situation and bypass properties specific to

the Gaussian case, offer an alternative to parts of Donoho’s proof.

Key words and phrases: Optimal recovery, Statistical estimation, Log-concavity, Minimax problems.

AMS classification: 41A65, 62C20, 90C47.

1 Introduction

In this note, we take a second look at the Optimal Recovery problem when random observation

errors are present. As a very brief reminder, we recall that the Optimal Recovery problem consists in

recovering an object f—typically a function—from observational data yi = λi(f)—typically point

evaluations—in a way that is worst-case optimal or near-optimal relatively to a model set K. Here,

the difference with this standard scenario is that the observations yi are corrupted with random

additive errors ei, so that yi = λi(f) + ei. Thus, the situation is as follows: an element f from a

Banach space F is partially known through:
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Near-optimal estimation of linear functionals with log-concave observation errors

• some a priori information: f belongs to a subset K of F , i.e.,

f ∈ K,

where K is called the model set;

• some a posteriori information: f is inaccurately observed through the actions of some linear

functionals λ1, . . . , λm ∈ F ∗, i.e.,

yi = λi(f) + ei, i = 1, . . . ,m.

This is summarized as y = Λf+e, where the linear map Λ : F → R
m is called the observation

map. Here, e ∈ R
m is a random vector.

When estimating f , or merely a quantity of interest Q(f) taking values in some Banach space Z, we

simply apply a so-called recovery map ∆ : Rm → Z to the available observation vector y = Λf + e.

The performance of this recovery map could be assessed, for some index p ∈ [1,∞], via the global

recovery error

(1) gesep (∆) =

(
sup
f∈K

E
[
‖Q(f)−∆(Λf + e)‖pZ

])1/p

.

We appended a superscript “se” because this choice is favored in Statistical Estimation, see e.g.

the article [3], which contains the classical result being complemented by this note. However, we

prefer to assess the performance of a recovery map ∆ : Rm → Z via another global recovery error,

namely

(2) georp (∆) =

(
E

[
sup
f∈K

‖Q(f)−∆(Λf + e)‖pZ
])1/p

.

We appended a superscript “or” because we believe that this choice is better suited to a worst-case

perspective, hence more relevant in Optimal Recovery. Indeed, suppose that gesep (∆) and georp (∆)

are small, say bounded by some θ: Markov’s inequality in conjunction with gesep (∆)p ≤ θp would

naturally yield the statement

for all f ∈ K, P

[
‖Q(f)−∆(Λf + e)‖Z ≤ θ

ε

]
≥ 1− εp,

while Markov’s inequality in conjunction with georp (∆)p ≤ θp would naturally yield the statement

P

[
‖Q(f)−∆(Λf + e)‖Z ≤ θ

ε
for all f ∈ K

]
≥ 1− εp.

Of course, in the absence of observation errors (e = 0), these two notions coincide and reduce to a

quantity which is independent of p, namely to the global worst-case error (aka distortion)

gwce(∆) = sup
f∈K

‖Q(f)−∆(Λf)‖Z .
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In this case, if the model set is symmetric and convex (i.e., if −K = K and (1/2)K+(1/2)K ⊆ K) and

if Q : F → R is a linear functional, a classical result of Smolyak (see [1] or [5, Theorem 9.3]) states

that “linear recovery maps are optimal”, meaning that there exists a linear map ∆lin : Rm → R

such that

gwce(∆lin) = inf
∆:Rm→R

gwce(∆).

In the presence of Gaussian observation errors, linear maps are not optimal anymore, but the

previously mentioned seminal work [3] of Donoho implies that “linear recovery maps are near-

optimal”. Precisely, for p = 1 and p = 2, if K is symmetric, convex, closed, and bounded, if

Q : F → R is a linear functional, and if e ∈ R
m is a mean-zero Gaussian random vector, then there

exists a linear map ∆lin : Rm → R such that

gesep (∆lin) ≤ κ× inf
∆:Rm→R

gesep (∆),

where κ is an absolute constant not exceeding 1.25. As a matter of fact, the validity of this result

for p = 1 implies its validity for all p ∈ [1,∞) and even for georp in lieu of gesep , as explained in

Subsection 2.2.

In this note, we relax the Gaussianity assumption to the mere requirement that the random vector

e ∈ R
m is mean-zero and log-concave. Relevant examples include vectors with independent entries

distributed according to the Gaussian, Laplace, or uniform distribution. Uniform distributions on

convex sets with appropriately chosen linear structure provide another important example, see [2]

for some recent developments. Under the log-concavity assumption, we still show that “linear

recovery maps are near-optimal”, but with georp in lieu of gesep . Precisely, we show (Theorem 9)

that, for any p ≥ 1, if K is symmetric1, convex, and closed (but not necessarily bounded), if

Q : F → R is a linear functional, and if e ∈ R
m is a mean-zero log-concave random vector, then

there exists a linear map ∆lin : Rm → R such that

gesep (∆lin) ≤ κp × inf
∆:Rm→R

gesep (∆),

where κp is a constant depending only on p that we did not attempt to optimize.

This result is established in Section 4, where we also point out that our proof supplies streamlined

arguments for Donoho’s original result from [3]. Prior to that, we isolate in Section 2 several

ingredients to be relied upon later. In the spirit of [3], we consider one-dimensional subproblems

as a prerequisite for the full problem in Section 3, where we remark in passing that not all random

distributions allow for the near-optimality result.

1Donoho’s work drops the assumption that K is symmetric and shows that “affine recovery maps are near-optimal”.

For simplicity of presentation, we did not pursue such a general result.
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2 Background Information

2.1 Properties of log-concave random vectors

A measure µ on R
m is called log-concave if, for all compact subsets C0 and C1 of Rm and all τ ∈ [0, 1],

µ((1 − τ)C0 + τC1) ≥ µ(C0)1−τµ(C1)τ .

A result of C. Borell guarantees that a log-concave measure—provided it is not supported on a

subspace—satisfies µ(C) =
∫
C π(x)dx, C ⊆ R

m, for some integrable function π : Rm → R+ such

that − ln(π) : Rm → R ∪ {∞} is a convex function.

A random vector e ∈ R
m is called log-concave if it is distributed according to a probability measure

which is log-concave. The following fact about log-concave random vectors, known as Borell’s

lemma, will be useful later.

Lemma 1. Let e ∈ R
m be a log-concave random vector and let | · | be a seminorm on R

m. Then,

for any 1 ≤ p ≤ q < ∞, (
E[|e|q]

)1/q ≤ C
q

p

(
E[|e|p]

)1/p
,

where the absolute constant C can be taken as C = e.

Another useful fact for us is that, if e ∈ R
m is a mean-zero log-concave random vector with

covariance matrix E[ee⊤] = σ2Idm and if u ∈ R
m is an ℓ2-normalized vector, then ξ = 〈u, e〉 ∈ R

is a mean-zero log-concave random variable with variance σ2. We will also rely on the following

property of log-concave random variables. The result is not new, but we could not pinpoint the

exact statement in the literature. So, for the reader’s convenience, we provide a proof inspired by

an argument of Milman and Pajor from [9]. An extension to log-concave random vectors follows

from results of [7, Section 5].

Lemma 2. Let π : R → R+ be the probability density function of a mean-zero log-concave random

variable with variance σ2. Then

π(x) ≥ δ

σ
, whenever |x| ≤ γ σ,

where the constants δ and γ can be taken as δ = 1/(2
√
3 e) and γ = 1/(5e).

Proof. The argument makes crucial use of a two-sided estimate for π(0), namely

1

2
√
3σ

≤ π(0) ≤ 3

σ
,
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which goes back to Hensley [6] (see also [9, Section 2.5], [2], or [[8], Lemma 2.6]). We shall prove that

π(±γσ) ≥ e−1π(0), which implies that, for any x ∈ [−γσ, γσ] written as x = (1−τ)×(−γσ)+τ×(γσ)

for some τ ∈ [0, 1], we have π(x) ≥ π(−γσ)1−τπ(γσ)τ ≥ e−1π(0) ≥ δ/σ with δ = 1/(2
√
3 e), as

announced. So let us assume on the contrary that one of π(−γσ) or π(−γσ) is smaller than e−1π(0),

e.g. that π(γσ) < e−1π(0). Then, for x ≥ γσ,

e−1π(0) > π(γσ) = π

((
1− γσ

x

)
× 0 +

γσ

x
× x

)
≥ π(0)1−γσ/xπ(x)γσ/x.

Rearranging the latter, we deduce that π(x) < π(0)e−x/(γσ) for x ≥ γσ. It follows that

∫ ∞

γσ
xπ(x)dx < π(0)

∫ ∞

γσ
xe−x/(γσ)dx = π(0) (γσ)2

∫ ∞

1
ue−udu = π(0) (γσ)2

[
− (u+ 1)e−u

]∞
1

≤ 3

σ
(γσ)2 2e−1 =

6

e
γ2σ.

Moreover, we also have

∫ γσ

0
xπ(x)dx ≤ γσ

∫ γσ

0
π(x)dx ≤ γσ

∫ ∞

−∞
π(x)dx = γσ.

Adding these two inequalities, then using the mean-zero property and Lemma 1, we obtain

(
1 +

6γ

e

)
γσ >

∫ ∞

0
xπ(x)dx =

1

2

∫ ∞

−∞
|x|π(x)dx ≥ 1

2

1

2e

[ ∫ ∞

−∞
x2π(x)dx

]1/2
=

1

4e
σ.

We derive the desired contradiction as soon as γ is small enough so that (1 + 6γ/e)γ < 1/(4e),

which occurs with our choice γ = 1/(5e).

2.2 Comparison of the two notions of global recovery error

In this subsection, we compare the notions of global recovery error introduced in (1) and (2). The

results are stated below. We note that they are valid when Q : F → Z is an arbitrary linear

map—in particular, Q need not be a linear functional at this stage and it could even be Q = IdF .

Proposition 3. Let ∆ : Rm → Z be a recovery map for the estimation of a linear map Q : F → Z.

For any 1 ≤ p ≤ q < ∞,

gesep (∆) ≤ geseq (∆), georp (∆) ≤ georq (∆), gesep (∆) ≤ georp (∆).

Proposition 4. Let ∆lin : Rm → Z be a linear recovery map for the estimation of a linear map

Q : F → Z. Given q ∈ [1,∞), if the model set K is symmetric and if e ∈ R
m is a log-concave

random vector, then all the quantities gesep (∆lin) and georp (∆lin), 1 ≤ p ≤ q, are comparable up to

multiplicative constants that depend only on q.
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Before proving these two statements, we point out a key consequence mentioned in the introduction:

if near-optimality of linear maps is acquired for gese1 —as established for Gaussian observation errors

in [3]—then it is automatically acquired for all gesep and georp . Indeed, as soon as there is a linear

map ∆lin : Rm → Z such that gese1 (∆lin) ≤ κ gese1 (∆) for all ∆ : Rm → Z, we also have

gese/orp (∆lin) ≤
Prop.4

constp ge
se
1 (∆lin) ≤ constp κ ge

se
1 (∆) ≤

Prop.3
constp κ ge

se/or
p (∆).

Proof of Propositon 3. The first two inequalities follow from the fact that, if 1 ≤ p ≤ q < ∞, then

‖ · ‖Lp(µ) ≤ ‖ · ‖Lq(µ) for any probability measure µ. The third inequality is a direct consequence of

the general fact that sup E ≤ E sup.

Proof of Propositon 4. Fixing a linear recovery map ∆lin : Rm → Z throughout the proof, we first

claim that it is enough to establish that

georq (∆lin) ≤ Cq ge
se
q (∆lin), (log-concavity not required)(3)

geseq (∆lin) ≤ Dq ge
se
1 (∆lin), (log-concavity is required)(4)

for some constant Cq,Dq depending only on q. Indeed, for 1 ≤ p ≤ q, we would then deduce that

gese/orp (∆lin) ≤
Prop.3

georq (∆lin) ≤
(3)

Cq ge
se
q (∆lin) ≤

(4)
Cq Dq ge

se
1 (∆lin) ≤

Prop.3
Cq Dq ge

se/or
p (∆lin).

In order to establish (3) and (4), we now remark that the linearity of ∆lin allows us to write

(5) geseq (∆lin)
q = sup

f∈K
E

[∥∥(Q−∆linΛ)f −∆line
∥∥q
Z

]
.

From here, we shall lower-bound this quantity using the symmetry of the model set K by noting

that, for a fixed f belonging to K, since −f also belongs to K,

geseq (∆lin)
q ≥ max

±
E

[∥∥(Q−∆linΛ)(±f)−∆line
∥∥q
Z

]

≥ 1

2
E

[∥∥(Q−∆linΛ)f −∆line
∥∥q
Z
+
∥∥− (Q−∆linΛ)f −∆line

∥∥q
Z

]
.

Using the fact that aq + bq ≥ (a+ b)q/2q−1 for a, b ≥ 0, it follows that

geseq (∆lin)
q ≥ 1

2q
E

[(∥∥(Q−∆linΛ)f −∆line
∥∥
Z
+
∥∥− (Q−∆linΛ)f −∆line

∥∥
Z

)q]

≥ 1

2q
E

[
max

{
2
∥∥(Q−∆linΛ)f

∥∥
Z
, 2
∥∥∆line

∥∥
Z

}q]
= E

[
χq
f

]
,

where, for later convenience, we have introduced the random variable

χf = max
{∥∥(Q−∆linΛ)f

∥∥
Z
,
∥∥∆line

∥∥
Z

}
.

6



S. Foucart, G. Paouris

Taking the supremum over f ∈ K now yields the lower bound

geseq (∆lin)
q ≥ sup

f∈K
E

[
χq
f

]
.

Turning our attention to georq (∆lin), the linearity of ∆lin, a triangle inequality, and the fact that

(a+ b)q ≤ 2q−1(aq + bq) for a, b ≥ 0 allow us to write

georq (∆lin)
q = E

[
sup
f∈K

∥∥(Q−∆linΛ)f −∆line
∥∥q
Z

]

≤ E

[
sup
f∈K

2q−1
(∥∥(Q−∆linΛ)f

∥∥q
Z
+
∥∥∆line

∥∥q
Z

)]

= 2q−1

(
sup
f∈K

∥∥(Q−∆linΛ)f
∥∥q
Z
+ E

[∥∥∆line
∥∥q
Z

])
.(6)

For any f ∈ K, we have
∥∥(Q−∆linΛ)f

∥∥
Z
≤ χf , hence

∥∥(Q−∆linΛ)f
∥∥q
Z
≤ E

[
χq
f

]
≤ geseq (∆lin)

q, as

well as
∥∥∆line

∥∥
Z
≤ χf , hence E

[∥∥∆line
∥∥q
Z

]
≤ E

[
χq
f

]
≤ geseq (∆lin)

q. This implies that

georq (∆lin)
q ≤ 2qgeseq (∆lin)

q,

which is the required inequality (3) with Cq = 2 (independent of q).

For the inequality (4), we come back to (5), use a triangle inequality and (a+ b)q ≤ 2q−1(aq + bq)

for a, b ≥ 0 to arrive at

geseq (∆lin)
q ≤ sup

f∈K
E

[
2q−1

(∥∥(Q−∆linΛ)f
∥∥q
Z
+
∥∥∆line

∥∥q
Z

)]

= 2q−1

(
sup
f∈K

∥∥(Q−∆linΛ)f
∥∥q
Z
+ E

[∥∥∆line
∥∥q
Z

])

≤ 2q−1

(
sup
f∈K

∥∥(Q−∆linΛ)f
∥∥q
Z
+ (C q)qE

[∥∥∆line
∥∥
Z

]q)
,

where the last step relied on Borell’s lemma (Lemma 1) for log-concave random vectors. As before,

for any f ∈ K, we have
∥∥(Q −∆linΛ)f

∥∥
Z
≤ χf , hence

∥∥(Q −∆linΛ)f
∥∥
Z
≤ E

[
χf

]
≤ gese1 (∆lin), as

well as
∥∥∆line

∥∥
Z
≤ χf , hence E

[∥∥∆line
∥∥
Z

]
≤ E

[
χf

]
≤ gese1 (∆lin). This implies that

geseq (∆lin)
q ≤ 2q−1

(
gese1 (∆lin)

q + (C q)qgese1 (∆lin)
q
)
≤ 2q(C q)qgese1 (∆lin)

q,

which is the required inequality (4) with Dq = 2C q.

2.3 Optimal estimation with deterministic observation errors

Throughout this subsection, it is assumed that the quantity of interest is a linear functional, in

short that Q ∈ F ∗. As for the model set K, it is assumed to be symmetric and convex, so it can be

7



Near-optimal estimation of linear functionals with log-concave observation errors

thought of in terms of its Minkowski functional (aka gauge function)

|f |K = inf{t > 0 : f ∈ tK}, f ∈ F,

recalling that | · |K : F → R+ ∪ {∞} is a seminorm in the present situation. Moreover, we take

notice of the equivalence f ∈ K ⇔ |f |K ≤ 1 when the set K is furthermore closed.

In the accurate setting (where there is no observation errors), we have already pointed out that

“linear recovery maps are optimal”. This remains true in the presence of observation errors modeled

deterministically via the assumption that e ∈ E for some symmetric and convex subset E of Rm.

The relevant example in this note is E = {e ∈ R
m : ‖e‖2 ≤ σ}, for which the Minkowski functional

is given by |e|E = ‖e‖2/σ, e ∈ R
m. The precise optimality result reads as follows (it is somewhat

present in [4], but for a specific model set based on approximability).

Proposition 5. Let Q : F → R be a linear functional. If the sets K ⊆ F and E ⊆ R
m are

symmetric, convex, and closed, then

inf
∆:Rm→R

sup
f∈K, e∈E

∣∣Q(f)−∆(Λf + e)
∣∣ = min

∆lin:Rm→R linear
sup

f∈K, e∈E

∣∣Q(f)−∆lin(Λf + e)
∣∣

= min
a∈Rm

{
sup
f∈K

∣∣∣∣
(
Q−

m∑

i=1

aiλi

)
f

∣∣∣∣+ sup
e∈E

∣∣∣〈a, e〉
∣∣∣
}

(7)

= sup
h∈F\{0}

|Q(h)|
max{|h|K, |Λh|E}

.(8)

Proof. The trick is a simple reduction to the accurate setting. Indeed, for any ∆ : Rm → R, we

interpret the global worst-case error as

sup
f∈K, e∈E

|Q(f)−∆(Λf + e)| = sup
(f,e)∈K̃

∣∣Q̃
(
(f, e)

)
−∆

(
Λ̃
(
(f, e)

))∣∣,

where the extended quantity of interest Q̃ : F × R
m → R is the linear functional defined by

Q̃
(
(f, e)

)
= Q(f) and the extended observation map Λ̃ : F × R

m → R
m is the linear map defined

by Λ̃
(
(f, e)

)
= Λf + e. Since the extended model set K̃ = K × E is symmetric and convex, the

classical result of Smolyak about optimality of linear maps applies and justifies the first equality.

The second equality is obtained by writing any linear recovery map from R
m to R as ∆lin = 〈a, ·〉

for some a ∈ R
m and by minimizing over a (with some simple manipulations in the mix). The third

inequality is also a consequence of Smolyak’s result, since it contains (see e.g. [5, Theorem 9.3])

the fact that the minimal global worst-case error equals the so-called null error, which is

sup
(f,e)∈K̃, (f,e)∈ker Λ̃

∣∣Q̃
(
(f, e)

)∣∣ = sup
f∈K, e∈E,Λf+e=0

∣∣Q(f)
∣∣ = sup

f∈K,Λf∈E

∣∣Q(f)
∣∣.

It remains to notice that [f ∈ K and Λf ∈ E ] ⇔ max{|f |K, |Λf |E} ≤ 1 and exploit homogeneity to

arrive at the expression announced in (8).

8
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Remark. Making sense of (8) implicitly requires that max{|h|K, |Λh|E} > 0 whenever h ∈ F \{0}.
This is actually a common assumption in Optimal Recovery, at least when E is a ball relative to

some norm ‖ · ‖ on R
m. If this assumption was violated, any recovery map ∆ : Rm → R would have

infinite global worst-case errors, so the problem would not even be contemplated in the first place!

Indeed, suppose that we could find a nonzero h ∈ F such that ‖Λh‖ = 0 and |h|K = 0, meaning

that Λh = 0 and that (1/t)h ∈ K for all t > 0. Then, fixing f0 ∈ K and defining fx = f0 + xh

for any x > 0, we notice that Λfx = Λf0 and that fx ∈ K—this is because (1 − ε)f0 + ε(x/ε)h

belongs to K as a convex combination of elements from K, and hence its limit when ε → 0+, i.e.,

f0 + xh = fx, belongs to K. In this case, the global worst-case error geor1 (∆), say, cannot be finite

independently of Q ∈ F ∗, since

geor1 (∆) ≥ E

[
sup
x>0

∣∣Q(fx)−∆(Λfx + e)
∣∣
]
= E

[
sup
x>0

∣∣Q(f0) + xQ(h)−∆(Λf0 + e)
∣∣
]

≥ E

[
sup
x>0

(
x|Q(h)| −

∣∣Q(f0)−∆(Λf0 + e)
∣∣
)]

= sup
x>0

x|Q(h)| − E

[∣∣Q(f0)−∆(Λf0 + e)
∣∣
]
.

The latter is certainly infinite for those linear functionals Q ∈ F ∗ such that Q(h) > 0.

3 The One-Dimensional Lower Bound

This section is devoted to the simplest setting of all, namely: F = R, f ∈ K = [−τ, τ ], m = 1,

y = cf + ξ ∈ R with a constant c ∈ R\{0} and a mean-zero random variable ξ ∈ R, and Q(f) = bf

with b ∈ R. The global recovery errors of a map ∆ : R → R then reduce, for 1 ≤ p < ∞, to

gesep (∆)p = sup
f∈[−τ,τ ]

E

[∣∣bf −∆(cf + ξ)
∣∣p
]
,(9)

georp (∆)p = E

[
sup

f∈[−τ,τ ]

∣∣bf −∆(cf + ξ)
∣∣p
]
.(10)

When ξ is log-concave, we shall show that “linear recovery maps are near-optimal”: for geor, this

is expected since we intend to establish this fact in a more general setting; for gese, it may seem

more surprising. The result for ge
se/or
p with p ≥ 1 follows from the result for gesep with p = 1, as

explained in Subsection 2.2, and the latter is a consequence of an upper bound for the infimum of

gese1 (∆lin) when ∆lin : R → R is a linear map (Lemma 6 below) and of a lower bound for gese1 (∆)

when ∆ : R → R is an arbitrary map (Lemma 7 below). This lower bound is in fact an essential

step towards the main result.

Lemma 6. In the simplest setting, if ξ is a mean-zero random variable with variance σ2, then

inf
∆lin:R→R linear

gese1 (∆lin) ≤ inf
∆lin:R→R linear

gese2 (∆lin) =
|b|τσ√

σ2 + c2τ2
≍ |b|

|c| min{σ, |c|τ}.

9
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Proof. The leftmost inequality follows from gese1 (∆lin) ≤ gese2 (∆lin), see Proposition 3. The right-

most comparison follows from the two-sided estimate max{σ, |c|τ} ≤
√
σ2 + c2τ2 ≤

√
2max{σ, |c|τ}

and some straightforward manipulations. For the middle equality, representing the action of ∆lin

as the multiplication by some a ∈ R, we have

gese2 (∆lin)
2 = sup

f∈[−τ,τ ]
E

[(
(b− ac)f − aξ)

)2]
= sup

f∈[−τ,τ ]
E

[
((b− ac)f)2 − 2(b− ac)faξ + (aξ)2

]

= sup
f∈[−τ,τ ]

[
((b− ac)f)2 + a2σ2

]
= (b− ac)2τ2 + a2σ2 = (c2τ2 + σ2)a2 − 2bcτ2a+ b2τ2

=

(√
σ2 + c2τ2a− bcτ2√

σ2 + c2τ2

)2

− b2c2τ4

σ2 + c2τ2
+ b2τ2 ≥ b2τ2σ2

σ2 + c2τ2
,

with equality possible for the choice a = bcτ2/(σ2 + c2τ2). This justifies the value of the infimum

of gese2 (∆lin) over all linear maps ∆lin : R → R.

Lemma 7. In the simplest setting, if ξ is a mean-zero log-concave random variable with variance σ2,

then, for any ∆ : R → R,

geor1 (∆) ≥ gese1 (∆) ≥ α
|b|
|c| min{σ, |c|τ},

where the constant α can be taken as α = 1/(100
√
3e3).

Proof. Since geor1 (∆) ≥ gese1 (∆) in general, see Proposition 3, it suffices to lower-bound gese1 (∆),

which takes the form

gese1 (∆) = sup
f∈[−τ,τ ]

∫ ∞

−∞
|bf −∆(cf + x)|π(x)dx,

where π is the probability density function of the log-concave distribution. According to Lemma 2,

it satisfies π(x) ≥ δ/σ whenever |x| ≤ γσ, which implies that

gese1 (∆) ≥ sup
f∈[−τ,τ ]

δ

σ

∫ γσ

−γσ
|bf −∆(cf + x)|dx.

Let us introduce the quantity ν = γmin{σ, |c|τ}/(2|c|), so that |c|ν ≤ γσ/2 and ν ≤ γτ/2 ≤ τ ,

ensuring that ±ν ∈ [−τ, τ ]. We obtain

gese1 (∆) ≥ δ

σ

∫ γσ

−γσ
| ± bν −∆(±cν + x)|dx =

δ

σ

∫ γσ±cν

−γσ±cν
| ± bν −∆(y)|dy

≥ δ

σ

∫ γσ−|c|ν

−γσ+|c|ν
| ± bν −∆(y)|dy ≥ δ

σ

∫ γσ/2

−γσ/2
| ± bν −∆(y)|dy.

In turn, we deduce that

gese1 (∆) ≥ δ

σ

∫ γσ/2

−γσ/2

(
1

2
|bν −∆(y)|+ 1

2
| − bν −∆(y)|

)
dy ≥ δ

σ

∫ γσ/2

−γσ/2
|b|νdy =

δ

σ
γσ|b|ν

=
δγ2

2

|b|
|c| min{σ, |c|τ},

which is the desired inequality with α = δγ2/2 = 1/(100
√
3e3).

10
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We finish this section by emphasizing that near-optimality of linear recovery maps does not apply

to all types of distributions for the random observation errors, even in the simplest setting. Namely,

we prove that a Rademacher distribution scaled to have variance σ2 leads to near-optimality for

gese2 , say, if and only if σ ≤ |c|τ , so near-optimality of linear recovery maps is invalid for large noise

level. This is due to inf∆lin
gese2 (∆lin) ≍ (|b|/|c|)min{σ, c|τ |} (Lemma 6) and to the result below.

Proposition 8. In the simplest setting, if ξ is the mean-zero random variable with variance σ2

defined by P[ξ = −σ] = P[ξ = +σ] = 1/2, then

inf
∆:R→R

ge
se/or
2 (∆)





≥ |b|
|c|

σ√
2

if σ ≤ |c|τ,

= 0 if σ > |c|τ.

Proof. Case 1: σ ≤ |c|τ . Since geor2 (∆) ≥ gese2 (∆) in general, see Proposition 3, we only need to

establish the lower bound on gese2 (∆) for an arbitrary ∆ : R → R. Here,

gese2 (∆)2 = sup
f∈[−τ,τ ]

(
1

2

∣∣bf −∆(cf + σ)
∣∣2 + 1

2

∣∣bf −∆(cf − σ)
∣∣2
)
.

Fixing some y in the interval [−|c|τ + σ, |c|τ − σ], which is nonempty in this case, we consider

f− = (y−σ)/c ∈ [−τ, τ ], so that cf−+σ = y and let f+ = (y+σ)/c ∈ [−τ, τ ], so that cf+−σ = y.

We obtain

gese2 (∆)2 ≥ max
±

1

2

∣∣bf± −∆(y)
∣∣2 ≥ 1

2

(
1

2

∣∣bf− −∆(y)
∣∣2 + 1

2

∣∣bf+ −∆(y)
∣∣2
)

≥ 1

8

(∣∣bf− −∆(y)
∣∣+
∣∣bf+ −∆(y)

∣∣
)2

≥ 1

8

∣∣b(f− − f+)
∣∣2

=
b2σ2

2c2
.

Case 2: σ > |c|τ . In view of gese2 (∆) ≤ geor2 (∆) again, we only need to establish that geor2 (∆) = 0

for an appropriately chosen recovery map ∆ : R → R. This map is defined by

∆(y) =





b

c
(y − σ) if y > 0,

b

c
(y + σ) if y < 0.

Keeping in mind that

geor2 (∆) =
1

2
sup

f∈[−τ,τ ]

∣∣bf −∆(cf + σ)
∣∣2 + 1

2
sup

f∈[−τ,τ ]

∣∣bf −∆(cf − σ)
∣∣2,

we notice that, for any f ∈ [−τ, τ ], we have cf + σ > 0 and cf − σ < 0, so that ∆(cf + σ) = bf

and ∆(cf − σ) = bf . This immediately implies that geor2 (∆) = 0.

11
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4 The Main Result

This section finalizes the full justification of this note’s message, namely that “linear recovery maps

are near-optimal” for the estimation of a linear functional with log-concave observation errors

relatively to the unconventional global recovery error geor. The result is formally stated below.

Theorem 9. Let Q : F → R be a linear functional. If the model set K ⊆ F is symmetric, convex,

and closed and if e ∈ R
m is a mean-zero log-concave random vector with invertible covariance

matrix, then there exists a linear map ∆lin : R
m → R such that, for any q ∈ (1,∞) and any

p ∈ [1, q],

georp (∆lin) ≤ κq × inf
∆:Rm→R

georp (∆)

for some constant κq depending only on q.

In what remains, we may and do assume that the invertible covariance matrix is of the form

E
[
ee⊤

]
= σ2Idm. Indeed, as a positive definite matrix, it can be written as E

[
ee⊤
]
= MM⊤ for

some invertible matrix M ∈ R
m×m. Then we can convert the global errors of a recovery map

∆ : Rm → R, given the observation map Λ : F → R
m, into the global errors of the recovery map

∆̃ = ∆◦M : Rm → R, given the observation map Λ̃ = M−1 ◦Λ : F → R
m, by virtue of the identity

∆(Λf + e) = ∆̃(Λ̃f + ẽ). Here, ẽ := M−1e ∈ R
m is still a mean-zero log-concave random vector

(log-concavity is preserved under linear transformations) and, importantly, its covariance matrix is

E
[
ẽẽ⊤

]
= M−1

E
[
ee⊤

]
M−⊤ = M−1(MM⊤)M−⊤ = Idm. Thus, the near-optimality result for the

original problem reduces to the near-optimality result for the converted problem, whose covariance

matrix is (a multiple of) the identity. For p = 1, the latter is a consequence of an upper bound for

the infimum of geor1 (∆lin) when ∆lin : Rm → R is a linear map (Lemma 10 below) and of a lower

bound for geor1 (∆) when ∆ : Rm → R is an arbitrary map (Lemma 11 below). For p ≥ 1, it follows

from Propositions 3 and 4.

Lemma 10. Let Q : F → R be a linear functional. If the model set K ⊆ F is symmetric, convex,

and closed and if e ∈ R
m is a mean-zero random vector with covariance matrix E

[
ee⊤
]
= σ2Idm,

then there exists a linear map ∆lin : Rm → R such that

geor1 (∆lin) ≤ sup
h∈F\{0}

|Q(h)|
max{‖Λh‖2/σ, |h|K}

.

Proof. Given a linear map ∆lin : Rm → R, according to (6), we have

geor1 (∆lin) ≤ sup
f∈K

∣∣(Q−∆linΛ)f
∣∣+ E

[
|∆line|

]
.

12
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In view of E[|∆line|] ≤ (E[|∆line|2])1/2 and writing ∆lin = 〈a, ·〉 for some a ∈ R
m, we arrive at

geor1 (∆lin) ≤ sup
f∈K

∣∣∣∣
(
Q−

m∑

i=1

aiλi

)
f

∣∣∣∣+
(
E
[
〈a, e〉2

])1/2

= sup
f∈K

∣∣∣∣
(
Q−

m∑

i=1

aiλi

)
f

∣∣∣∣+ σ‖a‖2.

The minimum over a ∈ R
m of the latter coincides with the quantity (7) appearing in Proposition 5

with E = {e ∈ R
m : ‖e‖2 ≤ σ}, i.e., with the minimal global worst-case error over K and E . As

such, it also equals (8). All in all, we have found a linear map ∆lin : Rm → R such that

geor1 (∆lin) ≤ sup
h∈F\{0}

|Q(h)|
max{‖Λh‖2/σ, |h|K}

,

as desired.

Lemma 11. Let Q : F → R be a linear functional. If the model set K ⊆ F is symmetric,

convex, and closed and if e ∈ R
m is a mean-zero log-concave random vector with covariance matrix

E
[
ee⊤

]
= σ2Idm, then, for any recovery map ∆ : Rm → R,

geor1 (∆) ≥ κ1 × sup
h∈F\{0}

|Q(h)|
max{‖Λh‖2/σ, |h|K}

,

where the constant κ1 can be taken as κ1 = 1/(100
√
3e3).

Proof. We start by recalling the expression

geor1 (∆) = E

[
sup
f∈K

∣∣Q(f)−∆(Λf + e)
∣∣
]
.

We decompose f ∈ F as a (unnormalized) direction h ∈ F \ {0} and a magnitude t ∈ R, so

that f = th. We set aside the cases Λh = 0 and |h|K = 0 for now. Noticing the equivalence

f ∈ K ⇔ |t| ≤ 1/|h|K, we can write

geor1 (∆) = E

[
sup

h∈F\{0}
sup

|t|≤1/|h|K

∣∣Q(h)t−∆((Λh)t+ e)
∣∣
]

= E

[
sup

h∈F\{0}
sup

|t|≤1/|h|K

∣∣∣Q(h)t−∆
( Λh

‖Λh‖2
(‖Λh‖2t+ ξ) + e⊥

)∣∣∣
]
,(11)

after having decomposed e ∈ R
m as e = ξ Λh/‖Λh‖2 + e⊥, where ξ = 〈Λh/‖Λh‖2, e〉 ∈ R is a mean-

zero log-concave random variable with variance σ2 and e⊥ ∈ R
m is a random vector orthogonal

to Λh. From E[suph∈F\{0}(·)] ≥ suph∈F\{0} E[(·)], we obtain geor1 (∆) ≥ suph∈F\{0} Eh, where

Eh = Ee⊥

[
Eξ

[
sup

|t|≤1/|h|K

∣∣Q(h)t− ∆̃e⊥

(
‖Λh‖2t+ ξ

)∣∣
∣∣∣ e⊥

]]
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for some appropriately defined map ∆̃e⊥ : R → R. Fixing e⊥, the inner expectation can be

interpreted as the one-dimensional recovery error geor1 (∆̃e⊥) given in (10). Thus, according to

Lemma 7, it can be lower-bounded as

geor1 (∆̃e⊥) ≥ α
|Q(h)|
‖Λh‖2

min
{
σ,

‖Λh‖2
|h|K

}
= α

|Q(h)|
max{‖Λh‖2/σ, |h|K}

.

This lower bound being independent of e⊥, it remains a lower bound for Eh itself. We can therefore

conclude that

geor1 (∆) ≥ α sup
h∈F\{0}

|Q(h)|
max{‖Λh‖2/σ, |h|K}

.

This is, in the generic case, the desired inequality with κ1 equal to the constant α from Lemma 7.

It remains to deal with the set-aside cases. Consider first the case Λh = 0, which enforces |h|K > 0.

The identity (11) is then replaced by

geor1 (∆) = E

[
sup

h∈F\{0}
sup

|t|≤1/|h|K

∣∣Q(h)t−∆e
∣∣
]
≥ sup

h∈F\{0}
sup

|t|≤1/|h|K

|Q(h)||t| = sup
h∈F\{0}

|Q(h)|
|h|K

,

where the above inequality used the fact that, whenever h ∈ F \ {0} and |t| ≤ 1/|h|K, the double-

supremum is at least max± |Q(±h)t−∆e| = |Q(h)||t|+|∆e| ≥ |Q(h)||t|. Thus, the desired inequality

is even valid with κ1 = 1 in this situation. Consider next the case |h|K = 0, which implies that

f = th ∈ K for any t ∈ R and also enforces Λh 6= 0. Then the lower bound geor1 (∆) ≥ suph∈F\{0} Eh

still holds with any τ > 0 replacing 1/|h|K, and in particular with τ > 0 large enough so that

min{σ, ‖Λh‖2 τ} = σ. Thus, resorting to Lemma 7 yields Eh ≥ α (|Q(h)|/‖Λh‖2)σ, which reduces

to the desired inequality with κ1 = α in this situation.

Remark. As previously mentioned, the previous argument is easily adapted to retrieve the result

of [3] for Gaussian observation errors, which essentially boils down to establishing the above lower

bound for gese1 (∆) instead of geor1 (∆). We would first express gese1 (∆) as in (11) but with expectation

and suprema interchanged. Then, the benefit of the Gaussian case lies in the independence of ξ

and e⊥, so that we can write

gese1 (∆) = sup
h∈F

sup
|t|≤1/|h|K

Eξ

[
Ee⊥

[∣∣Q(h)t− ∆̃e⊥

(
‖Λh‖2t+ ξ

)∣∣
]]

≥ sup
h∈F

sup
|t|≤1/|h|K

Eξ

[∣∣∣Q(h)t− Ee⊥

[
∆̃e⊥

(
‖Λh‖2t+ ξ

)]∣∣∣
]

and invoke the one-dimensional lower bound on gese1 (∆̂) from Lemma 7 for the map ∆̂ = Ee⊥

[
∆̃e⊥(·)

]
.

Remark. In closing, we point out that our arguments do not just translate into an existence result.

Indeed, the proof of Lemma 10 reveals that a near-optimal recovery map is provided by a recovery

map which is genuinely optimal, albeit with respect to observation errors modeled deterministically

via E = {e ∈ R
m : ‖e‖2 ≤ σ}. The latter has the form of a linear functional 〈a♯, ·〉, where a♯ ∈ R

m

is a minimizer of the convex program (7). This program is solvable in many practical situations,
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including, as described in [4], the approximability model sets defined for some finite-dimensional

linear subspace V of F and some parameter ε > 0 by

K = {f ∈ F : distF (f,V) ≤ ε}.

We remark that this model set is symmetric, convex, and closed, but not bounded.
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