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TROPICAL VARIETIES FOR EXPONENTIAL SUMS AND THEIR

DISTANCE TO AMOEBAE

ALPEREN ERGÜR, GRIGORIS PAOURIS, AND J. MAURICE ROJAS

Abstract. Given any n-variate exponential sum, g, the real part of the complex zero set
of g forms a sub-analytic variety ℜ(Z(g)) generalizing the amoeba of a complex polynomial.
We extend the notion of Archimedean tropical hypersurface to derive a piecewise linear
approximation, Trop(g), of ℜ(Z(g)), with explicit bounds — solely as a function of n, the
number of terms, and the minimal distance between frequencies — for the Hausdorff distance
∆(ℜ(Z(g)),Trop(g)). We also discuss the membership complexity of Trop(g) relative to the
Blum-Shub-Smale computational model over R. Along the way, we also estimate the number
of roots of univariate exponential sums in axis-parallel rectangles, refining earlier work of
Wilder and Voorhoeve.

1. Introduction

Since the late 20th century (see, e.g., [Voo77, Kaz81, Kho91]) it has been known that
many of the quantitative results relating algebraic sets and polyhedral geometry can be
extended to more general analytic functions, including exponential sums. Here, we show that
the recent estimates on the distance between amoebae and Archimedean tropical varieties
from [AKNR14] admit such an extension. Metric estimates for amoebae of polynomials are
useful for coarse approximation of solution sets of polynomial systems, as a step toward
finer approximation via, say, homotopy methods (see, e.g., [AGGR13, HL14]). Polynomial
systems are ubiquitous in numerous applications, and via a logarithmic change of variables,
are clearly equivalent to systems of exponential sums with integer frequencies. Exponential
sums with real frequencies are important in Signal Processing, Model Theory, and 3-manifold
invariants (see Remark 1.8 below).1

Definition 1.1. We use the abbreviations [N ] := {1, . . . , N}, w := (w1, . . . , wn),
z := (z1, . . . , zn), w · z := w1z1 + · · · + wnzn, and C∗ := C \ {0}. We also let ℜ(z) denote
the vector whose ith coordinate is the real part of zi, and ℜ(S) := {ℜ(z) | z ∈ S} for any
subset S⊆Cn. Henceforth, we let A :={a1, . . . , at}⊂Rn have cardinality t≥2, bj ∈C for all

j∈ [t], and set g(z) :=
∑t

j=1 e
aj ·z+bj . We call g an n-variate exponential t-sum and call A the

spectrum of g. We also call the aj the frequencies of g and define their minimal spacing to
be δ(g) :=minp 6=q |ap − aq| where | · | denotes the standard L2-norm on Cn. Finally, let Z(g)
denote the zero set of g in Cn, and define the (Archimedean) tropical variety of g to be

Trop(g) :=ℜ
({

z∈Cn : maxj
∣

∣eaj ·z+bj
∣

∣ is attained for at least two distinct j
})

. ⋄
Note that while we restrict to real frequencies for our exponential sums, we allow complex
coefficients. Trop(g) also admits an equivalent (and quite tractable) definition as the dual of a
polyhedral subdivision of A depending on the real parts of the bj (see Thm. 1.12 and Prop. 2.4 below).

Example 1.2. When n=1 and g(z) =e
√
2z1 + elog(3)+π

√
−1, we see that Z(g) is a countable,

discrete, and unbounded subset of the vertical line
{

z1∈C

∣

∣

∣
ℜ(z1)= log 3√

2

}

. So ℜ(Z(g))=
{

log 3√
2

}

. ⋄
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Example 1.3. When g(z) :=ea1z1+b1+ea2z1+b2 for some distinct a1, a2∈R (and any b1, b2∈C)

it is easily checked that Trop(g) =ℜ(Z(g)) =
{

ℜ(b1−b2)
a2−a1

}

. More generally, for any n-variate

exponential 2-sum g, Trop(g) and ℜ(Z(g)) are the same affine hyperplane. However, the
univariate exponential 3-sum g(z1) :=(ez1 +1)2 gives us Trop(g)={± log 2}, which is neither
contained in, nor has the same number of points, as ℜ(Z(g))={0}. ⋄

When A⊂Zn, ℜ(Z(g)) is the image of the complex zero set of the polynomial
∑t

j=1 e
bjxaj

under the coordinate-wise log-absolute value map, i.e., an amoeba [GKZ94]. Piecewise
linear approximations for amoebae date back to work of Viro [Vir01] and, in the univariate
case, Ostrowski [Ost40]. More recently, Alessandrini has associated piecewise linear
approximations to log-limit sets of semi-algebraic sets and definable sets in an o-minimal
stucture [Ale13]. However, other than Definition 1.1 here, we are unaware of any earlier
formulation of such approximations for real parts of complex zero sets of n-variate
exponential sums.

Our first main results are simple and explicit bounds for how well Trop(g) approximates
ℜ(Z(g)), in arbitrary dimension.

Definition 1.4. Given any subsets R, S⊆Rn, their Hausdorff distance is

∆(R, S) :=max

{

sup
r∈R

inf
s∈S

|r − s|, sup
s∈S

inf
r∈R

|r − s|
}

. ⋄

Theorem 1.5. For any n-variate exponential t-sum g(z) :=
∑t

j=1 e
aj ·z+bj with aj ∈Rn and

bj ∈C for all j, let d be the dimension of the smallest affine subspace containing a1, . . . , at,
and set δ(g) :=minp 6=q |ap − aq|. Then t≥d + 1 and

(0) If t=d+ 1 then Trop(g)⊆ℜ(Z(g)) (and thus sup
w ∈ Trop(g)

inf
r ∈ ℜ(Z(g))

|r − w|=0).

(1) For t≥2 we have:
(a) sup

r ∈ ℜ(Z(g))

inf
w ∈ Trop(g)

|r − w| ≤ log(t− 1)/δ(g)

(b) ∆(ℜ(Z(g)),Trop(g)) ≤
√
edt2(2t−3) log 3

δ(g)
.

(2) Defining the n-variate exponential t-sum gt,n(x) :=(eδz1 + 1)t−n + eδz2 + · · ·+ eδzn,
we have ∆(ℜ(Z(gt,n)),Trop(gt,n)) ≥ log(t− n)/δ for t≥n + 1 and δ>0.

We prove Theorem 1.5 in Section 4. Fundamental results on the geometric and topological
structure of ℜ(Z(g)) have been derived in recent decades by Favorov and Silipo [Fav01, Sil08].
However, we are unaware of any earlier explicit bounds for the distance between ℜ(Z(g))
and Trop(g) when A 6⊂Zn.
Example 1.6. When g is the 2-variate expo-
nential 7-sum

∑6
j=0

(

7
j

)

ecos(2πj/7)z1+sin(2πj/7)z2,

Assertion (1) of Theorem 1.5 tells us that
every point of ℜ(Z(g)) lies within distance

log(6)/
√

(1− cos(2π/7))2 + sin(2π/7)2<2.065
of some point of Trop(g). To the right, we
can see Trop(g) as the black piecewise lin-
ear curve drawn on the right, along with the
stated neighborhood of Trop(g) containing ℜ(Z(g)). −20 −15 −10 −5 0 5 10 15 20
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The magnified view reveals that Trop(g) has exactly 3 vertices. ⋄
The special case A⊂Zn of Theorem 1.5 was known earlier, with a bound independent of n:

Our Trop(g) agrees with the older definition of (Archimedean) tropical variety for the polynomial
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f(x) :=
∑t

j=1 e
bjxaj , and the simpler bound ∆(Amoeba(f),Trop(f))≤(2t−3) log(t−1) holds

[AKNR14]. Earlier metric results for the special case A⊂Z date back to work of Ostrowski
on Graeffe iteration [Ost40]. Viro and Mikhalkin touched upon the special case A⊂Z2 in
[Vir01] and [Mik05, Lemma 8.5, pg. 360].

We derive our distance bounds by using a projection trick arising from the study of random
convex sets (see [GPV12] and Section 3 below) to reduce to the d=1 case. The d=1 case
then follows from specially tailored extensions of existing results for the polynomial case (see
Section 2 below). This approach results in succinct proofs for our bounds. However, it is not
yet clear if the dependence on d is actually necessary or just an artifact of our techniques.

A consequence of our approach is a refinement of an earlier estimate of Wilder (see [Wil17],
[Voo77], and Section 2.2 below) on the number of roots of univariate exponential sums in
infinite horizontal strips of C: Theorem 2.11 (see Section 2.2) allows us to estimate the
number of roots in certain axis-parallel rectangles in C. A very special case of Theorem
2.11 is the fact that all the roots of g are confined to an explicit union of infinite vertical
strips explicitly determined by Trop(g). In what follows, the open ε-neighborhood of a subset
X⊆R is simply {x′∈R : |x− x′|<ε for some x∈X}.
Corollary 1.7. Suppose g is any univariate t-sum with real spectrum and W is the open
log 3
δ(g)

-neighborhood of Trop(g). Then all the complex roots of g lie in W × R. In particular,

sup
r ∈ ℜ(Z(g))

inf
w ∈ Trop(g)

|r − w| ≤ log 3
δ(g)

in the univariate case. �

Unlike the distribution of roots of g in horizontal strips, where there is a kind of equidistri-
bution (see, e.g., [Voo77, AGS13] and Section 2 below), Corollary 1.7 tells us that the roots
of g cluster only within certain deterministically predictable vertical strips.

Our next main results concern the complexity of deciding whether a given point lies in
the real part of the complex zero set of a given exponential sum, and whether checking
membership in a neighborhood of a tropical variety instead is more efficient.

1.1. On the Computational Complexity of ℜ(Z(g))ℜ(Z(g))ℜ(Z(g)) and Trop(g)Trop(g)Trop(g). We have tried to
balance generality and computational tractability in the family of functions at the heart
of our paper. In particular, the use of arbitrary real inputs causes certain geometric and
algorithmic subtleties. We will see below that these difficulties are ameliorated by replacing
exact queries with approximate queries.

Remark 1.8. “Polynomials” with real exponents — sometimes called posinomials — occur
naturally in many applications. For example, the problem of finding the directions of a set
of unknown signals, using a radar antenna built from a set of specially spaced sensors, can
easily be converted to an instance of root-finding in the univariate case [FH95, HAGY08].
Approximating roots in the higher-dimensional case is the fundamental computational prob-
lem of Geometric Programming [DPZ67, Chi05, BKVH07]. Pathologies with the phases of
complex roots can be avoided through a simple exponential change of variables, so this is one
reason that exponential sums are more natural than posinomials. Among other applications,
exponential sums occur in the calculation of 3-manifold invariants (see, e.g., [McM00, Ap-
pendix A] and [Had14]), and have been studied from the point of view of Model Theory and
Diophantine Geometry (see, e.g., [Wil96, Zil02, Zil11]). ⋄

To precisely compare the computational complexity of ℜ(Z(g)) and Trop(g) we will first
need to fix a suitable model of computation: We will deal mainly with the BSS model over R
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[BCSS98]. This model naturally augments the classical Turing machine [Pap95, AB09, Sip12]
by allowing field operations and comparisons over R in unit time. We are in fact forced to
move beyond the Turing model since our exponential sums involve arbitrary real numbers,
and the Turing model only allows finite bit strings as inputs. We refer the reader to [BCSS98]
for further background.

We are also forced to move from exact equality and membership questions to questions
allowing a margin of uncertainty. One reason is that exact arithmetic involving exponential
sums still present difficulties, even for computational models allowing field operations and
comparisons over R.

Proposition 1.9. The problem of determining, for an input (z1, z2)∈R2, whether z1= ez2,
is undecidable2 in the BSS model over R, i.e., there is no algorithm terminating in finite
time for all inputs.

(We were unable to find a precise statement of Proposition 1.9 in the literature, so we provide
a proof at the end of this section.) Note that when the input is restricted, deciding whether
z1=ez2 can be tractable (and even trivially so). For instance, a famous result of Lindemann
[Lin82] tells us that ez2 is transcendental if z2∈C is nonzero and algebraic.

Proposition 1.9 may be surprising in light of there being efficient iterations for approxi-
mating the exponential function [BB88, Ahr99]. Determining which questions are tractable
for expressions involving exponentials has in fact been an important impetus behind parts
of Computational Algebra, Model Theory, and Diophantine Geometry in recent decades
(see, e.g., [Ric83, Wil96, Zil02, HP14, SY14]). As for the complexity of ℜ(Z(g)), deciding
membership turns out to be provably hard, already for the simplest bivariate exponential
3-sums.

Theorem 1.10. Determining, for arbitrary input r1, r2∈R whether (r1, r2)∈ℜ(Z (1− ez1 − ez2))
is undecidable in the BSS model over R.

(We prove Theorem 1.10 at the end of this section.) The intractability asserted in Theorem
1.10 can be thought of as an amplification of the NP-hardness of deciding amoeba mem-
bership when A⊂ Z [AKNR14, Thm. 1.9]. (See also [Pla84] for an important precursor.)
However, just as in Proposition 1.9, there are special cases of the membership problem from
Theorem 1.10 that are perfectly tractable. For instance, when er1 , er2 ∈Q, deciding whether
(r1, r2) ∈ℜ(Z (1− ez1 − ez2)) is in fact doable — even on a classical Turing machine — in
polynomial-time (see, e.g., [The02, TdW13] and [AKNR14, Thm. 1.9]).

More to the point, Theorem 1.10 above is yet another motivation for approximating
ℜ(Z(g)), and our final main result shows that membership queries (and even distance queries)
involving Trop(g) are quite tractable in the BSS model over R. We refer the reader to
[Grü03, Zie95, dLRS10] further background on polyhedral geometry and subdivisions.

Definition 1.11. For any n-variate exponential t-sum g, let Σ(Trop(g)) denote the poly-
hedral complex whose cells are exactly the (possibly improper) faces of the closures of the
connected components of Rn\Trop(g). ⋄
Theorem 1.12. Suppose n is fixed. Then there is a polynomial-time algorithm that, for any
input w ∈ Rn and n-variate exponential t-sum g, outputs the closure — described as an
explicit intersection of O(t2) half-spaces — of the unique cell σw of Σ(Trop(g)) containing w.

2[Poo14] provides an excellent survey on undecidability, in the classical Turing model, geared toward
non-experts in complexity theory.
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We prove Theorem 1.12 in Section 5. An analogue of Theorem 1.12, for the classical Turing
model (assuming A⊂Zn and w∈Qn) appears in [AGGR13, Thm. 1.5]. Extending to A⊂Rn

and real coefficients, and using the BSS model over R, in fact conceptually simplifies the
underlying algorithm and helps us avoid certain Diophantine subtleties.

By applying the standard formula for point-hyperplane distance, and the well-known
efficient algorithms for approximating square-roots (see, e.g., [BB88]), Theorem 1.12
implies that we can also efficiently check membership in any ε-neighborhood about Trop(g).
This means, thanks to Theorem 1.5, that membership in a neighborhood of Trop(g) is a
tractable and potentially useful relaxation of the problem of deciding membership in ℜ(Z(g)).

For completeness, we now prove Proposition 1.9 and Theorem 1.10.

Proof of Proposition 1.9: The key is to consider the shape of the space of inputs I that
lead to a “Yes” answer in a putative BSS machine deciding membership in the curve in R2 de-
fined by y=ex. In particular, [BCSS98, Thm. 1, Pg. 52] tells us that any set of inputs leading
to a “Yes” answer in a BSS machine over R must be a countable union of semi-algebraic sets.
So if I is indeed decidable relative to this model then I must contain a bounded connected
neighborhood W of a real algebraic curve (since I has infinite length). Since I is the graph
of ex, W extends by analytic continuation to the graph of an entire algebraic function. But
this impossible: One simple way to see this is that an entire algebraic function must have
polynomial growth order. However, the function ex clearly has non-polynomial growth order. �

Proof of Theorem 1.10: Similar to our last argument, one can easily show that I :=
ℜ(Z(1 − ez1 − ez2)) being decidable by a BSS machine over R implies that a neighborhood
W of the boundary of I must be real algebraic. (We may in fact assume that W is the
part of the boundary that lies in the curve defined by y = log(1 − ex).) So, via analytic
continuation to U :=C \ {(2k + 1)

√
−1π | k∈Z}, it suffices to show that log(1 − ex) is not

an algebraic function that is analytic on U . But this is easy since an algebraic function can
only have finitely many branch points, whereas log(1 − ex) has infinitely many. (Moreover,
each branch point of log(1 − ex) has infinite monodromy whereas algebraic functions can
only have branch points with finite monodromy.) �

2. Tropically Extending Classical Polynomials Root Bounds to

Exponential Sums

2.1. Basics on Roots of Univariate Exponential Sums. Let #S denote the cardinality
of a set S. It is worth noting that although #Trop(g) and our bounds for ∆(ℜ(Z(g)),Trop(g))
are independent of the maximal distance between frequencies D := maxp,q |ap − aq|, the
cardinality #ℜ(Z(g)) can certainly depend on D, and even be infinite for n=1.

Example 2.1. For any integer D ≥ 2, g(z1) := eDz1 + ez1 + 1 satisfies #Trop(g) = 1 but
#ℜ(Z(g))= ⌈D/2⌉. The latter cardinality is easily computed by observing that the non-real
roots of the trinomial f(x1) :=xD

1 + x1 + 1 occur in conjugate pairs, and at most 2 roots of
f can have the same norm. (The latter fact is a very special case of [TdW14, Prop. 4.3].) ⋄

Example 2.2. Considering the decimal expansion of
√
2, and the local continuity of the roots

of eDz1+ez1+1 as a function of D∈R, it is not hard to show that X :=ℜ
(

Z
(

e
√
2z1 + ez1 + 1

))

is in fact countably infinite, and Corollary 2.6 below tells us that X is also contained in the

open interval
(

− log 2√
2−1

, log 2√
2−1

)

. ⋄
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To derive our main results we will need the following variant of the Newton polytope,
specially suited for studying real parts of roots of exponential sums.

Definition 2.3. Let Conv(S) denote the convex hull of a subset S ⊆Rn, i.e., the smallest
convex set containing S. Given any n-variate exponential t-sum g(z) =

∑t
j=1 e

aj ·z+bj with

real frequencies aj, we then define its Archimedean Newton polytope to be ArchNewt(g)
:=Conv

(

{(aj ,−ℜ(bj))}j∈[t]
)

. We also call any face of a polytope P ⊂Rn+1 having an outer-
normal vector with negative last coordinate a lower face. ⋄
Proposition 2.4. For any n-variate exponential t-sum g with real spectrum we have
Trop(g) = {w | (w,−1) is an outer normal of a positive-dimensional face of ArchNewt(g)}.
Furthermore, when n=1, Trop(g) is also the set of slopes of the lower edges of ArchNewt(g). �

We refer the reader to [AKNR14] for further background on the polynomial cases of ArchNewt
and Trop.

A key trick we will use is relating the points of Trop(g) to (vertical) half-planes of C where
certain terms of the univariate exponential sum g dominate certain sub-summands of g.

Proposition 2.5. Suppose g(z1) :=
∑t

j=1 e
ajz1+bj satisfies a1 < · · · < at and bj ∈ C for

all j. Suppose further that w ∈ Trop(g), ℓ is the unique index such that (aℓ,ℜ(bℓ)) is the
right-hand vertex of the lower edge of ArchNewt(g) of slope w, and let δℓ :=min

p, q ∈ [ℓ]&p 6= q
|ap − aq|.

Then for any N ∈N and z1∈
[

w + log(N+1)
δℓ

,∞
)

× R we have

∣

∣

∣

∣

∣

ℓ−1
∑

j=1

eajz1+bj

∣

∣

∣

∣

∣

< 1
N

∣

∣eaℓz1+bℓ
∣

∣.

Proof: First note that 2≤ℓ≤ t by construction. Let βj :=ℜ(bj), r :=ℜ(z1), and note that
∣

∣

∣

∣

∣

ℓ−1
∑

j=1

eajz1+bj

∣

∣

∣

∣

∣

≤
ℓ−1
∑

j=1

∣

∣eajz1+bj
∣

∣ =

ℓ−1
∑

j=1

eajr+βj =

ℓ−1
∑

j=1

eaj(r−w)+ajw+βj

Now, since aj+1 − aj≥δℓ for all j∈{1, . . . , ℓ− 1}, we obtain aj≤aℓ − (ℓ− j)δℓ. So for r>w

we have

∣

∣

∣

∣

∣

ℓ−1
∑

j=1

eajz1+bj

∣

∣

∣

∣

∣

≤
ℓ−1
∑

j=1

e(aℓ−(ℓ−j)δℓ)(r−w)+ajw+βj ≤
ℓ−1
∑

j=1

e(aℓ−(ℓ−j)δℓ)(r−w)+aℓw+βℓ, where the

last inequality follows from Definition 1.1. So then
∣

∣

∣

∣

∣

ℓ−1
∑

j=1

eajz1+bj

∣

∣

∣

∣

∣

≤ e(aℓ−(ℓ−1)δℓ)(r−w)+aℓw+βℓ

ℓ−1
∑

j=1

e(j−1)δℓ(r−w)

= e(aℓ−(ℓ−1)δℓ)(r−w)+aℓw+βℓ

(

e(ℓ−1)δℓ(r−w) − 1

eδℓ(r−w) − 1

)

< e(aℓ−(ℓ−1)δℓ)(r−w)+aℓw+βℓ

(

e(ℓ−1)δℓ(r−w)

eδℓ(r−w) − 1

)

=
eaℓr+βℓ

eδℓ(r−w) − 1

So to prove our desired inequality, it clearly suffices to enforce eδℓ(r−w) − 1≥N . The last

inequality clearly holds for all r≥w + log(N+1)
δℓ

, so we are done. �

It is then easy to prove that the largest (resp. smallest) point of ℜ(Z(g)) can’t be too
much larger (resp. smaller) than the largest (resp. smallest) point of Trop(g). Put another
way, we can give an explicit vertical strip containing all the complex roots of g.



TROPICAL VARIETIES FOR EXPONENTIAL SUMS 7

Corollary 2.6. Suppose g is a univariate exponential t-sum with real spectrum and minimal
spacing δ(g), and wmin (resp. wmax) is maxTrop(g) (resp. minTrop(g)). Then ℜ(Z(g)) is

contained in the open interval
(

wmin − log 2
δ(g)

, wmax +
log 2
δ(g)

)

.

The log 2 in Corollary 2.6 can not be replaced by any smaller constant: For
g(z1) = e(t−1)z1 − e(t−2)z1 − · · · − ez1 − 1 we have δ(g) = 1, Trop(g) = {0}, and it is easily
checked that ℜ(Z(g)) contains points approaching log 2 as t −→ ∞. While the polynomial
analogue of Corollary 2.6 goes back to work of Cauchy, Birkhoff, and Fujiwara pre-dating
1916 (see [RS02, pp. 243–249, particularly bound 8.1.11 on pg. 247] and [Fuj16] for further
background) we were unable to find an explicit bound for exponential sums like Corollary
2.6 in the literature. So we supply a proof below.

Proof of Corollary 2.6: Replacing z1 by its negative, it clearly suffices to prove
ℜ(Z(g)) ⊂

(

−∞, wmax +
log 2
δ

)

. Writing g(z1) =
∑t

j=1 e
ajz1+bj with a1 < · · · < at, let ζ

denote any root of g, r := ℜ(ζ), and βj := ℜ(bj) for all j. Since we must have
∑t−1

j=1 e
ajζ+bj = −eatζ+bt , taking absolute values implies that

∣

∣

∣

∑t−1
j=1 e

ajζ+bj

∣

∣

∣
=
∣

∣eatζ+bt
∣

∣.

However, this equality is contradicted by Proposition 2.5 for ℜ(z1)≥wmax +
log 2
δ
. So we are done. �

Another simple consequence of our term domination trick (Proposition 2.5 above) is that
we can give explicit vertical strips in C free of roots of g.

Corollary 2.7. Suppose g(z1) :=
∑t

j=1 e
ajz1+bj satisfies a1 < · · · < at, bj ∈C for all j, and

that w1 and w2 are consecutive points of Trop(g) satisfying w2 ≥ w1 +
2 log 3
δ(g)

. Let ℓ be the

unique index such that (aℓ,ℜ(bℓ)) is the vertex of ArchNewt(g) incident to lower edges of

slopes w1 and w2. Then the vertical strip
[

w1 +
log 3
δ(g)

, w2 − log 3
δ(g)

]

× R contains no roots of g.

Proof: By Proposition 2.5, we have
∣

∣

∣

∑ℓ−1
j=1 e

ajz1+bj

∣

∣

∣
< 1

2

∣

∣eaℓz1+bℓ
∣

∣ for all z1∈
[

w1 +
log 3
δ(g)

,∞
)

and (employing the change of variables z1 7→ −z1)
∣

∣

∣

∑t
j=ℓ+1 e

ajz1+bj

∣

∣

∣
< 1

2

∣

∣eaℓz1+bℓ
∣

∣ for all

z1∈
(

−∞, w2 − log 3
δ(g)

]

. So we obtain
∣

∣

∣

∑

j 6=ℓ e
ajz1+bj

∣

∣

∣
<
∣

∣eaℓz1+bℓ
∣

∣ in the stated vertical strip, and this

inequality clearly contradicts the existence of a root of g in
[

w1 +
log 3
δ(g)

, w2 − log 3
δ(g)

]

× R. �

Remark 2.8. Corollary 1.7 from the introduction follows immediately from Corollaries 2.6
and 2.7. ⋄

Let us now recall a result of Wilder [Wil17] (later significantly refined by Voorhoeve
[Voo77]) that tightly estimates the number of roots of exponential sums in infinite horizontal
strips of C. Let ℑ(α) denote the imaginary part of α∈C and let 〈x〉 :=minu∈Z |x−u| be the
distance of x to the nearest integer.

Wilder-Voorhoeve Theorem. [Voo77, Thm. 5.3] For any univariate exponential t-sum g
with real frequencies a1< · · · <at and u≤v let Hu,v denote the number of roots of g, counting
multiplicity, in the infinite horizontal strip {z1∈C | ℑ(z1)∈ [u, v]}. Then

∣

∣

∣

∣

Hu,v −
v − u

2π
(at − a1)

∣

∣

∣

∣

≤ t− 1−
t
∑

j=2

〈

(v − u)(aj − aj−1)

2π

〉

. �
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We will ultimately refine the Wilder-Voorhoeve Theorem into a localized deviation bound
(Theorem 2.11 below) counting the roots of g in special axis parallel rectangles in C. For
this, we will need to look more closely at the variation of the argument of g on certain vertical
and horizontal segments.

2.2. Winding Numbers and Density of Roots in Rectangles and Vertical Strips.
To count roots of exponential sums in rectangles, it will be useful to observe a basic fact on
winding numbers for non-closed curves.

Proposition 2.9. Suppose I ⊂ C is any compact line segment and g and h are functions

analytic on a neighborhood of I with |h(z)| < |g(z)| for all z∈I. Then
∣

∣

∣
ℑ
(

∫

I
g′+h′

g+h
dz −

∫

I
g′

g
dz
)
∣

∣

∣
< π.

Proof: The quantity V1 :=ℑ
(

∫

I
g′

g
dz
)

(resp. V2 :=ℑ
(

∫

I
g′+h′

g+h
dz
)

) is nothing more than the

variation of the argument of g (resp. g + h) along the segment I. Since I is compact, |g|
and |g + h| are bounded away from 0 on I by construction. So we can lift the paths g(I)
and (g + h)(I) (in C∗) to the universal covering space induced by the extended logarithm
function. Clearly then, V1 (resp. V2) is simply a difference of values of ℑ(Log(g)) (resp.
ℑ(Log(g + h))), evaluated at the endpoints I, where different branches of Log may be used
at each endpoint. In particular, at any fixed endpoint z, our assumptions on |g| and |h|
clearly imply that g(z) + h(z) and g(z) both lie in the open half-plane normal (as a vector
in R2) to g(z). So |ℑ(Log(g(z) + h(z)))− ℑ(Log(g(z)))|< π

2
at the two endpoints of I, and

thus |V1 − V2|< π
2
+ π

2
=π. �

Re-examining Corollary 1.7 from the last section, one quickly sees that the vertical strips
in C containing the roots of a univariate exponential sum g correspond exactly to clusters of
“closely spaced” consecutive points of Trop(g). These clusters of points in Trop(g) in turn
correspond to certain sub-summands of g. In particular, sets of consective “large” (resp.
“small”) points of Trop(g) correspond to sums of “high” (resp. “low”) order terms of g. Our
next step will then be to relate the roots of a high (or low) order summand of g to an explicit
portion of the roots of g.

Lemma 2.10. Let g(z1) :=
∑t

j=1 e
ajz1+bj with a1< · · · <at and bj ∈C for all j, u≤ v, and

let wmin (resp. wmax) be minTrop(g) (resp. maxTrop(g)). Also let w1 and w2 be consecutive
points of Trop(g) satisfying wmin <w1 <w2 <wmax and let ℓ be the unique index such that
(aℓ,ℜ(bℓ)) is the vertex of ArchNewt(g) incident to lower edges of slopes w1 and w2 (so
2≤ℓ≤ t− 1). Finally, assume w2 −w1≥ 2 log 3

δ(g)
. and let R1

u,v and R2
u,v respectively denote the

number of roots of g, counting multiplicity, in the rectangles
(

wmin − log 2
δ(g)

, w1 +
log 3
δ(g)

)

× [u, v]

and
(

w2 − log 3
δ(g)

, wmax +
log 2
δ(g)

)

× [u, v]. Then
∣

∣

∣

∣

R1
u,v −

v − u

2π
(aℓ − a1)

∣

∣

∣

∣

≤ε1 + 1 and

∣

∣

∣

∣

R2
u,v −

v − u

2π
(at − aℓ)

∣

∣

∣

∣

≤ε2 + 1,

where ε1, ε2≥0 and ε1 + ε2≤ t− 1−
∑t

j=2

〈

(v−u)(aj−aj−1)

2π

〉

.

When Trop(g) has two adjacent points sufficiently far apart (as detailed above), Lemma 2.10
thus refines the Wilder-Voorhoeve Theorem. Lemma 2.10 also considerably generalizes an
earlier root count for the polynomial case presented in [AKNR14, Lemma 2.8]: Rephrased
in terms of the notation above, the older root count from [AKNR14, Lemma 2.8] becomes
the equalities R1

0,2π=aℓ − a1 and R2
0,2π=at − aℓ for the special case A⊂Z.
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Proof of Lemma 2.10: By symmetry (with respect to replacing z1 by −z1) it clearly
suffices to prove the estimate for R2

u,v. Since g is analytic, the Argument Principle (see, e.g.,
[Ahl79]) tells us that

R2
u,v =

1

2π
√
−1

∫

I−∪I+∪J−∪J+

g′

g
dz

where I− (resp. I+, J−, J+) is the oriented line segment from
(

w2 − log 3
δ(g)

, v
)

(resp.
(

wmax +
log 2
δ(g)

, u
)

,
(

w2 − log 3
δ(g)

, u
)

,
(

wmax +
log 2
δ(g)

, v
)

)

to
(

w2 − log 3
δ(g)

, u
)

(resp.
(

wmax +
log 2
δ(g)

, v
)

,
(

wmax +
log 2
δ(g)

, u
)

,
(

w2 − log 3
δ(g)

, v
)

),

assuming no root of g lies on I− ∪ I+ ∪ J− ∪ J+. By Corollaries 2.6 and 2.7, there can be no
roots of g on I− ∪ I+. So let assume temporarily that there are no roots of g on J− ∪ J+.

Since w2 − log 3
δ(g)

≥w1 +
log 3
δ(g)

by assumption, Proposition 2.5 tells us that

1
2

∣

∣

∣
cℓe

aℓ(w2− log 3
δ(g)

+
√
−1v)+bℓ

∣

∣

∣
>

∣

∣

∣

∣

∣

ℓ−1
∑

j=1

eaj(w2− log 3
δ(g)

+
√
−1v)+bj

∣

∣

∣

∣

∣

and, by symmetry and another application of Proposition 2.5,

1
2

∣

∣

∣
cℓe

aℓ(w2− log 3
δ(g)

+
√
−1v)+bℓ

∣

∣

∣
>

∣

∣

∣

∣

∣

t
∑

j=ℓ+1

eaj(w2− log 3
δ(g)

+
√
−1v)+bj

∣

∣

∣

∣

∣

.

So we can apply Proposition 2.9 and deduce that
∣

∣

∣
ℑ
(

∫

I−

g′

g
dz −

∫

I−

(eaℓz+bℓ)′

eaℓz+bℓ
dz
)
∣

∣

∣
< π. So

then, since the last integral has imaginary part easily evaluating to aℓ(u−v)
√
−1, we clearly

obtain

∣

∣

∣

∣

(

1

2π
√
−1

∫

I−

g′

g
dz

)

− aℓ(u− v)

∣

∣

∣

∣

<
1

2
. An almost identical argument

(applying Propositions 2.5 and 2.9 again, but with the term eatz+bt dominating instead)

then also yields

∣

∣

∣

∣

(

1

2π
√
−1

∫

I+

g′

g
dz

)

− at(v − u)

∣

∣

∣

∣

<
1

2
.

So now we need only prove sufficiently sharp estimates on 1
2π

√
−1

∫

J±

g′

g
dz:

∣

∣

∣

∣

∫

J−∪J+
ℑ
(

g′

g

)

dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ wmax+
log 2
δ(g)

w2− log 3
δ(g)

ℑ
(

g′
(

z + u
√
−1
)

g
(

z + u
√
−1
) − g′

(

z + v
√
−1
)

g
(

z + v
√
−1
)

)

dz

∣

∣

∣

∣

∣

≤
∫ wmax+

log 2
δ(g)

w2− log 3
δ(g)

∣

∣

∣

∣

∣

ℑ
(

g′
(

z + u
√
−1
)

g
(

z + u
√
−1
) − g′

(

z + v
√
−1
)

g
(

z + v
√
−1
)

)
∣

∣

∣

∣

∣

dz

=: K

(

w2 −
log 3

δ(g)
, wmax +

log 2

δ(g)
; u, v; g

)

.

A quantity closely related to K(x1, x2; u, v; g) was, quite fortunately, already studied in
Voorhoeve’s 1977 Ph.D. thesis: In our notation, the proof of [Voo77, Thm. 5.3] immediately

yields lim
x→∞

K(−x, x; u, v; g)= t−1−
∑t

j=2

〈

(v−u)(aj−aj−1)

2π

〉

. In particular, by the additivity of

integration, the nonnegativity of the underlying integrands, and taking

ε1 := K
(

wmin − log 2
δ(g)

, w1 +
log 3
δ(g)

; u, v; g
)

and ε2 := K
(

w2 − log 3
δ(g)

, wmax +
log 2
δ(g)

; u, v; g
)

, we

obtain

∣

∣

∣

∣

∫

J−∪J+
ℑ
(

g′

g

)

dz

∣

∣

∣

∣

≤ ε2, with ε1, ε2≥0 and ε1 + ε2≤ t− 1−
∑t

j=2

〈

(v−u)(aj−aj−1)

2π

〉

.
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Adding terms and errors, we then clearly obtain

∣

∣

∣

∣

R2
u,v −

v − u

2π
(at − aℓ)

∣

∣

∣

∣

<ε2 + 1, in the

special case where no roots of g lie on J− ∪ J+. To address the case where a root of g lies
on J− ∪ J+, note that the analyticity of g implies that the roots of g are a discrete subset
of C. So we can find arbitrarily small η > 0 with the boundary of the slightly stretched

rectangle
(

w2 − log 3
δ(g)

, wmax +
log 2
δ(g)

)

× [u − η, v + η] not intersecting any roots of g. So then,

by the special case of our lemma already proved,

∣

∣

∣

∣

R2
u−η,v+η −

v − u+ 2η

2π
(at − aℓ)

∣

∣

∣

∣

<ε′2 + 1,

with ε′1, ε
′
2≥0 and ε′1 + ε′2≤ t − 1 −

∑t
j=2

〈

(v−u+2η)(aj−aj−1)

2π

〉

. Clearly, R2
u−η,v+η =R2

u,v for η

sufficiently small, and the limit of the preceding estimate for R2
u−η,v+η tends to the estimate

stated in our lemma. So we are done. �

We at last arrive at our strongest refinement of the Wilder-Voorhoeve Theorem.

Theorem 2.11. Suppose g(z1) =
∑t

j=1 e
ajz1+bj , a1 < · · · < at, and C is any connected

component of the open log 3
δ(g)

-neighborhood of Trop(g). Also let wmin(C) (resp. wmax(C)) be

min(Trop(g) ∩ C) (resp. max(Trop(g) ∩ C)) and let i (resp. j) be the unique index such
that (ai,ℜ(bi)) is the left-most (resp. right-most) vertex of the lower edge of ArchNewt(g) of
slope wmin(C) (resp. wmax(C)). Finally, let RC,u,v denote the number of roots of g, counting
multiplicity, in the rectangle C × [u, v]. Then

∣

∣

∣

∣

RC,u,v −
v − u

2π
(aj − ai)

∣

∣

∣

∣

≤ εC + 1,

where εC ≥ 0 and the sum of εC over all such connected components C is no greater than

t− 1−
∑t

j=2

〈

(v−u)(aj−aj−1)

2π

〉

.

Note that Lemma 2.10 is essentially the special case of Theorem 2.11 where C is the leftmost
or rightmost connected component specified above. Note also that a special case of Theorem

2.11 implies that the fraction of roots of g lying in C × R (i.e., the ratio lim
y→∞

RC,u,v

Hu,v
, using

the notation from our statement of the Wilder-Voorhoeve Theorem) is exactly
aj−ai
at−a1

. This
density of roots localized to a vertical strip can also be interpreted as the average value of
the function 1, evaluated at all root of g in C ×R. Soprunova has studied the average value
of general analytic functions h, evaluated at the roots (in a sufficiently large vertical strip)
of an exponential sum [Sop03]. Theorem 2.11 thus refines the notion of the “average value
of 1 over the roots of g in C” in a different direction.

Proof of Theorem 2.11: The argument is almost identical to the proof of Lemma 2.10,
save for the horizontal endpoints of the rectangle and the dominating terms in the application
of Proposition 2.5 being slightly different. �

A consequence of our development so far, particularly Corollary 1.7, is that every point of
ℜ(Z(g)) is close to some point of Trop(g). We now show that every point of Trop(g) is close
to some point of ℜ(Z(g)). The key trick is to break Trop(g) into clusters of closely spaced
points, and use the fact that every connected component C (from Theorem 2.11) contains
at least one real part of a complex root of g.

Theorem 2.12. Suppose g is any univariate exponential t-sum with real spectrum and t≥2.
Let s be the maximum cardinality of Trop(g)∩C for any connected component C of the open
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log 3
δ(g)

-neighborhood of Trop(g). (So 1≤s≤ t−1 in particular.) Then for any v∈Trop(g) there

is a root z∈C of g with |ℜ(z)− v|≤ (2s−1) log 3
δ(g)

.

Proof: For convenience, for the next two paragraphs we will allow negative indices i for
σi∈Trop(g) (but we will continue to assume σi is increasing in i).

Let us define R to be the largest j with v, σ1, . . . , σj being consecutive points of Trop(g)

in increasing order, σ1 − v ≤ 2 log 3
δ(g)

, and σi+1 − σi ≤ 2 log 3
δ(g)

for all i ∈ [j − 1]. (We set R= 0

should no such j exist.) Similarly, let us define L to be the largest j with v, σ−1, . . . , σ−j∈Trop(g)

being consecutive points of Trop(g) in decreasing order, v − σ−1 ≤ 2 log 3
δ(g)

, and σ−i − σ−i−1

≤ 2 log 3
δ(g)

for all i∈ [j − 1]. (We set L=0 should no such j exist.) Note that L+R + 1≤s.

By Theorem 2.11 there must then be at least one point of ℜ(Z(g)) in the interval
[

v − (2L+ 1) log 3
δ(g)

, v + (2R + 1) log 3
δ(g)

]

. So there must be a point of ℜ(Z(g)) within distance

(2max{L,R}+ 1) log 3
δ(g)

of v. Since 2L+ 2, 2R + 2≤2s, we are done. �

At this point, we are almost ready to prove our main theorems. The remaining fact we
need is a generalization of Corollary 1.7 to arbitrary dimension.

2.3. A Quick Distance Bound in Arbitrary Dimension. Having proved an upper
bound for the largest point of ℜ(Z(g)), one may wonder if there is a lower bound for the
largest point of ℜ(Z(g)). Montel proved (in different notation) the univariate polynomial
analogue of the assertion that the largest points of ℜ(Z(g)) and Trop(g) differ by no more
than log(t − 1) [Mon23]. One can in fact guarantee that every point of ℜ(Z(g)) is close to
some point of Trop(g), and in arbitrary dimension.

Lemma 2.13. For any n-variate exponential t-sum g with real spectrum and t≥2 we have
sup

r ∈ ℜ(Z(g))

inf
w ∈ Trop(g)

|r − w| ≤ log(t− 1)/δ(g).

Let z∈Z(g) and assume without loss of generality that
∣

∣ea1·z+b1
∣

∣≥
∣

∣ea2·z+b2
∣

∣≥ · · · ≥
∣

∣eat·z+bt
∣

∣.

Since g(z) = 0 implies that
∣

∣ea1·z+b1
∣

∣ =
∣

∣ea2·z+b2 + · · ·+ eat·z+bt
∣

∣, the Triangle Inequality

immediately implies that
∣

∣ea1·z+b1
∣

∣≤(t−1)
∣

∣ea2·z+b2
∣

∣. Taking logarithms, and letting ρ :=ℜ(z)
and βi :=ℜ(bi) for all i, we then obtain

a1 · ρ+ β1 ≥ · · · ≥ at · ρ+ βt and(1)

a1 · ρ+ β1 ≤ log(t− 1) + a2 · ρ+ β2(2)

For each i∈{2, . . . , t} let us then define ηi to be the shortest vector such that
a1 · (ρ+ ηi) + β1 = ai · (ρ+ ηi) + βi.

Note that ηi = λi(ai − a1) for some nonnegative λi since we are trying to affect the dot-

product ηi · (a1 − ai). In particular, λi=
(a1−ai)·ρ+β1−βi

|a1−ai|2 so that |ηi|= (a1−ai)·ρ+β1−βi

|a1−ai| . (Indeed,

Inequality (1) implies that (a1 − ai) · ρ+ β1 − βi≥0.)
Inequality (2) implies that (a1 − a2) · ρ + β1 − β2 ≤ log(t − 1). We thus obtain

|η2| ≤ log(t−1)
|a1−a2| ≤

log(t−1)
δ(g)

. So let i0 ∈ {2, . . . , t} be any i minimizing |ηi|. We of course have

|ηi0 |≤ log(t− 1)/δ(g), and by the definition of ηi0 we have
a1 · (ρ+ ηi0) + β1=ai0 · (ρ+ ηi0) + βi0 .

Moreover, the fact that ηi0 is the shortest among the ηi implies that
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a1 · (ρ+ ηi0) + β1≥ai · (ρ+ ηi0) + βi

for all i. Otherwise, we would have a1 ·(ρ+ηi0)+β1<ai ·(ρ+ηi0)+βi and a1 ·ρ+β1≥ai ·ρ+βi

(the latter following from Inequality (1)). Taking a convex linear combination of the last
two inequalities, it is then clear that there must be a µ∈ [0, 1) such that

a1 · (ρ+ µηi0) + β1=ai · (ρ+ µηi0) + βi.
Thus, by the definition of ηi, we would obtain |ηi|≤µ|ηi0|< |ηi0 | — a contradiction.

We thus have the following: (i) a1 · (ρ + ηi0) − (−β1) = ai0 · (ρ + ηi0) − (−βi0),
(ii) a1 · (ρ + ηi0) − (−β1)≥ ai · (ρ + ηi0) − (−βi) for all i, and (iii) |ηi0 | ≤ log(t − 1)/δ(g).
Together, these inequalities imply that ρ+ηi0 ∈Trop(g). In other words, we’ve found a point
in Trop(g) sufficiently near ρ to prove our desired upper bound. �

3. Small Ball Probability

Let Gn,k be the Grassmanian of k-dimensional subspaces of Rn, equipped with its unique
rotation-invariant Haar probability measure µn,k. The following “small ball probability”
estimate holds.

Lemma 3.1. [GPV12, Lemma 3.2] Let 1≤k≤ n− 1, x∈Rn, and ε≤ 1√
e
. Then

µn,k

({

F ∈Gn,k

∣

∣

∣

∣

∣

|PF (x)|≤ε

√

k

n
|x|
})

≤
(√

eε
)k

,

where PF is the surjective orthogonal projection mapping Rn onto F . �

An important precursor, in the context of bounding distortion under more general Euclidean
embeddings, appears in [Mat90].

A simple consequence of the preceding metric result is the following fact on the existence
of projections mapping a high-dimensional point set onto a lower-dimensional subspace in a
way that preserves the minimal spacing as much as possible.

Proposition 3.2. Let γ > 0 and x1, . . . , xN ∈ Rn be such that |xi − xj | ≥ γ for all dis-
tinct i, j. Then, following the notation of Lemma 3.1, there exist F ∈ Gn,k such that

|PF (xi)− PF (xj)| ≥
√

k

en

γ

N2/k
for all distinct i, j.

Proof: Let z{i,j} := xi − xj . Then our assumption becomes z{i,j} ≥ γ for all distinct i, j
and there are no more than N(N − 1)/2 such pairs {i, j}. By Lemma 3.1 we have, for

any fixed {i, j}, that |PF (z{i,j})| ≥ ε
√

k
n
|z{i,j}| with probability at least 1 − (

√
eε)

k
. So if

ε < 1√
e

(

2
N(N−1)

)1/k

, the union bound for probabilities implies that, for all distinct i, j, we

have |PF (z{i,j})|≥ε
√

k
n
|z{i,j}|≥εγ

√

k
n
(and thus |PF (xi)−PF (xj)|≥εγ

√

k
n
) with probability

at least 1−N(N−1)
2

(
√
eε)k. Since this lower bound is positive by construction, we can conclude

by choosing ε := 1√
eN2/k . �

4. Proof of Theorem 1.5

The assertion that t≥d + 1 is easy since any d-dimensional polytope always has at least
d+ 1 vertices. So we now focus on the rest of the theorem. We prove Assertion 1(b) last.
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In what follows, for any real n × n matrix M and z ∈Rn, we assume that z is a column
vector when we write Mz. Also, for any subset S⊆Rn, the notation MS :={Mz | z∈S} is
understood. The following simple functoriality properties of Trop(g) and ℜ(Z(g)) will prove
useful.

Proposition 4.1. Suppose g1 and g2 are n-variate exponential t-sums, α ∈ C∗, a ∈ Rn,
β :=(β1, . . . , βn)∈Cn, and g2 satisfies the identity g2(z)=αea·zg1(z1+β1, . . . , zn+βn). Then
ℜ(Z(g2)) = ℜ(Z(g1)) − ℜ(β) and Trop(g2) = Trop(g1) − ℜ(β). Also, if M ∈ Rn×n and we
instead have the identity g2(z)=g1(Mz), then Mℜ(Z(g2))=ℜ(Z(g1)) and MTrop(g2)=Trop(g1). �

4.1. Proof of Assertion (0). First note that, thanks to Proposition 4.1, an invertible linear
change of variables allows us to reduce to the special case A={O, e1, . . . , en}, where O and
{e1, . . . , en} are respectively the origin and standard basis vectors of Rn. But this special
case is well known: One can either prove it directly, or avail to earlier work of Rullg̊ard on
the spines of amoebae (see, e.g., the remark following Theorem 8 on Page 33, and Theorem
12 on Page 36, of [Rul03]). In fact, observing that our change of variables can in fact be
turned into an isotopy (by the connectivity of GL+

n (R)), we can further assert that Trop(g)
is a deformation retract of ℜ(Z(g)) in this case. �

4.2. Proof of Assertion 1(a). This is simply Lemma 2.13, which was proved in Section 2. �

4.3. Proof of Assertion (2). The special case δ = 1 follows immediately from Assertion
(2) of Theorem 1.5 of [AKNR14] (after setting xi = ezi in the notation there). Proposition
4.1 tells us that scaling the spectrum of g by a factor of δ scales ℜ(Z(g)) and Trop(g)
each by a factor of 1/δ. So we are done. �

4.4. Proof of Assertion 1(b). First note that the Hausdorff distance in question is in-
variant under rotation in Rn. So we may in fact assume that g involves just the variables
z1, . . . , zd and thus assume d=n.

By the k=1 case of Proposition 3.2 we deduce that there exists a unit vector θ∈Rn such
that

min
i 6=j

|ai · θ − aj · θ| ≥
δ(g)√
ent2

(3)

Now let v ∈ Trop(g) and write v = vθθ + v⊥θ for some v⊥θ perpendicular to θ. Also let
uθ ∈ C and u ∈ Cn satisfy u = uθθ + v⊥θ . For z1 ∈ C define the univariate exponential t-

sum g̃(z1) =
∑t

j=1 e
(aj ·(z1θ+v⊥θ ))+bi . By Inequality (3) we see that δ(g̃)≥ δ(g)√

ent2
. We also see

that g̃(uθ) = g(u) and g̃(vθ) = g(v). By Theorem 2.12 there exists a value for uθ such that

0 = f̃(uθ) = f(u) and |ℜ(uθ)− vθ| ≤ (2t−3) log 3
δ(g̃)

≤
√
ent2(2t−3) log 3

δ(g)
.

So |ℜ(u) − v|= |(ℜ(uθ) − vθ)θ| ≤
√
ent2(2t−3) log 3

δ(g)
=

√
edt2(2t−3) log 3

δ(g)
since we’ve already reduced

to the case d=n. �

5. Proving Theorem 1.12

We will need some supporting results on linear programming before starting our proof.

Definition 5.1. Given any matrix M ∈RN×n with ith row mi, and c := (c1, . . . , cN) ∈RN ,
the notation Mx≤ c means that m1 · x≤ c1, . . . , mN · x≤ cN all hold. These inequalities are
called constraints, and the set of all x∈RN satisfying Mx≤c is called the feasible region of
Mx≤c. We also call a constraint active if and only if it holds with equality. Finally, we call
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a constraint redundant if and only if the corresponding row of M and corresponding entry
of c can be deleted without affecting the feasible region of Mx≤c. ⋄
Lemma 5.2. Suppose n is fixed. Then, given any c∈RN and M ∈RN×n, we can, in time
polynomial in N , find a submatrix M ′ of M , and a subvector c′ of c, such that the feasible
regions of Mx ≤ c and M ′x ≤ c′ are equal, and M ′x ≤ c′ has no redundant constraints.
Furthermore, in time polynomial in N , we can also enumerate all maximal sets of active
constraints defining vertices of the feasible region of Mx≤c. �

Note that we are using the BSS model over R in the preceding lemma. In particular, we
are only counting field operations and comparisons over R (and these are the only opera-
tions needed). We refer the reader to the excellent texts [Sch86, GLS93, Gri13] for further
background and a more leisurely exposition on linear programming.

Proof of Theorem 1.12: Let w∈Rn be our input query point. Using O(t log t) compar-
isons, we can isolate all indices such that maxj |eaj ·z+bj | is attained, so let j0 be any such index.
Taking logarithms, we then obtain, say, J equations of the form aj ·w+ℜ(bj)=aj0 ·w+ℜ(bj0)
and K inequalities of the form aj ·w+ℜ(bj)>aj0 ·w+ℜ(bj0) or aj ·w+ℜ(bj)<aj0 ·w+ℜ(bj0).

Thanks to Lemma 5.2, we can determine the exact cell of Trop(f) containing w if J ≥2.
Otherwise, we obtain the unique cell of Rn\Trop(f) with relative interior containing w. Note
also that an (n − 1)-dimensional face of either kind of cell must be the dual of an edge of
ArchNewt(g). Since every edge has exactly 2 vertices, there are at most t(t − 1)/2 such
(n− 1)-dimensional faces, and thus σw is the intersection of at most t(t− 1)/2 half-spaces.
So we are done. �
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