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Abstract

We prove inequalities about the quermassintegrals Vi (K) of a convex
body K in R" (here, Vi(K) is the mixed volume V((K, k), (Bn,n — k))
where B, is the Euclidean unit ball).

(i) The inequality

Vk(K + L) Vk(K) Vk(L)
Vici(K+ L) = Vi1 (K)  Vi—i1(L)

is true for every pair of convex bodies K and L in R" if and only if k = 2 or
k=1.
ii) Let 0 < k < p < n. Then, for every p-dimensional subspace E of R™,

Vi x (K) 1 Vo k(PrK)
K| = (k) IPeK|

where Pr K denotes the orthogonal projection of K onto E. The proof is
based on a sharp upper estimate for the volume ratio |K|/|L| in terms of
Vi (K)/Vi—r (L), whenever L and K are two convex bodies in R™ such
that K C L.

1 Introduction

Let IC,, denote the class of all non-empty compact convex subsets of R*. If
K € K,, has non-empty interior, we will say that K is a convex body. We denote
by | K| the volume of a convex body K in R". Generally there is no ambiguity, but
when A is a convex body in a p-dimensional subspace of R”, 1 < p < n — 1, then
|A| means its p-dimensional volume.

In this paper we prove some inequalities about mixed volumes of convex bodies.
Mixed volumes are introduced by a classical theorem of Minkowski which describes
the way volume behaves with respect to the operations of addition and multiplica-
tion of convex bodies by nonnegative reals: If Ki,..., K,, € K,, m € N, then the



volume of t1 Ky + ... + t,, K, is a homogeneous polynomial of degree n in ¢; > 0
(see [BZ], [Sc]). That is,

WK+ At K| = Y VK, Kt -,
1<iy,0nyin <
where the coefficients V(K;,, ..., K;, ) are chosen to be invariant under permuta-
tions of their arguments. The coefficient V(K , ..., K;,) is called the mixed volume

of the n-tuple (K;,,...,K;, ).

Steiner’s formula is a special case of Minkowski’s theorem. Let B,, denote the
Euclidean unit ball in R™. Then, the volume of K + tB,,, t > 0, can be expanded
as a polynomial in ¢:

n

K +tB,| =Y <Z> Vi k(K)tF,

k=0

where V,,_(K) := V((K,n — k), (Bn, k)) is the k-th quermassintegral of K.
The Aleksandrov-Fenchel inequality states that if K, L, K3, ..., K, € K, then

V(K;L;K3;"';Kn)2 Z V(KaK;K37"';Kn)V(L7L7K37"'7Kn)'

In particular, this implies that the sequence (Vp(K),...,V,(K)) is log-concave. A
consequence of the Aleksandrov-Fenchel inequality is the Brunn-Minkowski inequal-
ity as well as the following generalization for the quermassintegrals:

(1) V(K + L)% > Vi (BK)Y* 4+ Vi (L)M*,

forevery k=1,...,n.

There is a close relationship between inequalities about quermassintegrals of
convex bodies and inequalities about symmetric functions of positive reals or de-
terminants of symmetric matrices. For example, an inequality of Bergstrom asserts
that if A and B are symmetric positive definite matrices and A;, B; denote the
submatrices obtained by deleting the i-th row and column, then

det(A + B) det(A)  det(B)
det(A; + By) = det(4y) | det(By)

Milman asked if there is a version of Bergstrom’s inequality in the theory of mixed
volumes. This question can be formulated as follows: For which values of & is it
true that

Vil +L)  Vi(K) n Vi (L)

(2) kal(K-f-L) - kal(K) kal(L)

for every pair of convex bodies K and L in R*? If true for all £ = 1,...,n, this
would formally imply (1).



The same question (case k = n) was asked by Dembo, Cover and Thomas in
[DCT], where the inequality

K+Ll K|, L
|0(K + L)| — |0K|  |0L]
is proposed as the dual of the Fisher information inequality
JX+Y) P> J(x) P+ Jy)

Here, |0A| denotes the surface area of A, while J(X) is the Fisher information of the
random vector X in R™. It is worth mentioning that (2) holds true for every k when
L = rB,, (this is a simple consequence of the Aleksandrov-Fenchel inequality; see
[GHP]). As we shall see in Section 2, the answer to the above question is negative
in general. In fact, the only values of k for which (2) is always true are k = 2 and
k=1.

Theorem 1.1 Let 1 < k <n. Then, the inequality
Vi(K+L) S Vi (K) Vi (L)
kal(K-f-L) - kal(K) kal(L)

is true for every pair of convex bodies K and L in R™ if and only if k =2 or k =1.

It is an interesting question to describe the class £ of compact convex subsets
L of R™ for which (2) holds true for every convex body K. In particular, if line
segments belonged to this class, then taking k = n and L = [—6,6] where § € S*!

we would have
O(PyL K 0K
5 0P )| _ |0K]
|Pys K| |K]|
for every convex body K in R, where Py. denotes the orthogonal projection onto
6+. In [GHP] it was conjectured that this inequality is correct. Moreover, it was

proved that
@) |0(PeK)| < 2(n—1) |6K|,
|PpK]| no K|

for every convex body K and every (n — 1)-dimensional subspace E of R".

In Section 4 we show that (3) is not true; this gives a negative answer to the
question of Dembo, Cover and Thomas (alternative to the one in Theorem 1.1). In
fact, the constant in (4) is optimal. Moreover, we present a generalization of this
last inequality to subspaces of arbitrary dimension and quermassintegrals of any
order.

Theorem 1.2 Let K be a convezr body in R" and let 0 < k < p < n. Then for
every p-dimensional subspace E of R, if PEK denotes the orthogonal projection
of K onto E, we have
Vi (K) 1 Vi (PeK) _ 1 Vp—k(PeK)
e e I L | Y R




We show by examples that the constants in Theorem 1.2 are sharp, although
there are no cases of equality. The proof of Theorem 1.2 is based on an inequality
which estimates the volume ratio |K|/|L| in terms of V,,_j(K)/Vy—k (L), whenever
L and K are two convex bodies in R” such that K C L.

Theorem 1.3 Let L and K be two convex bodies in R® such that K C L. Then,

for 1 <k <n we have
@ <a <Vn—k(K)>
2] = "\ V(@) )
where ap i, 2 [0,1] = [0,1] is defined by

k() = <Z> /Ot (1—s7%)"ds.

The proof of Theorem 1.3, as well as examples showing that it is optimal, will
be given in Section 3.

Basic references on classical convexity and the theory of mixed volumes are the
books [BZ] and [Sc]. The reader may wish to consult [BB] for numerical and matrix
inequalities related to the questions discussed in this work.

2 Mixed volumes of Minkowski sums

In this section we prove Theorem 1.1. Our first lemma is a consequence of the
Aleksandrov-Fenchel inequality. Inequalities of this type may be found in [Sc,
Section 6.4], but we reproduce a proof for completeness (the argument below is due
to R. Schneider).

Lemma 2.1 Let C = (K3,...,K,) be an (n —2)-tuple of K; € K,,. If A,B € K,,,
we denote V(A, B,C) by V(A, B). Then, for all A,B,C € K,, we have

(V(B,A)V(C,A) — V(B,C)V(4,4)° < [V(B,A)* - V(A A)V(B,B)]
x[V(C,4)° = V(4,4V(C,0). O

Proof: By the Aleksandrov-Fenchel inequality, for all ¢, s > 0 we have
V(B +tA,C +sA)? = V(B +tA,B+tA)V(C +sA,C +sA) >0

and
V(sB+tC,A)* = V(sB+tC,sB +tC)V(A,A) > 0.
Using the linearity of mixed volumes, from the first inequality we arrive at
0 < g(t,s)+t* (V(C,A)? - V(A,AV(C,O))
+s* (V(B,A)? —V(A,A)V (B, B))
+2ts (V(B,C)V(A,A) —V(B,A)V(C,A4)),



where g is a linear function of ¢t and s. It follows that the quadratic term is non-
negative and hence, either V(B,C)V (A, A) > V(B, A)V(C, A) or its discriminant
x[V(C, 4)* = V(4, )V (C,0)]
is non-positive.
Working in the same way with the second inequality, we arrive at
0 < tZ(V(C, A)Z - V(Aa A)V(Ca C)) + SZ(V(Ba A)Z - V(A7 A)V(B7 B))
+2ts(V(B,A)V(C, A) —V(B,C)V (4, A)).
This shows that if V(B,C)V(4,4) > V(B,A)V(C,A) then the discriminant of

this second quadratic form (which is the same as before) is non-positive. Thus, the
lemma, is proved. O

From the previous lemma, we deduce the following inequality.
Proposition 2.1 Let C = (K3,...,Ky) be an (n — 2)-tuple of K; € K,,. In the
notation of Lemma 2.1, for all A, B,C € K, we have

V(B+C,B+C) _ V(B,B)  V(C,0)
VIB+C.A) = V(B,A) TV(CA)

Proof: From Lemma 2.1 and the arithmetic-geometric means inequality we get
< (V(B, A = V(A,A)V(B,B))* (V(C, 4)° = V(4, AV (C,C))

1/2

S X 7(V(BaA)2_V(A7A)V(B7B))

(V(C,A)? —V(A,A)V(C,0)).

Thus
2V (B,C) > % x V(B,B) + “;Egj;

From this and the linearity of mixed volumes, we have
V(B+C,B+C) = V(B,B)+2V(B,C)+V(C,C)
V(C,A)
> B,B) (1 1
> VB (1+ 3 ) Ve (1

which is the inequality

V(B+C,B+C) S V(B,B) V(C,C)
V(B+C,4) = V(B,4) T V(C,A)

xV(C,C) .

O

Setting B=K,C =L and A = K3 = ... = K,, = B,,, we immediately get the
following.



Proposition 2.2 Let L and K be two convex bodies in R™. Then,
B(K+L) | Va(E) V(D)
Vi(K+ L) = i(K)  Vi(L)
We will next show that if 3 < k < n, then the inequality
(*) Vi(K+ L) Vi(K) Vie(L)
kal(K-f-L) - kal(K) kal(L)

is not true for all pairs of convex bodies L and K in R".

Our proof will make use of tangential bodies. Let 0 < p < n — 1. If K and
M are convex bodies in R” and M C K, then K is called a p-tangential body of
M if every (n — p — 1)-extreme support plane of K is a support plane of M (we
refer to [Sc, Section 2.2] for more details). It is easily seen that if p < ¢ <n -1
then every p-tangential body of M is a g-tangential body of M. Tangential bodies
of balls are closely related to the question of equality in the Aleksandrov-Fenchel
inequalities for the quermassintegrals of convex bodies. A result which we will need
is the following.

Fact. Let K be a centrally symmetric convex body in R™" and let 1 < k <n — 1.
Then, we have
Vie(K)? = Viegr () Vie—1 (K)
if and only if K is a (k — 1)-tangential body of a ball.
We will also use the observation that for every 0 < p < n—2 there exist centrally

symmetric (p + 1)-tangential bodies of a ball which are not p-tangential bodies of
a ball.

Lemma 2.2 Let 1 < k < n. Assume that (x) holds true for all convex bodies K
and L in R™. Then, the function
Vi (K +tL)
t) = ———7<

9(t) Vi—1 (K +tL)
is concave on [0,400) for every K and L. In particular, if 3 < k < n, for every
convez body K in R™ we have

kVi2 (K) (ViZy (K) = Vi (K) Vi (K))
> (k= 2)Vi(K) (V2o (K) — Ve (K) Vi—s(K)).

Proof: We check that
t+s\ _ Vi((K+tL)/2+ (K +sL)/2)
J ( 2 ) Vi—1 (K +tL)/2+ (K +sL)/2)
Vel(K +¢0)/2) | Vi((K +sL)/2)
Vic1 (K +tL)/2) Vi1 ((K 4+ sL)/2)
1 Vi(K+tL) 1 Vi(K+sL)

2Vi (K +tL)  2Vi (K + sL)

g(t) +9(s)
5
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For the second assertion, let K be a convex body in R™*, n > 3. For every k < n
we set fi(t) = V(K + tB,). Then,

fe@t+e) = fr(t) + ek fr—1(t) + 0(52),

and therefore
fe(@) = kfr1(t).
The derivative of the function
fk(t) _ Vi (K + tBn)
fo1(t) Vi (K +tBy)

gr(t) =

is thus given by ) feal®
k() Je—2

fia® 7

By the first part of the lemma, gy, is concave. This implies that fi, fr—o/fZ | is an
increasing function, and differentiating again we see that

kfi_ifi2+ (k=2)fxfe1fos—2(k = 1) frfi_s >0

on (0,+00). This can be equivalently written in the form

kfeea(fi 1 — fefe—z) > (k= 2)fx(fi o — fo-1frs)-

Letting ¢t — 0™, we conclude the lemma. O

gr() =k — (k- 1)

Proposition 2.3 Let 3 < k < n. There exist convex bodies K and L in R" for
which (%) is not true.

Proof: Assume the contrary and let K be a centrally symmetric (k — 2)-tangential
body of a ball. Then, V2, (K) — Vi (K)Vi—2(K) = 0 and Lemma 2.2 implies that
VE o(K) — Vi—1(K)Vi_3(K) = 0. This shows that K is a (k — 3)-tangential body
of a ball.

On the other hand, for every 0 < p < n — 2 there exist (p+ 1)-tangential bodies
of a ball which are not p-tangential bodies of a ball. One can easily construct such
an example by taking the convex hull of the ball and 2(p+ 1) suitably chosen points
outside the ball. This leads to a contradiction. a

Finally, we observe that when k = 1, then (*) reduces to the inequality Vi (A +
B) > Vi(A) + Vi(B), which holds as an equality for every pair of convex bod-
ies; mean width is linear with respect to Minkowski addition. This remark and
Propositions 2.2 and 2.3 prove the following.

Theorem 2.1 Let 1 < k <n. Then, the inequality

Vi (K + L) S Vi (K) Vi (L)
Vk_l(K-l-L) - Vk_l(K) Vk_l(L)

is true for every pair of convex bodies K and L in R™ if and only if k =2 or k =1.



Remark.

An interesting special case is when n = 3 and k£ = 2. If A and w denote surface
area and mean width respectively, we obtain the inequality

AK +L) _ AK) A(L)

wK+L) = wK) " w@)

for all convex bodies K and L in R3.

3 Comparison of the mixed volumes of K and L
when K C L

Recall that, for every 1 < k < n, the function ay, g : [0,1] — [0, 1] is defined by

k() = <Z> /Ot (1—s7%)"ds.

Proposition 3.1 Let L and K be two convex bodies in R"™ such that K C L. Let
1 <k < n and write P for the orthogonal projection onto an (n — k)-dimensional

subspace E of R"™. Then,
K| (IPK I)
n,k .

(&%
\L] = A PL

Proof: Let F be the orthogonal subspace of E in R". For notational convenience
we may assume that R* = R"F x R¥ = E x F. Let L; and K; be the Schwarz
symmetrals of L and K with respect to E. It is clear that |Li| = |L|, |K1| = |K|,
PL, = PL and PK; = PK. Moreover, there is a non-negative concave function
f: PL — R such that

Ly ={(x,y): © € PL, y € f(x)B}
where By, denotes the Euclidean ball of volume 1 in R¥. Therefore, if we define
K'={(z,y): v € PK, y € f(x)B},
then it is clear that K; C K' and thus
K| = [Ki| < |K'|.

For u € [0,max f], we define ¢(u) = |{f > u}|. Then, ¢ : [0,max f] — [0, |PL]|] is
non-increasing and

(1) either there exists t € [0, max f] such that ¢(t) = |[PK]|,

(2) or ¢(u) > |PK]| for all u € [0, max f].



In case (1), by the definition of t we have |[PKN{f < t}| = |(PL\ PK)N{f > t}|.
Therefore,

K| < |K'| fH(@)dw

PK

/ H(x)de + / f*()dz
PKN{f>t} PKN{f<t}

/ fH(@)dz + tF | PK N {f <t}
PKN{f>t}

IN

-/ F*(@)de + t5|(PL\ PK) N {f > 8}
PKEN{f>t}

< / o (@)de + / 1 (@)de
PKN{f>t} (PL\PK)n{f>t}

= / fE(x)dz.
{r>t}

It follows that if K" = {(x,y) : f(z) >t, y € f(x)By}, then
|K'| < |K"|.

Now,

f(z) max f
|L| = ¥ (x)dr = k/ / u* tdudr = k/ p(u)urtdu
L Jo 0

PL P

and

t max f
|K"| = k¢(t)/ uk—ldu+k/ P(u)uF~tdu
0

I
~
ol
<
=
+
Ea
=
o
“
~
<
—~
<
~—
<
ol
L
U
IS

By the Brunn-Minkowski inequality, ¢=-% (w)=|{f > u}|n1f'c is concave and non-

T1
increasing on [0, max f]. We set A = (%) "™* and for every u > 0 we define

() = p(0)7% max (1 — (1 — A)u/t,0).

Then, ¢ is affine on [0, ﬁ] and satisfies

$(0) = (0)= % = |PL|=F

and
1

Y(t) = Ap(0) 7 = |[PK |7 = ¢(t)7=F.




Moreover, it is easy to see that "% < ¢ on [0,t], ¥" % > ¢ on [t,max f] and
¥ >0on [t, 5]

Thus, we get
oozl _ ke g(w)du
K| =~ [K"| thp(t) + k [ uk -1 (u)du

k[T ubg(u)du + k [ ub g (w)du
tho(t) + k [, uk=1p(u)du
k[T uk=tyn=k(w)du + k [ uk =1 g(u)du
() + b [ uk 1 p(u)du
L R Jyut Tty w)du — ()
o +kf““"fuk 16(u)du

Now, since 1 is non increasing, we have

t t
k/ uF =tk () du — tRp(t) = k/ uF =tk () du — tFypm R (t) > 0
0 0
and since ¢ < " F on [t, max f] we get
ﬂ - 14 kfot ulcflwnfk(u)du _ tkwnfk(t)
K"~ thym—k(t) + k [0 uk—Lypn—k (u)du
k f0+oo uk 1k (u)du
thyn=k(t) + k [, uk—Lyn—k (u)du’

It follows that

== —\)u nk
L], 1L BT (- 05) e

Lind} >
= = i n—k
(K| K thxn—k + f [ (1 - —(1_t)‘)u) ub—ldu
_ 1
() ((1 — A)kAn—Fk 4 kfllf)\(l - v)”—kvk—ldv)
_ 1
- amk(Anfk)

In case (2), we have |{f = max f}| > |PK|. We consider a convex body A in RF
such that

A C{f=maxf} and |4| = |PK]|,
and we define R
K"={(z,y): v €A, y€ f(x)By}.
Then |K'| < |K"| and we may apply the same method as in case (1). |

10



Theorem 3.1 Let L and K be two convex bodies in R"™ such that K C L. Then,

for 1 <k <n we have
@ < amk(Vnk(K))_
|L| Vn—k(L)
In particular, for every 1 < k < n, the following inequality holds :

ank(K) > i Vn,k(L)
K[ =)
Proof: Since a, : [0,1] — [0,1] is increasing, S5 = a;lk is increasing. Proposi-
tion 3.1 shows that for every orthogonal projection P onto an (n — k)-dimensional
subspace of R, we have
(IPK I) S K]
n,k

|PLI/ = L]

It follows that PE| K|
Liniiaiell BUN finial}
|PL| —ﬂ””“(|L|)’

that is K|

PK| > Bl — ) |PL|.
IPEI > b (77) 1PLI

Integrating over the Grassman manifold G,, ,—, of all (n—k)-dimensional subspaces

we get
K]

Vak () 2 B (7 ) Vs (D)

Since anpr = B, }c we return to the desired result. On observing that actually

an i (t) < (7))t for every ¢ € [0,1], we obtain the second inequality. ]

Cases of equality: We will show by examples that the estimates in Proposition
3.1 and Theorem 3.1 are optimal.

1. The inequality of Proposition 3.1 is sharp.
1
Fix \ = (%) e (0,1). The proof shows that there is equality in Proposition

3.1 if and only if ¢ = ¢ﬁ and K’ = K;. This is satisfied if and only if

(1) The Schwarz symmetral L of L with respect to E is the convex hull of PL and
o + aB for some zy € PL and some a > 0, where B denotes the Euclidean unit
ball of E+

(2) The Schwarz symmetral K; of K with respect to E is

Ki={r€L:Pxecxy+ ANPL—uy)}

For example, these conditions are satisfied in the following situation: Let G be
some (n — k)-dimensional subspace of R" such that R* = E+ & G and let @ be

11



the projection from R" onto G parallel to E+. Let D and C be two convex bodies
in B+ and G respectively. If L = conv(DUC) and K = {z € L : Qu € \C},
then (1) and (2) hold true. But this may happen in many other cases. In fact,
there does not seem to exist a complete characterization of those convex bodies L
which satisfy the following: for some k-dimensional subspace E of R* and for some
9 € PL,

n
(3)1p1=1Pert - 1+ + a2,
where Pp denotes the orthogonal projection onto E.

2. The inequalities of Theorem 3.1 are sharp.

We write R = R*~* x RF and denote the orthogonal projection onto R*~* by
P,_j and the Euclidean unit ball of R¥ by By. Given b > 0, let

Ly = conv((Bn—k x {0}) U ({0} x bBy)).
For a fixed r € (0,1), let
Ky, = {CU € Ly: P,_rx € ’I"Bn,k}.

Then, for every b > 0
|Lo| _ 1

| Ky | k(1" F)

and by Lemma 3.1 below,

i Vi k(Ks) _ i

b—0 anlc (Lb)

This shows that Theorem 3.1 is optimal.

Lemma 3.1 Let M be a convex body in R™ and let P be the orthogonal projection
onto an (n — k)-dimensional subspace E. Let b > 0 and

My={z+by:zx€E,ycE*+ (z,y) € M}.
Then
lim Vn—k(Mb) - Cn7k|PEM|,
b—0

where ¢, i, depends only on n and k.

Proof: This follows from the continuity of mixed volumes and the fact that M, —
Pg M in the sense of Hausdorff. O
Remarks.

1. When k£ = 1, Theorem 3.1 shows that for any two convex bodies K, L in R"
such that K C L,

0K| _ 1oL

K| = n |LI

12



This was proved by Wills [W] as a consequence of the following fact: If M is a
convex body in R™ and r > 0 is the inradius of M, then

oM| 1 _ |oM|
< -< .
n|M| = r = [M]

2. When k£ =n — 1, Proposition 3.1 shows that for K C L,

250

for every 6 € S, where w(M, #) denotes the width of M in the direction of 6. If
we assume that K and L are centrally symmetric, this implies that for K C L,

K 1/n
(1= ) ) v
a fact which appears already in [GMP].

3. The results of Theorem 3.1 can be extended to mixed volumes with zonoids,
instead of quermassintegrals.

4 Comparison of the mixed volumes of a convex
body and the mixed volumes of its projections

We begin with two simple lemmas.

Lemma 4.1 Let K be a convex body in R® and, for 1 < p < n—1, let E be a
p-dimensional subspace of R* and F = EL. Let Py be the orthogonal projection
onto F', and for every y € PpK write

KV={zeFE:z+ye K}

Then, for every 0 < k < p the following holds:
n n p
(3)vetr) = (3 Vi =k )00 = (7) [ Viewtsay
PrK

Proof: Let B, be the Euclidean unit ball in R" and B,(E) = B, N E be the
Euclidean unit ball of E. Since mixed volumes are increasing, we have

ank(K) = V((Kan - k)a (Bn; k)) Z V((K,?’L - k); (BP(E)a k))
Now, it easy to see that for ¢ > 0

K+tBy(E)={a'+y:y € PpK,z' € KY +tB,(E)}

13



and hence,
K + B, (E)| :/ KV + B, (E)|dy
PrK

For every y € Pr K we write

PA\v(ry,p— k), (By(E), k)"

KV + tB,(E)] t

[
M=

=~
Il
<)

[
M=

=~
i
o

p
k) Vi (KY)tF.
Integrating, we get

|K +1B,(E)| =

IM'@

(i) [ Vertaa)es

and thus, for every integer k with 0 < k < p we have

<Z>Vn_k(K) > <Z>V((K,n—k),(Bp(E),k)) = (1;) /PFK Vp-k(K¥)dy. O

The next lemma is in the spirit of Berwald’s inequality [Be].

Lemma 4.2 Let h be a concave function on [0,1] such that h(0) = 0. Let C be a
convez body in RY and ¢ : C — R a non-negative function such that ¢'/" is concave
on C for some r >0 and supg ¢ = 1. Then,

fy (1= t7) h!(t)dt
| oy < e | ety

Proof: We write

h y))dy = " h'(t)dt ) dy = 1 {y € C;o(y) > t}|n'(t)dt
0 0

Let ¢(t) = [{y € C;é(y) > t}|. Then, ¢ in non-increasing on [0, 1], and since ¢'/"
is concave, using the Brunn-Minkowski inequality in R?, we get that the function
g :[0,1] = R defined by g(t) = )'/9(t") is concave and non-increasing on [0, 1]. Let
L [ w(t)dt
fol (1 o tl/r)th
and define ¢, on [0, 1] by
Pi(t) =v(1— /)"

14



Then,

1
0

/01 Y(t)dt = /01 Yy (t)dt = 7/ (1=t dt.
The function s
Fs) = [ (0 = 00) a

satisfies

and
F'(s) = 11 (s) — ¢(s).
Claim: F(s) > 0 for every s > 0.

Proof of the claim: For s > 0, we define g;(s) = 1/)i/q(s”). It is clear that ¢; is
affine. We have seen that g is is concave and non-increasing, and this implies that
g1 — g changes sign not more than once on [0,1]. Since 0 = ¢;(1) < g(1) and

7“/ (g (u) — g%(u))u""'du z/ (11 (t) — (b)) dt = 0,
0 0

it is easy to see that there exists ug € [0, 1] such that g1 > g on [0,up] and ¢; < g
on [ug, 1]. It follows that ¢, > 1 on [0, up] and ¥ < 1 on [ug, 1]. Since F' = ¢ — ¢
and F(0) = F(1) = 0, we conclude the proof of the claim. |

We now go back to the proof of the lemma: clearly,
fol (1 — tl/r)qh
fol (1 o tl/r)

(t)dt B ,
- /C o(y)dy /C o)y = [ (01(5) = () (s

1
- / F'(s)h (s)ds.
0
Since h is concave, h' is non-increasing. Since F' > 0 and F(0) = F(1) = 0, we
conclude using the second mean value theorem. a

Theorem 4.1 Let K be a convex body in R® and let 0 < k < p < n. Then for
every p-dimensional subspace E of R" | we have
Vi (K) S 1 Vo (PeK)
— (n—p+k
K[ = (o) [Pk

where Pp K denotes the orthogonal projection of K onto E.

Proof: Since quermassintegrals decrease by Schwarz symmetrization, we may re-
place K by its Schwarz symmetral with respect to £. In the notation of Lemma

4.1 we have
(vt (1) [ vestaetyan
PrK

15



We define ¢ : PpK — R by

Then, supp, x ¢ = 1 and

() st = () Vomatrete) [ otwrin

Pr K

By the Aleksandrov-Fenchel inequality, ¢'/?=%) is concave on PrK.

Lemma 4.2 with

C=PrKCR"?, g=n—p,r=p—k

h(t) = ap(t) = (Z) /Ot (1—s7%)"ds

Jo (L=t/7)"al (t)dt
o (1 —tt/r) at /PFK Py

After some computations, this inequality takes the form

and

to get

| ooty <
PrK

If follows that

Vo (K)

v
=
=
o
=

—

=
s

U
NS

> B () [ @)y

We apply

For every y € PpK, the convex bodies K¥ and PgK in E(= RP) clearly satisfy

KY C PpK.

Applying Theorem 3.1, we get

Vs y I

apk(6(y)) = ap’k(Vp_k(PEK) ~ |PeK|’

and hence,

16



It follows that Vo x(PpK) |K]|
Vo (K> Ye=kUE .
n—k(K) > (n*ZHC) |PpK]|

The case k = p follows form the fact that if F = E*, then

n Vn,k(K) |PFK|
> | By
(k) K] [

by Lemma 4.1, and the observation that |K| < |PrK|x|PrK|and |By| = Vo(PeK).
Since the cases k = 0 and p = n are trivial, the proof is complete. O

Case of equality in Theorem 4.1.

The constants are sharp but there is no case of equality in the inequalities of this
theorem.

To see this, we need to go back to the case of equality in Proposition 3.1 and
Theorem 3.1, and see what happens in the lemmas 4.1 and 4.2 which were used in
the proof of Theorem 4.1.

(i) fRP = R¥ xR % let C C R¥ and D C R** be two convex bodies with
0 € C N D. Denote the orthogonal projections from R? onto R¥ and R*—* by P,

and P,_j. For every b > 0, we define the convex body L(b) in RP to be the convex
hull of bC' :=bC x 0 and D := 0 x D. Then,

LO)y={x+(1-Ny:zebC,yce D,0< A< 1}
For every t € [0, 1], we also define
Ky(b) = {z € L(b); Py_yz € tD}.

It is clear that | P, x(K:(b))| = tP *|D| = t*~*|P,_1(L(b))| for every b > 0. By
the equality case in Proposition 3.1,

|1 (D)
|L(b)]

Now, when b — 0, it is easy to see that

= O‘M(tp_k)-

Vs (Ki0) | 1Pl EO)
Vp-k(L(b)) |Pp—i (L(D))]

uniformly in ¢ € [0, 1]. It follows that when b — 0,

' n*pflw
L) o " Vo (K 0)) dt /, VL) "
Vo—k (L(b)) fol tn=r=1| K, _,(b)|dt fol tn=r=la,\ ((1 _ t)p—k)dt

17



Syt P L1 — t)r Rt
Jytn=r=la, x ((1 = t)p=F)dt

This means that

Syt PV (K (b)) dt Voo (L(B)) [y " P (1 — )P Hdt
|

[Emrtiy o)t EO] fFnrta, (1 — k)t

and a short calculation gives

Jo " P Vo (Kime®)dt (i) Vi (L)
Jhner=t g @) @) L)

So given € > 0, we may choose by small enough so that

Syt PV, (K (b)) dt
Jo trmPH K (bo)|dt

(nprr) Voor (L(bo))
B Gz Lo

p—Fk

<V1l+e¢

(ii) Let now A be a convex body in R”~? containing 0 in its interior, and consider
the Minkowski functional

[lw]]a =inf{p >0:w e pA}, weR"P.
Following the notation of (i), we define a body M in R* = R*? x RP by
M={w+z: we A z€Ki_jy|,(b)}
Then M is convex. Indeed, we have
M = conv(A x Pp_j(L(by)),0 x L(bo))
Now, for a > 0, we define a new convex body M (a) in R” by
M@ ={aw+z:weR" P ze R w+z€ M}

Let T, : R* — R" be the linear mapping defined by 7, (w) = aw if w € R*P x 0
and T,z = z for z € 0 x R?. Then M(a) = T,(M) so that

Vo r(M@) _ V((Tu(M),n— k), (Ba, )
[0 {a) T, ()
_ V((M,n— k), (T, 4(Ba), K))
(]

If B, denotes the Euclidean ball of R?,



in the sense of Hausdorff as a — +o00. From the continuity of mixed volumes, we
get
<n> Vi (M (a)) . (n) V((M,n —k),(By, k))
k) [M(a)l k | M|
From Lemma 4.1 and the definition of M we actually get
<n> Vi (M(a) | <p> Ja Vo (K14 (bo)) dw
k M(a) k IA |K1—Hw\|A(b0)| dw

- (%) Ja Vi (K (bo)) "=t
k) [ K (bo) tn Pt

Now if P, is the canonical projection from R"* = R""?7 x R” to R”, we have
Pp (M(a)) = L(bo),

so that
folc (Pp (M(a))) _ Vp_k (L(bo))

1B (M)l |L(bo)]

For a big enough, the estimate that we got in (i) shows that

ank(M(a)) —@ folVp_k(Kl_t(bo))tn_p_ldt
|M (a)| - 1+5(;;) Jo 1K1 —e(bo) [t PLdt

Vo—k (PP(M(G’)))
| Py (M(a))]

0 ) |

= moentt
(1+¢) Vo—k (Pp (M(a)))
() 1B, (@)

(iii) The above discussion indicates that if the estimate of Theorem 4.1 is sharp,
then the limiting bodies are degenerated in two different directions.

Remarks.
1. When p =n — 1, Theorem 4.1 gives

VielK) 1 Viea w(PuK)
K| " k+1 |PgK|

for every convex body K in R" and every (n — 1)-dimensional subspace H. For
k =1 this was proved in [GHP]. From this and Steiner’s formula we have
K +tB| - [tB] _ Z (n) Vo ()

K] 2 \k) K]
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v

= 0\ Vo1 r(PyK) t*
| P K| k+1

- t
— <n> —Vn_l_k(PHK)/ shds .
k)T Bk,
Using (}) > (",") we get

ds

K +tB| _ [K+tB|—|tB] /t |Pu (K + sB)|
K[~ K| ~Jo  |PuK]|

2. Let E,—;, 2 < i < n—1, be a decreasing sequence of (n — i)-dimensional
subspaces of R”. Write P,,_; for the orthogonal projection onto E,,_;. The results
from [GHP] show that

Vo1 (K)
K]

1 Vn72(Pn71K)
2 [Py K|

v

Vn—2(Pn—1K) > lvn—B(Pn—2K)
P, 1K| =2 |PyoK|

Therefore, for all 1 < ¢ <n — 2, we have

anl(K) > ianlfq(Pnqu)
K| T 20 |PhyK]|

Applying Theorem 4.1 directly, we get

anl(K) > 1 anlfq(Pnqu)
|K| Tg+1 |Pn—qK| ’

which is a better estimate.

3. It might be possible to generalize Theorem 4.1 as follows: Let 0 <l < k <p
and let Pg be the orthogonal projection onto a p-dimensional subspace E of R™.
Then,

Vi (K) S 1 Vp—k(PEK)

V() = (v 240ty Vi (PeK)-

Theorem 4.1 corresponds to the case [ = 0, while the casep=n—1landl =k -1
was established in [GHP].
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