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ON THE CLUSTERING OF PADÉ ZEROS AND POLES OF RANDOM POWER

SERIES

STAMATIS DOSTOGLOU AND PETROS VALETTAS

Abstract. We estimate non-asymptotically the probability of uniform clustering around the unit circle of
the zeros of the [m,n]-Padé approximant of a random power series f(z) =

∑

∞

j=0
ajz

j for aj independent,

with finite first moment, and Lévy function satisfying L(aj , ε) ≤ Kε. Under the same assumptions we show
that almost surely f has infinitely many zeros in the unit disc, with the unit circle serving as a natural
boundary for f . For Rm the radius of the largest disc containing at most m zeros of f , a deterministic result
of Edrei implies that in our setting the poles of the [m,n]-Padé approximant almost surely cluster uniformly
at the circle of radius Rm as n → ∞ and m stays fixed, and we provide almost sure rates of converge of
these Rm’s to 1. We also show that our results on the clustering of the zeros hold for log-concave vectors
(aj) with not necessarily independent coordinates.

1. Introduction

The [m,n]-Padé approximant of a power series f(z) =
∑∞

j=0 ajz
j is the rational function

(1.1) Pmn(z) =
Pmn(z)

Qmn(z)
=

p0 + p1z + . . .+ pmzm

q0 + q1z + . . .+ qnzn

with Taylor series at 0 that matches f as much as possible, as introduced by Frobenius in [Fro81]. The aim
of this article is to examine the behavior of Padé approximants when the coefficients aj , and therefore the
p’s and q’s, are random variables. Our interest is in the behavior, with high probability, of the random zeros
and poles of Pmn and how these cluster around specific geometric loci, cf. [Fro69], [GP97a], [GP97b]. Under
our assumptions here on the randomness of the aj ’s, and for the range of m and n we examine, this locus
turns out to be the unit circle.

In particular, as the [m,n]-Padé approximant of the power series
∑∞

j=0 ajz
j is the same as the Padé

approximant of the polynomial
∑N

j=0 ajz
j for N ≥ m + n, see section 2.1, we show as Theorem 3.2 that:

Whenever (aj)
N
j=0 for N ≥ m + n is an isotropic random vector with independent coordinates and with

a certain anti-concentration property, see (3.9), then the zeros of the numerator Pmn of the [m,n]-Padé

approximant of the random polynomial
∑N

j=0 ajz
j cluster uniformly around the unit circle for m and n in

a certain range, see (3.8). We understand uniform clustering as in Szegö [Sze22], Rosenbloom [Ros55], and
Erdős-Turán, [ET50]. We measure how much clustering is achieved either via the Erdős-Turán ratio (2.22) or
via the distance of the empirical measure of the zeros of the Pmn from the uniform measure on the unit circle
in the bounded Lipschitz metric (2.26). The result is non-asymptotic in that we find the range of m and
n for which the desired degree of clustering happens. Theorem 3.2 follows from the more general Theorem
3.1, whose proof relies on the deterministic Erdős-Turán result [ET50], a standard application of Jensen’s
formula on zeros of holomorphic functions [Jen99], the calculation of the coefficients of the Padé numerator
using Toeplitz matrices (2.4), (2.5), and our estimate on the probability of invertibility of Toeplitz matrices,
Proposition 2.3.

Theorem 4.2 provides another way of understanding why the zeros of Padé numerators cluster uniformly
around the unit circle. One of the conclusions of that Theorem is that the unit circle is almost surely
a natural boundary for the power series f(z) =

∑∞
j=0 ajz

j when the aj ’s are independent, have moment

bounds, and anti-concentrate. Our proof of this relies on the Ryll-Nardzewski theorem [Kah85, p. 41] and
complements the classical result on symmetric random aj ’s [Kah85, p. 39] and the results of Breuer and
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Simon [BS11] on bounded aj ’s. Now a deterministic result of Edrei [Edr78], recasting Hadamard [Had92]
and generalizing Szegö [Sze22], shows that for meromorphic f , as n stays constant and m → ∞, the zeros of
the Padé numerator Pmn cluster, up to subsequence, around the boundary of the largest disc that contains
not more than n poles of f . In the presence of a natural boundary all such discs are the unit disc, therefore
clustering takes place around the unit circle. Note that Edrei’s deterministic result is asymptotic and holds
for some m-subsequence whereas our probabilistic Theorem 3.2 holds for all m’s and n’s that satisfy our
non-asymptotic condition (3.8). Note also that part of Edrei’s proof is devoted to showing that the Toeplitz
determinants that calculate the Padé numerators and denominators are not singular for his subsequences. In
our work, this is reflected by our estimate on the probability of the invertibility of random Toeplitz matrices,
Proposition 2.3.

Regarding the poles of the Padé approximant Pmn, we rely in Section 4 on the fact the the [m,n]-
denominator for f is the [n,m]-numerator of 1/f and appeal directly to Edrei’s result for 1/f . For this,
we need information on the position of the poles of 1/f , equivalently of the zeros of f . This we garner in
Theorem 4.12 that shows that almost surely f has infinitely many zeros in the unit disc and estimates how
fast the radius Rm of the largest disc that contains at most m zeros converges to 1. The assumptions here
are the same as for Theorem 4.2. The proof uses Jensen’s formula [Jen99]. The application of Edrei’s result
for almost any realization of the random series takes place in Theorem 4.16 showing that for fixed m the
zeros of Qmn cluster uniformly as n → ∞ around the circle of radius Rm, with 1−Rm = O(logm/m).

For n = 0 the Padé approximants are, of course, nothing but the Taylor polynomials that approximate
the power series. For random coefficients, the study of these fits in the extensive literature on random
polynomials, see for example [HN08, IZ13, vv62].

Some background on Padé approximants and preliminary probabilistic results are included in Section 2.
The final Section 5 provides the estimate on the probability of the invertibility of random Toeplitz matrices
when the aj ’s are not independent but come from a log-concave random vector. An Appendix shows how
the Erdős-Turán ratio controls the bounded Lipschitz distance of the empirical measure of the zeros of a
polynomial from the uniform measure on the unit circle.

Whereas we made some effort to give precise values to the various universal constants that appear in the
estimates we do not claim that they are the best possible. When we do not specify the constants we reserve
the right to change them freely using the same notation.

2. Padé, Toeplitz, and Erdős -Turán

Padé approximants are inextricably linked with Toeplitz matrices, and a result of Erdős and Turán is a
standard way to show clustering of roots of polynomials. In this section we present these connections along
with preliminary results, some probabilistic, that we use later.

2.1. Padé approximants and formulas. Recall that given a power series

(2.1) f(z) =
∞
∑

j=0

ajz
j,

the [m,n]-Padé approximant of f is the (unique) rational function

(2.2) Pmn = Pmn/Qmn

with Pmn and Qmn polynomials on C of degree at most m and n, respectively, and Qmn(z) 6≡ 0, such that

f(z)Qmn(z)− Pmn(z) =
∑

j≥m+n+1

cjz
j,(2.3)

for some cj ’s, [Fro81], [Gra72]. (For the definition in [Bak75] and its place in the probabilistic approach, see
Remark 2.1 below.)
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To determine the coefficients p = (p0, . . . , pm) of Pmn and q = (q0, . . . , qn) of Qmn, the Frobenius
formulation (2.3) leads to the following linear systems:











a0 0 0 . . . 0
a1 a0 0 . . . 0
...

am am−1 . . . . . . am−n











q ≡ C(n)
m q = p,(2.4)

and










am+1 am am−1 . . . am−(n−1)

am+2 am+1 am . . . am−(n−2)

...
...

...
. . .

...
am+n am+(n−1) am+(n−2) . . . am











q ≡ T (n)
m q = 0.(2.5)

Note that C
(n)
m is an (m + 1) × (n + 1) matrix, whereas T

(n)
m is an n × (n + 1) matrix. It is a standard

convention that al = 0 when l is negative.

Prominent in what follows will be the n × n square matrices A
(n)
m (following the notation in [Edr78]), a

submatrix of T
(n)
m ,

(2.6) A(n)
m =











am am−1 . . . am−(n−1)

am+1 am . . . am−(n−2)

...
...

. . .
...

am+(n−1) am+(n−2) . . . am











.

These are Toeplitz matrices, i.e. matrices with constant entries on each diagonal.

Remark 2.1. It is important to consider the case

(2.7) detA(n)
m 6= 0, for all m,n.

Then the Padé polynomials can be written as

Pmn(z) = a0 + . . .+
detA

(n+1)
m

detA
(n)
m

zm,

Qmn(z) = 1− det(T
(n)
m [2])

detA
(n)
m

+ . . .+ (−1)n
detA

(n)
m+1

detA
(n)
m

zn,

(2.8)

with T
(n)
m [k] the square matrix that results from T

(n)
m from (2.5) after the k-th column is omitted, see [Gra72,

Corollary 1, p. 18].
Note that (2.7) then implies that the top order coefficients of (2.8) do not vanish. This in turn implies

that any pair of polynomials satisfying (2.3) are constant multiples of those in (2.8). In this case the Baker
condition Qmn(0) 6= 0 [Bak75, p. 6] is satisfied and we also have

f(z)− Pmn(z)

Qmn(z)
=

∑

j≥m+n+1

ĉjz
j.(2.9)

As in our power series
∑

j≥0 ajz
j will have random coefficients, we examine next conditions for (2.7) to be

satisfied almost always, or at least with high probability. In particular, pathological examples like f(z) =
1 +

∑

j≥2 z
j when P11(z) = z and Q11(z) = z satisfy (2.3) but not (2.9), either almost surely or with high

probability will not happen.

2.2. Random Toeplitz determinants. We now quantify the singularity of random Toeplitz matrices.
Recall first the Lévy concentration function for a random variable ξ for δ > 0:

L(ξ, δ) = sup
t∈R

P(|ξ − t| < δ).(2.10)

This measure of dispersion was introduced in the works of Doeblin & Lévy [DL36], Kolmogorov [Kol58],
and Esseen [Ess66] concerning the spread of sums of independent random variables. In recent years it has
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become an indispensable tool in the study of quantitative invertibility of (unstructured) random matrices,
see [RV10] for a detailed exposition. In the present work it occupies a central role, too, since it quantifies
the invertibility of random patterned matrices (Toeplitz), and it is related to the existence of a naturally
boundary for a random power series.

Lemma 2.2. For any (deterministic) monic polynomial P with degP = d, for any random variable ξ, and
for any ε > 0, we have

P
(

|P (ξ)| < εd
)

≤ dL(ξ, ε).(2.11)

Proof. Write P (z) =
∏d

j=1(z − rj), for rj the (complex) roots of P . Then

P
(

|P (ξ)| < εd
)

≤
d
∑

j=1

P(|ξ − rj | < ε) ≤
d
∑

j=1

P (|ξ − Re(rj)| < ε) ≤ dL(ξ, ε),(2.12)

using the union bound. �

Proposition 2.3 (quantitative invertibility). For a = (ak)0≤k≤2n−2 a random vector with independent
coordinates, and for A the Toeplitz matrix

(2.13) A =











an−1 an−2 . . . a0
an an−1 . . . a1
...

...
. . .

...
a2n−2 a2n−3 . . . an−1











,

and for any ε > 0,

P

(

| detA|1/n < ε
)

≤ nL(an−1, ε).(2.14)

Proof. Write

(2.15) A = an−1I +
∑

k 6=n−1

akBk

where each Bk has 1’s on a single, not the main, diagonal and 0’s everywhere else. The random matrices
an−1I and B :=

∑

k 6=n−1 akBk are independent. Conditioning on ak for all k 6= n− 1,

P

(

| detA|1/n < ε
)

= E [P (| det(an−1I +B)| < εn | (ak)k 6=n−1)]

= E [P (|P−B(an−1)| < εn | (ak)k 6=n−1)]
(2.16)

for P−B(·) the characteristic polynomial of a matrix −B. As P−B is monic, apply Lemma 2.2 conditionally
to conclude. �

2.3. Clustering of zeros. Let P (z) = α0+α1z+. . .+αNzN , αN 6= 0 be a polynomial with roots z1, . . . , zN ,
and let

νP =
1

N

N
∑

j=1

δzj ,(2.17)

the normalized zero-counting measure associated with P .
For a sequence of polynomials Pm, each of degree m, we write νm for νPm

.
The following makes precise the meaning of clustering of zeros around a circle, following Szegö [Sze22],

Rosenbloom [Ros55], Erdős-Turán [ET50], and Edrei [Edr78].

Definition 2.4 (clustering). The zeros of a sequence of polynomials Pm, each of degree m, cluster uniformly
around the circle of radius r if both of the following are satisfied:

(a) Radial clustering. For any ρ > 0, for the annulus

R(r, ρ) = {z ∈ C : (1− ρ)r < |z| < (1 + ρ)r} ,(2.18)

4



we have

(2.19) νm(R(r, ρ)) → 1, m → ∞.

(b) Angular clustering. For 0 ≤ θ < φ < 2π, for the angular sector sector

S(θ, φ) = {z ∈ C : θ < Arg z ≤ φ} ,(2.20)

we have

(2.21) νm(S(θ, φ)) → φ− θ

2π
, m → ∞.

Our goal is to establish such clustering for the polynomial numerators and denominators of Padé ap-
proximants of random Taylor series, and to estimate how much clustering takes place at large but finite
degree.

As is well known, both radial and angular clustering of polynomials around the unit circle are controlled
by comparing the end coefficients to all of the coefficients: For any polynomial P (z) = α0+α1z+ . . .+αNzN

with α0αN 6= 0, set

L(P ) :=
|α0|+ |α1|+ . . .+ |αN |

√

|α0| · |αN |
.(2.22)

Then for radial clustering around the unit circle we have:

Proposition 2.5. For P (z) = α0 + α1z + . . .+ αNzN with α0αN 6= 0 and for 0 < ρ ≤ 1,

1− νP (R(1, ρ)) ≤ logL(P )

ρN
.(2.23)

A proof of this is part of Theorem 1 in [Ros55, p. 268]. Edrei reproves it [Edr78, p. 264]. See also [HN08]
for a more recent take connected to probabilistic considerations independent of Padé approximants. All
these use the classical formula of Jensen [Jen99] which, for a polynomial P links the measure νP and the
average of P on a circle. For a useful presentation of Jensen’s formula, including the case of zeros on the
circle, see [AN07, §4.8]. We state the formula here in a form that will be useful later.

Proposition 2.6 (Jensen Formula). For f holomorphic on the closed disc of radius r and with f(0) 6= 0,

1

2π

∫ 2π

0

log |f(reiθ)| dθ +
n
∑

j=1

log
|zj |
r

= log |f(0)|,(2.24)

where z1, . . . , zn are the zeros of f in the interior of the disc of radius r, repeated according to multiplicity.

As for angular clustering, we have the celebrated Erdős-Turán result [ET50], see also [Ros55]. For a more
recent treatment see [AB02].

Proposition 2.7 (Erdős-Turán). For P (z) = α0+α1z+ . . .+αNzN with α0αN 6= 0 and for 0 ≤ θ < φ < 2π,
∣

∣

∣

∣

φ− θ

2π
− νP (S(θ, φ))

∣

∣

∣

∣

≤ 16

√

logL(P )

N
.(2.25)

For µ the uniform measure on the unit circle T = {z ∈ C : |z| = 1}, Proposition 2.5 and Proposition
2.7 show that νP is close to µ in certain sense. This proximity can be measured in terms of the bounded
Lipschitz metric

dBL(µ, νP ) = sup

{∣

∣

∣

∣

∫

f dµ−
∫

f dν

∣

∣

∣

∣

: f ∈ B1

}

,(2.26)

for B1 := {f : C → R | ‖f‖BL := ‖f‖Lip + ‖f‖∞ ≤ 1}. It is well known that this metric induces weak
convergence in the space of probability distributions, c.f. [Bog07, §8.3]. We then have

Proposition 2.8. For P (z) = α0 + α1z + . . .+ αNzN with α0αN 6= 0,

dBL(νP , µ) ≤ 32

(

logL(P )

N

)1/4

.(2.27)

For completeness, we include a proof of this proposition in the Appendix A.
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2.4. Erdős-Turán for Padé numerators and denominators. We now estimate the Erdős-Turán ratio
(2.22) in the case of Padé numerators of f(z) =

∑∞
j=0 ajz

j in terms of the coefficients aj . Toeplitz matrices
inevitably appear and we assume here that their determinants do not vanish. As mentioned in Remark 2.1,
this assumption will hold in what follows either almost always or with high probability.

From (2.8) the coefficient vectors of the numerator and denominator of the [m,n]-Padé of f will be
p = (a0, p1, . . . , pm), q = (1, q1, . . . , qn) . From (2.4) we have

‖p‖1 = ‖C(n)
m q‖1 ≤ ‖q‖1 ·max

j≤n
‖C(n)

m ej‖1 = ‖q‖1 ·
m
∑

j=0

|aj |.(2.28)

Along with the expression for qn from (2.8), this estimates the Erdős-Turán ratio of Pmn in terms of the
ratio of Qmn:

L(Pmn) ≤
‖q‖1

√

|a0||qn|
·
(

| detA(n)
m+1|

| detA(n+1)
m |

)1/2

·
m
∑

j=0

|aj |

=

∑m
j=0 |aj |
√

|a0|
·
(

| detA(n)
m+1|

| detA(n+1)
m |

)1/2

· L(Qmn).

(2.29)

On the other hand, the expression for qk from (2.8) gives

L(Qmn) = ‖q‖1
(

| detA(n)
m |

| detA(n)
m+1|

)1/2

=

(

1 +

n
∑

k=1

det(T
(n)
m [k + 1])

| detA(n)
m |

)

·
(

| detA(n)
m |

| detA(n)
m+1|

)1/2

.(2.30)

Then (2.29) becomes

L(Pmn) ≤
∑m

j=0 |aj |
√

|a0|
·
(

1 +

n
∑

k=1

det(T
(n)
m [k + 1])

| detA(m)
n |

)

·
(

| detA(n)
m |

| detA(n+1)
m |

)1/2

(2.31)

≤
∑m

j=0 |aj |
√

|a0|

√

n det
(

T
(n)
m T

(n)∗
m

)

(

| detA(n)
m | · | detA(n+1)

m |
)1/2

,(2.32)

after using the Cauchy-Schwarz inequality to go to the sum of the squares of the sub-determinants and the

Cauchy-Binet formula for det
(

T
(n)
m T

(n)∗

m

)

:

(2.33) det
(

T (n)
m T (n)∗

m

)

=
n
∑

k=0

det
(

T (n)
m [k + 1]

)2

.

Finally, the arithmetic–geometric mean inequality (applied on the singular values of T
(n)
m ) gives

L(Pmn) ≤
∑m

j=0 |aj |
√

|a0|
·

n1/2
(

n−1/2
∣

∣

∣

∣

∣

∣

∣

∣

∣T
(n)
m

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

)n

(

| detA(n)
m | · | detA(n+1)

m |
)1/2

,(2.34)

where
∣

∣

∣

∣

∣

∣

∣

∣

∣T
(n)
m

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
:=
∑n+1

j=1 ‖T (n)
m (ej)‖1.

3. Non-asymptotic clustering of roots

Given a random power series of the form

(3.1) f(z) =

∞
∑

j=0

ajz
j, aj : (Ω,P) → C random variables,

it is clear from (2.4) and (2.5) that calculating the [m,n]-Padé approximant of f is the same as caclulating

the [m,n]-Padé approximant of fN =
∑N

j=0 ajz
j for any N ≥ m + n. As our focus in this section is on
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non-asymptotic results, we work here with fN . We deal with full power series in the next section. The
following is our main probabilistic, non-asymptotic estimate for the Erdős-Turán ratio of the numerator of
the Padé approximants when the aj ’s are independent random variables. It is applied when L(aj , ε) ≤ Kε
in Theorem 3.2 and we show its use for discrete distributions in Example 3.3.

Theorem 3.1 (Bound on the Erdős-Turán ratio). Let m,n ∈ N, 1 ≤ γ < ∞, and ε and b in (0, 1).
Then for any N ≥ m + n and (aj)

N
j=0 random vector with independent coordinates, E|aj | ≤ γ and

L(aj , ε) ≤ b for all j, the numerator Pmn of the [m,n]-Padé approximant of fN(z) =
∑N

k=0 ajz
j satisfies

P

({

logL(Pmn) > logm+ 2n log

(

4γ

bε

)})

≤ 5nb.(3.2)

Proof. Take 5nb < 1, as otherwise there is nothing to prove. In view of the estimate (2.34), consider the
following events:

E0 :={|a0| < ε},(3.3)

E1 :=







m
∑

j=0

|aj | > t(m+ 1)γ







, E2 :=
{∣

∣

∣

∣

∣

∣

∣

∣

∣
T (n)
m

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
> tn(n+ 1)γ

}

(3.4)

E3 :={| detA(n)
m | · | detA(n+1)

m | < ε2n},(3.5)

where t > 0 will be suitably chosen below. Note that

P (E0) ≤ b, P(E3) ≤ nL(am, ε) + (n+ 1)L(am, ε) ≤ 3nb,

by the assumption on L and Proposition 2.3, and that

P(E1 ∪ E2) ≤
2

t
,

by Markov’s inequality. Therefore in the complement of
⋃3

i=0 Ei we have

L(Pmn) ≤
2tmγn1/2

ε
·
(

2tγn3/2

ε

)n

,

with probability greater than 1− b− 3nb− 2/t. For t ≥ 2

nb
this gives

(3.6) L(Pmn) ≤ m

(

2ntγ

ε

)2n

,

with probability greater than 1− 5nb. In particular, the choice t = 2/(nb) yields

L(Pmn) ≤ m

(

4γ

bε

)2n

,(3.7)

with probability greater than 1− 5nb, as claimed. �

The following theorem holds with the same integrability conditions as in Theorem 3.1. We present it here
for isotropic random vectors, a standard class of random vectors in high-dimensional probability. Recall
that a random vector is called isotropic if it is centered and its covariance matrix is the identity, see e.g.,
[BGVV14, Definition 2.3.7]. Applying Theorem 3.1 to this case we have

Theorem 3.2. Let m,n ∈ N, K ≥ 1 and δ ∈ (0, 1). If m,n satisfy

(3.8) m ≥ Cδ−4 n log(eKn/δ),

then for any N ≥ m + n, and for any isotropic random vector a = (aj)
N
j=0 ∈ R

N+1 with independent
coordinates, and

(3.9) L(aj , ε) ≤ Kε, for all j and ε > 0,
7



the numerator Pmn of the [m,n]-Padé approximant of fN(z) =
∑N

j=0 ajz
j satisfies

(3.10) P

(

logL(Pmn)

m
> δ4

)

< δ.

In particular, for µ the uniform measure on the unit circle we have

P (dBL(νPmn
, µ) > 40δ) < δ.(3.11)

Proof. Isotropicity implies that in applying Theorem 3.1 we can take γ = 1, as E|aj | ≤ (E|aj |2)1/2 = 1. If
we take ε = δ/(5Kn) we see that b = δ/(5n) in Theorem 3.1 will do. Then (3.2) becomes

(3.12) P

(

logL(Pmn)

m
>

logm

m
+

2n log(100Kn2/δ2)

m

)

< δ.

Finally, observe that there is a universal1 constant C > 0, such that for m ≥ Cδ−4n log(eKn/δ) we have

(3.13) δ4 >
logm

m
+

2n log(100Kn2/δ2)

m
,

so that for m and n in the same range

(3.14) P

(

logL(Pmn)

m
> δ4

)

< δ.

For the last statement, combine (3.14) with Proposition 2.8. �

The (static) estimate on the probability of failure in Theorem 3.1 is meaningful even for discrete distri-
butions, provided that they have sufficient anti-concentration bounds, as the following example shows:

Example 3.3. Fix M a large positive integer and take the random variables aj to have common distribution
supported uniformly on {0,±1, . . . ,±M}, so that L(aj , 1/2) ≍ 1/M and E|aj | ≍ M . Then estimate (3.2)
yields

logL(Pmn) ≤ logm+ C1n log(C2nM),

and the clustering of the Padé numerator at |z| = 1 is measured by

logm

m
+

1

m
C1n log(C2nM),

with probability greater than 1 − cn/M . For n small compared to M , e.g. for n ∼
√
M , clustering will be

manifested whenever m is sufficiently large, and in particular much larger than n logM .

4. Asymptotic clustering of poles

We now turn our attention to the poles of Padé approximants of random power series. For random
fω(z) =

∑∞
j=0 aj(ω)z

j we shall apply on 1/fω, and separately for almost any ω, Edrei’s deterministic result
for the clustering of Padé numerators of meromorphic functions on circles defined by the distance of the
poles from the orgin, [Edr78]. This will determine the clustering of the denominator Qmn via the elementary
property

P (1/f)
nm = Q(f)

mn,(4.1)

where we use superscripts to indicate the power series that the Padé approximates, see [Gra72, p. 216,
Theorem 22(i)] or [Gil78, p. 216]. For this we show first as Theorem 4.2 that under our assumptions the
power series has almost always radius of convergence 1 and that the unit circle is in fact a natural boundary.
Then, after a few preliminary facts, we establish in Theorem 4.12 that the random power series f has zeros
in the open unit disc D with high probability and gather information for the location of these zeros. We
conclude by applying Edrei’s result in the last subsection.

1For example, C = eθ for θ ≥ 5 satisfying eθ > θ + 20 will do.
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4.1. Natural boundary. Recall first the following:

Definition 4.1 (Natural Boundary). Let rf < ∞ be the radius of convergence of the power series f(z) =
∑∞

j=0 ajz
j . Then |z| = rf is the natural boundary of f if f cannot be extended to a holomorphic function

through any arc of this circle.

Theorem 4.2. Let (aj)
∞
j=0 be independent random variables with E|aj | ≤ γ < ∞, and lim infj L(aj , ε) < 1

for some ε > 0. Then, the random power series f(z) =
∑∞

j=0 ajz
j almost surely has radius of convergence

1 and the unit circle is almost surely a natural boundary for f .

Proof. Let τ = lim infj L(aj , ε). In particular, we have

lim sup
j

P(|aj | ≥ ε) ≥ 1− τ > 0 =⇒
∞
∑

j=0

P(|aj | ≥ ε) = ∞.

Then, the second Borel-Cantelli lemma yields that {|aj|1/j ≥ 1 i.o.} is a sure event. That is, the radius
of convergence rf of f satisfies rf ≤ 1 a.s. For the converse inequality we just observe that, by Markov’s
inequality, we have

∞
∑

j=0

P
(

|aj | > (1 + δ)j
)

≤ γ

∞
∑

j=0

(1 + δ)−j < ∞,

and the result follows from the first Borel-Cantelli lemma.
To show that the unit circle is a natural boundary, recall that the Ryll-Nardzewksi theorem [RN53]

guarantees that2 if that were not the case there would exist deterministic power series g(z) =
∑∞

j=0 bjz
j

such that f − g would have radius of convergence rf−g > 1 and the circle of this radius would be a natural
boundary of f − g. In particular, almost surely for all z ∈ C with |z| = 1 we would have

(4.2)

∞
∑

j=0

(aj(ω)− bj)z
j < ∞,

so that

(4.3) aj(ω)− bj → 0,

with probability 1. As almost sure convergence implies convergence in probability, this contradicts the fact

lim sup
j

P (ω : |aj(ω)− bj| ≥ ε) ≥ 1− τ > 0.

The proof is complete. ✷

Remark 4.3. The almost sure existence of a natural boundary appears often in the study of random power
series. For symmetric random variables see [RN53]. Our conditions in Theorem 4.2 are more relaxed than
those in [BS11] where the aj’s are independent, supj |aj(ω)| < M < ∞ almost surely, and lim supj Var[aj ] >
0, see [BS11, Theorem 6.1]. This follows from:

Fact 4.4. Let ξ be a random variable with Var[ξ] ≥ θ > 0 and let E|ξ|4 = σ4 < ∞. Then

L
(

ξ,
√

θ/2
)

< 1− c
θ2

σ4
,

where c > 0 is a universal constant.

We leave the details to the reader. However, we stress that the authors in [BS11] can show that in their
case there is strong natural boundary, see [BS11, p. 4905].

Remark 4.5. Note that the existence of natural boundary at |z| = 1, in light of Hadamard’s theorem [Had92],
yields almost surely that for each n we have

(4.4) lim sup
m

∣

∣

∣detA(n)
m

∣

∣

∣

1/m

= 1.

However, under the assumptions of Theorem 4.2 one can show that the limits exist almost surely:

2The existence of the natural boundary also follows from [Ahm59]. We choose to argue via the Ryll-Nardzewksi theorem as
it is available, with a very direct proof, in [Kah85, p. 41].
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Fact 4.6. For (aj)
∞
j=0 independent random variables with E|aj | ≤ γ < ∞, and L(aj , ε) ≤ Kε for all ε > 0

and for some K ≥ 1, it holds that almost surely, for each n,

(4.5) lim
m

∣

∣

∣detA(n)
m

∣

∣

∣

1/m

= 1.

Indeed: We fix n ≥ 1. From the arithmetic-geometric mean inequality

(4.6) E

∣

∣

∣detA(n)
m

∣

∣

∣

1/n

≤
E

∥

∥

∥
A

(n)
m

∥

∥

∥

HS√
n

≤ γn3/2.

From Markov’s inequality

(4.7) P

(

| detA(n)
m |1/n > (1 + ε)m/n

)

≤ E| detA(n)
m |1/n

(1 + ε)m/n
≤ n

(1 + ε)m/n
,

and the first (direct) part of the Borel-Cantelli lemma gives that almost surely

(4.8) lim sup
m

| detA(n)
m |1/m ≤ 1 + ε.

On the other hand, again by Markov,

(4.9) P

(

| detA(n)
m |−1/2n > (1 + ε)m/2n

)

≤ E| detA(n)
m |−1/2n

(1 + ε)m/2n
≤ 2Kn

(1 + ε)m/n
,

where we have used Proposition 2.3 and that for any random variable ξ

(4.10) P(ξ < ε) ≤ γε ⇒ E

[

ξ−1/2
]

≤ 1 + γ.

Therefore, almost surely for any ε > 0

(4.11) lim sup
m

| detA(n)
m |−1/m ≤ 1 + ε ⇒ lim inf

m
| detA(n)

m |1/m ≥ 1

1 + ε
.

4.2. Random zeros in the unit disc. The following lemma is standard. We shall use it to estimate
averages of random polynomials on the unit circle.

Lemma 4.7. Let (Σ, µ) be a probability space and let (Yσ)σ∈Σ be a family of random variables with Y :=
∫

Yσ µ(dσ) well defined. If

sup
σ

P (Yσ > t) ≤ Ae−at,

for some A ≥ 1, a > 0, and for all t > 0, then

E[eλY ] ≤ 3A, for all 0 < λ ≤ a

2
.(4.12)

In particular,

P(Y > t) ≤ 3Ae−at/2, for all t > 0.(4.13)

Proof. Let λ > 0. Using Jensen’s inequality with respect to σ and Tonelli’s theorem,

E[eλY ] ≤ E

[∫

eλYσ µ(dσ)

]

=

∫

E[eλYσ ]µ(dσ).

For fixed σ ∈ Σ we have

E
[

eλYσ
]

≤ 1 + E
[

eλYσ1{Yσ>0}
]

≤ 1 + E

[

eλY
+
σ

]

.

Finally, we have

E

[

eλY
+
σ

]

= 1 + λ

∫ ∞

0

eλtP(Yσ > t) dt ≤ 1 + λA

∫ ∞

0

e(λ−a)t dt ≤ 1 +A,

since λ − a ≤ −λ. Integrating this with respect to σ gives (4.12), since A > 1. Markov’s inequality for
λ = a/2 gives (4.13). ✷
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We next examine random polynomials fN(z) =
∑N

j=0 ajz
j associated to isotropic vectors a = (aj)

N
j=0 in

RN+1 for which there is K ≥ 1 such that for all ε > 0

(4.14) P(|〈a, u〉| < ε) ≤ Kε, for all u with ‖u‖2 = 1,

and we set

(4.15) Xz := |fN (z)|2.
Note that Xz is also given by

Xz = ‖Vz(a)‖22,
for Vz : RN+1 → R2 the linear map with

Vz(ej) =
(

|z|j cos(jθ), |z|j sin(jθ)
)

, θ = Arg(z),

for j = 0, 1, . . . , N and (ej)
N
j=0 denotes the standard basis of RN+1. The isotropicity of a implies3

E[Xz ] = ‖Vz‖2HS =

n
∑

k=0

|z|2k.(4.16)

As we intend to apply Lemma 4.7 to log(Xz/E[Xz]), we first need the following:

Lemma 4.8. For all z ∈ C and all t > 0 it holds that

P (| logXz − logE[Xz] | > t) ≤ 3Ke−t/2.(4.17)

Proof. Fix z ∈ C. By (4.16) we have

P (|logXz − logE[Xz ]| > t) = P
(

Xz > etE[Xz]
)

+ P
(

Xz ≤ e−t‖Vz‖2HS

)

.

The first probability is bounded by e−t using Markov’s inequality.
For the second, notice that either ‖V ∗

z (e1)‖22 ≥ ‖Vz‖2HS/2 or ‖V ∗
z (e2)‖22 ≥ ‖Vz‖2HS/2. Without loss of

generality assume the former. By Hölder’s inequality and for the unit vector uz := V ∗
z (e1)/‖V ∗

z (e1)‖2 we
have

P
(

Xz ≤ e−t‖Vz‖2HS

)

≤ P
(

|〈a, V ∗
z (e1)〉|2 ≤ e−t‖Vz‖2HS

)

≤ P

(

|〈a, uz〉| ≤ e−t/2 ‖Vz‖HS

‖(Vz)∗(e1)‖2

)

≤ P

(

|〈a, uz〉| ≤ e−t/2
√
2
)

≤ e−t/2K
√
2. �

Proposition 4.9. Let a = (aj)
N
j=0 be an isotropic random vector in RN+1 satisfying (4.14). Then for all

r, t > 0 the random polynomial fN (z) =
∑N

j=0 ajz
j satisfies

P

(∣

∣

∣

∣

1

2π

∫ 2π

0

log |fN (reiθ)| dθ − 1

2
log ρN (r) − log |a0|

∣

∣

∣

∣

> t

)

≤ CKe−ct,(4.18)

where ρN (r) =
∑N

k=0 r
2k. In particular,

P(νfN (D) > 0) ≥ 1− CKN−c.(4.19)

Proof. For any fixed r > 0 we set

(4.20) Xθ := Xreiθ , Yθ := log

(

Xθ

E[Xθ]

)

, Y :=
1

2π

∫ 2π

0

Yθ dθ.

In view of Lemma 4.8, apply Lemma 4.7 for (±Yθ)θ∈[0,2π] to have

P (|Y | > t) ≤ 18Ke−t/4, t > 0.(4.21)

3Recall that ‖A‖HS stands for the Hilbert-Schmidt norm of the matrix A, i.e., ‖A‖2
HS

=
∑

i,j |aij |
2.

11



Since

P(|log |a0|| > s) ≤ e−2s + P(|a0| < e−s) ≤ 2Ke−s, s > 0,(4.22)

we get

P (|Y + 2 log |a0|| > 2t) ≤ 18Ke−t/4 + 2Ke−t/2 ≤ 20Ke−t/4,(4.23)

which proves (4.18).

For (4.19) we use Jensen’s formula from Proposition 2.6:

1

2π

∫ 2π

0

log |fN (eiθ)| dθ − log |a0| = NνfN (D)

Applying (4.18) for r = 1 and t = 1
4 log(N + 1) we find that

P

(

νfN (D) ≥ log(N + 1)

4N

)

> 1− 20Ke−
1
16

log(N+1),

as asserted. �

Notation 4.10. Nf (r) will denote the number of zeros of f , counted with multiplicity, in the open disc of
radius r centered at the origin.

For s = 0, 1, 2, . . . let Rs(f) denote the largest radius r > 0 for which the function f has no more than s
zeros in the open disc of radius r centered at the origin.

Recall here that, by a straightforward calculation, if we arrange the zeros of a holomorphic function in
increasing distance from the origin |z1| ≤ |z2| ≤ . . ., then

(4.24)

∫ r

0

Nf (t)

t
dt =

Nf (r)
∑

j=1

log
r

|zj |
.

We shall need the following:

Lemma 4.11. Let f : D → C be a holomorphic function with f(0) 6= 0. If fn : D → C is a sequence of
holomorphic functions which converges uniformly on compacts to f , then for any 0 < r < 1 we have

lim
n→∞

∫ 2π

0

log |fn(reiθ)| dθ =

∫ 2π

0

log |f(reiθ)| dθ.

Proof. As each fN is holomorphic on a domain that includes |z| ≤ r then, regardless of zeros on the circle
|z| = r [AN07, Theorem 4.8.3], Jensen’s formula yields

(4.25)
1

2π

∫ 2π

0

log |fn(reiθ)| dθ = log |f(0)|+
Nfn (r)
∑

j=1

log
|z(n)j |
r

,

where Nfn(r) is the number of zeros of fn in |z| < r and z
(n)
j denote the zeros of fn. Also,

(4.26)
1

2π

∫ 2π

0

log |f(reiθ)| dθ = log |fn(0)|+
Nf (r)
∑

j=1

log
|zj |
r

.

Given any ε > 0, by the theorem of Hurwitz [AN07, Theorem 5.1.3], after a certain n we haveNf (r) = Nfn(r),

and for any zj there is unique z
(n)
l , call it z(n)(j), with |zj − z(n)(j)| < ε, so that

(4.27)

∣

∣

∣

∣

∣

∣

Nf (r)
∑

j=1

log
|zj |
r

−
Nfn (r)
∑

j=1

log
|z(n)j |
r

∣

∣

∣

∣

∣

∣

≤
Nf (r)
∑

j=1

∣

∣

∣log |zj | − log |z(n)(j)|
∣

∣

∣ ,

which can be made arbitrarily small. �

We now prove the main result of this section, Theorem 4.12, which should be compared to [Kah85, p.
180, Theorem 1] that considers only Gaussian aj ’s and also uses Jensen’s formula.
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Theorem 4.12. Let (aj)
∞
j=0 be a sequence of independent random variables on a probability space (Ω,Σ,P)

with E[aj ] = 0, E[a2j ] = 1, and L(aj , ε) ≤ Kε for all ε > 0 and all j. Then, for the random power series

fω(z) =
∑∞

j=0 aj(ω)z
j the following hold true:

(1) We have

lim inf
r↑1

∣

∣

∣

∣

1

log(1− r2)

∫ r

0

Nf (t)

t
dt+

1

2

∣

∣

∣

∣

= 0, a.s.(4.28)

(2) The zero-set of f in D = {z ∈ C : |z| < 1} is infinite a.s., 0 < Rs(f) < 1 for s = 0, 1, . . ., and
Rs(f) ↑ 1.

Moreover, for almost every ω, we have

(4.29) 1−Rs(fω) ≥ R0(fω)
cs,

for all sufficiently large s, and

(4.30) 1−Rs(fω) = O

(

log s

s

)

, s → ∞.

Proof. (1) Let fN(ω, z) =
∑N

j=0 aj(ω)z
j be the N -th partial sum of fω. Then, the random vector aN =

(a0, . . . , aN ) is isotropic and has independent coordinates with L(aj , ε) ≤ Kε for all ε > 0. Therefore, from
[RV15, Corollary 1.4], we conclude that for all ‖u‖2 = 1 the anti-concentration estimate

(4.31) P(|〈aN , u〉| ≤ ε) ≤ CKε

holds for all ε > 0. Then if tN,r,δ = δ log ρN (r), 0 < r < 1, δ > 0, and

EN (r, δ) :=

{∣

∣

∣

∣

1

2π

∫ 2π

0

log |fN(ω, reiθ)| dθ − 1

2
log ρN (r) − log |a0|

∣

∣

∣

∣

> tN,r,δ

}

,(4.32)

Proposition 4.9, applied for t = tN,r,δ, shows that

P(EN (r, δ)) ≤ CKe−tN,r,δ/4 = CKe−cδ log ρN (r).(4.33)

Now if

E∞(r, δ) :=

{∣

∣

∣

∣

1

2π

∫ 2π

0

log |fω(reiθ)| dθ − log |a0|+
1

2
log(1 − r2)

∣

∣

∣

∣

> −δ log(1− r2)

}

,

Lemma 4.11 implies that E∞(r, δ) ⊂ lim infN EN (r, δ), and Fatou’s lemma implies that

P

(

lim inf
N

EN (r, δ)
)

≤ lim inf
N

P(EN (r, δ))
(4.33)

≤ CK(1− r2)cδ.

Having derived

P(E∞(r, δ)) ≤ CK(1− r2)cδ, 0 < r < 1, δ > 0,(4.34)

Jensen’s formula for f shows that

E∞(r, δ) =

{∣

∣

∣

∣

1

2
+

1

log(1− r2)

∫ r

0

Nf (t)

t
dt

∣

∣

∣

∣

> δ

}

.(4.35)

Now the choice r = rm,δ :=
√
1−m−2/(cδ), m = 1, 2, . . . yields that

∑

m

P(E∞(rm,δ, δ)) ≤ CK
∑

m

(1− r2m,δ)
cδ ≤ CK

∑

m

1

m2
< ∞.

Hence, the first Borel-Cantelli lemma in turn shows that the set

Nδ := lim sup
m

E∞(rm,δ, δ),(4.36)

is null for each δ > 0. Further, let N :=
⋃

q∈Q+ Nq. Clearly, N is a null set and for every ω /∈ N it holds that:

for any ε > 0 there is subsequence of r’s (of the form rm,1/n for 1/n < ε) such that for that subsequence we
eventually have

(4.37)

∣

∣

∣

∣

1

2
+

1

log(1− r2)

∫ r

0

Nf (t)

t
dt

∣

∣

∣

∣

< ε,
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for any ε > 0. In particular, lim inf
r

∣

∣

∣

∣

1

2
+

1

log(1− r2)

∫ r

0

Nf (t)

t
dt

∣

∣

∣

∣

< ε for all ε > 0.

(2) Part(1) implies that for a.e. ω ∈ Ω the zero-set of fω in D is infinite, therefore we have strict inequality
Rs(fω) < 1 for all s. Since a0 6= 0 a.s. we have that R0(f) > 0 a.s. By definition, (Rs)

∞
s=0 is a non-decreasing

sequence of numbers. Then as

(4.38)

Nf (r)
∑

j=1

log
r

|zj|
≤ Nf (r) log

1

R0
,

and RNf (r) ≥ r, (4.24) and (4.28) show that Rs → 1 as s → ∞.
A more careful analysis of the argument leading up to (4.28) reveals the announced rates of convergence.

Indeed; for (4.29), consider N1/3 from (4.36). Then, for ω /∈ N1/3 there exists m0(ω) ∈ N such that for all
m ≥ m0 we have

(4.39)
1

6
log[(1− r2m)−1] ≤

∫ rm

0

Nf (t)

t
dt ≤ 5

6
log[(1− r2m)−1],

where rm ≡ rm,1/3 =
√
1−m−6/c. It follows from the first inequality in (4.39) that

Nf (rm) log(1/R0) ≥
∫ rm

R0

Nf (t)

t
dt =

∫ rm

0

Nf (t)

t
dt ≥ c logm,

for all m ≥ m0. Then, for any s >
c logm0

log(1/R0)
, and for the smallest m so that s ≤ c logm

log(1/R0)
we have

s ≤ Nf (rm). By the definition of Rs, we also have Rs ≤ rm. Finally use rm ≤ 1−m−c′ to conclude (4.29).
For (4.30), first note that Nf (t) ≥ s for all t > Rs. Therefore, using the second inequality in (4.39),

s

2
log

1

Rs
≤
∫

√
Rs

Rs

Nf (t)

t
dt ≤

∫ rqs+1

0

Nf (t)

t
dt ≤ C log qs,(4.40)

where qs := min{m | r2m+1 ≥ Rs}. By the definition of qs we have

Rs > r2qs = 1− q−c
s =⇒ c log qs < log

1

1−Rs
.(4.41)

Combining (4.40) with (4.41) we obtain

cs log
1

Rs
≤ log

1

1−Rs
.

Since 1/2 < Rs < 1 for all sufficiently large s, we conclude4 that 1−Rs ≤ C log s/s, as claimed. ✷

4.3. Clustering of poles. Recall first the following:

Definition 4.13 (Radius of meromorphicity). The radius of meromorphicity of a power series g(z) =
∑∞

j=0 bjz
j is the largest radius r > 0 with the property that there is polynomial p of finite degree with

p(z)g(z) holomorphic on |z| < r.

In Theorem 4.2 we showed that, for aj satisfying the assumptions there, f(z) =
∑∞

j=0 ajz
j has natural

boundary. The following translates this into 1/f :

Lemma 4.14. If f has natural boundary at |z| = 1 then 1/f has radius of meromorphicity 1.

4Set y := (1 −Rs)−1 ∈ (2,∞). Then,

log y ≥ cs log

(

1 +
1

y − 1

)

≥ cs
1

y
=⇒ y log y ≥ cs.

It is easy to check that for h(y) = y log y, y > 2 we have h−1(u) ≍
u

log u
from which the (4.30) follows.
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Proof. As f is holomorphic on |z| < 1, 1/f is meromorphic there, cf. [AN07, Remarks 4.2.5], therefore
the radius of meromorphicity of 1/f is at least 1. If it were more than 1 there would exist polynomial
P (z) such that P (z)/f(z) would be holomorphic with radius of convergence r > 1 and f(z)/P (z) would be
meromorphic on |z| < r. In particular, there would exist neighborhoods of points on the unit circle where
f/P , and therefore f , would be holomorphic. Then |z| = 1 would not be the natural boundary of f . �

Now recall Edrei’s deterministic result [Edr78, Theorem 1] that we shall apply for 1/f :

Theorem 4.15 (Edrei). Let g(z) =
∑∞

j=0 bjz
j be the power series expansion at 0 of a function with radius

of meromorphicity 0 < τ < ∞. Then for any n ≥ 0 there exists m-subsequence of Padé numerators P
(g)
mn of g

whose zeros cluster uniformly around the circle of radius σn, defined as the largest radius of a disc centered
at the origin containing no more than n poles of f .

In the notation of Definition 2.4, this means that there is subsequence ml such that

(4.42) νPmln
(R(σn, ρ)) → 1, νPmln

(S(θ, φ)) → φ− θ

2π
, l → ∞,

for all ρ > 0, and all 0 ≤ θ < φ < 2π.

Theorem 4.16 (Clustering of poles for Padé approximant). Let f be as in Theorem 4.12 and Rm(fω) < 1
the radius of the largest disc that contains no more than m zeros of fω(z), also defined in Theorem 4.12.

Then for almost all ω the zeros of the Padé denominator Q
(fω)
mn cluster uniformly, up to subsequence as

n → ∞, at |z| = Rm(fω) < 1, with 1−Rm(fω) = O(logm/m).

Proof. By Lemma 4.14, the radius of meromorphicity of 1/f is almost surely 1. And the largest radius that

contains no more than m poles of 1/f is Rm. Therefore, by Theorem 4.15, the Padé numerators P
(1/f)
ns of

1/f cluster uniformly, as n → ∞ at |z| = Rm. It remains to notice that the Padé numerator P
(1/f)
nm of 1/f

is the same as the Padé denominator Q
(f)
mn of f , see [Gra72, p. 216, Theorem 22(i)]. Finally use Theorem

4.12. �

5. Logarithmically concave data

In this section we return to the clustering of zeros of the Padé approximant initiated in Section 3 and

examine the case when the aj ’s in
∑N

j=1 ajz
j are not necessarily independent. Our focus is on the fairly

large class of (isotropic) log-concave vectors.
Recall that a random vector X on Rn is log-concave if for any two compact sets K,L, and for any

0 < λ < 1, we have

P(X ∈ (1− λ)K + λL) ≥ [P(X ∈ K)]1−λ[P(X ∈ L)|λ.(5.1)

It is well known, see e.g., [Bor75], [BGVV14, Theorem 2.1.2], that if X is a log-concave random vector on
Rn, non-degenerate in the sense that P(X ∈ H) < 1 for every hyperplane H , then the distribution of X has
density fX , log-concave on its support, i.e.

fX((1− λ)x + λy) ≥ fX(x)1−λfX(y)λ, for all x, y, 0 < λ < 1.(5.2)

See [BGVV14] for background material on log-concave distributions and their geometric properties.
From Section 3, notice that in establishing non-asymptotic clustering of roots the independence of the

entries of the data vector a = (a0, . . . , aN ) is barely used. The properties required to establish the counterpart
of Theorem 3.2 for log-concave vectors a ∈ RN+1 can be summarized as follows:

P1: Upper bound for L(aj , ε), ε > 0.
P2: Upper bound for P(‖Pσ(a)‖1 > t), t > 0, where σ ⊂ {0, 1, . . . , N} and Pσ stands for the coordinate

projection onto Rσ = span{ei : i ∈ σ}.
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P3: Upper bound for P(| detA(n)
m |1/n < ε), ε > 0, for A

(n)
m the n× n Toeplitz matrix associated to a as

in (2.6):

(5.3) A(n)
m =











am am−1 . . . am−n+1

am+1 am . . . am−n+2

...
...

. . .
...

am+n−1 am+n−2 . . . am











.

Properties P1 and P2 will follow easily is subsections 5.1 and 5.2, respectively. We shall rely on the
following fact which can be directly verified from the definitions:

Fact 5.1. Let X be a log-concave vector on Rn and let T : Rn → Rk be a linear mapping. Then, the
vector TX is also log-concave. In particular, if E is a k-dimensional subspace of Rn, the marginal PEX is
log-concave, where PE denotes the orthogonal projection onto E. Furthermore, if X is isotropic, so is PEX .

The more involved property P3 is established in subsection 5.3.

5.1. Anti-concentration for coordinates of log-concave vectors. We recall first that 1-dimensional
marginals of an isotropic, log-concave vector X satisfy anti-concentration bounds of the following form:

Lemma 5.2. Let X be an isotropic, log-concave random vector on Rn. Then, for any θ ∈ Rn with ‖θ‖2 = 1
we have

L(〈X, θ〉, ε) ≤ Cε,(5.4)

for all ε > 0, where C > 0 is a universal constant.

Proof. Fix θ ∈ Rn with ‖θ‖2 = 1. Then, in view of Fact 5.1, the random variable PθX := 〈X, θ〉 has
mean zero, variance 1, and is log-concave. Let fθ be its density function. It is well known, see e.g. [Fra97],
[BGVV14, Theorem 2.2.2], that ‖fθ‖∞ ≤ efθ(0). Also, [BGVV14, Theorem 2.3.3] implies that fθ(0) ≤ C.
Thus, for any a ∈ R we may write

P(|〈X, θ〉 − a| < ε) =

∫ a+ε

a−ε

fθ(t) dt ≤ 2ε‖fθ‖∞,(5.5)

and the assertion follows. ✷

5.2. Large deviation estimates for projections of log-concave vectors. As noticed, the projections
of isotropic (log-concave) vectors are also isotropic (and log-concave). Therefore, we may simply bound

P (‖PσX‖1 > t) ≤ |σ|
t
, ∀t > 0,(5.6)

by using Markov’s inequality and the basic fact that E|Xi| ≤ 1.

Note 5.3. For isotropic log-concave vectors stronger large deviation estimates are available: The celebrated
deviation inequality of Paouris [Pao06] implies

P

(

‖PσX‖2 ≥ Ct
√

|σ|
)

≤ C exp(−t
√

|σ|), ∀ t ≥ 1,

where C > 0 is a universal constant. (See also [LS16] for kindred estimates with respect to other ℓp-norms.)
Nonetheless, since this event will later be unified with a less rare event, the weaker probability of the latter
will persist. Hence, we have argued with the trivial bound (5.6) which is adequate for our purposes.

5.3. Determinant of Toeplitz matrices with log-concave symbol. The rest of the section is devoted
to proving the following estimate:

Theorem 5.4. Let a = (a0, . . . , a2n−2) be an isotropic, log-concave random vector in RN , N := 2n− 1, and
let T (a) be the n× n Toeplitz matrix

(5.7) T (a) =











an−1 an−2 . . . a0
an an−1 . . . a1
...

...
. . .

...
a2n−2 a2n−3 . . . an−1











.
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Then the following anti-concetration bound holds:

P(| detT (a)|1/n ≤ ε) ≤ Cncε,(5.8)

for all ε > 0, where C, c > 0 are universal constants.

This result will follow from [CW01, Theorem 8] once we have established a lower bound for E| det T (a)|.
To this end, we have the following:

Proposition 5.5. Let a be a vector as above and let g ∼ N(0, IN ). The following estimate holds:

(E| det T (a)|)1/n ≥ cn−3/2 (E| detT (g)|)1/n ,(5.9)

where c > 0 is a universal constant.

Proof. Integration in polar coordinates along with the fact that x 7→ | detT (x)| is n-homogeneous yields

E| detT (a)| = NωN

∫ ∞

0

∫

SN−1

rN+n−1| detT (θ)|fa(rθ) dσ(θ) dr

=
NωN

N + n
f(0)

∫

SN−1

| detT (θ)|ρN+n
KN+n(fa)

(θ) dσ(θ),(5.10)

where ρKp(fa) is the radial function of K. Ball’s body associated with fa, see [Pao12, Section 3], [BGVV14,
Section 2.5] for the definition. Applying the same formula for a replaced by g we find

E| det T (g)| = NωN

N + n

2n/2Γ(N+n
2 + 1)

πN/2

∫

SN−1

| detT (θ)| dσ(θ).(5.11)

In view of [BGVV14, Proposition 2.5.7], [Pao12, Eqt. (3.11)] we have that

ρKN+n
(θ) ≥ e

N
N+1

− N
N+nρKN+1

(θ)(5.12)

for all θ ∈ SN−1. Hence, we may lower bound (5.10) by

E| detT (a)| ≥ NωN

N + n
f(0)ecn|KN+1(fa)|

N+n
N

∫

SN−1

| detT (θ)|ρN+n

KN+1(fa)
(θ) dσ(θ),(5.13)

where A denotes the homothetic image of A of volume 1, i.e., A := |A|−1/NA.

Next, since fa is isotropic it follows that KN+1(fa) is almost isotropic, hence ρKN+1
(θ) ≥ c1fa(0)

1/N for

all θ ∈ SN−1. Taking into account this, (5.11), and (5.13) we may write

E| detT (a)| ≥ cn2
Γ(N+n

2 + 1)
fa(0)

2+ n
N |KN+1(fa)|

N+n
N E| det T (g)|.(5.14)

From [BGVV14, Proposition 2.5.8] we have that

|KN+1(fa)| ≥ c3/fa(0).(5.15)

Plugging this estimate into the previous inequality we derive the following:

E| det T (a)| ≥ cn4
(c5n)3n/2

fa(0)E| detT (g)|.(5.16)

Finally, since fa is isotropic one has fa(0)
1/N ≥ c6 > 0, see [BGVV14, Proposition 2.3.12], thus the result

follows. ✷

Proof of Theorem 5.4. Viewing detT (a) as a (homogeneous) polynomial on a of degree n, and employing
the anti-concentration estimate due to Carbery and Wright [CW01, Theorem 8] we find

(E| det T (a)|)1/n · P(| detT (a)|1/n ≤ ε) ≤ Cnε, ε > 0.(5.17)

On the other hand Proposition 5.5, in conjunction with Proposition 2.3, yields

(E| detT (a)|)1/n ≥ cn−3/2 (E| detT (g)|)1/n ≥ c′n−5/2.

Combining all the above we get the desired result. ✷

Following the line of argument of Theorem 3.2, with appropriate adjustments provided by the estimates
proved in this section, we conclude that Theorem 3.2 holds for isotropic, log-concave vectors:

17



Corollary 5.6. Let m,n ∈ N and δ ∈ (0, 1) which satisfy m ≥ Cδ−4n log(en/δ). Then, for any N ≥ m+n,
for any isotropic, log-concave random vector a = (aj)

N
j=0 ∈ RN+1, the numerator Pmn of the [m,n]-Padé

approximant of fN (z) =
∑N

j=0 ajz
j satisfies

P

(

logL(Pmn)

m
> δ4

)

< δ.
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Sci. Paris, 248:2160–2161, 1959.

[AN07] R.B. Ash and W.P. Novinger. Complex Variables. Dover books on mathematics. Dover Publications, 2007.
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[GP97a] J. Gilewicz and M. Pindor. Padé approximants and noise: a case of geometric series. J. Comput. Appl. Math.,

87(2):199–214, 1997.
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[Gra72] W. B. Gragg. The Padé table and its relation to certain algorithms of numerical analysis. SIAM Rev., 14:1–16, 1972.
[Had92] J. Hadamard. Essai sur l’étude des fonctions données par leur développement de taylor. Journal de Mathématiques
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Appendix A. Discrepancy of measures

We provide a proof for Proposition 2.8. To this end, we prove the following estimate:

Proposition A.1 (Discrepancy). Let P (z) =
∑N

j=0 ajz
j with a0aN 6= 0, let νP be the normalized zero-

counting measure associated with P , and let µ be the uniform probability measure on T = {z ∈ C : |z| = 1}.
Then, for any function f : C → R which is Lipschitz and bounded, we have

∣

∣

∣

∣

∫

f dνP −
∫

f dµ

∣

∣

∣

∣

≤ 31‖f‖BL(logL(P )/N)1/4.(A.1)

Proof. Without loss of generality let ‖f‖BL := ‖f‖∞ + ‖f‖Lip = 1 (otherwise we work with f1 := f/‖f‖BL).
To ease the notation let us set L = logL(P ). We assume, as we may, that L ≤ N , otherwise the result holds
trivially. Let 0 < ρ ≤ 1, m ≥ 1 (both to be chosen appropriately later), and ZP := {z ∈ C : P (z) = 0}. Note
that

∫

f dνP =
1

N





∑

z∈ZP∩R(ρ)

f(z) +
∑

z∈ZP \R(ρ)

f(z)



 .(A.2)

First, Jensen’s result (Proposition 2.5) yields

∣

∣

∣

∣

∣

∣

∑

z∈ZP \R(ρ)

f(z)

∣

∣

∣

∣

∣

∣

≤ ‖f‖∞|ZP \R(ρ)| ≤ L

ρ
.(A.3)

If we decompose R(ρ) into m equi-angular polar rectangles, i.e.,

R(ρ) =

m
⋃

j=1

R(ρ) ∩
{

z :
2(j − 1)π

m
≤ arg z <

2jπ

m

}

≡
m
⋃

j=1

Rj ,

then for each j = 1, . . . ,m and for any w ∈ ZP ∩Rj we get that

∣

∣

∣

∣

∣

f(w)− m

2π

∫ 2πj/m

2π(j−1)/m

f(eit) dt

∣

∣

∣

∣

∣

≤ ‖f‖Lipdiam(ZP ∩Rj) ≤ 2π

(

1

m
+ ρ

)

.5

Hence, the choice ρ = 1/m yields for each j = 1, . . . ,m that

∣

∣

∣

∣

∣

∣

f̄j −
1

|ZP ∩Rj |
∑

z∈ZP∩Rj

f(z)

∣

∣

∣

∣

∣

∣

≤ 4π

m
, f̄j :=

m

2π

∫ 2πj/m

2π(j−1)/m

f(eit) dt.(A.4)

5Let 0 < a < b, 0 < θ < φ < 2π, then for R := {reit | a < r < b, θ < t < φ} we have diam(R) ≤ |a− b| + (|a| ∧ |b|)|θ − φ|.
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Now we may write

∣

∣

∣

∣

∫

f dνP −
∫

f dµ

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

N

∑

z∈ZP∩R(ρ)

f(z)− 1

2π

∫ 2π

0

f(eit) dt

∣

∣

∣

∣

∣

∣

+
mL

N

≤
m
∑

j=1

∣

∣

∣

∣

∣

∣

1

N

∑

z∈ZP∩Rj

f(z)− 1

2π

∫ 2πj/m

2π(j−1)/m

f(eit) dt

∣

∣

∣

∣

∣

∣

+
mL

N

=

m
∑

j=1

∣

∣

∣

∣

∣

∣

|ZP ∩Rj |
N





1

|ZP ∩Rj |
∑

z∈ZP∩Rj

f(z)− f̄j



+

( |ZP ∩Rj |
N

− 1

m

)

f̄j

∣

∣

∣

∣

∣

∣

+
mL

N
(A.4)

≤ 4πL

m

m
∑

j=1

|ZP ∩Rj |
N

+mmax
j≤m

∣

∣

∣

∣

νP (Rj)−
1

m

∣

∣

∣

∣

∫

|f | dµ+
mL

N

≤ 4π

m
+mmax

j≤m

∣

∣

∣

∣

νP (Rj)−
1

m

∣

∣

∣

∣

+
mL

N
.

(A.5)

It remains to notice that

νP (Rj) ≤ νP

(

z :
2π(j − 1)

m
≤ arg z <

2πj

m

)

≤ 1

m
+ 16

√

L

N
,

by the Erdős-Turán estimate (Proposition 2.7), and

νP (Rj) = νP

(

z :
2π(j − 1)

m
≤ arg z <

2πj

m

)

− νP

({

z :
2π(j − 1)

m
≤ arg z <

2πj

m

}

\R(ρ)

)

≥ 1

m
− 16

√

L

N
− mL

N
.

Plugging these estimates into inequality (A.5) we obtain
∣

∣

∣

∣

∫

f dνP −
∫

f dµ

∣

∣

∣

∣

≤ 4π

m
+ 16m

√

L

N
+

2m2L

N
,

and “optimizing” over m, by choosing m = (NL )1/4 ≥ 1, we conclude the assertion. ✷
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