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Abstra
tWe prove inequalities about the quermassintegrals Vk(K) of a 
onvexbody K in Rn (here, Vk(K) is the mixed volume V ((K; k); (Bn; n � k))where Bn is the Eu
lidean unit ball).(i) The inequalityVk(K + L)Vk�1(K + L) � Vk(K)Vk�1(K) + Vk(L)Vk�1(L)is true for every pair of 
onvex bodies K and L in Rn if and only if k = 2 ork = 1.ii) Let 0 � k � p � n. Then, for every p-dimensional subspa
e E of Rn ,Vn�k(K)jKj � 1�n�p+kn�p � Vp�k(PEK)jPEKj :where PEK denotes the orthogonal proje
tion of K onto E. The proof isbased on a sharp upper estimate for the volume ratio jKj=jLj in terms ofVn�k(K)=Vn�k(L), whenever L and K are two 
onvex bodies in Rn su
hthat K � L.1 Introdu
tionLet Kn denote the 
lass of all non-empty 
ompa
t 
onvex subsets of Rn . IfK 2 Kn has non-empty interior, we will say that K is a 
onvex body. We denoteby jKj the volume of a 
onvex body K in Rn . Generally there is no ambiguity, butwhen A is a 
onvex body in a p-dimensional subspa
e of Rn , 1 � p � n � 1, thenjAj means its p-dimensional volume.In this paper we prove some inequalities about mixed volumes of 
onvex bodies.Mixed volumes are introdu
ed by a 
lassi
al theorem of Minkowski whi
h des
ribesthe way volume behaves with respe
t to the operations of addition and multipli
a-tion of 
onvex bodies by nonnegative reals: If K1; : : : ;Km 2 Kn, m 2 N, then the1



volume of t1K1 + : : : + tmKm is a homogeneous polynomial of degree n in ti � 0(see [BZ℄, [S
℄). That is,��t1K1 + : : :+ tmKm�� = X1�i1;:::;in�mV (Ki1 ; : : : ;Kin)ti1 : : : tin ;where the 
oeÆ
ients V (Ki1 ; : : : ;Kin) are 
hosen to be invariant under permuta-tions of their arguments. The 
oeÆ
ient V (Ki1 ; : : : ;Kin) is 
alled the mixed volumeof the n-tuple (Ki1 ; : : : ;Kin).Steiner's formula is a spe
ial 
ase of Minkowski's theorem. Let Bn denote theEu
lidean unit ball in Rn . Then, the volume of K + tBn, t > 0, 
an be expandedas a polynomial in t: jK + tBnj = nXk=0�nk�Vn�k(K)tk;where Vn�k(K) := V ((K;n� k); (Bn; k)) is the k-th quermassintegral of K.The Aleksandrov-Fen
hel inequality states that if K;L;K3; : : : ;Kn 2 Kn, thenV (K;L;K3; : : : ;Kn)2 � V (K;K;K3; : : : ;Kn)V (L;L;K3; : : : ;Kn):In parti
ular, this implies that the sequen
e (V0(K); : : : ; Vn(K)) is log-
on
ave. A
onsequen
e of the Aleksandrov-Fen
hel inequality is the Brunn-Minkowski inequal-ity as well as the following generalization for the quermassintegrals:(1) Vk(K + L)1=k � Vk(K)1=k + Vk(L)1=k;for every k = 1; : : : ; n.There is a 
lose relationship between inequalities about quermassintegrals of
onvex bodies and inequalities about symmetri
 fun
tions of positive reals or de-terminants of symmetri
 matri
es. For example, an inequality of Bergstrom assertsthat if A and B are symmetri
 positive de�nite matri
es and Ai; Bi denote thesubmatri
es obtained by deleting the i-th row and 
olumn, thendet(A+B)det(Ai +Bi) � det(A)det(Ai) + det(B)det(Bi) :Milman asked if there is a version of Bergstrom's inequality in the theory of mixedvolumes. This question 
an be formulated as follows: For whi
h values of k is ittrue that(2) Vk(K + L)Vk�1(K + L) � Vk(K)Vk�1(K) + Vk(L)Vk�1(L)for every pair of 
onvex bodies K and L in Rn? If true for all k = 1; : : : ; n, thiswould formally imply (1). 2



The same question (
ase k = n) was asked by Dembo, Cover and Thomas in[DCT℄, where the inequality jK + Ljj�(K + L)j � jKjj�Kj + jLjj�Ljis proposed as the dual of the Fisher information inequalityJ(X + Y )�1 � J(X)�1 + J(Y )�1:Here, j�Aj denotes the surfa
e area of A, while J(X) is the Fisher information of therandom ve
tor X in Rn . It is worth mentioning that (2) holds true for every k whenL = rBn (this is a simple 
onsequen
e of the Aleksandrov-Fen
hel inequality; see[GHP℄). As we shall see in Se
tion 2, the answer to the above question is negativein general. In fa
t, the only values of k for whi
h (2) is always true are k = 2 andk = 1.Theorem 1.1 Let 1 � k � n. Then, the inequalityVk(K + L)Vk�1(K + L) � Vk(K)Vk�1(K) + Vk(L)Vk�1(L)is true for every pair of 
onvex bodies K and L in Rn if and only if k = 2 or k = 1.It is an interesting question to des
ribe the 
lass L of 
ompa
t 
onvex subsetsL of Rn for whi
h (2) holds true for every 
onvex body K. In parti
ular, if linesegments belonged to this 
lass, then taking k = n and L = [��; �℄ where � 2 Sn�1we would have(3) j�(P�?K)jjP�?Kj � j�KjjKjfor every 
onvex body K in Rn , where P�? denotes the orthogonal proje
tion onto�?. In [GHP℄ it was 
onje
tured that this inequality is 
orre
t. Moreover, it wasproved that(4) j�(PEK)jjPEKj � 2(n� 1)n j�KjjKj ;for every 
onvex body K and every (n� 1)-dimensional subspa
e E of Rn .In Se
tion 4 we show that (3) is not true; this gives a negative answer to thequestion of Dembo, Cover and Thomas (alternative to the one in Theorem 1.1). Infa
t, the 
onstant in (4) is optimal. Moreover, we present a generalization of thislast inequality to subspa
es of arbitrary dimension and quermassintegrals of anyorder.Theorem 1.2 Let K be a 
onvex body in Rn and let 0 � k � p � n. Then forevery p-dimensional subspa
e E of Rn , if PEK denotes the orthogonal proje
tionof K onto E, we haveVn�k(K)jKj � 1�n�p+kn�p � Vp�k(PEK)jPEKj = 1Qki=1 �1 + n�pi � Vp�k(PEK)jPEKj :3



We show by examples that the 
onstants in Theorem 1.2 are sharp, althoughthere are no 
ases of equality. The proof of Theorem 1.2 is based on an inequalitywhi
h estimates the volume ratio jKj=jLj in terms of Vn�k(K)=Vn�k(L), wheneverL and K are two 
onvex bodies in Rn su
h that K � L.Theorem 1.3 Let L and K be two 
onvex bodies in Rn su
h that K � L. Then,for 1 � k < n we have jKjjLj � �n;k�Vn�k(K)Vn�k(L) �;where �n;k : [0; 1℄ 7! [0; 1℄ is de�ned by�n;k(t) = �nk�Z t0 �1� s 1n�k �kds:The proof of Theorem 1.3, as well as examples showing that it is optimal, willbe given in Se
tion 3.Basi
 referen
es on 
lassi
al 
onvexity and the theory of mixed volumes are thebooks [BZ℄ and [S
℄. The reader may wish to 
onsult [BB℄ for numeri
al and matrixinequalities related to the questions dis
ussed in this work.2 Mixed volumes of Minkowski sumsIn this se
tion we prove Theorem 1.1. Our �rst lemma is a 
onsequen
e of theAleksandrov-Fen
hel inequality. Inequalities of this type may be found in [S
,Se
tion 6.4℄, but we reprodu
e a proof for 
ompleteness (the argument below is dueto R. S
hneider).Lemma 2.1 Let C = (K3; : : : ;Kn) be an (n� 2)-tuple of Kj 2 Kn. If A;B 2 Kn,we denote V (A;B; C) by V (A;B). Then, for all A;B;C 2 Kn we have(V (B;A)V (C;A) � V (B;C)V (A;A))2 � [V (B;A)2 � V (A;A)V (B;B)℄�[V (C;A)2 � V (A;A)V (C;C)℄: 2Proof: By the Aleksandrov-Fen
hel inequality, for all t; s � 0 we haveV (B + tA;C + sA)2 � V (B + tA;B + tA)V (C + sA;C + sA) � 0and V (sB + tC;A)2 � V (sB + tC; sB + tC)V (A;A) � 0:Using the linearity of mixed volumes, from the �rst inequality we arrive at0 � g(t; s) + t2 �V (C;A)2 � V (A;A)V (C;C)�+s2 �V (B;A)2 � V (A;A)V (B;B)�+2ts (V (B;C)V (A;A) � V (B;A)V (C;A)) ;4



where g is a linear fun
tion of t and s. It follows that the quadrati
 term is non-negative and hen
e, either V (B;C)V (A;A) > V (B;A)V (C;A) or its dis
riminant(V (B;A)V (C;A) � V (B;C)V (A;A))2 � [V (B;A)2 � V (A;A)V (B;B)℄�[V (C;A)2 � V (A;A)V (C;C)℄is non-positive.Working in the same way with the se
ond inequality, we arrive at0 � t2(V (C;A)2 � V (A;A)V (C;C)) + s2(V (B;A)2 � V (A;A)V (B;B))+2ts(V (B;A)V (C;A) � V (B;C)V (A;A)):This shows that if V (B;C)V (A;A) > V (B;A)V (C;A) then the dis
riminant ofthis se
ond quadrati
 form (whi
h is the same as before) is non-positive. Thus, thelemma is proved. 2From the previous lemma, we dedu
e the following inequality.Proposition 2.1 Let C = (K3; : : : ;Kn) be an (n � 2)-tuple of Kj 2 Kn. In thenotation of Lemma 2.1, for all A;B;C 2 Kn we haveV (B + C;B + C)V (B + C;A) � V (B;B)V (B;A) + V (C;C)V (C;A) :Proof: From Lemma 2.1 and the arithmeti
-geometri
 means inequality we getV (B;A)V (C;A) � V (B;C)V (A;A)� �V (B;A)2 � V (A;A)V (B;B)�1=2�V (C;A)2 � V (A;A)V (C;C)�1=2� 12 � V (C;A)V (B;A)�V (B;A)2 � V (A;A)V (B;B)�+12 � V (B;A)V (C;A) �V (C;A)2 � V (A;A)V (C;C)�:Thus 2V (B;C) � V (C;A)V (B;A) � V (B;B) + V (B;A)V (C;A) � V (C;C) :From this and the linearity of mixed volumes, we haveV (B + C;B + C) = V (B;B) + 2V (B;C) + V (C;C)� V (B;B)�1 + V (C;A)V (B;A)�+ V (C;C)�1 + V (B;A)V (C;A)� ;whi
h is the inequalityV (B + C;B + C)V (B + C;A) � V (B;B)V (B;A) + V (C;C)V (C;A) : 2Setting B = K, C = L and A = K3 = : : : = Kn = Bn, we immediately get thefollowing. 5



Proposition 2.2 Let L and K be two 
onvex bodies in Rn . Then,V2(K + L)V1(K + L) � V2(K)V1(K) + V2(L)V1(L) : 2We will next show that if 3 � k � n, then the inequality(�) Vk(K + L)Vk�1(K + L) � Vk(K)Vk�1(K) + Vk(L)Vk�1(L)is not true for all pairs of 
onvex bodies L and K in Rn .Our proof will make use of tangential bodies. Let 0 � p � n � 1. If K andM are 
onvex bodies in Rn and M � K, then K is 
alled a p-tangential body ofM if every (n � p � 1)-extreme support plane of K is a support plane of M (werefer to [S
, Se
tion 2.2℄ for more details). It is easily seen that if p < q � n � 1then every p-tangential body of M is a q-tangential body of M . Tangential bodiesof balls are 
losely related to the question of equality in the Aleksandrov-Fen
helinequalities for the quermassintegrals of 
onvex bodies. A result whi
h we will needis the following.Fa
t. Let K be a 
entrally symmetri
 
onvex body in Rn and let 1 � k � n � 1.Then, we have Vk(K)2 = Vk+1(K)Vk�1(K)if and only if K is a (k � 1)-tangential body of a ball.We will also use the observation that for every 0 � p < n�2 there exist 
entrallysymmetri
 (p + 1)-tangential bodies of a ball whi
h are not p-tangential bodies ofa ball.Lemma 2.2 Let 1 � k � n. Assume that (�) holds true for all 
onvex bodies Kand L in Rn . Then, the fun
tiong(t) = Vk(K + tL)Vk�1(K + tL)is 
on
ave on [0;+1) for every K and L. In parti
ular, if 3 � k � n, for every
onvex body K in Rn we havekVk�2(K)�V 2k�1(K)� Vk(K)Vk�2(K)�� (k � 2)Vk(K)�V 2k�2(K)� Vk�1(K)Vk�3(K)�:Proof: We 
he
k thatg� t+ s2 � = Vk((K + tL)=2 + (K + sL)=2)Vk�1((K + tL)=2 + (K + sL)=2)� Vk((K + tL)=2)Vk�1((K + tL)=2) + Vk((K + sL)=2)Vk�1((K + sL)=2)= 12 Vk(K + tL)Vk�1(K + tL) + 12 Vk(K + sL)Vk�1(K + sL)= g(t) + g(s)2 :6



For the se
ond assertion, let K be a 
onvex body in Rn , n � 3. For every k � nwe set fk(t) = Vk(K + tBn). Then,fk(t+ ") = fk(t) + "kfk�1(t) +O("2);and therefore f 0k(t) = kfk�1(t):The derivative of the fun
tiongk(t) = fk(t)fk�1(t) = Vk(K + tBn)Vk�1(K + tBn)is thus given by g0k(t) = k � (k � 1)fk(t)fk�2(t)f2k�1(t) ;By the �rst part of the lemma, gk is 
on
ave. This implies that fkfk�2=f2k�1 is anin
reasing fun
tion, and di�erentiating again we see thatkf2k�1fk�2 + (k � 2)fkfk�1fk�3 � 2(k � 1)fkf2k�2 � 0on (0;+1). This 
an be equivalently written in the formkfk�2(f2k�1 � fkfk�2) � (k � 2)fk(f2k�2 � fk�1fk�3):Letting t! 0+, we 
on
lude the lemma. 2Proposition 2.3 Let 3 � k � n. There exist 
onvex bodies K and L in Rn forwhi
h (�) is not true.Proof: Assume the 
ontrary and let K be a 
entrally symmetri
 (k�2)-tangentialbody of a ball. Then, V 2k�1(K)� Vk(K)Vk�2(K) = 0 and Lemma 2.2 implies thatV 2k�2(K)� Vk�1(K)Vk�3(K) = 0. This shows that K is a (k � 3)-tangential bodyof a ball.On the other hand, for every 0 � p < n�2 there exist (p+1)-tangential bodiesof a ball whi
h are not p-tangential bodies of a ball. One 
an easily 
onstru
t su
han example by taking the 
onvex hull of the ball and 2(p+1) suitably 
hosen pointsoutside the ball. This leads to a 
ontradi
tion. 2Finally, we observe that when k = 1, then (�) redu
es to the inequality V1(A+B) � V1(A) + V1(B), whi
h holds as an equality for every pair of 
onvex bod-ies; mean width is linear with respe
t to Minkowski addition. This remark andPropositions 2.2 and 2.3 prove the following.Theorem 2.1 Let 1 � k � n. Then, the inequalityVk(K + L)Vk�1(K + L) � Vk(K)Vk�1(K) + Vk(L)Vk�1(L)is true for every pair of 
onvex bodies K and L in Rn if and only if k = 2 or k = 1.7



Remark.An interesting spe
ial 
ase is when n = 3 and k = 2. If A and w denote surfa
earea and mean width respe
tively, we obtain the inequalityA(K + L)w(K + L) � A(K)w(K) + A(L)w(L)for all 
onvex bodies K and L in R3 .3 Comparison of the mixed volumes of K and Lwhen K � LRe
all that, for every 1 � k < n, the fun
tion �n;k : [0; 1℄ 7! [0; 1℄ is de�ned by�n;k(t) = �nk�Z t0 �1� s 1n�k �kds:Proposition 3.1 Let L and K be two 
onvex bodies in Rn su
h that K � L. Let1 � k < n and write P for the orthogonal proje
tion onto an (n � k)-dimensionalsubspa
e E of Rn . Then, jKjjLj � �n;k� jPKjjPLj �:Proof: Let F be the orthogonal subspa
e of E in Rn . For notational 
onvenien
ewe may assume that Rn = Rn�k � Rk = E � F . Let L1 and K1 be the S
hwarzsymmetrals of L and K with respe
t to E. It is 
lear that jL1j = jLj, jK1j = jKj,PL1 = PL and PK1 = PK. Moreover, there is a non-negative 
on
ave fun
tionf : PL! R su
h that L1 = f(x; y) : x 2 PL; y 2 f(x) ~Bkgwhere ~Bk denotes the Eu
lidean ball of volume 1 in Rk . Therefore, if we de�neK 0 = f(x; y) : x 2 PK; y 2 f(x) ~Bkg;then it is 
lear that K1 � K 0 and thusjKj = jK1j � jK 0j:For u 2 [0;max f ℄, we de�ne �(u) = jff � ugj. Then, � : [0;max f ℄ 7! [0; jPLj℄ isnon-in
reasing and(1) either there exists t 2 [0;max f ℄ su
h that �(t) = jPKj,(2) or �(u) > jPKj for all u 2 [0;maxf ℄.8



In 
ase (1), by the de�nition of t we have jPK \ ff < tgj = j(PL nPK)\ ff � tgj.Therefore,jKj � jK 0j = ZPK fk(x)dx= ZPK\ff�tg fk(x)dx + ZPK\ff<tg fk(x)dx� ZPK\ff�tg fk(x)dx + tkjPK \ ff < tgj= ZPK\ff�tg fk(x)dx + tkj(PL n PK) \ ff � tgj� ZPK\ff�tg fk(x)dx + Z(PLnPK)\ff�tg fk(x)dx= Zff�tg fk(x)dx:It follows that if K 00 = f(x; y) : f(x) � t; y 2 f(x) ~Bkg, thenjK 0j � jK 00j:Now, jLj = ZPL fk(x)dx = k ZPL Z f(x)0 uk�1dudx = k Z max f0 �(u)uk�1duand jK 00j = k�(t) Z t0 uk�1du+ k Z max ft �(u)uk�1du= tk�(t) + k Z max ft �(u)uk�1du:By the Brunn-Minkowski inequality, � 1n�k (u) = jff � ugj 1n�k is 
on
ave and non-in
reasing on [0;max f ℄. We set � = � jPKjjPLj � 1n�k and for every u � 0 we de�ne (u) = �(0) 1n�k max �1� (1� �)u=t; 0�:Then,  is aÆne on [0; t1�� ℄ and satis�es (0) = �(0) 1n�k = jPLj 1n�kand  (t) = ��(0) 1n�k = jPKj 1n�k = �(t) 1n�k :9



Moreover, it is easy to see that  n�k � � on [0; t℄,  n�k � � on [t;max f ℄ and � 0 on [t; t1�� ℄.Thus, we getjLjjKj � jLjjK 00j = k Rmax f0 uk�1�(u)dutk�(t) + k Rmax ft uk�1�(u)du= k R t0 uk�1�(u)du+ k Rmax ft uk�1�(u)dutk�(t) + k Rmax ft uk�1�(u)du� k R t0 uk�1 n�k(u)du+ k R max ft uk�1�(u)dutk�(t) + k R max ft uk�1�(u)du= 1 + k R t0 uk�1 n�k(u)du� tk�(t)tk�(t) + k Rmax ft uk�1�(u)du :Now, sin
e  is non in
reasing, we havek Z t0 uk�1 n�k(u)du� tk�(t) = k Z t0 uk�1 n�k(u)du� tk n�k(t) � 0and sin
e � �  n�k on [t;max f ℄ we getjLjjK 00j � 1 + k R t0 uk�1 n�k(u)du� tk n�k(t)tk n�k(t) + k R +1t uk�1 n�k(u)du= k R +10 uk�1 n�k(u)dutk n�k(t) + k R +1t uk�1 n�k(u)du:It follows thatjLjjKj � jLjjK 00j � k R t1��0 �1� (1��)ut �n�k uk�1dutk�n�k + k R t1��t �1� (1��)ut �n�k uk�1du= 1�nk��(1� �)k�n�k + k R 11��(1� v)n�kvk�1dv�= 1�n;k(�n�k)In 
ase (2), we have jff = max fgj > jPKj. We 
onsider a 
onvex body A in Rksu
h that A � ff = max fg and jAj = jPKj;and we de�ne K 00 = f(x; y) : x 2 A; y 2 f(x) ~Bkg:Then jK 0j � jK 00j and we may apply the same method as in 
ase (1). 210



Theorem 3.1 Let L and K be two 
onvex bodies in Rn su
h that K � L. Then,for 1 � k < n we have jKjjLj � �n;k�Vn�k(K)Vn�k(L) �:In parti
ular, for every 1 � k � n, the following inequality holds :Vn�k(K)jKj � 1�nk� Vn�k(L)jLjProof: Sin
e �n;k : [0; 1℄ 7! [0; 1℄ is in
reasing, �n;k = ��1n;k is in
reasing. Proposi-tion 3.1 shows that for every orthogonal proje
tion P onto an (n� k)-dimensionalsubspa
e of Rn , we have �n;k� jPKjjPLj � � jKjjLj :It follows that jPKjjPLj � �n;k� jKjjLj �;that is jPKj � �n;k� jKjjLj � jPLj:Integrating over the Grassman manifold Gn;n�k of all (n�k)-dimensional subspa
eswe get Vn�k(K) � �n;k� jKjjLj �Vn�k(L):Sin
e �n;k = ��1n;k we return to the desired result. On observing that a
tually�n;k(t) � �nk�t for every t 2 [0; 1℄, we obtain the se
ond inequality. 2Cases of equality: We will show by examples that the estimates in Proposition3.1 and Theorem 3.1 are optimal.1. The inequality of Proposition 3.1 is sharp.Fix � = � jPKjjPLj � 1n�k 2 (0; 1). The proof shows that there is equality in Proposition3.1 if and only if  = � 1n�k and K 0 = K1. This is satis�ed if and only if(1) The S
hwarz symmetral L1 of L with respe
t to E is the 
onvex hull of PL andx0 + aB for some x0 2 PL and some a > 0, where B denotes the Eu
lidean unitball of E?(2) The S
hwarz symmetral K1 of K with respe
t to E isK1 = fx 2 L : Px 2 x0 + �(PL� x0)g:For example, these 
onditions are satis�ed in the following situation: Let G besome (n � k)-dimensional subspa
e of Rn su
h that Rn = E? � G and let Q be11



the proje
tion from Rn onto G parallel to E?. Let D and C be two 
onvex bodiesin E? and G respe
tively. If L = 
onv(D [ C) and K = fx 2 L : Qx 2 �Cg,then (1) and (2) hold true. But this may happen in many other 
ases. In fa
t,there does not seem to exist a 
omplete 
hara
terization of those 
onvex bodies Lwhi
h satisfy the following: for some k-dimensional subspa
e E of Rn and for somex0 2 PL, �nk�jLj = jPELj � j(E? + x0) \ Lj;where PE denotes the orthogonal proje
tion onto E.2. The inequalities of Theorem 3.1 are sharp.We write Rn = Rn�k � Rk and denote the orthogonal proje
tion onto Rn�k byPn�k and the Eu
lidean unit ball of Rk by Bk. Given b > 0, letLb = 
onv�(Bn�k � f0g) [ (f0g � bBk)�:For a �xed r 2 (0; 1), letKb = fx 2 Lb : Pn�kx 2 rBn�kg:Then, for every b > 0 jLbjjKbj = 1�n;k(rn�k)and by Lemma 3.1 below, limb!0 Vn�k(Kb)Vn�k(Lb) = rn�k :This shows that Theorem 3.1 is optimal.Lemma 3.1 Let M be a 
onvex body in Rn and let PE be the orthogonal proje
tiononto an (n� k)-dimensional subspa
e E. Let b > 0 andMb = fx+ by : x 2 E; y 2 E?; (x; y) 2Mg:Then limb!0Vn�k(Mb) = 
n;kjPEM j;where 
n;k depends only on n and k.Proof: This follows from the 
ontinuity of mixed volumes and the fa
t that Mb !PEM in the sense of Hausdor�. 2Remarks.1. When k = 1, Theorem 3.1 shows that for any two 
onvex bodies K;L in Rnsu
h that K � L, j�KjjKj � 1n j�LjjLj :12



This was proved by Wills [W℄ as a 
onsequen
e of the following fa
t: If M is a
onvex body in Rn and r > 0 is the inradius of M , thenj�M jnjM j � 1r � j�M jjM j :2. When k = n� 1, Proposition 3.1 shows that for K � L,1� w(K; �)w(L; �) � �1� jKjjLj �1=nfor every � 2 Sn�1, where w(M; �) denotes the width of M in the dire
tion of �. Ifwe assume that K and L are 
entrally symmetri
, this implies that for K � L, 1��1� jKjjLj �1=n!L � K;a fa
t whi
h appears already in [GMP℄.3. The results of Theorem 3.1 
an be extended to mixed volumes with zonoids,instead of quermassintegrals.4 Comparison of the mixed volumes of a 
onvexbody and the mixed volumes of its proje
tionsWe begin with two simple lemmas.Lemma 4.1 Let K be a 
onvex body in Rn and, for 1 � p � n � 1, let E be ap-dimensional subspa
e of Rn and F = E?. Let PF be the orthogonal proje
tiononto F , and for every y 2 PFK writeKy = fx 2 E : x+ y 2 Kg:Then, for every 0 � k � p the following holds:�nk�Vn�k(K) � �nk�V ((K;n� k); (Bp(E); k)) = �pk�ZPFK Vp�k(Ky)dy:Proof: Let Bn be the Eu
lidean unit ball in Rn and Bp(E) = Bn \ E be theEu
lidean unit ball of E. Sin
e mixed volumes are in
reasing, we haveVn�k(K) = V ((K;n� k); (Bn; k)) � V ((K;n� k); (Bp(E); k)):Now, it easy to see that for t � 0K + tBp(E) = fx0 + y : y 2 PFK;x0 2 Ky + tBp(E)g13



and hen
e, jK + tBp(E)j = ZPFK jKy + tBp(E)jdyFor every y 2 PFK we writejKy + tBp(E)j = pXk=0�pk�V ((Ky; p� k); (Bp(E); k))tk= pXk=0�pk�Vp�k(Ky)tk:Integrating, we getjK + tBp(E)j = pXk=0�pk��ZPFK Vp�k(Ky)dy�tk;and thus, for every integer k with 0 � k � p we have�nk�Vn�k(K) � �nk�V ((K;n� k); (Bp(E); k)) = �pk�ZPFK Vp�k(Ky)dy: 2The next lemma is in the spirit of Berwald's inequality [Be℄.Lemma 4.2 Let h be a 
on
ave fun
tion on [0; 1℄ su
h that h(0) = 0. Let C be a
onvex body in Rq and � : C ! R a non-negative fun
tion su
h that �1=r is 
on
aveon C for some r > 0 and supC � = 1. Then,ZC h(�(y))dy � R 10 �1� t1=r�qh0(t)dtR 10 �1� t1=r�qdt ZC �(y)dyProof: We writeZC h(�(y))dy = ZC �Z �(y)0 h0(t)dt�dy = Z 10 jfy 2 C;�(y) � tgjh0(t)dt:Let  (t) = jfy 2 C;�(y) � tgj. Then,  in non-in
reasing on [0; 1℄, and sin
e �1=ris 
on
ave, using the Brunn-Minkowski inequality in Rq , we get that the fun
tiong : [0; 1℄ 7! R de�ned by g(t) =  1=q(tr) is 
on
ave and non-in
reasing on [0; 1℄. Let
 = R 10  (t)dtR 10 �1� t1=r�qdtand de�ne  1 on [0; 1℄ by  1(t) = 
�1� t1=r�q :14



Then, Z 10  (t)dt = Z 10  1(t)dt = 
 Z 10 �1� t1=r�qdt:The fun
tion F (s) = Z s0 � 1(t)�  (t)� dtsatis�es F (0) = F (1) = 0and F 0(s) =  1(s)�  (s):Claim: F (s) � 0 for every s � 0.Proof of the 
laim: For s � 0, we de�ne g1(s) =  1=q1 (sr). It is 
lear that g1 isaÆne. We have seen that g is is 
on
ave and non-in
reasing, and this implies thatg1 � g 
hanges sign not more than on
e on [0; 1℄. Sin
e 0 = g1(1) � g(1) andr Z 10 �gq1(u)� gq(u)�ur�1du = Z 10 � 1(t)�  (t)�dt = 0;it is easy to see that there exists u0 2 [0; 1℄ su
h that g1 � g on [0; u0℄ and g1 � gon [u0; 1℄. It follows that  1 �  on [0; u0℄ and  1 �  on [u0; 1℄. Sin
e F 0 =  1� and F (0) = F (1) = 0, we 
on
lude the proof of the 
laim. 2We now go ba
k to the proof of the lemma: 
learly,R 10 �1� t1=r�qh0(t)dtR 10 �1� t1=r�qdt ZC �(y)dy � ZC h(�(y))dy = Z � 1(s)�  (s)�h0(s)ds= Z 10 F 0(s)h0(s)ds:Sin
e h is 
on
ave, h0 is non-in
reasing. Sin
e F � 0 and F (0) = F (1) = 0, we
on
lude using the se
ond mean value theorem. 2Theorem 4.1 Let K be a 
onvex body in Rn and let 0 � k � p � n. Then forevery p-dimensional subspa
e E of Rn , we haveVn�k(K)jKj � 1�n�p+kn�p � Vp�k(PEK)jPEKjwhere PEK denotes the orthogonal proje
tion of K onto E.Proof: Sin
e quermassintegrals de
rease by S
hwarz symmetrization, we may re-pla
e K by its S
hwarz symmetral with respe
t to E. In the notation of Lemma4.1 we have �nk�Vn�k(K) � �pk�ZPFK Vp�k(Ky)dy:15



We de�ne � : PFK ! R by �(y) = Vp�k(Ky)Vp�k(PEK) :Then, supPFK � = 1 and�nk�Vn�k(K) � �pk�Vp�k(PEK) ZPFK �(y)dy:By the Aleksandrov-Fen
hel inequality, �1=(p�k) is 
on
ave on PFK. We applyLemma 4.2 with C = PFK � Rn�p ; q = n� p ; r = p� kand h(t) = �p;k(t) = �pk�Z t0 �1� s 1p�k �kdsto get ZPFK �p;k(�(y))dy � R 10 �1� t1=r�q�0p;k(t)dtR 10 �1� t1=r�qdt ZPFK �(y)dy:After some 
omputations, this inequality takes the formZPFK �(y)dy � � np�k��n�kp�k��pk� ZPFK �p;k(�(y))dy:If follows thatVn�k(K) � �pk��nk�Vp�k(PEK) ZPFK �(y)dy� �pk��nk� � np�k��n�kp�k��pk�Vp�k(PEK) ZPFK �p;k(�(y))dy:For every y 2 PFK, the 
onvex bodies Ky and PEK in E(= Rp ) 
learly satisfyKy � PEK:Applying Theorem 3.1, we get�p;k��(y)� = �p;k� Vp�k(Ky)Vp�k(PEK)� � jKyjjPEKj ;and hen
e, ZPFK �p;k��(y)�dy � 1jPEKj ZPFK jKyjdy = jKjjPEKj :16



It follows that Vn�k(K) � Vp�k(PEK)�n�p+kk � jKjjPEKj :The 
ase k = p follows form the fa
t that if F = E?, then�nk�Vn�k(K)jKj � jPFKjjKj jBpjby Lemma 4.1, and the observation that jKj � jPEKj�jPFKj and jBpj = V0(PEK).Sin
e the 
ases k = 0 and p = n are trivial, the proof is 
omplete. 2Case of equality in Theorem 4.1.The 
onstants are sharp but there is no 
ase of equality in the inequalities of thistheorem.To see this, we need to go ba
k to the 
ase of equality in Proposition 3.1 andTheorem 3.1, and see what happens in the lemmas 4.1 and 4.2 whi
h were used inthe proof of Theorem 4.1.(i) If Rp = Rk � Rp�k , let C � Rk and D � Rp�k be two 
onvex bodies with0 2 C \ D. Denote the orthogonal proje
tions from Rp onto Rk and Rp�k by Pkand Pp�k. For every b > 0, we de�ne the 
onvex body L(b) in Rp to be the 
onvexhull of bC := bC � 0 and D := 0�D. Then,L(b) = f�x+ (1� �)y : x 2 bC; y 2 D; 0 � � � 1gFor every t 2 [0; 1℄, we also de�neKt(b) = fz 2 L(b);Pp�kz 2 tDg:It is 
lear that jPp�k(Kt(b))j = tp�kjDj = tp�kjPp�k(L(b))j for every b > 0. Bythe equality 
ase in Proposition 3.1,jKt(b)jjL(b)j = �p;k(tp�k):Now, when b! 0, it is easy to see thatVp�k�Kt(b)�Vp�k(L(b)) ! jPp�k�Kt(b)�jjPp�k�L(b)�j = tp�kuniformly in t 2 [0; 1℄. It follows that when b! 0,jL(b)jVp�k�L(b)� R 10 tn�p�1Vp�k�K1�t(b)�dtR 10 tn�p�1jK1�t(b)jdt = Z 10 tn�p�1Vp�k�K1�t(b)�Vp�k�L(b)� dtR 10 tn�p�1ap;k�(1� t)p�k�dt17



! R 10 tn�p�1(1� t)p�kdtR 10 tn�p�1ap;k�(1� t)p�k�dt :This means thatR 10 tn�p�1Vp�k�K1�t(b)�dtR 10 tn�p�1jK1�t(b)jdt �b!0 Vp�k�L(b)�jL(b)j R 10 tn�p�1(1� t)p�kdtR 10 tn�p�1ap;k�(1� t)p�k�dtand a short 
al
ulation givesR 10 tn�p�1Vp�k�K1�t(b)�dtR 10 tn�p�1jK1�t(b)jdt �b!0 � nn�p+k��pk��n�kp�k� Vp�k�L(b)�jL(b)j :So given " > 0, we may 
hoose b0 small enough so thatR 10 tn�p�1Vp�k�K1�t(b0)�dtR 10 tn�p�1jK1�t(b0)jdt � p1 + " � nn�p+k��pk��n�kp�k� Vp�k�L(b0)�jL(b0)j :(ii) Let now A be a 
onvex body in Rn�p 
ontaining 0 in its interior, and 
onsiderthe Minkowski fun
tionaljjwjjA = inff� � 0 : w 2 �Ag; w 2 Rn�p :Following the notation of (i), we de�ne a body M in Rn = Rn�p � Rp byM = fw + z : w 2 A; z 2 K1�kwkA(b0)g:Then M is 
onvex. Indeed, we haveM = 
onv(A� Pp�k(L(b0)); 0� L(b0))Now, for a > 0, we de�ne a new 
onvex body M(a) in Rn byM(a) = faw + z : w 2 Rn�p ; z 2 Rp ; w + z 2Mg:Let Ta : Rn 7! Rn be the linear mapping de�ned by Ta(w) = aw if w 2 Rn�p � 0and Taz = z for z 2 0� Rp . Then M(a) = Ta(M) so thatVn�k�M(a)�jM(a)j = V �(Ta(M); n� k); (Bn; k)�)jTa(M)j= V �(M;n� k); (T�1a (Bn); k)�)jM j :If Bp denotes the Eu
lidean ball of Rp ,T�1a (Bn)! Bp18



in the sense of Hausdor� as a ! +1. From the 
ontinuity of mixed volumes, weget �nk�Vn�k�M(a)�jM(a)j ! �nk�V �(M;n� k); (Bp; k)�jM jFrom Lemma 4.1 and the de�nition of M we a
tually get�nk�Vn�k�M(a)�M(a) ! �pk�RA Vp�k�K1�kwkA(b0)�dwRA jK1�kwkA(b0)j dw= �pk�R 10 Vp�k�K1�t(b0)�tn�p�1dtR 10 jK1�t(b0)jtn�p�1dt :Now if Pp is the 
anoni
al proje
tion from Rn = Rn�p � Rp to Rp , we havePp�M(a)� = L(b0);so that Vp�k�Pp�M(a)��jPp�M(a)�j = Vp�k�L(b0)�jL(b0)j :For a big enough, the estimate that we got in (i) shows thatVn�k�M(a)�jM(a)j � p1 + " �pk��nk� R 10 Vp�k�K1�t(b0)�tn�p�1dtR 10 jK1�t(b0)jtn�p�1dt� �pk��nk� � nn�p+k��pk��n�kp�k� (1 + ")Vp�k�Pp�M(a)��jPp�M(a)�j= (1 + ")�n+k�pk � Vp�k�Pp�M(a)��jPp�M(a)�j :(iii) The above dis
ussion indi
ates that if the estimate of Theorem 4.1 is sharp,then the limiting bodies are degenerated in two di�erent dire
tions.Remarks.1. When p = n� 1, Theorem 4.1 givesVn�k(K)jKj � 1k + 1 Vn�1�k(PHK)jPHKjfor every 
onvex body K in Rn and every (n � 1)-dimensional subspa
e H . Fork = 1 this was proved in [GHP℄. From this and Steiner's formula we havejK + tBj � jtBjjKj = n�1Xk=0�nk�Vn�k(K)jKj tk19



� n�1Xk=0�nk�Vn�1�k(PHK)jPHKj tkk + 1= n�1Xk=0�nk�Vn�1�k(PHK)jPHKj Z t0 skds :Using �nk� � �n�1k � we getjK + tBjjKj � jK + tBj � jtBjjKj � Z t0 jPH(K + sB)jjPHKj ds :2. Let En�i, 2 � i � n � 1, be a de
reasing sequen
e of (n � i)-dimensionalsubspa
es of Rn . Write Pn�i for the orthogonal proje
tion onto En�i. The resultsfrom [GHP℄ show that Vn�1(K)jKj � 12 Vn�2(Pn�1K)jPn�1KjVn�2(Pn�1K)jPn�1Kj � 12 Vn�3(Pn�2K)jPn�2Kj: : :Therefore, for all 1 � q � n� 2, we haveVn�1(K)jKj � 12q Vn�1�q(Pn�qK)jPn�qKj :Applying Theorem 4.1 dire
tly, we getVn�1(K)jKj � 1q + 1 Vn�1�q(Pn�qK)jPn�qKj ;whi
h is a better estimate.3. It might be possible to generalize Theorem 4.1 as follows: Let 0 � l � k � pand let PE be the orthogonal proje
tion onto a p-dimensional subspa
e E of Rn .Then, Vn�k(K)Vn�l(K) � 1�n�p+k�ln�p � Vp�k(PEK)Vn�l(PEK) :Theorem 4.1 
orresponds to the 
ase l = 0, while the 
ase p = n� 1 and l = k � 1was established in [GHP℄.
20
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