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Abstract. Let X be a d-dimensional random array on [n] whose entries take values in

a finite set X , that is, X = 〈Xs : s ∈
([n]
d

)
〉 is an X -valued stochastic process indexed

by the set
([n]
d

)
of all d-element subsets of [n] := {1, . . . , n}. We give easily checked

conditions on X which ensure, for instance, that for every function f : X
(
[n]
d

)
→ R

which satisfies E[f(X)] = 0 and ‖f(X)‖Lp = 1 for some p > 1, the random variable

f(X) becomes concentrated after conditioning it on a large subarray of X. These

conditions cover several classes of random arrays with not necessarily independent

entries. Applications are given in combinatorics, and examples are also presented

which show the optimality of various aspects of the results.
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1. Introduction

1.1. Motivation. The concentration of measure refers to the powerful phenomenon as-

serting that a function which depends smoothly on its variables is essentially constant,

as long as the number of the variables is large enough. There are various ways to quan-

tify this “smooth dependence” (e.g., Lipschitz conditions, bounds for the L2 norm of the

gradient, etc.). Detailed expositions can be found in [Le01, BLM13].

It is easy to see that this phenomenon is no longer valid if we drop the smoothness

assumption. Nevertheless, one can still obtain some form of concentration under a much

milder integrability condition (see [DKT16, Theorem 1′]).

Theorem. For every p > 1 and every 0 < ε 6 1, there exists a constant c > 0 with

the following property. If n > 2/c is an integer, X = (X1, . . . , Xn) is a random vector

with independent entries which take values in a measurable space X , and f : Xn → R is

a measurable function with E[f(X)] = 0 and ‖f(X)‖Lp
= 1, then there exists an interval

I of [n] with |I| > cn such that for every nonempty J ⊆ I we have

(1.1) P
(∣∣E[f(X) | FJ ]

∣∣ 6 ε) > 1− ε

where E[f(X) | FJ ] stands for the conditional expectation of f(X) with respect to the

σ-algebra FJ := σ({Xi : i ∈ J}).

(Here, and in what follows, [n] denotes the discrete interval {1, . . . , n}.) Roughly speak-

ing, this result asserts that if a function of several variables is sufficiently integrable, then,

by integrating out some coordinates, it becomes essentially constant. It was motivated

by—and it has found several applications in—problems in combinatorics (see [DK16]).

1.1.1. The goal of this paper is twofold: to develop workable tools in order to extend

the conditional concentration estimate (1.1) to functions of random vectors X with not

necessarily independent entries, and to present related applications. Of course, to this end

some structural property of X is necessary. We focus on high-dimensional random arrays

whose distribution is invariant under certain symmetries. Besides their intrinsic analytic

and probabilistic interest, our choice to study functions of random arrays is connected to

the density polynomial Hales–Jewett conjecture, an important combinatorial conjecture

of Bergelson [Ber96]—see Subsection 1.5.

1.2. Random arrays. At this point it is useful to recall the definition of a random array.

Definition 1.1 (Random arrays, and their subarrays/sub-σ-algebras). Let d be a positive

integer, and let I be a set with |I| > d. A d-dimensional random array on I is a stochastic

process X = 〈Xs : s ∈
(
I
d

)
〉 indexed by the set

(
I
d

)
of all d-element subsets of I. If J is a

subset of I with |J | > d, then the subarray of X determined by J is the d-dimensional

random array XJ := 〈Xs : s ∈
(
J
d

)
〉; moreover, by FJ we shall denote the σ-algebra

σ({Xs : s ∈
(
J
d

)
}) generated by XJ .
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Of course, one-dimensional random arrays are just random vectors. On the other

hand, two-dimensional random arrays are essentially the same as random symmetric

matrices, and their subarrays correspond to principal submatrices; more generally, higher-

dimensional random arrays correspond to random symmetric tensors. We employ the

terminology of random arrays, however, since we are not using linear-algebraic tools.

1.2.1. Notions of symmetry. The study of random arrays with a symmetric distribution

is a classical topic which goes back to the work of de Finetti; see [Au08, Au13, Kal05] for

an exposition of this theory and its applications. Arguably, the most well-known notion

of symmetry is exchangeability: a d-dimensional random array X on a (possibly infinite)

set I is called exchangeable if for every finite permutation π of I, the random arrays X

and Xπ := 〈Xπ(s) : s ∈
(
I
d

)
〉 have the same distribution. Another well-known notion of

symmetry, which is weaker than exchangeability, is spreadability: a d-dimensional random

array X on a (possibly infinite) set I is called spreadable1 if for every pair J,K of finite

subsets of I with |J | = |K| > d, the subarrays XJ and XK have the same distribution.

Infinite, spreadable, two-dimensional random arrays have been studied by Fremlin and

Talagrand [FT85], and—in greater generality—by Kallenberg [Kal92].

Beyond these notions, in this paper we will also consider the following approximate

form of spreadability which naturally arises in combinatorial applications.

Definition 1.2 (Approximate spreadability). Let X be a d-dimensional random array on

a (possibly infinite) set I, and let η > 0. We say that X is η-spreadable (or approximately

spreadable if η is understood), provided that for every pair J,K of finite subsets of I with

|J | = |K| > d we have

(1.2) ρTV(PJ , PK) 6 η

where PJ and PK denote the laws of the random subarrays XJ and XK respectively, and

ρTV stands for the total variation distance.

The following proposition justifies Definition 1.2 and shows that approximately spread-

able random arrays are the building blocks of arbitrary finite-valued, high-dimensional

random arrays. The proof follows by a standard application of Ramsey’s theorem [Ra30]

taking into account the fact that the space of all probability measures on a finite set

equipped with the total variation distance in compact.

Proposition 1.3. For every triple m,n, d of positive integers with n > d, and every η > 0,

there exists an integer N > n with the following property. If X is a set with |X | = m

and X is an X -valued, d-dimensional random array on a set I with |I| > N , then there

exists a subset J of I with |J | = n such that the random array XJ is η-spreadable.

1We point out that this is not standard terminology. In particular, in [FT85] spreadable random

arrays are referred to as deletion invariant, while in [Kal05] they are called contractable.
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1.3. The concentration estimate. We are ready to state one of the main extensions

of (1.1) obtained in this paper; the question whether (1.1) could hold for random vectors

with not independent entries, was asked by an anonymous reviewer of [DKT16] as well

as by several colleagues in personal communication. In this introduction we restrict our

discussion to boolean two-dimensional random arrays, mainly because this case is easier to

grasp, but at the same time it is quite representative of the higher dimensional case. The

general version is presented in Theorem 6.1 in Section 6; further extensions/refinements

are given in Section 7.

Theorem 1.4. Let 1 < p 6 2, let 0 < ε 6 1, let k > 2 be an integer, and set

C = C(p, ε, k) := exp
( 34

ε8(p− 1)2
k2
)
.(1.3)

Also let n > C be an integer, let X = 〈Xs : s ∈
(

[n]
2

)
〉 be a {0, 1}-valued, (1/C)-spreadable,

two-dimensional random array on [n], and assume that

(1.4)
∣∣E[X{1,3}X{1,4}X{2,3}X{2,4}]− E[X{1,3}]E[X{1,4}]E[X{2,3}]E[X{2,4}]

∣∣ 6 1

C
.

Then for every function f : {0, 1}([n]
2 ) → R with E[f(X)] = 0 and ‖f(X)‖Lp

= 1 there

exists an interval I of [n] with |I| = k such that for every J ⊆ I with |J | > 2 we have

(1.5) P
(∣∣E[f(X) | FJ ]

∣∣ 6 ε) > 1− ε.

Recall that FJ denotes the σ-algebra generated by XJ . (See Definition 1.1.) Thus,

Theorem 1.4 asserts that the random variable f(X) becomes concentrated after condition-

ing it on a subarray of X. Also observe that (1.4) together with the (1/C)-spreadability

of X imply that for every i, j, k, ` ∈ [n] with i < j < k < ` we have

(1.6)
∣∣E[X{i,k}X{i,`}X{j,k}X{j,`}]− E[X{i,k}]E[X{i,`}]E[X{j,k}]E[X{j,`}]

∣∣ 6 6

C
.

As we shall shortly see, as the parameter C gets bigger, the estimate (1.6) forces the

random variables X{i,k}, X{i,`}, X{j,k}, X{j,`} to behave independently. (It also implies

that the correlation matrix of X is close to the identity.) Therefore, we may view (1.6)

as an (approximate) box independence condition for X. We present various examples of

spreadable random arrays that satisfy the box independence condition in Section 8.

Finally we point out that (1.6) is essentially an optimal condition in the sense that for

every integer n > 4 there exist

— a boolean, exchangeable, two-dimensional random array X on [n], and

— a translated multilinear polynomial f : R([n]
2 ) → R of degree 4 with E[f(X)] = 0

and ‖f(X)‖L∞ 6 1,

such that the correlation matrix of X is the identity, and for which (1.6) and (1.5) do not

hold. (See Proposition A.1 in Appendix A; the case “d > 3” is treated in Proposition A.2.)
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i

j

k

`

X{i,k} X{i,`}

X{j,k} X{j,`}

Figure 1. The box independence condition.

1.4. Basic steps of the proof. The first step of the proof of Theorem 1.4—which can be

loosely described as its analytical part—is to show that the conditional concentration of

f(X) is equivalent to an approximate form of the dissociativity of X; this is the content

of Theorem 2.2 in Section 2. The proof of this step is based on estimates for martingale

difference sequences in Lp spaces, and it applies to random arrays with arbitrary distri-

butions (in particular, not necessarily approximately spreadable). The main advantage

of this reduction is that it enables us to forget about the function f and focus exclusively

on the random array X.

The second—and more substantial—step is the verification of the approximate dis-

sociativity of X. This is a consequence of the following theorem which is one of the

main results of this paper. (As before, at this point we restrict our discussion to boolean

two-dimensional random arrays; the general version is given in Theorem 3.2.)

Theorem 1.5 (Propagation of randomness). Let n > 4 be an integer, let 0 < η, ϑ 6 1,

and set ` :=
(bn/2c

2

)
. Also let X = 〈Xs : s ∈

(
[n]
2

)
〉 be a {0, 1}-valued, η-spreadable,

two-dimensional random array on [n] such that for every i, j, k, ` ∈ [n] with i < j < k < `,

(1.7) E[X{i,k}X{i,`}X{j,k}X{k,`}] 6 E[X{i,k}]E[X{i,`}]E[X{j,k}]E[X{j,`}] + ϑ.

Then for every nonempty F ⊆
(

[n]
2

)
such that ∪F has cardinality at most n/2, we have

(1.8)
∣∣∣E[ ∏

s∈F
Xs

]
−
∏
s∈F

E[Xs]
∣∣∣ 6 400|F|

(
n−1/16 + η1/16 + ϑ1/16

)
.

Theorem 1.5 shows that the box independence condition2 propagates and forces all, not

too large, subarrays of X to behave independently. Its proof is based on combinatorial

2Note that in Theorem 1.5 we only need the one-sided version (1.7) of (1.6). Of course, in retrospect,

Theorem 1.5 yields that (1.7) is actually equivalent to (1.6) albeit with a slightly different constant.
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and probabilistic ideas, and it is analogous3 to the phenomenon—discovered in the theory

of quasirandom graphs [CGW88, CGW89]—that a graph G that contains (roughly) the

expected number of 4-cycles must also contain the expected number of any other, not

too large, graph H. We comment further on the relation between the box independence

condition and quasirandomness of graphs and hypergraphs in Subsection 8.1.

1.5. Connection with combinatorics. We proceed to discuss a representative combi-

natorial application of our main results.

1.5.1. Families of graphs. We start by observing that for every integer n > 2 we may

identify a graph G on [n] with an element of {0, 1}([n]
2 ) via its indicator function 1G. (More

generally, for every nonempty finite index set I we identify subsets of I with elements

of {0, 1}I .) Thus, we view the set {0, 1}([n]
2 ) as the space of all graphs on n vertices and

we denote by µ the uniform probability measure on {0, 1}([n]
2 ). Our application is related

to the following conjecture of Gowers [Go09, Conjecture 4].

Conjecture 1.6. Let 0 < δ 6 1 and assume that n is sufficiently large in terms of δ.

Then for every family of graphs A ⊆ {0, 1}([n]
2 ) with µ(A) > δ there exist G,H ∈ A with

H ⊆ G such that the difference G \H is a clique, that is, G \H =
(
X
2

)
for some X ⊆ [n]

with |X| > 2.

Conjecture 1.6 is a special, but critical, case of the density polynomial Hales–Jewett

conjecture [Ber96]; for a detailed discussion of its significance we refer to [Go09] where

Conjecture 1.6 was proposed as a polymath project.

Despite the fact that there is considerable interest, there is nearly no information on

Conjecture 1.6 in the literature. (See, however, the online discussion in [Go09].) This

is partly due to the fact that, while the understanding of quasirandom graphs is very

satisfactory, it is unclear what a quasirandom family of graphs actually is. Our results

are pointing precisely in this direction4.

1.5.2. Quasirandom families of graphs. In order to motivate the reader, let us say that a

family of graphs A ⊆ {0, 1}([n]
2 ) is isomorphic invariant5 if for every permutation π of [n]

and every G ⊆
(

[n]
2

)
we have

(1.9) G ∈ A if and only if Gπ := {π(e) : e ∈ G} ∈ A;

3In fact, this is more than an analogy; indeed, it is easy to see that Theorem 1.5 yields the aforemen-

tioned property of quasirandom graphs.
4Here, it is important to note that this is a rather basic step of the analysis of Conjecture 1.6; indeed,

the combinatorial core of almost every problem in density Ramsey theory is to isolate its quasirandom

and structure components—see, e.g., [Tao08] for an exposition of this general philosophy.
5Isomorphic invariant families of graphs are also referred to as graph properties. It may be argued

that Conjecture 1.6 is more natural for isomorphic invariant families of graphs, but we do not impose

such a restriction in our results.
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that is, G belongs to A if every isomorphic copy of G belongs to A. As we shall see in

Proposition 9.1, if A ⊆ {0, 1}([n]
2 ) is an arbitrary isomorphic invariant family of graphs,

then there exists a nonnegative parameter γ(A) such that

— γ(A) > µ(A)4 − on→∞(1), and

— for every U = {i < j < k < `} ∈
(

[n]
4

)
, denoting by P the uniform probability

measure on {0, 1}([n]
2 )\(U

2), we have

P
(
W : W ∪ {i, k},W ∪ {i, `},W ∪ {j, k},W ∪ {j, `} ∈ A

)
= γ(A).

On the other hand, if A ⊆ {0, 1}([n]
2 ) is random, then clearly γ(A) = µ(A)4 + on→∞(1).

Keeping these observations in mind, we view as quasirandom those families of graphs A
whose parameter γ(A) is not significantly larger from the corresponding parameter of a

random family of graphs with the same density. This is, essentially, the content of the

following definition.

Definition 1.7 (Quasirandom families of graphs). Let n > 2 be an integer, let θ > 0,

and let A ⊆ {0, 1}([n]
2 ) be a (not necessarily isomorphic invariant) family of graphs. We

say that A is θ-quasirandom if there exists U ⊆
(

[n]
4

)
with |U| > (1− θ)

(
n
4

)
such that for

every U = {i < j < k < `} ∈ U we have

(1.10) P
(
W : W ∪ {i, k},W ∪ {i, `},W ∪ {j, k},W ∪ {j, `} ∈ A

)
6 µ(A)4 + θ.

Here, as above, P denotes the uniform probability measure on {0, 1}([n]
2 )\(U

2). (Thus, if A
is isomorphic invariant, then A is θ-quasirandom if γ(A) 6 µ(A)4 + θ.)

The reader might have already observed the similarity between Definition 1.7 and the

classical 4-cycle condition of quasirandomness of graphs [CGW88, CGW89].

i
j

k

`

W

Figure 2. Quasirandom families of graphs.
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1.5.3. The following theorem—which relies on both conditional concentration and The-

orem 1.5, and whose proof is given in Section 9—shows that Definition 1.7 is indeed a

sensible notion.

Theorem 1.8. For every 0 < δ 6 1 and every integer k > 2 there exist θ > 0 and an

integer q0 > k with the following property. Let n > q0 be an integer, and let A ⊆ {0, 1}([n]
2 )

be a θ-quasirandom family of graphs with µ(A) > δ. Then, there exist K ⊆ [n] with

|K| = k and W ⊆
(

[n]
2

)
\
(
K
2

)
such that

(1.11) {W} ∪
{
W ∪ e : e ∈

(
K

2

)}
⊆ A.

In particular, there exist G,H ∈ A with H ⊆ G such that G \H is a clique.

The proof of Theorem 1.8 is effective; see Remark 9.5 for its quantitative aspects.

1.6. Related work. Although Theorem 1.4 (as well as its higher dimensional extension,

Theorem 6.1) is somewhat distinct from the traditional setting of concentration of smooth

functions, it is related with several results which we are about to discuss.

Arguably, the one-dimensional case—that is, the case of random vectors—is the most

heavily investigated. It is impossible to give here a comprehensive review; we only mention

that concentration estimates for functions of finite exchangeable random vectors have been

obtained in [Bob04, Ch06].

The two-dimensional case is also heavily investigated, in particular, in the literature

around various random matrix models. However, closer to the spirit of this paper is the

work of Latala [La06] and the subsequent papers [AdWo15, GSS19, V19] which obtain

exponential concentration inequalities for smooth functions (e.g., polynomials) of high-

dimensional random arrays whose entries are of the form

(1.12) Xs =
∏
i∈s

ξi

where (ξ1, . . . , ξn) is a random vector with independent entries and a well-behaved distri-

bution. Note that all these arrays are dissociated, and are additionally exchangeable if

the random variables ξ1, . . . , ξn are identically distributed.

That said, the study of concentration inequalities for functions of more general fi-

nite high-dimensional random arrays is nearly not developed at all, mainly because the

structure of finite high-dimensional6 random arrays is quite complicated (see, also, [Au13,

page 16] for a discussion on this issue). We make a step in this direction in the companion

paper [DTV21].

6The understanding is better in the one-dimensional case—see [DF80].
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1.7. Organization of the paper. We close this section by giving an outline of the

contents of this paper. It is divided into two parts, Part 1 and Part 2, which are largely

independent of each other and can be read separately.

Part 1 consists of Sections 3 up to 8. The main result in Section 2 is Theorem 2.2 which

reduces conditional concentration to approximate dissociativity. The next two sections,

Sections 3 and 4, are devoted to the proof of Theorem 1.5 and its higher-dimensional

extension, Theorem 3.2. In Section 3 we introduce related definitions and we also present

some consequences. The proof of Theorem 3.2 is given in Section 4; this is the most tech-

nically demanding part of the paper. In Section 5 we give the proof of Theorem 1.5, while

in Section 6 we complete the proofs of Theorem 1.4 and its higher-dimensional extension,

Theorem 6.1. Lastly, in Section 7 we pressent extensions/refinements of Theorems 1.4 and

6.1 for dissociated random arrays (Theorem 7.1), for vector-valued functions of random

arrays (Theorem 7.3) and a simultaneous conditional concentration result (Theorem 7.4).

Part 2 consists of Sections 8 and 9 and it is entirely devoted to the connection of our

results with combinatorics. In Section 8 we give examples of combinatorial structures for

which our conditional concentration results are applicable, and in Section 9 we give the

proof of Theorem 1.8.

Finally, in Appendix A we present examples which show the optimality of the box

independence condition.

Part 1. Proofs of the main results

2. From dissociativity to concentration

2.1. Main result. Let d be a positive integer, and recall that a d-dimensional random

array X on a (possibly infinite) subset I of N is called dissociated if for every J,K ⊆ I

with |J |, |K| > d and max(J) < min(K), the σ-algebras FJ and FK are independent,

that is, for every A ∈ FJ and B ∈ FK we have P(A ∩ B) = P(A)P(B). Dissociativity

is a classical concept in probability (see [MS75]); we will need the following approximate

version of this notion.

Definition 2.1 (Approximate dissociativity). Let n, `, d be positive integers such that

n > ` > 2d, and let 0 6 β 6 1. We say that a d-dimensional random array X on [n] is

(β, `)-dissociated provided that for every J,K ⊆ [n] with |J |, |K| > d, |J | + |K| 6 ` and

max(J) < min(K), and every pair of events A ∈ FJ and B ∈ FK we have

(2.1)
∣∣P(A ∩B)− P(A)P(B)

∣∣ 6 β.
The following theorem—which is the main result in this section—provides the link

between conditional concentration and approximate dissociativity.
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Theorem 2.2. Let d be a positive integer, let 1 < p 6 2, let 0 < ε 6 1, let k > d be an

integer, and set

β = β(p, ε) :=
( ε

10

) 10
p−1(2.2)

` = `(p, ε, k) :=
⌈ 4

ε4(p− 1)
k
⌉
.(2.3)

Also let n > ` be an integer, and let X be a (β, `)-dissociated, d-dimensional random array

on [n] whose entries take values in a measurable space X . Then for every measurable

function f : X ([n]
d ) → R with E[f(X)] = 0 and ‖f(X)‖Lp

= 1 there exists an interval

I of [n] with |I| = k such that for every J ⊆ I with |J | > d we have

(2.4) P
(∣∣E[f(X) | FJ ]

∣∣ 6 ε) > 1− ε.

We note that for spreadable random arrays there is a converse of Theorem 2.2, namely,

approximate dissociativity is in fact necessary in order to have conditional concentration;

see Proposition 2.8 in Subsection 2.6.

2.2. Moment bound. The following moment estimate is the main step of the proof of

Theorem 2.2.

Theorem 2.3. Let d, `, n be positive integers with n > ` > 2d, let 0 < β 6 1, and let X

be a d-dimensional random array on [n] which is (β, `)-dissociated and whose entries take

values in a measurable space X . Then, for every 1 < p 6 2, every measurable function

f : X ([n]
d ) → R with f(X) ∈ Lp, every integer k with d 6 k 6 b`/2c, and every I ∈

(
[n]
`

)
,

there exists J ∈
(
I
k

)
with the following property. For any 1 6 r < p, we have

(2.5)
∥∥E[f(X) | FJ ]−E[f(X)]

∥∥
Lr
6
(

(p−1)−1/2

√
2k

`
+10β

1
r−

1
p

)∥∥f(X)−E[f(X)]
∥∥
Lp

where FJ denotes the σ-algebra generated by the subarray XJ . (See Definition 1.1.)

Moreover, if I is an interval of [n], then J is an interval too.

Theorem 2.3 easily yields Theorem 2.2. We present the details below.

Proof of Theorem 2.2 assuming Theorem 2.3. Set r := (p+1)/2 and notice that with this

choice we have 1 < r < p 6 2. Since E[f(X)] = 0 and ‖f(X)‖Lp = 1, by Theorem 2.3

applied for the interval I1 := [`], there exists an interval I2 of [`] with |I2| = k such that

(2.6)
∥∥E[f(X) | FI2 ]

∥∥
Lr
6 (p− 1)−1/2

√
2k

`
+ 10β

1
r−

1
p .

We claim that the interval I2 is as desired. Indeed, fix a subset J of I2 with |J | > d, and

observe that FJ ⊆ FI2 . Therefore, by (2.6) and the fact that the conditional expectation

is a linear contraction on Lr, we obtain that∥∥E[f(X) | FJ ]
∥∥
Lr
6 (p− 1)−1/2

√
2k

`
+ 10β

1
r−

1
p .
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By Markov’s inequality, this estimate yields that

(2.7) P
(∣∣E[f(X) | FJ ]

∣∣ > ε) 6 (1/ε)r ·
(

(p− 1)−1/2

√
2k

`
+ 10β

1
r−

1
p

)r
.

By (2.7), the choice of r and the choice of β and ` in (2.2) and (2.3) respectively, we

conclude that

(2.8) P
(∣∣E[f(X) | FJ ]

∣∣ > ε) 6 ε.
which clearly implies (2.4). The proof of Theorem 2.3 is completed. �

The rest of this section is devoted to the proof of Theorem 2.3 which is based on

inequalities for martingales in Lp spaces. Martingales are, of course, standard tools in

the proofs of concentration estimates. Typically, one decomposes a given random variable

X into martingale increments, and then controls an appropriate norm of X by controlling

the norm of the increments. In the proof of Theorem 2.3 we also decompose a given

random variable into martingale increments but, in contrast, we seek to find one of the

increments which has controlled norm. This method, known as the energy increment

strategy, was introduced in the present probabilistic setting by Tao [Tao06] for “p = 2”,

and then extended in the full range of admissible p’s in [DKT16]. Having said that, we

also note that the main novelty of the present paper lies in the selection of the filtration.

We now briefly describe the contents of the rest of this section. In Subsection 2.3

we present the analytical estimate which is used7 in the proof of Theorem 2.3. In Sub-

section 2.4 we prove an orthogonality result for pairs of σ-algebras which satisfy the

estimate (2.1). The proof of Theorem 2.3 is completed in Subsection 2.5. Finally, in Sub-

section 2.6 we show that, for spreadable random arrays, the assumption of approximate

dissociativity in Theorem 2.2 is necessary.

2.3. Martingale difference sequences. It is an elementary, though important, fact

that martingale difference sequences are orthogonal in L2. We will need the following

extension of this fact.

Proposition 2.4. Let 1 < p 6 2. Then for every martingale difference sequence (di)
m
i=1

in Lp we have

(2.9)
( m∑
i=1

‖di‖2Lp

)1/2

6
(
p− 1

)−1/2
∥∥∥ m∑
i=1

di

∥∥∥
Lp

.

In particular,

(2.10) min
16i6m

‖di‖Lp 6
1√

m(p− 1)

∥∥∥ m∑
i=1

di

∥∥∥
Lp

.

7Square-function estimates could also be used, but they do not yield optimal dependence with respect

to the integrability parameter p.
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We note that the constant (p − 1)−1/2 in (2.9) is optimal; this sharp estimate was

proved by Ricard and Xu [RX16] who deduced it from a uniform convexity inequality for

Lp spaces—see [Pi11, Lemma 4.32]. (See, also, [DKK16, Appendix A] for an exposition.)

2.4. Mixing and orthogonality. In what follows, it is convenient to introduce the

following terminology. Let (Ω,Σ,P) be a probability space, and let 0 6 β 6 1; given

two sub-σ-algebras A,B of Σ, we say that A and B are β-mixing provided that for every

A ∈ A and every B ∈ B we have

(2.11)
∣∣P(A ∩B)− P(A)P(B)

∣∣ 6 β.
Notice that in the extreme case “β = 0” the estimate (2.11) is equivalent to saying

that the σ-algebras A and B are independent, which in turn implies for every random

variable X with E[X] = 0 we have E
[
E[X | A] | B] = 0. The main result in this subsection

(Proposition 2.7 below) is an approximate version of this fact.

We start with the following lemma.

Lemma 2.5. Let (Ω,Σ,P) be a probability space, let 0 < β 6 1, and let A,B be two

sub-σ-algebras of Σ which are β-mixing. Then for every real-valued, bounded, random

variable X and every 1 6 p 6∞ we have

(2.12)
∥∥E[E[X | A] | B

]
− E[X]

∥∥
Lp
6 (4β)1/p ‖X − E[X]‖L∞ .

For the proof of Lemma 2.5 we need the following simple fact.

Fact 2.6. Let (X,Σ, µ) be a measure space, and let f : X → R be an integrable function.

Then we have

(2.13) ‖f‖L1(µ) 6 2 sup
A∈Σ

∣∣∣ ∫
A

f dµ
∣∣∣.

In particular, if x1, . . . , xm ∈ R, then

(2.14)

m∑
i=1

|xi| 6 2 max
∅6=I⊆[m]

∣∣∣∑
i∈I

xi

∣∣∣.
Proof. Since [f > 0], [f < 0] ∈ Σ, we have

‖f‖L1(µ) =
∣∣∣ ∫

[f>0]

f dµ
∣∣∣+
∣∣∣ ∫

[f<0]

f dµ
∣∣∣ 6 2 sup

A∈Σ

∣∣∣ ∫
A

f dµ
∣∣∣

as desired. �

We proceed to the proof of Lemma 2.5.

Proof of Lemma 2.5. We prove the L1-estimate; the Lp-estimate for p > 1 follows from

the L1 −L∞ bound, and the fact that the conditional expectation is a linear contraction

on L∞. Without loss of generality we may assume that E[X] = 0. (If not, then we work

with the random variable X ′ := X − E[X] instead of X). Set Z := E[X | A], and observe

that E[Z] = E[X] = 0. Hence, by Fact 2.6, it suffices to obtain an upper bound for
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∣∣ for arbitrary B ∈ B. To this end, note that ‖Z‖L∞ 6 ‖X‖L∞ ; therefore, by a

standard approximation, we may assume that Z is of the form
∑N
i=1 ai1Ai

where N is

a positive integer, |ai| 6 ‖Z‖L∞ for every i ∈ [N ], and the family {A1, . . . , AN} forms

a partition of Ω into measurable events. Let B ∈ B be arbitrary. Using the fact that∑N
i=1 ai P(Ai) = E[Z] = 0 and the triangle inequality, we have

(2.15)
∣∣E[Z1B ]

∣∣ =
∣∣∣ N∑
i=1

ai P(Ai ∩B)
∣∣∣ 6 N∑

i=1

|ai| · |P(Ai ∩B)− P(Ai)P(B)|.

If we set xi := P(Ai ∩B)− P(Ai)P(B), we obtain that

(2.16)
∣∣E[Z1B ]

∣∣ 6 N∑
i=1

|ai| · |xi| 6 2‖Z‖L∞ max
∅6=I⊆[N ]

∣∣∣∑
i∈I

xi

∣∣∣
where we have also used the pointwise bound |ai| 6 ‖Z‖L∞ and Fact 2.6. Finally, setting

AI :=
⋃
i∈I Ai for every nonempty I ⊆ [N ], then we have

(2.17)
∣∣∣∑
i∈I

xi

∣∣∣ =
∣∣P(AI ∩B)− P(AI)P(B)

∣∣ 6 β
since the sets A1, . . . , AN are pairwise disjoint and AI ∈ A. We conclude that

(2.18)
∣∣E[E[Z | B]1B

]∣∣ =
∣∣E[Z1B ]

∣∣ 6 2β‖X‖L∞ .

Since B ∈ B was arbitrary, the result follows. �

We are now ready to state the main result in this subsection.

Proposition 2.7. Let (Ω,Σ,P) be a probability space, let 0 < β 6 1, and let A,B be two

sub-σ-algebras of Σ which are β-mixing. Let 1 6 r < p 6∞, and let X ∈ Lp. Then,

(2.19)
∥∥E[E[X | A] | B

]
− E[X]

∥∥
Lr
6 10β

1
r−

1
p ‖X − E[X]‖Lp

.

Proof. We will obtain the estimate by truncating X and employing Lemma 2.5. We lay

out the details. As in the proof of Lemma 2.5, we may assume that E[X] = 0. Let t > 0

(to be chosen later) be the truncation level, and set Xt := X1[|X|6t]. Markov’s inequality

yields that P(|X| > t) 6 t−p‖X‖pLp
, thus applying Hölder’s inequality we obtain that

(2.20) ‖Xt −X‖rLr
= E

[
|X|r 1[|X|>t]

]
6 ‖X‖rLp

P(|X| > t)1− r
p 6
‖X‖pLp

tp−r

for any 1 6 r < p. Therefore,∥∥E[E[X | A] | B
]∥∥
Lr
6
∥∥E[E[X −Xt | A] | B

]∥∥
Lr

+(2.21)

+
∥∥E[E[Xt | A] | B

]
− E[Xt]

∥∥
Lr

+
∣∣E[Xt]

∣∣
6 ‖X −Xt‖Lr

+ 2(4β)1/rt+ ‖X −Xt‖L1
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where we have used the contraction property of the conditional expectation, Lemma 2.5 for

the random variable Xt, and the fact E[X] = 0, respectively. Taking into account (2.20),

we conclude that

(2.22)
∥∥E[E[X | A] | B

]∥∥
Lr
6 2
‖X‖p/rLp

t
p
r−1

+ 8β1/rt.

It remains to optimize the latter with respect to t; the choice t := β−1/p‖X‖Lp
yields the

assertion. �

2.5. Proof of Theorem 2.3. After normalizing, we may assume that

(2.23)
∥∥f(X)− E[f(X)]

∥∥
Lp

= 1.

Fix an integer k with d 6 k < b`/2c and I ∈
(

[n]
`

)
, and let {ι1 < · · · < ι`} denote the

increasing enumeration of I. Set m := b`/kc. Also let K1, . . . ,Km ∈
(

[`]
k

)
be successive

intervals with min(K1) = 1, and set Ji := {ικ : κ ∈ Ki} for every i ∈ [m]. Thus, the

sets J1, . . . , Jm are successive subsets of I each of cardinality k; also notice that if I is an

interval of [n], then the sets J1, . . . , Jm are intervals too.

Next, denote by (Ω,Σ,P) the underlying probability space on which the random array

X is defined, and for every i ∈ [m] let FJi be the σ-algebra generated by the subarray

XJi . (See Definition 1.1). We define a filtration (Ai)mi=0 by setting A0 = {∅,Ω} and

(2.24) Ai := σ
(
{FJ1 , . . . ,FJi}

)
for every i ∈ [m].

We will use variants of this filtration in Section 9.

J1

J2

Ji

Ji+1

FJ1

FJ2

FJi

FJi+1

Ai

Figure 3. The filtration (Ai)mi=0.

Let (di)
m
i=1 denote the martingale difference sequence of the Doob martingale for f(X)

with respect to the filtration (Ai)mi=0, that is, di := E[f(X) | Ai] − E[f(X) | Ai−1] for
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every i ∈ [m]. Since E[f(X) | Am]− E[f(X)] =
∑m
i=1 di, the contractive property of the

conditional expectation yields that∥∥∥ m∑
i=1

di

∥∥∥
Lp

6
∥∥f(X)− E[f(X)]

∥∥
Lp

(2.23)
= 1.(2.25)

Therefore, by Proposition 2.4, there exists an integer i0 ∈ [m] so that

‖di0‖Lp 6
1√

m(p− 1)
.(2.26)

We claim that the set J := Ji0 is as desired.

To this end, fix 1 6 r < p. First observe that, conditioning further on FJi0 ,

(2.27)
∥∥E[f(X) | FJi0 ]− E

[
E[f(X) | Ai0−1] | FJi0

]∥∥
Lp

=
∥∥E[di0 | FJi0 ]

∥∥
Lp
6

1√
m(p− 1)

where we have used the fact that FJi0 ⊆ Ai0 , the contractive property of the conditional

expectation once more, and (2.26). By the triangle inequality and taking into account

(2.27) and the monotonicity of the Lp-norms, we obtain that∥∥E[f(X) | FJi0 ]− E[f(X)]
∥∥
Lr
6

1√
m(p− 1)

+(2.28)

+
∥∥E[E[f(X) | Ai0−1] | FJi0

]
− E[f(X)]

∥∥
Lr

Finally, by (2.24) and our assumption that the random array X is (β, `)-dissociated, we

see that the σ-algebras FJi0 and Ai0−1 are β-mixing. (See (2.11).) By Proposition 2.7,

we conclude that∥∥E[f(X) | FJi0 ]− E[f(X)]
∥∥
Lr
6

1√
m(p− 1)

+ 10β
1
r−

1
p .(2.29)

and the proof is completed.

2.6. Necessity of approximate dissociativity. We close this section with the fol-

lowing proposition which shows that the assumption of approximate dissociativity in

Theorem 2.2 is necessary.

Proposition 2.8. Let n, d, ` be positive integers with n > ` > d, let 0 < β 6 1, let X be

a spreadable, d-dimensional random array on [n] whose entries take vales in a measurable

space X , and assume that X is not (β, `)-dissociated. Then there exists a measurable

function f : X ([n]
d ) → {0, 1} such that for every I ∈

(
[n]
`

)
we have

(2.30) P
(∣∣E[f(X) | FI ]− E[f(X)]

∣∣ > β/2) > β/2.
Proof. Since the random array X is spreadable and not (β, `)-dissociated, there exist

two integers j, k > d with j + k 6 `, and two events A ∈ F[j] and B ∈ FK , where

K := {j + 1, . . . , k + j}, such that |P(A ∩ B)− P(A)P(B)| > β. We select a measurable

subset A′ of X ([j]
d ) such that the events [X[j] ∈ A′] and A agree almost surely, and we set
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Ã := π−1(A′) where π : X ([n]
d ) → X ([j]

d ) denotes the natural projection. Finally, we define

f : X ([n]
d ) → {0, 1} by f = 1Ã.

We claim that f is as desired. Indeed, let I ∈
(

[n]
`

)
be arbitrary. We select L ∈

(
I
k

)
with min(L) > j. Invoking the spreadability of X and the choice of A and B, we may

also select Γ ∈ FL such that

(2.31)
∣∣P(A ∩ Γ)− P(A)P(Γ)

∣∣ > β.
Observing that P(A) = E[f(X)] and P(A ∩ Γ) = E[f(X)1Γ], and using the fact that

Γ ∈ FL ⊆ FI , we obtain that

β
(2.31)

6
∣∣E[
(
f(X)− E[f(X)]

)
1Γ]
∣∣ =

∣∣E[
(
E[f(X) | FI ]− E[f(X)]

)
1Γ]
∣∣(2.32)

which is easily seen to imply (2.30). The proof is completed. �

Remark 2.9. We note that if the random array X in Proposition 2.8 is boolean, then the

function f defined above is a polynomial of degree at most
(
`
d

)
.

3. The box independence condition propagates

3.1. The main result. We start by introducing some pieces of notation and some

terminology. Let n, d be a positive integers with n > 2d; for every finite sequence

H = (H1, . . . ,Hd) of nonempty finite subsets of [n] with8 max(Hi) < min(Hi+1) for

all i ∈ [d− 1], we set

(3.1) Box(H) :=
{
s ∈

(
[n]

d

)
: |s ∩Hi| = 1 for all i ∈ [d]

}
.

If, in addition, we have |Hi| = 2 for all i ∈ [d], then we say that the set Box(H) is a

d-dimensional box of [n]. By Box(d) we shall denote the d-dimensional box corresponding

to the sequence ({1, 2}, . . . , {2d− 1, 2d}), that is,

(3.2) Box(d) =
{
s ∈

(
[n]

d

)
: |s ∩ {2i− 1, 2i}| = 1 for all i ∈ [d]

}
.

We proceed with the following definition. Note that the “(ϑ,S)-box independence” con-

dition introduced below is the one-sided version of (1.6); we will work with this slightly

weaker version since it is more amenable to an inductive argument.

Definition 3.1. Let n, d be positive integers with n > 2d, let X be a nonempty finite set,

and let X = 〈Xs : s ∈
(

[n]
d

)
〉 be an X -valued, d-dimensional random array on [n]. Also

let S be a nonempty subset of X .

(i) (Box independence) Let ϑ > 0. We say that X is (ϑ,S)-box independent if for

every d-dimensional box B of [n] and every a ∈ S we have

(3.3) P
( ⋂
s∈B

[Xs = a]
)
6
∏
s∈B

P
(
[Xs = a]

)
+ ϑ.

8Note that if d = 1, then this condition is superfluous.
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(ii) (Approximate independence) Set ` :=
(bn/2c

d

)
, and let γ = (γk)`k=1 be a finite

sequence of positive reals. We say that X is (γ,S)-independent if for every

nonempty subset F of
(

[n]
d

)
such that ∪F has cardinality at most n/2, and every

collection (as)s∈F of elements of S we have

(3.4)
∣∣∣P( ⋂

s∈F
[Xs = as]

)
−
∏
s∈F

P
(
[Xs = as]

)∣∣∣ 6 γ|F|.
We are ready to state the main result in this section. It is the higher-dimensional

version of Theorem 1.5, and its proof is given in Section 4. (The numerical invariants

appearing below are defined in Subsection 4.2.)

Theorem 3.2. Let d, n be positive integers with n > 4d, let 0 < η, ϑ 6 1, and set

` :=
(bn/2c

d

)
. Then there exists a sequence γ = (γk(η, ϑ, d, n))`k=1 of positive reals such

that γk(η, ϑ, d, n) tends to zero as n tends to infinity and η, ϑ tend to zero, and with the

following property.

Let X be a finite set, let S be a nonempty subset of X , and let X be an X -valued,

η-spreadable, d-dimensional random array on [n]. If X is (ϑ,S)-box independent, then

X is also (γ,S)-independent.

3.2. Consequences. The rest of this section is devoted to the proof of two consequences

of Theorem 3.2. The first consequence shows that the box independence condition implies

approximate dissociativity. Specifically, we have the following corollary.

Corollary 3.3. For every triple d, `,m of positive integers with ` > 2d and m > 2, and

every β > 0, there exist an integer N > ` and two constants η, ϑ > 0 with the following

property.

Let n > N be an integer, let X be a set with |X | = m, let S be a subset of X with

|S| = |X | − 1, and let X be an X -valued, η-spreadable, d-dimensional random array on

[n]. If X is (ϑ,S)-box independent, then X is (β, `)-dissociated. (See Definition 2.1.)

The second consequence of Theorem 3.2 shows that the box independence forces all

sub-processes indexed by d-dimensional boxes to behave independently. More precisely,

we have the following corollary.

Corollary 3.4. For every pair d,m of positive integers with m > 2, and every γ > 0,

there exist an integer N > 2d and η, ϑ > 0 with the following property.

Let n,X ,S,X = 〈Xs : s ∈
(

[n]
d

)
〉 be as in Corollary 3.3. If X is (ϑ,S)-box independent,

then for every d-dimensional box B of [n] and every collection (as)s∈B of elements of X
we have

(3.5)
∣∣∣P( ⋂

s∈B
[Xs = as]

)
−
∏
s∈B

P
(
[Xs = as]

)∣∣∣ 6 γ.
Remark 3.5. Although Corollary 3.4 is weaker than Theorem 3.2, a direct proof of the

estimate (3.5) is likely to require the whole machinery presented in Section 4.
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The deduction of Corollaries 3.3 and 3.4 from Theorem 3.2 is based on the following

lemma.

Lemma 3.6. For every triple d,m, κ of positive integers with m > 2, and every γ > 0,

there exist an integer N > 1 and η, ϑ > 0 with the following property.

Let n,X ,S,X = 〈Xs : s ∈
(

[n]
d

)
〉 be as in Corollary 3.3. If X is (ϑ,S)-box independent,

then for every nonempty subset F of
(

[n]
d

)
with |F| 6 κ and every collection (as)s∈F of

elements of X we have

(3.6)
∣∣∣P( ⋂

s∈F
[Xs = as]

)
−
∏
s∈F

P
(
[Xs = as]

)∣∣∣ 6 γ.
We defer the proof of Lemma 3.6 to Subsection 3.3 below. At this point, let us give

the proofs of Corollaries 3.3 and 3.4.

Proof of Corollary 3.3. Let d, `,m, β be as in the statement of the corollary. Let N, η, ϑ

be as in Lemma 3.6 applied for κ :=
(
`
d

)
and γ := 1

3m
−2κβ. (Clearly, we may assume that

N > `.) We claim that N, η and ϑ are as desired.

Indeed, fix n,X ,S,X and recall that we need to show that X is (β, `)-dissociated. To

this end, let J,K be subsets of [n] with |J |, |K| > d, |J |+ |K| 6 ` and max(J) < min(K),

and let A ∈ FJ and B ∈ FK . We will show that |P(A ∩B)− P(A)P(B)| 6 β.

Since A belongs to the σ-algebra generated by XJ , there exists a collection A of maps

of the form a :
(
J
d

)
→ X such that

(3.7) A =
⋃
a∈A

⋂
s∈(J

d)

[Xs = a(s)].

Similarly, there exists a collection B of maps of the form b :
(
K
d

)
→ X such that

(3.8) B =
⋃
b∈B

⋂
t∈(K

d )

[Xt = b(t)].

For every a ∈ A we set Aa :=
⋂
s∈(J

d)
[Xs = a(s)], respectively, for every b ∈ B we set

Bb :=
⋂
t∈(K

d )[Xt = b(t)]. By Lemma 3.6, for every a ∈ A and every b ∈ B, we have∣∣∣P(Aa ∩Bb)−
∏
s∈(J

d)

P
(
[Xs = a(s)]

) ∏
t∈(K

d )

P
(
[Xt = b(t)]

)∣∣∣ 6 γ(3.9)

∣∣∣P(Aa)−
∏
s∈(J

d)

P
(
[Xs = a(s)]

)∣∣∣ 6 γ(3.10)

∣∣∣P(Bb)−
∏
t∈(K

d )

P
(
[Xt = b(t)]

)∣∣∣ 6 γ;(3.11)

consequently, |P(Aa ∩ Bb) − P(Aa)P(Bb)| 6 3γ. On the other hand, by identities (3.7)

and (3.8), we see that A∩B =
⋂

a∈A,b∈B Aa ∩Bb; moreover, the collections 〈Aa : a ∈ A〉
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and 〈Bb : b ∈ B〉 consist of pairwise disjoint events. Thus, we have

(3.12) P(A ∩B) =
∑

a∈A,b∈B

P(Aa ∩Bb), P(A) =
∑
a∈A

P(Aa) and P(B) =
∑
b∈B

P(Bb).

Therefore, we conclude that

|P(A ∩B)− P(A)P(B)| 6
∑

a∈A,b∈B

|P(Aa ∩Bb)− P(Aa)P(Bb)|(3.13)

6 3γ |A| |B| 6 3γ m2(`
d) = β. �

Proof of Corollary 3.4. It follows from Lemma 3.6 applied for “κ = 2d”. �

3.3. Proof of Lemma 3.6. The result follows from Theorem 3.2 and the inclusion-

exclusion formula. Specifically, let d,m, κ, γ be as in the statement of the lemma, and set

γ′ := m−κγ. By Theorem 3.2, there exist an integer N > 4d and two constants 0 < η < 1

and ϑ > 0 such that

(3.14) γk(η, ϑ, d, n) < γ′

for every integer n > N and k ∈ [κ]. We claim that N, η and ϑ are as desired.

Indeed, fix n,X ,S and X = 〈Xs : s ∈
(

[n]
d

)
〉. By (3.14) and Theorem 3.2, for every

nonempty F∗ ⊆
(

[n]
d

)
with |F∗| 6 κ and every collection (as)s∈F∗ of elements of S,

we have

(3.15)
∣∣∣P( ⋂

s∈F∗
[Xs = as]

)
−
∏
s∈F∗

P
(
[Xs = as]

)∣∣∣ 6 γ′.
Let F be a nonempty subset of

(
[n]
d

)
with |F| 6 κ, and let (as)s∈F be a collection of

elements of X . Set F ′ := {s ∈ F : as ∈ S} and G := F \ F ′; observe that for every t ∈ G
the events 〈[Xt = a] : a ∈ S〉 are pairwise disjoint and, moreover,

(3.16) [Xt = at] =
( ⋃
a∈S

[Xt = a]
){
.

(For any event E, by E{ we denote its complement.) Thus, for every t ∈ G we have

P
(
[Xt = at]

)
= 1−∑a∈S P

(
[Xt = a]

)
and, consequently,∏

s∈F
P
(
[Xs = as]

)
=
∏
s∈F ′

P
(
[Xs = as]

) ∏
t∈G

(
1−

∑
a∈S

P
(
[Xt = a]

))
(3.17)

=
∑
W⊆G

a : W→S

(−1)|W|
∏
t∈W

P
(
[Xt = a(t)]

) ∏
s∈F ′

P
(
[Xs = as]

)
with the convention that the product over an empty index-set is equal to 1. Moreover,

P
( ⋂
s∈F

[Xs = as]
)

(3.16)
= P

( ⋂
s∈F ′

[Xs = as] ∩
⋂
t∈G

( ⋃
a∈S

[Xt = a]
){)

(3.18)

= P
( ⋂
s∈F ′

[Xs = as]
)
− P

( ⋂
s∈F ′

[Xs = as] ∩
( ⋃
t∈G

⋃
a∈S

[Xt = a]
))
.
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Next observe that for every nonempty subset W of G we have

(3.19)
⋂
t∈W

⋃
a∈S

[Xt = a] =
⋃

a : W→S

( ⋂
t∈W

[Xt = a(t)]
)

and the events 〈⋂t∈W [Xt = a(t)] : a : W → S〉 are pairwise disjoint. Hence, by the

inclusion-exclusion formula,

P
( ⋂
s∈F ′

[Xs = as] ∩
( ⋃
t∈G

⋃
a∈S

[Xt = a]
))

(3.20)

=
∑
∅6=W⊆G

(−1)|W|−1 P
( ⋂
t∈W

( ⋂
s∈F ′

[Xs = as] ∩
( ⋃
a∈S

[Xt = a]
)))

(3.19)
=

∑
∅6=W⊆G

(−1)|W|−1 P
( ⋂
s∈F ′

[Xs = as] ∩
( ⋃

a : W→S

( ⋂
t∈W

[Xt = a(t)]
)))

=
∑
∅6=W⊆G

∑
a : W→S

(−1)|W|−1 P
( ⋂
s∈F ′

[Xs = as] ∩
⋂
t∈W

[Xt = a(t)]
)
.

Combining identities (3.18) and (3.20), we see that

(3.21) P
( ⋂
s∈F

[Xs = as]
)

=
∑
W⊆G

a : W→S

(−1)|W| P
( ⋂
s∈F ′

[Xs = as] ∩
⋂
t∈W

[Xt = a(t)]
)

with the convention that the intersection over an empty index-set is equal to the whole

sample space. Finally, by identities (3.17) and (3.21) and the triangle inequality, we

conclude that the quantity
∣∣P(⋂s∈F [Xs = as]

)
−∏s∈F P

(
[Xs = as]

)∣∣ is upper bounded by∑
W⊆G

a : W→S

∣∣∣P( ⋂
s∈F ′

[Xs = as] ∩
⋂
t∈W

[Xt = a(t)]
)
−(3.22)

−
∏
s∈F ′

P
(
[Xs = as]

) ∏
t∈W

P
(
[Xt = a(t)]

)∣∣∣ (3.15)

6 mκγ′ = γ.

The proof of Lemma 3.6 is completed.

4. Proof of Theorem 3.2

This section is devoted to the proof of Theorem 3.2 which proceeds by induction on

the dimension d. In a nutshell, the argument is based on repeated averaging and an

appropriate version of the weak law of large numbers in order to gradually upgrade the

box independence condition. The combinatorial heart of the matter lies in the selection

of this averaging.

4.1. Toolbox. We begin by presenting three lemmas which are needed for the proof of

Theorem 3.2, but they are not directly related with the main argument.

Lemma 4.1. Let m be a positive integer, let δ > 0 and let A1, . . . , Am be events in a

probability space such that for every i, j ∈ [m] with i 6= j we have

(4.1) P(Ai ∩Aj) 6 P(Ai)P(Aj) + δ.
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Then, setting Z := 1
m

∑m
i=1 1Ai

, we have

(4.2) Var(Z) 6
1

m
+ δ.

Proof. We have

Var(Z) = E
[
(Z − E[Z])2

]
=

1

m2

∑
i,j∈[m]

E
[(

1Ai
− P(Ai)

)(
1Aj
− P(Aj)

)]
=

1

m2

[ m∑
i=1

(
P(Ai)− P(Ai)

2
)

+
∑

i,j∈[m]
i 6=j

(
P(Ai ∩Aj)− P(Ai)P(Aj)

)]
6

1

m
+ δ. �

Lemma 4.2. Let m be a positive integer, let η, δ > 0 and let E,A1, . . . , Am be events in

a probability space such that for every i, j ∈ [m] with i 6= j we have

(i) |P(Ai)− P(Aj)| 6 η,

(ii) |P(E ∩Ai)− P(E ∩Aj)| 6 η, and

(iii) P(Ai ∩Aj) 6 P(Ai)P(Aj) + δ.

Then for every i ∈ [m] we have

(4.3)
∣∣P(E ∩Ai)− P(E)P(Ai)

∣∣ 6 2η +

√
1

m
+ δ.

Proof. Set Z := 1
m

∑m
j=1 1Aj

. Let i ∈ [m]. Notice that, by the triangle inequality,∣∣P(E ∩Ai)− P(E)P(Ai)
∣∣ =

∣∣E[1E1Ai ]− E[1EP(Ai)]
∣∣(4.4)

6
∣∣E[1E1Ai

]− E[1EZ]
∣∣+
∣∣E[1EZ]− E[1EE[Z]]

∣∣+
+
∣∣E[1EE[Z]]− E[1EP(Ai)]

∣∣.
Invoking the triangle inequality again, we have∣∣E[1E1Ai ]− E[1EZ]

∣∣ 6 1

m

m∑
j=1

∣∣P(E ∩Ai)− P(E ∩Aj)
∣∣ (ii)

6 η(4.5)

∣∣E[1EE[Z]]− E[1EP(Ai)]
∣∣ 6 P(E)

1

m

m∑
j=1

∣∣P(Aj)− P(Ai)
∣∣ (i)

6 η.(4.6)

Finally, by the Cauchy–Schwarz inequality, hypothesis (iii) and Lemma 4.1,

(4.7)
∣∣E[1EZ]− E[1EE[Z]]

∣∣ 6√P(E) ‖Z − E[Z]‖L2 6

√
1

m
+ δ.

The estimate (4.3) follows from (4.4)–(4.7). �

Lemma 4.3. Let m > 1 be an integer, let η > 0, and let (Ai)
m
i=1 be an η-spreadable

sequence9 of events in a probability space. Then for every i, j ∈ [m] with i 6= j,

(4.8) P(Ai ∩Aj) > P(Ai)P(Aj)−
1

m
− 3η.

9That is, the random vector (1A1
, . . . ,1Am ) is η-spreadable according to Definition 1.2.
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Proof. Set Z := 1
m

∑m
k=1 1Ak

. Fix i, j ∈ [m] with i 6= j. Then we have

∣∣P(Ai ∩Aj)− E[Z2]
∣∣ =

∣∣∣P(Ai ∩Aj)−
1

m2

m∑
k=1

P(Ak)− 1

m2

∑
k,`∈[m]
k 6=`

P(Ak ∩A`)
∣∣∣ 6 1

m
+ η.

Also notice that∣∣P(Ai) P(Aj)− E[Z]2
∣∣ 6 E[Z]

∣∣P(Aj)− E[Z]
∣∣+ P(Aj)

∣∣P(Ai)− E[Z]
∣∣ 6 2η.

Since E[Z]2 6 E[Z2], inequality (4.8) follows from the previous two estimates. �

4.2. Initializing various numerical parameters. Our goal in this subsection is to

define, by recursion on d, the numbers γk(η, ϑ, d, n) as well as some other numerical

invariants which are needed for the proof of Theorem 3.2. (The reader is advised to skip

this subsection at first reading.)

We start by setting

(4.9) γk(η, ϑ, 1, n) := (3k − 1)η + (k − 1)

√
1

bn/2c + ϑ

for every 0 < η 6 1, every ϑ > 0 and every pair of positive integers k, n with n > 2 and

k 6 n/2.

Let d > 2 be an integer, and assume that the numbers γk(η, ϑ, d − 1, n) have been

defined for every choice of admissible parameters. Fix 0 < η 6 1 and ϑ > 0, and let n be

an integer with n > 4d. We set

ϑ1(η, ϑ, d, n) := (n− 2d+ 2)−1/2 + (2d + 5)
√
η +
√
ϑ(4.10)

ϑ2(η, ϑ, d, n) :=
2d−1

n− d+ 1
+ 2d3η + ϑ(4.11)

ϑ3(η, ϑ, d, n) :=
d− 1

(n− 2d+ 2)1/2d−1 + (2d + 5)η1/2d−1

+ ϑ1/2d−1

+ 3η.(4.12)

Next, for every positive integer k with k 6
(b(n−1)/2c

d−1

)
we set

γ
(1)
k (η, ϑ, d, n) := γk

(
η, ϑ1(η, ϑ, d, n), d, n), d− 1, n− 1

)
+ (k + 1)η(4.13)

γ
(2)
k (η, ϑ, d, n) := γk

(
η, ϑ2(η, ϑ, d, n), d− 1, n− 2

)
(4.14)

γ
(3)
k (η, ϑ, d, n) := 2γ

(1)
k (η, ϑ, d, n) + γ

(2)
k (η, ϑ, d, n) + k ϑ3(η, ϑ, d, n)(4.15)

γ
(4)
k (η, ϑ, d, n) :=

(
γ

(3)
k (η, ϑ, d, n) + bn/2c−1 + (2k + 1)η

)1/2
+ 2η.(4.16)

Moreover, for every positive integer u with u 6 n/2 and every choice k1, . . . , ku of positive

integers with k1, . . . , ku 6
(b(n−2)/2c

d−1

)
set

(4.17) γ(5)(η, ϑ, d, n, (ki)
u
i=1) :=γ

(1)
k1

(η, ϑ, d, n) +

u∑
i=2

(
γ

(1)
ki

(η, ϑ, d, n) + γ
(4)
ki

(η, ϑ, d, n)
)
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with the convention that the sum in (4.17) is equal to 0 if u = 1. Finally, for every

positive integer k with k 6
(bn/2c

d

)
we define

(4.18) γk(η, ϑ, d, n) := (k + 1) η + max{γ(5)(η, ϑ, d, n, (ki)
u
i=1)}

where the above maximum is taken over all choices of positive integers u, k1, . . . , ku sat-

isfying u 6 n/2− d, k1, . . . , ku 6
(b(n−2)/2c

d−1

)
and k1 + · · ·+ ku = k.

4.3. The inductive hypothesis. For every positive integer d by P(d) we shall denote

the following statement.

Let n > 2d be an integer, let 0 < η < 1, let ϑ > 0, let X be a nonempty finite set, and

let S be a nonempty subset of X . Set ` :=
(bn/2c

d

)
and let γ = (γk(η, ϑ, d, n))`k=1 be as

in Subsection 4.2. Let X be an X -valued, η-spreadable, d-dimensional random array X

on [n]. If X is (ϑ,S)-box independent, then X is (γ,S)-independent.

It is clear that Theorem 3.2 is equivalent to the validity of P(d) for every integer d > 1.

4.4. The base case “d = 1”. The initial step of the induction follows from the following

lemma.

Lemma 4.4. Let n, η, ϑ,X and S be as in the statement of P(1), and assume that

X = (X1, . . . , Xn) is an X -valued, η-spreadable, random vector. Assume, moreover, that

for every i, j ∈ [n] with i 6= j and every a ∈ S we have

(4.19) P
(
[Xi = a] ∩ [Xj = a]

)
6 P

(
[Xi = a]

)
P
(
[Xj = a]

)
+ ϑ.

Then for every nonempty F ⊆ [n] with |F| 6 n/2 and every collection (ai)i∈F of elements

of S, we have

(4.20)
∣∣∣P( ⋂

i∈F
[Xi = ai]

)
−
∏
i∈F

P
(
[Xi = ai]

)∣∣∣ 6 γ|F|(η, ϑ, 1, n)

where (γk(η, ϑ, 1, n))
bn/2c
k=1 is as in (4.9). In particular, P(1) holds true.

Proof. Observe that, by the η-spreadability of X, it is enough to show that for every

k ∈ {1, . . . , bn/2c} and every a1, . . . , ak ∈ S we have

(4.21)
∣∣∣P( k⋂

i=1

[Xi = ai]
)
−

k∏
i=1

P
(
[Xi = ai]

)∣∣∣ 6 (k − 1)
(

2η +

√
1

bn/2c + ϑ
)
.

To this end, we proceed by induction of k. The case “k = 1” is straightforward. Let k be

a positive integer with k < bn/2c, and assume that (4.21) has been verified up to k. Fix

a1, . . . , ak+1 ∈ S. Set m := bn/2c and E :=
⋂k
i=1[Xi = ai]. Also set Aj := [Xk+j = ak+1]

for every j ∈ [m]. Using the η-spreadability of X, for every j, j′ ∈ [m] with j 6= j′ we have

(i) |P(Aj)− P(Aj′)| 6 η, and

(ii) |P(E ∩Aj)− P(E ∩Aj′)| 6 η.

Moreover, since ak+1 ∈ S, we have
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(iii) P(Aj ∩Aj′) 6 P(Aj)P(Aj′) + ϑ.

Applying Lemma 4.2 for “δ = ϑ” and using the definition of A1, we see that

(4.22)
∣∣P(E ∩ [Xk+1 = ak+1]

)
− P(E)P

(
[Xk+1 = ak+1]

)∣∣ 6 2η +

√
1

m
+ ϑ.

On the other hand, by our inductive assumptions, we have

(4.23)
∣∣∣P(E)−

k∏
j=1

P
(
[Xj = aj ]

)∣∣∣ 6 (k − 1)
(

2η +

√
1

m
+ ϑ

)
.

Combining (4.22) and (4.23), we see that (4.21) is satisfied, as desired. �

4.5. The general inductive step. We now enter into the main part of the proof of

Theorem 3.2. Specifically, fix an integer d > 2. Throughout this subsection, we will

assume that P(d− 1) has been proved.

4.5.1. Step 1: preparatory lemmas. Our goal in this step is to prove two probabilistic

lemmas which will be used in the third and the fourth step of the proof respectively.

Strictly speaking, these lemmas are not part of the proof of P(d) since in their proofs

we do not use the inductive assumptions. (In particular, this subsection can be read

independently.)

The first lemma essentially shows that the reverse inequality in (3.3) always holds true.

Lemma 4.5. Let n be an integer with n > 2d, let 0 < η < 1, let X be a nonempty finite

set, and let X = 〈Xs : s ∈
(

[n]
d

)
〉 be an X -valued, η-spreadable, d-dimensional random

array on [n]. Then for every t ∈
(

[n−2]
d−1

)
and every a ∈ X we have

P
(
[Xt∪{n−1} = a]

)
P
(
[Xt∪{n} = a]

)
6 P

(
[Xt∪{n−1} = a] ∩ [Xt∪{n} = a]

)
+(4.24)

+
1

n− d+ 1
+ 6η.

Proof. Fix t ∈
(

[n−2]
d−1

)
and a ∈ X . Set t0 := [d − 1], and Ai := [Xt0∪{d−1+i} = a] for

every i ∈ [n − d + 1]. Observe that the sequence (A1 . . . , An−d+1) is η-spreadable10. By

Lemma 4.3, we obtain that

(4.25) P(A1)P(A2) 6 P(A1 ∩A2) +
1

n− d+ 1
+ 3η.

By (4.25) and the η-spreadability of X, the estimate (4.24) follows. �

The second lemma shows that the box independence condition (3.3) is inherited by the

two-dimensional faces of d-dimensional boxes.

Lemma 4.6. Let n be an integer with n > 2d, let 0 < η < 1, let ϑ > 0, let X be a

nonempty finite set, let S be a nonempty subset of X , and let X = 〈Xs : s ∈
(

[n]
d

)
〉

10Recall that this means that the random vector (1A1
, . . . ,1An−d+1

) is η-spreadable.
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be an X -valued, η-spreadable, d-dimensional random array on [n] which is (ϑ,S)-box

independent. Then for every t ∈
(

[n−2]
d−1

)
and every a ∈ S we have

P
(
[Xt∪{n−1} = a] ∩ [Xt∪{n} = a]

)
6P
(
[Xt∪{n−1} = a]

)
P
(
[Xt∪{n} = a]

)
+(4.26)

+ ϑ3(η, ϑ, d, n)

where ϑ3(η, ϑ, d, n) is as defined in (4.12).

Proof. Fix a ∈ S. For every i ∈ [d] set ti−1 := [i− 1] (where, by convention, [0] = ∅) and

Hi := {n− 2d+ 2i− 1, n− 2d+ 2i}. We define, recursively, a finite sequence (ϑi)
d−1
i=0 by

setting ϑ0 = ϑ and

(4.27) ϑr+1 =
( 1

n− 2d+ r + 2
+ (2d−r + 5)η + ϑr

)1/2

.

By induction on r ∈ {0, . . . , d− 1}, we will show that

(4.28) P
( ⋂
v∈Br

[Xtr∪v = a]
)
6
∏
v∈Br

P
(
[Xtr∪v = a]

)
+ ϑr

where Br := Box
(
(Hr+1, . . . ,Hd)

)
is the (d − r)-dimensional box determined by the

sequence (Hr+1, . . . ,Hd). (See (3.1).) The case “r = 0” follows from the fact that the

random array X is (ϑ,S)-box independent. Next, let r ∈ {0, . . . , d− 2} and assume that

(4.28) has been proved up to r. For every j ∈ [n− 2d+ r + 2] set

(4.29) Aj :=
⋂

v∈Br+1

[Xtr∪{r+j}∪v = a].

Since X is η-spreadable, the sequence (A1, . . . , An−2d+r+2) is η-spreadable. Using this

observation and the inductive assumptions, we see that

P(A1 ∩A2) 6 P(An−2d+r+1 ∩An−2d+r+2) + η(4.30)

= P
( ⋂
v∈Br

[Xtr∪v = a]
)

+ η 6
∏
v∈Br

P
(
[Xtr∪v = a]

)
+ η + ϑr.

On the other hand, since X is η-spreadable, we have

(4.31)
∏
v∈Br

P
(
[Xtr∪v = a]

)
6
( ∏
v∈Br+1

P
(
[Xtr+1∪v = a]

))2

+ 2d−rη.

Moreover, by Lemma 4.3 applied to the η-spreadable sequence (Aj)
n−2d+r+2
j=1 ,

(4.32) P(A1 ∩A2) > P(A1)P(A2)− 1

n− 2d+ r + 2
− 3η.
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By (4.30)–(4.32) and using the η-spreadability of the sequence (Aj)
n−2d+r+2
j=1 once again,

we obtain that

P
( ⋂
v∈Br+1

[Xtr+1∪v = a]
)2

= P(A1)2 6 P(A1)P(A2) + η(4.33)

6
( ∏
v∈Br+1

P
(
[Xtr+1∪v = a]

))2

+ ϑ2
r+1.

Taking square-roots, this estimate completes the inductive proof of (4.28).

Now notice that

ϑd−1 6 ϑ
1

2d−1 +

d−1∑
j=1

(n− 2d+ 2)−1/2j

+ ((2d + 5)η)1/2j

(4.34)

6
d− 1

(n− 2d+ 2)1/2d−1 + (d− 1)(2d + 5)1/2η1/2d−1

+ ϑ1/2d−1

6
d− 1

(n− 2d+ 2)1/2d−1 + (2d + 5)η1/2d−1

+ ϑ1/2d−1

.

Setting s1 := [d− 1] ∪ {n− 1} and s2 := [d− 1] ∪ {n}, by (4.28) and (4.34), we have

P
(
[Xs1 = a] ∩ [Xs2 = a]

)
6 P

(
[Xs1 = a]

)
P
(
[Xs2 = a]

)
+(4.35)

+
d− 1

(n− 2d+ 2)1/2d−1 + (2d + 5)η1/2d−1

+ ϑ1/2d−1

.

Taking into account the η-spreadability of X and the definition of ϑ3(η, ϑ, d, n), the

estimate (4.26) follows from (4.35). �

4.5.2. Step 2: rewriting the inductive assumptions. We proceed with the following lemma

which will enable us to use P(d− 1) in a more convenient form.

Lemma 4.7. Let n, η, ϑ,X ,S be as in the statement of P(d), and let X = 〈Xs : s ∈
(

[n]
d

)
〉

be an X -valued, η-spreadable, d-dimensional random array on [n] which is (ϑ,S)-box

independent. We define X̃ = 〈X̃t : t ∈
(

[n−1]
d−1

)
〉 by setting

(4.36) X̃t := Xt∪{n}.

Then the random array X̃ is X -valued, η-spreadable and (ϑ1(η, ϑ, d, n),S)-box indepen-

dent, where ϑ1(η, ϑ, d, n) is as (4.10).

Proof. Since X is X -valued and η-spreadable, by (4.36), we see that these properties are

inherited to X̃. Thus, we only need to check that X̃ is (ϑ1(η, ϑ, d, n),S)-box independent.

To this end, fix a ∈ S and a finite sequence H = (H1, . . . ,Hd−1) of 2-element subsets

of [n − 1] with max(Hi) < min(Hi+1) for all i ∈ [d − 2]; let B := Box(H) denote the

(d− 1)-dimensional box determined by the sequence H. Moreover, set

B0 := Box
(
({1, 2}, . . . , {2d− 3, 2d− 2})

)
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and Ar :=
⋂
t∈B0

[Xt∪{2d−2+r} = a] for every r ∈ [n − 2d + 2]. Notice that the sequence

(A1, . . . , An−2d+2) is η-spreadable. Therefore, by Lemma 4.3,

(4.37) P(A1)2 6 P(A1)P(A2) + η 6 P(A1 ∩A2) +
1

n− 2d+ 2
+ 4η.

Next, set B′ := Box
(
({1, 2}, . . . , {2d − 3, 2d − 2}, {2d − 1, 2d})

)
, and observe that B′ is

a d-dimensional box and A1 ∩ A2 =
⋂
s∈B′ [Xs = a]. Since X is (ϑ,S)-box independent

and a ∈ S, we see that

P(A1 ∩A2) 6
∏
s∈B′

P
(
[Xs = a]

)
+ ϑ(4.38)

=
( ∏
t∈B0

P
(
[Xt∪{2d−1} = a]

))( ∏
t∈B0

P
(
[Xt∪{2d} = a]

))
+ ϑ

6
( ∏
t∈B0

P
(
[Xt∪{2d−1} = a]

))2

+ 2d−1η + ϑ

where the last inequality follows from the η-spreadability of X. By (4.37), (4.38) and the

definition of A1, we obtain

P
( ⋂
t∈B0

[Xt∪{2d−1} = a]
)
6
∏
t∈B0

P
(
[Xt∪{2d−1} = a]

)
+(4.39)

+
( 1

n− 2d+ 2
+ (2d−1 + 4)η + ϑ

)1/2

6
∏
t∈B0

P
(
[Xt∪{2d−1} = a]

)
+

+ (n− 2d+ 2)−1/2 + (2d−1 + 4)
√
η +
√
ϑ.

On the other hand, using the η-spreadability of X, we have∣∣∣P( ⋂
t∈B0

[Xt∪{2d−1} = a]
)
− P

( ⋂
t∈B

[X̃t = a]
)∣∣∣ 6 η 6 √η(4.40) ∣∣∣ ∏

t∈B0

P
(
[Xt∪{2d−1} = a]

)
−
∏
t∈B

P
(
[X̃t = a]

)∣∣∣ 6 2d−1η 6 2d−1√η.(4.41)

Combining (4.39)–(4.41) and invoking the definition of ϑ1(η, ϑ, d, n) in (4.10), we conclude

that

(4.42) P
( ⋂
t∈B

[X̃t = α]
)
6
∏
t∈B

P
(
[X̃t = a]

)
+ ϑ1(η, ϑ, d, n).

Since a and B were arbitrary, the result follows. �

By Lemma 4.7 and P(d− 1), we have the following corollary.

Corollary 4.8. Let n, η, ϑ,X ,S,X be as in Lemma 4.7. Then for every nonempty subset

G of
(

[n−1]
d−1

)
with | ∪ G| 6 (n− 1)/2, every collection (at)t∈G of elements of S, and every
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r ∈ [n] with r > max(∪G) we have

(4.43)
∣∣∣P( ⋂

t∈G
[Xt∪{r} = at]

)
−
∏
t∈G

P
(
[Xt∪{r} = at]

)∣∣∣ 6 γ(1)
|G| (η, ϑ, d, n)

where γ
(1)
|G| (η, ϑ, d, n) is as in (4.13).

4.5.3. Step 3: doubling. The following lemma complements Lemma 4.7. It is also based

on the inductive hypothesis P(d−1), but it will enable to use it in a rather different form.

Lemma 4.9 (Doubling). Let n, η, ϑ,X ,S be as in the statement of P(d), and assume

that X = 〈Xs : s ∈
(

[n]
d

)
〉 is an X -valued, η-spreadable, d-dimensional random array

on [n] which is (ϑ,S)-box independent. We define a (d − 1)-dimensional random array

X̃ ′ = 〈X̃ ′t : t ∈
(

[n−2]
d−1

)
〉 by setting

(4.44) X̃ ′t := (Xt∪{n−1}, Xt∪{n}).

Then X̃ ′ is (X × X )-valued, η-spreadable and (ϑ2(η, ϑ, d, n), {(a, a) : a ∈ S})-box inde-

pendent, where ϑ2(η, ϑ, d, n) is as defined in (4.11).

Proof. It is clear that X̃ ′ is (X ×X )-valued and η-spreadable. So, we only need to show

that X̃ ′ is (ϑ2(η, ϑ, d, n), {(a, a) : a ∈ S})-box independent.

Let H1, . . . ,Hd−1 be 2-element subsets of [n − 2] with max(Hi) < min(Hi+1) for all

i ∈ [d− 2]. Also let a ∈ S. Set B̃ := Box
(
(H1, . . . ,Hd−1)

)
; also set Hd := {n− 1, n} and

B := Box
(
(H1, . . . ,Hd−1, Hd)

)
. Since X is (ϑ,S)-box independent, we see that

P
( ⋂
t∈B̃

[X̃ ′t = (a, a)]
)

= P
( ⋂
t∈B̃

(
[Xt∪{n−1} = a] ∩ [Xt∪{n} = a]

))
(4.45)

= P
( ⋂
s∈B

[Xs = a]
)
6
∏
s∈B

P
(
[Xs = a]

)
+ ϑ.

By Lemma 4.5, we have∏
s∈B

P
(
[Xs = a]

)
=
∏
t∈B̃

P
(
[Xt∪{n−1} = a]

)
P
(
[Xt∪{n} = a]

)
(4.46)

6
∏
t∈B̃

P
(
[Xt∪{n−1} = a] ∩ [Xt∪{n} = a]

)
+

2d−1

n− d+ 1
+ 2d−16η

=
∏
t∈B̃

P
(
[X̃ ′t = (a, a)]

)
+

2d−1

n− d+ 1
+ 2d3η.

By (4.45) and (4.46) and the definition of ϑ2(η, ϑ, d, n), the result follows. �

The following corollary—which is an immediate consequence of Lemma 4.9 and the

inductive assumption P(d− 1)—is the analogue of Corollary 4.8.

Corollary 4.10. Let n, η, ϑ,X ,S,X, X̃ ′ be as in Lemma 4.9. Then the random ar-

ray X̃ ′ is
(
(γ

(2)
k (η, ϑ, d, n))`k=1, {(a, a) : a ∈ S}

)
-independent, where ` =

(b(n−2)/2c
d−1

)
and

(γ
(2)
k (η, ϑ, d, n))`k=1 is as in (4.14).
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4.5.4. Step 4: gluing. This is the main step of the proof. Specifically, our goal is to prove

the following proposition.

Proposition 4.11 (Gluing). Let n > 2d + 2 be an integer, let η, ϑ,X ,S be as in the

statement of P(d), and assume that X = 〈Xs : s ∈
(

[n]
d

)
〉 is an X -valued, η-spreadable,

d-dimensional random array on [n] which is (ϑ,S)-box independent. Finally, let r be an

integer with d < r 6 n/2, let G be a nonempty subset of
(

[r−1]
d−1

)
, let (at)t∈G be a collection

of elements of S, let F be a nonempty subset of
(

[r−1]
d

)
, and let (bs)s∈F be a collection of

elements of S. Then we have∣∣∣P( ⋂
s∈F

[Xs = bs] ∩
⋂
t∈G

[Xt∪{r} = at]
)
−(4.47)

− P
( ⋂
s∈F

[Xs = bs]
)
P
( ⋂
t∈G

[Xt∪{r} = at]
)∣∣∣ 6 γ(4)

|G|(η, ϑ, d, n)

where γ
(4)
|G| (η, ϑ, d, n) is as in (4.16).

Proposition 4.11 follows by carefully selecting a sequence of events, and then applying

the averaging argument presented in Lemma 4.2. In order to do so, we need to control the

variances of the corresponding averages. This is, essentially, the content of the following

lemma.

Lemma 4.12 (Variance estimate). Let n, η, ϑ,X ,S be as in the statement of P(d), and

assume that X = 〈Xs : s ∈
(

[n]
d

)
〉 is an X -valued, η-spreadable, d-dimensional random

array on [n] which is (ϑ,S)-box independent. Then for every nonempty subset G of
(

[n−2]
d−1

)
with | ∪ G| 6 (n− 2)/2, and every collection (at)t∈G of elements of S we have

P
( ⋂
t∈G

[Xt∪{n−1} = at] ∩
⋂
t∈G

[Xt∪{n} = at]
)

(4.48)

6P
( ⋂
t∈G

[Xt∪{n−1} = at]
)
P
( ⋂
t∈G

[Xt∪{n} = at]
)

+ γ
(3)
|G| (η, ϑ, d, n)

where γ
(3)
|G| (η, ϑ, d, n) is as in (4.15).

Proof. Let G be a subset of
(

[n−2]
d−1

)
with | ∪ G| 6 (n− 2)/2, and let (at)t∈G be a collection

of elements of S. By Corollary 4.10, we have

P
( ⋂
t∈G

[Xt∪{n−1} = at] ∩
⋂
t∈G

[Xt∪{n} = at]
)

(4.49)

6
∏
t∈G

P
(
[Xt∪{n−1} = at] ∩ [Xt∪{n} = at]

)
+ γ

(2)
|G| (η, ϑ, d, n).

Moreover, by Lemma 4.6,∏
t∈G

P
(
[Xt∪{n−1} = at] ∩ [Xt∪{n} = at]

)
(4.50)

6
∏
t∈G

P
(
[Xt∪{n−1} = at]

)
P
(
[Xt∪{n} = at]

)
+ |G|ϑ3(η, ϑ, d, n).
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Finally, by Corollary 4.8, we see that∏
t∈G

P
(
[Xt∪{n−1} = at]

)
6 P

( ⋂
t∈G

[Xt∪{n−1} = at]
)

+ γ
(1)
|G| (η, ϑ, d, n)(4.51)

∏
t∈G

P
(
[Xt∪{n} = at]

)
6 P

( ⋂
t∈G

[Xt∪{n} = at]
)

+ γ
(1)
|G| (η, ϑ, d, n).(4.52)

The estimate (4.48) follows by combining (4.49)–(4.52) and invoking the definition of the

constant (γ
(3)
|G| (η, ϑ, d, n) in (4.15). �

We are now ready to give the proof of Proposition 4.11.

Proof of Proposition 4.11. Set E :=
⋂
s∈F [Xs = bs] and Ai :=

⋂
t∈G [Xt∪{r−1+i}] for every

i ∈ {1, . . . , bn/2c}. Since X is η-spreadable, for every i, j ∈ {1, . . . , bn/2c} with i 6= j

we have

(i) |P(Ai)− P(Aj)| 6 η, and

(ii) |P(E ∩Ai)− P(E ∩Aj)| 6 η.

Moreover, applying Lemma 4.12 and using the η-spreadability of X again, for every

i, j ∈ {1, . . . , bn/2c} with i 6= j we have

(iii) P(Ai ∩Aj) 6 P(Ai)P(Aj) + γ
(3)
|G| (η, ϑ, d, n) + (2|G|+ 1)η.

By Lemma 4.2 applied for “δ = γ
(3)
|G| (η, ϑ, d, n) + (2|G|+ 1)η” and taking into account the

definition of the constant γ
(4)
|G| (η, ϑ, d, n), we conclude that (4.47) is satisfied. �

4.5.5. Step 5: completion of the proof. This is the last step of the proof. Recall that we

need to prove that the statement P(d) holds true, or equivalently, that the estimate (3.4)

is satisfied for the sequence γ = (γk(η, ϑ, d, n))`k=1 defined in Subsection 4.2. As expected,

the verification of this estimate will be reduced to Proposition 4.11. To this end, we

will decompose an arbitrary nonempty subset F of
(

[n]
d

)
into several components which

are easier to handle. The details of this decomposition are presented in the following

definition.

Definition 4.13 (Slicing profile). Let n, d be positive integers with n > d and let F be a

nonempty subset of
(

[n]
d

)
. There exist, unique,

• u ∈ [n],

• r1, . . . , ru ∈ [n] with d 6 r1 < · · · < ru, and

• for every i ∈ [u] a nonempty subset Gi of
(

[ri−1]
d−1

)
,

such that

(4.53) F =

u⋃
i=1

{
t ∪ {ri} : t ∈ Gi

}
.

We refer to the triple (u, (ri)
u
i=1, (Gi)ui=1) as the slicing of F , and to the sequence (|Gi|)ui=1

as the slicing profile of F . Finally, we denote by SP(n) the set of all nonempty finite

sequences (ki)
u
i=1 which are the slicing profile of some nonempty subset F of

(
[n]
d

)
.
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Example 4.14. Let d = 2, n = 6, and let F be the subset of
(

[6]
2

)
defined by

F :=
{
{1, 3}, {1, 6}, {2, 3}, {2, 5}, {4, 5}

}
.

r3 = 6

1

2

r1 = 3

4

r2 = 5

G3

G2

G1

Figure 4. The slicing profile of F .

Then the slicing of F is the triple
(
3, (r1, r2, r3), (G1,G2,G3)

)
where r1 = 3, r2 = 5,

r3 = 6, G1 = {1, 2}, G2 = {2, 4} and G3 = {1}; in particular, the slicing profile of F is the

sequence (2, 2, 1).

We have the following lemma.

Lemma 4.15. Let n, η, ϑ,X ,S be as in the statement of P(d). Let X = 〈Xs : s ∈
(

[n]
d

)
〉

be an X -valued, η-spreadable, d-dimensional random array on [n] which is (ϑ,S)-box

independent. Also let u 6 (n/2)−d+1 be a positive integer, and let (ki)
u
i=1 ∈ SP(bn/2c).

If F is a nonempty subset of
(

[bn/2c]
d

)
with slicing profile (ki)

u
i=1, then for every collection

(as)s∈F of elements of S, we have

(4.54)
∣∣∣P( ⋂

s∈F
[Xs = as]

)
−
∏
s∈F

P
(
[Xs = as]

)∣∣∣ 6 γ(5)(η, ϑ, d, n, (ki)
u
i=1)

where γ(5)(η, ϑ, d, n, (ki)
u
i=1) is as in (4.17).

Proof. We proceed by induction on u. The case “u = 1” follows from Corollary 4.8. Let

u < (n/2)− d be a positive integer, and assume that (4.54) has been proved up to u. Let

(ki)
u+1
i=1 ∈ SP(bn/2c), let F be a subset of

(
[bn/2c]
d

)
with slicing profile (ki)

u+1
i=1 , and let

(as)s∈F be a collection of elements of S.

First observe that n > 2d + 2 since there exists a nonempty subset of
(

[bn/2c]
d

)
with

slicing profile of length at least 2; in particular, in what follows, Proposition 4.11 can be
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applied. Let (u, (ri)
u+1
i=1 , (Gi)u+1

i=1 ) denote the slicing of F , and decompose F as F1 ∪ F2

where

(4.55) F1 :=
{
t ∪ {ri} : t ∈ Gi, i ∈ [u]

}
and F2 :=

{
t ∪ {ru+1} : t ∈ Gu+1

}
.

Notice that d 6 r1 < ru+1 6 n/2, Gu+1 ⊆
(

[ru+1−1]
d−1

)
and |Gu+1| = ku+1. By Proposition

4.11 applied for “r = ru+1”, “G = Gu+1”, “(at)t∈G = (at∪{ru+1})t∈Gu+1”, “F = F1 and

“(bs)s∈F = (as)s∈F1”, we have∣∣∣P( ⋂
s∈F1

[Xs = as] ∩
⋂
s∈F2

[Xs = as]
)
−(4.56)

− P
( ⋂
s∈F1

[Xs = as]
)
P
( ⋂
s∈F2

[Xs = as]
)∣∣∣ 6 γ(4)

ku+1
(η, ϑ, d, n).

On the other hand, by our inductive assumptions, we obtain that

(4.57)
∣∣∣P( ⋂

s∈F1

[Xs = as]
)
−
∏
s∈F1

P
(
[Xs = as]

)∣∣∣ 6 γ(5)(η, ϑ, d, n, (ki)
u
i=1).

Moreover, since |Gu+1| = ku+1, by Corollary 4.8,

(4.58)
∣∣∣P( ⋂

s∈F2

[Xs = as]
)
−
∏
s∈F2

P
(
[Xs = as]

)∣∣∣ 6 γ(1)
ku+1

(η, ϑ, d, n).

The inductive step is completed by combining (4.57) and (4.58) and using the definition

of the constant γ(5)(η, ϑ, d, n, (ki)
u+1
i=1 ) in (4.17). �

It is clear that Lemma 4.15 implies that P(d) holds true. This completes the proof of

the general inductive step, and so the entire proof of Theorem 3.2 is completed.

5. Proof of Theorem 1.5

It is not hard to verify that the recursive selection in Subsection 4.2 implies that for

every pair of positive integers n, d with n > 4d, every 0 < η, ϑ 6 1, and every positive

integer k with k 6
(bn/2c

d

)
we have

γk(η, ϑ, d, n) 6 100k 2d
(

4d
√

1/n+ 4d
√
η +

4d
√
ϑ
)
.(5.1)

By Theorem 3.2, this estimate clearly yields Theorem 1.5.

6. Proof of Theorem 1.4 and its higher-dimensional version

The following theorem is the higher-dimensional version of Theorem 1.4. (Also note

that the case “d = 1” corresponds to random vectors.)

Theorem 6.1. Let d,m be two positive integers with m > 2, let 1 < p 6 2, let 0 < ε 6 1,

let k > d be an integer, and set

C = C(d,m, p, ε, k) := exp
( 24d lnm

ε4d(p− 1)d
kd
)
.(6.1)



CONCENTRATION ESTIMATES FOR HIGH-DIMENSIONAL RANDOM ARRAYS 33

Also let n > C be an integer, let X be a set with |X | = m, and let X = 〈Xs : s ∈
(

[n]
d

)
〉 be

an X -valued, (1/C)-spreadable, d-dimensional random array on [n]. Assume that there

exists S ⊆ X with |S| = |X | − 1 such that for every a ∈ S we have

(6.2)
∣∣∣P( ⋂

s∈Box(d)

[Xs = a]
)
−

∏
s∈Box(d)

P
(
[Xs = a]

)∣∣∣ 6 1

C

where Box(d) denotes the d-dimensional box defined in (3.2). Then for every function

f : X ([n]
d ) → R with E[f(X)] = 0 and ‖f(X)‖Lp

= 1 there exists an interval I of [n] with

|I| = k such that for every J ⊆ I with |J | > d we have

(6.3) P
(∣∣E[f(X) | FJ ]

∣∣ 6 ε) > 1− ε.

Theorems 1.4 and 6.1 are immediate consequences of Theorem 2.2 and Corollary 3.3.

The estimates in (1.3) and (6.1) follow by combining (5.1) with

• the choice of β and ` in (2.2) and (2.3) respectively, and

• the choice of the constants in the proof of Lemma 3.6.

7. Extensions/Refinements

7.1. Dissociated random arrays. The following theorem is the analogue of Theo-

rem 6.1 for the case of dissociated random arrays. (The proof follows arguing as in

Section 2, and it is left to the interested reader.)

Theorem 7.1. Let 1 < p 6 2, let 0 < ε 6 1, and set

c = c(ε, p) :=
1

4
ε

2(p+1)
p (p− 1).(7.1)

Also let n, d be positive integers with n > 2d/c, and let X be a dissociated, d-dimensional

random array on [n] whose entries take values in a measurable space X . Then for every

measurable function f : X ([n]
d ) → R with E[f(X)] = 0 and ‖f(X)‖Lp = 1 there exists an

interval I of [n] with |I| > cn such that for every J ⊆ I with |J | > d we have

(7.2) P
(∣∣E[f(X) | FJ ]

∣∣ 6 ε) > 1− ε.

Note that Theorem 7.1 improves upon Theorem 6.1 in two ways. Firstly, observe

that in Theorem 7.1 no restriction is imposed on the distributions of the entries of X.

Secondly, note that the random variable f(X) becomes concentrated by conditioning it

on a subarray whose size is proportional to n.

An important—especially, from the point of view of applications—class of random

arrays for which Theorem 7.1 is applicable consists of those random arrays whose entries

are of the form (1.12) where (ξ1, . . . , ξn) is a random vector with independent (but not

necessarily identically distributed) entries.

Remark 7.2. Observe that the size of the set I obtained by Theorem 7.1 depends poly-

nomially on the parameter ε and, in particular, it becomes smaller as ε gets smaller. We
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note that this sort of dependence is actually necessary. This can be seen by consider-

ing (appropriately normalized) linear functions of i.i.d. Bernoulli random variables and

invoking the Berry–Esseen theorem.

7.2. Vector-valued functions of random arrays. Recall that a Banach space E is

called uniformly convex if for every ε > 0 there exists δ > 0 such that for every x, y ∈ E
with ‖x‖E = ‖y‖E = 1 and ‖x − y‖E > ε we have that ‖(x + y)/2‖E 6 1 − δ. It is

a classical fact (see [Ja72, GG71]) that for every uniformly convex Banach space E and

every p > 1 there exist an exponent q > 2 and a constant C > 0 such that for every

E-valued martingale difference sequence (di)
m
i=1 we have

(7.3)
( m∑
i=1

‖di‖qLp(E)

)1/q

6 C
∥∥ m∑
i=1

di
∥∥
Lp(E)

.

(See, also, [Pi11, Pi16] for a proof and a detailed presentation of related material.) Using

(7.3) instead of Proposition 2.4 and arguing precisely as in Section 2, we obtain the

following vector-valued version of Theorem 6.1.

Theorem 7.3. For every uniformly convex Banach space E, every pair d,m of positive

integers with m > 2, every p > 1, every 0 < ε 6 1 and every integer k > d, there exists a

constant C > 0 with the following property.

Let n > C be an integer, let X be a set with |X | = m and let X = 〈Xs : s ∈
(

[n]
d

)
〉 be

an X -valued, (1/C)-spreadable, d-dimensional random array on [n]. Assume that there

exists S ⊆ X with |S| = |X | − 1 such that for every a ∈ S we have

(7.4)
∣∣∣P( ⋂

s∈Box(d)

[Xs = a]
)
−

∏
s∈Box(d)

P
(
[Xs = a]

)∣∣∣ 6 1

C

where Box(d) denotes the d-dimensional box defined in (3.2). Then for every function

f : X ([n]
d ) → E with E[f(X)] = 0 and ‖f(X)‖Lp(E) = 1 there exists an interval I of [n]

with |I| = k such that for every J ⊆ I with |J | > d we have

(7.5) P
(∥∥E[f(X) | FJ ]

∥∥
E
6 ε
)
> 1− ε.

7.3. Simultaneous conditional concentration. Our last result in this section can

be loosely described as “simultaneous conditional concentration”; it asserts that we can

achieve concentration by conditioning on the same subarray for almost all members of

a given family of approximate spreadable random arrays with the box independence

condition.

Theorem 7.4. Let d,m, p, ε, k be as in Theorem 6.1, set C ′ := C(d,m, p, ε3/4, k) where

C(d,m, p, ε3/4, k) is as in (6.1), and let n > C ′ be an integer. Also let (V, λ) be a finite

probability space, and for every v ∈ V let Xv = 〈Xv
s : s ∈

(
[n]
d

)
〉 be an (1/C ′)-spreadable,

d-dimensional random array on [n] which takes values in a set Xv with |Xv| = m; assume
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that there exists Sv ⊆ Xv with |Sv| = |Xv| − 1 such that for every a ∈ Sv we have

(7.6)
∣∣∣P( ⋂

s∈Box(d)

[Xv
s = a]

)
−

∏
s∈Box(d)

P
(
[Xv

s = a]
)∣∣∣ 6 1

C ′

where Box(d) is as in (3.2). Finally, for every v ∈ V let fv : X ([n]
d )

v → R be a function

such that E[fv(Xv)] = 0 and ‖fv(Xv)‖Lp
= 1. Then there exist G ⊆ V with λ(G) > 1− ε

and an interval I of [n] with |I| = k such that for every v ∈ G and every J ⊆ I with

|J | > d we have

(7.7) P
(∣∣E[fv(Xv) | FJ ]

∣∣ 6 ε) > 1− ε.

Proof. For every v ∈ V let (Avi )mi=0 be the filtration defined in (2.24) for the random

arrayXv and let (dvi )
m
i=1 denote the martingale difference sequence of the Doob martingale

for fv(Xv). By Proposition 2.4 and our assumptions, we see that

(7.8)

m∑
i=1

(
E
v∼λ
‖dvi ‖2Lp

)
= E
v∼λ

( m∑
i=1

‖dvi ‖2Lp

) (2.9)

6
1

p− 1

and so, there exists i0 ∈ [m] such that

(7.9) E
v∼λ
‖dvi0‖Lp

6
1√

m(p− 1)
.

By Markov’s inequality, there exists G ⊆ V with λ(G) > 1− (m(p− 1))−1/4 such that for

every v ∈ G we have

(7.10) ‖dvi0‖Lp
6

1
4
√
m(p− 1)

.

Using these observations, the result follows arguing precisely as in the proof of Theo-

rem 6.1 in Section 6. �

Remark 7.5. We note that there is also an extension of Theorem 7.1 in the spirit of

Theorem 7.4. More precisely, if we assume in Theorem 7.4 that for every v ∈ V the

random array Xv is dissociated (not necessarily finite-valued), then the interval I can be

selected so as |I| > c′n where c′ := 1
4 ε

2(2p+1)
p (p− 1).

Part 2. Connection with combinatorics

8. Random arrays arising from combinatorial structures

In this section we present examples of boolean, spreadable, high-dimensional random

arrays which arise from combinatorial structures and they satisfy the box independence

condition and/or are approximately dissociated.
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8.1. From graphs and hypergraphs to spreadable random arrays. Let d > 2 be

an integer, and let V be a finite set with |V | > d. With every subset A of V d we associate

a boolean, spreadable, d-dimensional random array XA = 〈XA
s : s ∈

(N
d

)
〉 on N defined

by setting for every s = {i1 < · · · < id} ∈
(N
d

)
,

(8.1) XA
s := 1A(ξi1 , . . . , ξid).

where (ξi) is a sequence of i.i.d. random variables uniformly distributed on V . (Notice

that if A is a nonempty proper subset of V d, then the entries of XA are not independent.)

A special case of this construction, which is relevant in the ensuing discussion, is

obtained by considering a d-uniform hypergraph on V . Specifically, given a d-uniform

hypergraph G on V , we identify G with a subset G of V d via the rule

(8.2) (v1, . . . , vd) ∈ G ⇔ {v1, . . . , vd} ∈ G,

and we define XG = 〈XG
s : s ∈

(N
d

)
〉 to be the random array in (8.1) which corresponds to

the set G. Note that this definition is canonical, in the sense that various combinatorial

parameters of G can be expressed as functions of the finite subarrays of XG. For instance,

let n > d be an integer, and let F be a d-uniform hypergraph on [n]; then, denoting by

t(F,G) the homomorphism density of F in G (see [Lov12, Chapter 5]), we have

(8.3) t(F,G) = E[fF (XG,n)]

where fF : R([n]
d ) → R is defined by setting for every x = (xt)t∈([n]

d ) ∈ R([n]
d )

(8.4) fF (x) :=
∏
s∈F

xs

and XG,n denotes the subarray of XG determined by [n]. (See Definition 1.1.) Of course,

similar identities are valid for weighted uniform hypergraphs.

As we shall see shortly in Proposition 8.2 below, in this general framework the box

independence condition of the random array XG is in fact equivalent to a well-known

combinatorial property of G, namely its quasirandomness.

8.1.1. Quasirandom graphs and hypergraphs. Quasirandom objects are deterministic dis-

crete structures which behave like random ones for most practical purposes. The phe-

nomenon was first discovered in the context of graphs by Chung, Graham and Wilson

[CGW88, CGW89] who build upon previous work of Thomason [Tho87]. The last twenty

years the theory was also extended to hypergraphs, and it has found numerous significant

applications in number theory and theoretical computer science (see, e.g., [Rő15]).

8.1.1.1. Much of the modern theory of quasirandomness is developed using the box norms

introduced by Gowers [Go07]. Specifically, let d > 2 be an integer, let (Ω,Σ, µ) be a

probability space, and let Ωd be equipped with the product measure. For every integrable
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random variable f : Ωd → R we define its box norm ‖f‖� by the rule

(8.5) ‖f‖� :=
(∫ ∏

ε∈{0,1}d
f(ωε) dµ(ω)

)1/2d

where µ denotes the product measure on Ω2d and, for every ω = (ω0
1 , ω

1
1 , . . . , ω

0
d, ω

1
d) ∈ Ω2d

and every ε = (ε1, . . . , εd) ∈ {0, 1}d we have ωε := (ωε11 , . . . , ω
εd
d ) ∈ Ωd; by convention,

we set ‖f‖� := +∞ if the integral in (8.5) does not exist. The quantity ‖ · ‖� is a norm

on the vector space {f ∈ L1 : ‖f‖� < +∞}, and it satisfies the following inequality,

known as the Gowers–Cauchy–Schwarz inequality : for every collection 〈fε : ε ∈ {0, 1}d〉
of integrable random variables on Ωd we have

(8.6)
∣∣∣ ∫ ∏

ε∈{0,1}d
fε(ωε) dµ(ω)

∣∣∣ 6 ∏
ε∈{0,1}d

‖fε‖�.

For proofs of these basic facts, as well as for a more complete presentation of related

material, we refer to [GT10, Appendix B].

8.1.1.2. The link between the box norms and quasirandomness is given in the following

definition.

Definition 8.1 (Box uniformity). Let d > 2, let V be a finite set with |V | > d, and

let % > 0. We say that a d-uniform hypergraph G on V is %-box uniform (or box uniform

if % is understood) provided that

(8.7)
∥∥1G − E[1G ]

∥∥
�
6 %

where G is as in (8.2). (Here, we view V as a discrete probability space equipped with the

uniform probability measure.)

Of course, Definition 8.1 is interesting when the parameter % is much smaller than E[1G ].

We also note that although box uniformity is defined analytically, it has a number

of equivalent combinatorial formulations. For instance, it is easy to see that a graph

G is box uniform if and only if it has roughly the expected number of 4-cycles; see

[CGW88, CGW89, Rő15] for more information.

8.1.2. The box independence condition via quasirandomness. We have the following pro-

position. (See part (i) of Definition 3.1 for the definition of box independence.)

Proposition 8.2. Let d > 2 be an integer, and let V be a finite set with |V | > d. Also

let G be a d-uniform hypergraph on V , let XG = 〈XG
s : s ∈

(N
d

)
〉 be the random array

associated with G via (8.1), and for every integer n > d let XG,n denote the subarray of

XG determined by [n]. Finally, let %, ϑ > 0. Then the following hold.

(i) If G is %-box uniform, then for every integer n > d the random array XG,n is

(2d%, {1})-box independent.

(ii) Conversely, if XG,n is (ϑ, {1})-box independent for some (equivalently, every)

integer n > d, then G is (12ϑ1/8d

)-box uniform.
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Proof. We start with the following observation which follows readily from (8.1). Let

Box(d) be the d-dimensional box defined in (3.2), and let F be a nonempty subset of

Box(d). Then there exists a subset11 H of {0, 1}d with |F | = |H| and such that

(8.8) E
[ ∏
s∈F

XG
s

]
=

∫ ∏
ε∈H

1G(ωε) dµ(ω).

(Here, by µ we denote the uniform probability measure on V 2d, and we follow the con-

ventions described right after (8.5).)

We proceed to the proof of part (i). Notice that ‖1G‖� 6 ‖1G‖L∞ 6 1 and, moreover,

E[XG
s ] = E[1G ] for every s ∈

(N
d

)
. Taking into account these observations and using

our assumption, identity (8.8), a telescopic argument and the Gowers–Cauchy–Schwarz

inequality (8.6), we obtain that

(8.9)
∣∣∣E[ ∏

s∈Box(d)

XG
s

]
−

∏
s∈Box(d)

E[XG
s ]
∣∣∣ 6 2d%.

Since the random array XG is spreadable, by Definition (3.1) and (8.9), we see XG is

(2d%, {1})-box independent.

For the proof of part (ii) we will need the following fact which follows from Theorem 3.2,

the numerical invariants introduced in Subsection 4.2—see also (5.1)—and the fact that

the random array XG is spreadable.

Fact 8.3. Let the notation and assumptions be as in part (ii) of Proposition 8.2. Then

for every nonempty subset F of Box(d) we have

(8.10)
∣∣∣E[ ∏

s∈F
XG
s

]
−
∏
s∈F

E[XG
s ]
∣∣∣ 6 300 22d ϑ1/4d

.

Using Fact 8.3, we shall estimate the quantity

(8.11)
∥∥1G − E[1G ]

∥∥2d

�

(8.5)
=

∑
H⊆{0,1}d

(−1)2d−|H|E[1G ]2
d−|H|

∫ ∏
ε∈H

1G(ωε) dµ(ω).

(Here, as in the proof of Lemma 3.6, we use the convention that the product over an

empty index-set is equal to 1.) Fix a nonempty subset H of {0, 1}d, and let F be the

subset of Box(d) with |F | = |H| and such that (8.8) is satisfied; since E[XG
s ] = E[1G ] for

every s ∈
(N
d

)
, by Fact 8.3, we have

(8.12)
∣∣∣ ∫ ∏

ε∈H
1G(ωε) dµ(ω)− E[1G ]|H|

∣∣∣ 6 300 22d ϑ1/4d

.

By (8.11) and (8.12), we see that G is (12ϑ1/8d

)-box uniform, as desired. �

11Note that this subset is essentially unique.
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8.2. Mixtures. An important property of the class of boolean, spreadable random ar-

rays is that it is closed under mixtures. More precisely, let n, d, J be positive inte-

gers with n > d > 2 and let X1 = 〈X1
s : s ∈

(
[n]
d

)
〉, . . . ,XJ = 〈XJ

s : s ∈
(

[n]
d

)
〉 be

boolean, spreadable, d-dimensional random arrays on [n]. Then, for any choice λ1, . . . , λJ

of convex coefficients, there exists a boolean, spreadable, d-dimensional random array

X = 〈Xs : s ∈
(

[n]
d

)
〉 on [n] which satisfies

(8.13) E
[ ∏
s∈F

Xs

]
=

J∑
j=1

λjE
[ ∏
s∈F

Xj
s

]
for every nonempty finite subset F of

(
[n]
d

)
.

It turns out that the class of boolean, spreadable random arrays which satisfy the box

independence condition is also closed under mixtures. In particular, we have the following

proposition. (Its proof follows from a direct computation.)

Proposition 8.4. Let n, d, J be positive integers with n > d > 2, and let δ, ϑ > 0. For

every j ∈ [J ] let Xj = 〈Xj
s : s ∈

(
[n]
d

)
〉 be a boolean, spreadable, d-dimensional random

array on [n] which is (ϑ, {1})-box independent and satisfies |E[Xj
s ]−δ| 6 ϑ for all s ∈

(
[n]
d

)
.

If X is any mixture of X1, . . . ,XJ , then X is (2d+2ϑ, {1})-box independent.

Observe that, by Propositions 8.2 and 8.4, if G1, . . . , GJ are quasirandom, d-uniform

hypergraphs with the same edge density, then any mixture of the finite subarrays of

XG1 , . . . ,XGJ
satisfies the box independent condition. We note that this fact essen-

tially characterizes the box independence condition. Specifically, it follows from [DTV21,

Propositions 8.3 and 3.1] that for every boolean, spreadable, d-dimensional random array

X which satisfies the box independence condition, there exist quasirandom, d-uniform

hypergraphs G1, . . . , GJ with the same edge density, such that the law ofX is close, in the

total variation distance, to the law of a mixture of the finite subarrays of XG1 , . . . ,XGJ
.

8.3. Further combinatorial structures. Let n, k, d be positive integers with n > d > 2

and k 6
(
n
d

)
, and let Ξ = 〈ξe : e ∈

(
[n]
d

)
〉 be a d-dimensional random array with boolean

entries which are uniformly distributed on the set of all x ∈ {0, 1}([n]
d ) which have exactly

k one’s. (In particular, Ξ is exchangeable.) The random array Ξ generates the classical

fixed size Erdős–Rényi random graph/hypergraph, and it is clear that it satisfies the box

independence condition. By taking products12 of the entries of Ξ as in (1.12), one also

obtains exchangeable random arrays which are approximately dissociated.

Spreadable random arrays—and, in particular, spreadable random arrays which satisfy

the box independence condition—are also closely related to a class of stochastic processes

introduced by Furstenberg and Katznelson [FK91] in their proof of the density Hales–

Jewett theorem (see also [Au11, DT21]). Unfortunately, this relation is not so transparent

12These products have a natural combinatorial interpretation; e.g., they can be used to count sub-

graphs of random graphs.
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as in case of graphs and hypergraphs, and we shall refrain from discussing it further since it

requires several probabilistic and Ramsey-theoretic tools in order to be properly exposed.

9. Quasirandom families of graphs: proof of Theorem 1.8

9.1. Isomorphic invariant families of graphs. Let n > 2 be an integer, and recall

that by µ we denote the uniform probability measure on {0, 1}([n]
2 ). Also recall that a

family of graphs A ⊆ {0, 1}([n]
2 ) is called isomorphic invariant if for every G ⊆

(
[n]
2

)
we

have that G belongs to A if every isomorphic copy of G belongs to A. (See also (1.9).)

This subsection is devoted to the proof of the following proposition.

Proposition 9.1. Let n > 232 be an integer, and let A ⊆ {0, 1}([n]
2 ) be isomorphic

invariant. Then there exists a nonnegative parameter γ(A) with

(9.1) γ(A) > µ(A)4 − 21
√

2√
log2 n

such that for every U = {i < j < k < `} ∈
(

[n]
4

)
, denoting by P the uniform probability

measure on {0, 1}([n]
2 )\(U

2), we have

(9.2) P
(
W : W ∪ {i, k},W ∪ {i, `},W ∪ {j, k},W ∪ {j, `} ∈ A

)
= γ(A).

Before we proceed to the proof of Proposition 9.1 we need to introduce some pieces

of notation that will be used throughout this section. Specifically, if n > 2 is an integer

and I is a nonempty subset of
(

[n]
2

)
, then for every z ∈ {0, 1}([n]

2 ) by z � I ∈ {0, 1}I
we shall denote the restriction of z on I. We will also view the set {0, 1}I as a discrete

probability space equipped with the uniform probability measure; we shall recall this

particular convention whenever necessary in order to facilitate the reader.

Proof of Proposition 9.1. Since A is isomorphic invariant, there exists a unique nonneg-

ative parameter γ(A) which satisfies (9.2). Thus, we only need to show (9.1).

We start by setting

(9.3) k := b
√

log2(
√
n)c, ε :=

1
4
√
n
, δ := ε 2−

k2

2 , ` := bδ−1c

and we observe that `k 6 n and k > 4. Let µ1 denote the uniform probability measure

on {0, 1}([k]
2 ), and for every x ∈ {0, 1}([k]

2 ) let Ax :=
{
y ∈ {0, 1}([n]

2 )\([k]
2 ) : x ∪ y ∈ A

}
denote the section of A at x. Also let µ2 denote the uniform probability measure on

{0, 1}([n]
2 )\([k]

2 ). Arguing as in the proof of Theorem 2.3 in Subsection 2.5 and using the

fact that A is isomorphic invariant, we see that

(9.4)
∥∥E[1A | F ]− µ(A)

∥∥2

L2
6 δ

where F denotes the σ-algebra of {0, 1}([n]
2 ) generated by the partition

(9.5)
{{
z ∈ {0, 1}([n]

2 ) : z �

(
[k]

2

)
= x

}
: x ∈ {0, 1}([k]

2 )
}
.
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(Note that here we view {0, 1}([n]
2 ) as a discrete probability space equipped with µ.) By

(9.3), (9.4) and Chebyshev’s inequality, we obtain that

(9.6) µ1

(
x ∈ {0, 1}([k]

2 ) : |µ2(Ax)− µ(A)| > ε
)
6 2−

k2

2 < 2−([k]
2 );

consequently, for every x ∈ {0, 1}([k]
2 ) we have

(9.7) µ2(Ax) > µ(A)− ε.

Now for every i ∈ [k − 1] let xi ∈ {0, 1}(
[k]
2 ) be such that x−1

i ({1}) =
{
{1, i + 1}

}
;

namely, xi is the graph on [k] with the single edge {1, i+ 1}. Setting δ1 := µ2(Ax1
) and

δ2 := µ2(Ax1
∩ Ax2

) and using again the fact that A is isomorphic invariant, for every

i, j ∈ [k − 1] with i 6= j we have

(9.8) µ2(Axi) = δ1 and µ2(Axi ∩ Axj ) = δ2.

Therefore, by the Cauchy–Schwarz inequality,

(
µ(A)− ε

)2 (9.7)

6 E
[ 1

k − 1

k−1∑
i=1

1Axi

]2
6

1

(k − 1)2
E
[( k−1∑

i=1

1Axi

)2]
(9.9)

=
δ1

k − 1
+
k − 2

k − 1
δ2 6

1

k − 2
+ δ2.

Next, for every i ∈ [k− 2] let x1,i, x2,i ∈ {0, 1}(
[k]
2 ) be defined by x−1

1,i ({1}) =
{
{i, k− 1}

}
and x−1

2,i ({1}) =
{
{i, k}

}
. Using once again the isomorphic invariance of A and setting

δ4 := µ2(Ax1,1
∩ Ax2,1

∩ Ax1,2
∩ Ax2,2

), we see that

(9.10) µ2(Ax1,i ∩ Ax2,i) = δ2 and µ2(Ax1,i ∩ Ax2,i ∩ Ax1,j ∩ Ax2,j ) = δ4

for every i, j ∈ [k − 1] with i 6= j. Hence, by the Cauchy–Schwarz inequality,(
(µ(A)− ε)2 − 1

k − 2

)2 (9.9)

6 δ2
2 = E

[ 1

k − 2

k−2∑
i=1

1Ax1,i
∩Ax2,i

]2
(9.11)

6
1

(k − 2)2
E
[( k−2∑

i=1

1Ax1,i
∩Ax2,i

)2]
=

δ2
k − 2

+
k − 3

k − 2
δ4 6

1

k − 3
+ δ4

which yields that

(9.12) δ4 > µ(A)4 − 8ε− 3

k − 3
.

We will show that the parameter γ(A) is roughly equal to δ4. Clearly, this is enough to

compete the proof.

To this end we will argue as in (9.4). Precisely, define z1, z2, z3, z4 ∈ {0, 1}(
[4]
2 ) by

z−1
1 ({1}) =

{
{1, 3}

}
, z−1

2 ({1}) =
{
{1, 4}

}
, z−1

3 ({1}) =
{
{2, 3}

}
and z−1

4 ({1}) =
{
{2, 4}

}
,

and for every i ∈ [4] let Azi :=
{
y ∈ {0, 1}([n]

2 )\([4]
2 ) : zi ∪ y ∈ A

}
denote the section

of A at zi. Also set S := Az1 ∩ Az2 ∩ Az3 ∩ Az4 and for every u ∈
(

[k]
2

)
\
(

[4]
2

)
let

Su :=
{
y ∈ {0, 1}([n]

2 )\([k]
2 ) : u ∪ y ∈ S

}
denote the section of S at u. Notice that, by the
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choice of γ(A) in (9.2), we have P(S) = γ(A) where P is the uniform probability measure

on {0, 1}([n]
2 )\([4]

2 ). Taking into account this observation, the isomorphic invariance of A
and proceeding13 as in the proof of Theorem 2.3, we obtain that

(9.13)
∥∥E[1S | G]− γ(A)

∥∥2

L2
6 δ

where G stands for the σ-algebra of {0, 1}([n]
2 )\([4]

2 ) generated by the partition

(9.14)
{{
z ∈ {0, 1}([n]

2 )\([4]
2 ) : z �

(
[k]

2

)
\
(

[4]

2

)
= u

}
: u ∈ {0, 1}([k]

2 )\([4]
2 )
}
.

By (9.3), (9.13) and Chebyshev’s inequality, we have

(9.15) µ3

(
u ∈ {0, 1}([k]

2 )\([4]
2 ) : |µ2(Su)− γ(A)| > ε

)
6 2−

k2

2 < 2−([k]
2 )+([4]

2 )

where µ3 denotes the uniform probability measure on {0, 1}([k]
2 )\([4]

2 ) and, as above, µ2 is

the uniform probability measure on {0, 1}([n]
2 )\([k]

2 ); thus, for every u ∈ {0, 1}([k]
2 )\([4]

2 ),

(9.16) |µ2(Su)− γ(A)| < ε.

Let u0 ∈ {0, 1}(
[k]
2 )\([4]

2 ) be such that u−1
0 ({1}) = ∅. Then, by the definitions of S and δ4

and the isomorphic invariance of A, we see that µ2(Su0) = δ4 and consequently, by (9.12)

and (9.16), we conclude that

�(9.17) γ(A) > µ(A)4 − 9ε− 3

k − 3
> µ(A)4 − 21

k

(9.3)

> µ(A)4 − 21√
log2(

√
n)
.

9.2. Proof of Theorem 1.8. The main goal of the proof is to extract out of the quasir-

andom family A a boolean two-dimensional approximately spreadable random array X

which satisfies the box independence condition; once this is done, the proof will be com-

pleted by an application of Theorem 1.5.

9.2.1. Preliminary tools. We start with a more precise, quantitative, version of Propo-

sition 1.3 for boolean two-dimensional random arrays. Specifically, let `,m, r > 2 be

integers with ` 6 m, and recall that the multicolor hypergraph Ramsey number R`(m, r)

is the least integer N > m such that for every set X with |X| > N and every coloring

c :
(
X
`

)
→ [r] there exists Y ∈

(
X
m

)
such that c is constant on

(
Y
`

)
. It is a classical result

due to Erdős and Rado [ER52] that the numbers R`(m, r) have (at most) a tower-type

dependence with respect to the parameters `,m, r. The following fact is the promised

quantitative version of Proposition 1.3; the proof follows by invoking the relevant defini-

tions, and it is left to the reader.

13Again we point out that here we view {0, 1}
(
[n]
2

)
\
(
[4]
2

)
as a discrete probability space equipped

with P. We also note that in this case the filtration is slightly different since we are working with the

index-set
([n]

2

)
\
([4]

2

)
instead of

([n]
2

)
. We will use a similar variation in the next subsection.
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Fact 9.2. Let 0 < η 6 1, let ` > 2 be an integer, and let N be an integer such that

(9.18) N > R`
(

2`,
(
2(`

2)
⌈
η−1

⌉ )(`
2)
)
.

Then for every boolean two-dimensional random array X on [N ] there exists L ∈
(

[N ]
`

)
such that the subarray XL is η-spreadable. (See Definition 1.1.)

We proceed by introducing some terminology and some pieces of notation. Let m > `

be positive integers and let F ∈
(

[m]
`

)
; given two subsets L ⊆ M of N with |L| = `

and |M | = m, we say that the relative position of L inside M is F if, denoting by

{i1 < · · · < im} the increasing enumeration of M , we have that L = {ij : j ∈ F}.
Moreover, for every finite subset M of N with |M | > 2 every e ∈

(
M
2

)
we shall denote

by x(e,M) ∈ {0, 1}(M
2 ) the unique element satisfying x(e,M)−1({1}) = {e}.

It is also convenient to introduce the following definition. (Recall that for every integer

n > 2 by µ we denote the uniform probability measure on {0, 1}([n]
2 ).)

Definition 9.3 (Admissibility). Let 0 < η 6 1, let n > m > ` > 2 be integers, let

A ⊆ {0, 1}([n]
2 ) and let F ∈

(
[m]
`

)
. Given P ⊆ [n] with |P | > m, we say that P is

(A, η, F )-admissible if for every M ∈
(
P
m

)
, denoting by ν the uniform probability measure

on {0, 1}([n]
2 )\(M

2 ), the following hold.

(P1) For every x ∈ {0, 1}(M
2 ) we have |ν(Ax) − µ(A)| 6 η where Ax is the section of

A at x.

(P2) If L ∈
(
M
`

)
is the unique subset of M whose relative position inside M is F , then

the two-dimensional random array 〈1Ax(e,M)
: e ∈

(
L
2

)
〉 is η-spreadable. (Here, we

view {0, 1}([n]
2 )\(M

2 ) as a discrete probability space equipped with ν and we denote

by Ax(e,M) the section of A at x(e,M).)

We have the following lemma.

Lemma 9.4. Let 0 < η 6 1, let ` > 2 be an integer, and set

(9.19) m = m(η, `) := R`

(
2`,
(
2(`

2)
⌈
η−1

⌉ )(`
2)
)
.

Then for every integer p > m there exists an integer q > p with the following property.

If n > q is an integer and A ⊆ {0, 1}([n]
2 ) is a family of graphs, then for every Q ∈

(
[n]
q

)
there exist F ∈

(
[m]
`

)
and P ∈

(
Q
p

)
such that P is (A, η, F )-admissible.

Proof. Fix p > m and set

(9.20) q1 := R`

(
p,

(
m

`

))
and q := max

{ ⌈
η−2

⌉
, 2q

2
1
}
· q1

We claim that q is as desired. Indeed, let n,A be as in the statement of the lemma, and

let Q ∈
(

[n]
q

)
be arbitrary. Setting δ := max

{
η2, 2−q

2
1

}
and arguing14 as in Theorem 2.3,

14Note that, although here we proceed exactly as in (9.4), we cannot guarantee that the set Q1 is an

initial interval of Q since the family A is not necessarily isomorphic invariant.
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we select Q1 ∈
(
Q
q1

)
such that

(9.21)
∥∥E[1A | F ]− µ(A)

∥∥2

L2
6 δ

where F denotes the σ-algebra of {0, 1}([n]
2 ) generated by the partition

(9.22)
{{
z ∈ {0, 1}([n]

2 ) : z �

(
Q1

2

)
= x

}
: x ∈ {0, 1}(Q1

2 )
}
.

(Recall that we view {0, 1}([n]
2 ) as a discrete probability space equipped with µ.) Since√

δ < 2−(q1
2 ), by (9.21) and Chebyshev’s inequality, for every x ∈ {0, 1}(Q1

2 ) we have

(9.23) |µ1(Ax)− µ(A)| 6 η

where µ1 denotes the uniform probability measure on {0, 1}([n]
2 )\(Q1

2 ) and, as usual, Ax is

the section of A at x. By double averaging, this yields that for every M ∈
(
Q1

m

)
and every

x ∈ {0, 1}(M
2 ) we have |ν(Ax)−µ(A)| 6 η where ν is the uniform probability measure on

{0, 1}([n]
2 )\(M

2 ). In other words, property (P1) in Definition 9.3 will be satisfied as long as

the desired set P is contained in Q1.

For property (P2) we argue as follows. Let M ∈
(
Q1

m

)
be arbitrary; by the choice of the

constant m in (9.19) and Fact 9.2 applied to the boolean, two-dimensional random array

〈1Ax(e,M)
: e ∈

(
M
2

)
〉, there exists FM ∈

(
[m]
`

)
such that if L ∈

(
M
`

)
is the unique subset of

M whose relative position inside M is FM , then the random array 〈1Ax(e,M)
: e ∈

(
L
2

)
〉 is

η-spreadable. By the choice of q1 in (9.20) and another application of Ramsey’s theorem,

there exist P ∈
(
Q1

p

)
and F ∈

(
[m]
`

)
such that FM = F for every M ∈

(
P
m

)
. That is,

property (P2) is satisfied for P , as desired. �

9.2.2. Numerical parameters. Our next step is to introduce some numerical parameters.

We fix 0 < δ 6 1 and an integer k > 2, and we begin by selecting 0 < η, θ0 6 1 and an

integer ` > 4k such that

(9.24) η +
(
b`/kc−1 + 2k2η + 800k2

(
`−1/16 + η1/16 + (10η + θ0)1/16

))1/2

< δ(
k
2)+1.

Next we set

m := m(η, `)
(9.19)

= R`

(
2`,
(
2(`

2)
⌈
η−1

⌉ )(`
2)
)

(9.25)

% := η22−m
2

(9.26)

p := 5md%−1e+ 4(9.27)

q1 := Rm

(
p,

(
m

`

))
.(9.28)

Finally, we define

(9.29) q0 := max
{
dη2e, 2q21

}
· q1 and θ :=

1

2
·min

{
θ0,

(
q0

4

)−1}
.
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Notice, in particular, that with this choice we also have that

(9.30) η +
(
b`/kc−1 + 2k2η + 800k2

(
`−1/16 + η1/16 + (10η + θ)1/16

))1/2

< δ(
k
2)+1.

9.2.3. Completion of the proof. We are ready for the main part of the argument. As

above, let 0 < δ 6 1 and k > 2. Also let n > q0 be an integer and let A ⊆ {0, 1}([n]
2 ) be a

θ-quasirandom family of graphs with µ(A) > δ, where q0, θ are as in (9.29).

By Lemma 9.4, for every Q ∈
(

[n]
q0

)
we fix PQ ∈

(
Q
p

)
and FQ ∈

(
[m]
`

)
such that PQ is

(A, η, FQ)-admissible in the sense of Definition 9.3. Moreover, denoting by {r1 < · · · < rp}
the increasing enumeration of PQ, we set UQ :=

{
rjmd1/%e+j : j ∈ {1, 2, 3, 4}

}
∈
(
Q
4

)
.

Then observe that

(9.31)
∣∣∣{UQ : Q ∈

(
[n]

q0

)}∣∣∣ > (n
4

)(
q0

4

)−1

.

Since the family A is θ-quasirandom, by Definition 1.7 and the choice of θ in (9.29),

there exists Q0 ∈
(

[n]
q0

)
such that, writing UQ0

= {u1 < u2 < u3 < u4} and setting15

B := Ax({u1,u3},UQ0
) ∩ Ax({u1,u4},UQ0

) ∩ Ax({u2,u3},UQ0
) ∩ Ax({u2,u4},UQ0

), we have

(9.32) P(B) 6 µ(A)4 + θ

where P denotes the uniform probability measure on {0, 1}([n]
2 )\(UQ0

2
).

As above, let {r1 < · · · < rp} denote the increasing enumeration of the set PQ0 . For

every i ∈
{

1, . . . , d%−1e
}

set

(9.33) Ri := {rj+(t−1)(md1/%e+1) : t ∈ [5] and j ∈ [im]
}

and notice that Ri ∩ UQ0
= ∅; also let Fi be the σ-algebra of {0, 1}([n]

2 )\(UQ0
2

) generated

by the partition{{
y ∈ {0, 1}([n]

2 )\(UQ0
2

) : y �

(
Ri ∪ UQ0

2

)
\
(
UQ0

2

)
= z
}

: z ∈ {0, 1}(
Ri∪UQ0

2
)\(UQ0

2
)
}
.

Finally, set

(9.34) R0 := ∅ and F0 :=
{
∅, {0, 1}([n]

2 )\(UQ0
2

)
}
.

Consider the Doob martingale for 1B with respect to the filtration F0,F1, . . . ,Fd%−1e;

using the elementary fact that martingale difference sequences are orthogonal in L2, we

may select i0 ∈
{

1, . . . , d%−1e
}

such that

(9.35)
∥∥E[1B | Fi0 ]− E[1B | Fi0−1]

∥∥2

L2
6 %.

(Here, we view {0, 1}([n]
2 )\(UQ0

2
) as a discrete probability space equipped with P.) Next, we

select M ∈
(
UQ0
∪(Ri0\Ri0−1)

m

)
⊆
(
PQ0
m

)
such that, denoting by L the unique element of

(
M
`

)
whose relative position inside M is FQ0

, we have that UQ0
⊆ L; this selection is possible

15Recall that by x({u1, u3}, UQ0
) we denote the unique element of {0, 1}

(
Q0
2

)
such

that x({u1, u3}, UQ0
)−1({1}) = {u1, u3}, and similarly for x({u1, u4}, UQ0

), x({u2, u3}, UQ0
),

x({u2, u4}, UQ0
).
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u1

u2

u3

u4

Ri

Figure 5. The σ-algebra Fi associated with the set Ri.

by the choice of Ri0 in (9.33). Finally, denote by F the σ-algebra of {0, 1}([n]
2 )\(UQ0

2
)

generated by the partition{{
y ∈ {0, 1}([n]

2 )\(UQ0
2

) : y �

(
M

2

)
\
(
UQ0

2

)
= z
}

: z ∈ {0, 1}(M
2 )\(UQ0

2
)
}

and observe that F is a sub-σ-algebra of Fi0 , while the σ-algebras F and Fi0−1 are

independent. Therefore, by (9.35) and the fact that the conditional expectation is a

linear contraction on L2, we see that

(9.36)
∥∥E[1B | F ]−P(B)

∥∥2

L2
6 %.

As we have already noted, this estimate together with Chebyshev’s inequality and the

choice of % in (9.26) yield that for every z ∈ {0, 1}(M
2 )\(UQ0

2
) we have

(9.37) |ν(Bz)−P(B)| 6 η

where ν is the uniform probability measure on {0, 1}([n]
2 )\(M

2 ) and Bz is the section

of B at z.

Now let z0 ∈ {0, 1}(
M
2 )\(UQ0

2
) be such that z−1

0 ({1}) = ∅. By (9.32) and (9.37), we have

(9.38) ν(Bz0) 6 µ(A)4 + η + θ.

Also notice that Bz0 = Ax({u1,u3},M) ∩ Ax({u1,u4},M) ∩ Ax({u2,u3},M) ∩ Ax({u2,u4},M).

On the other hand, recall that PQ0
is (A, η, FQ0

)-admissible and that L is the unique

subset of M ∈
(
PQ0
m

)
whose relative position inside M is FQ0

. Taking into account

these observations and using properties (P1) and (P2) in Definition 9.3, we see that

the boolean random array 〈1Ax(e,M)
: e ∈

(
L
2

)
〉 is η-stationary and it satisfies (1.7) with

ϑ = 10η+ θ. Let {s1 < · · · < sm} denote the increasing enumeration of M , and for every



CONCENTRATION ESTIMATES FOR HIGH-DIMENSIONAL RANDOM ARRAYS 47

j ∈
{

1, . . . , b`/kc
}

set

(9.39) Kj :=
{
si : i ∈ [jk] \ [(j − 1)k]

}
and Γj :=

⋂
e∈(Kj

2 )

Ax(e,M).

By Theorem 1.5, property (P1) in Definition 9.3 and the previous discussion, for every

j, l ∈
{

1, . . . , b`/kc
}

with j 6= l we have

(9.40)
∣∣ν(Γj)− µ(A)(

k
2)
∣∣ 6 η(k

2

)
+ 400

(
k

2

)(
`−1/16 + η1/16 + (10η + θ)1/16

)
and

(9.41)
∣∣ν(Γj ∩ Γl)− µ(A)2(k

2)
∣∣ 6 η 2

(
k

2

)
+ 400 · 2

(
k

2

)(
`−1/16 + η1/16 + (10η + θ)1/16

)
.

Introduce the random variable

(9.42) X :=
1

b`/kc

b`/kc∑
j=1

1Γj

and observe that, by (9.40) and (9.41), we have

(9.43) ‖X−µ(A)(
k
2)‖L2

6
(
b`/kc−1 +2k2η+800k2

(
`−1/16 +η1/16 +(30η+6θ)1/16

))1/2

.

Let x0 ∈ {0, 1}(
M
2 ) be the unique element satisfying x−1

0 ({1}) = ∅ and note that

E[X1Ax0
] > µ(A)(

k
2)ν(Ax0)−

√
ν(Ax0) ‖X − µ(A)(

k
2)‖L2(9.44)

(P1),(9.43)

> δ(
k
2)+1 − η −

(
b`/kc−1 + 2k2η + 800k2

(
`−1/16 + η1/16 + (10η + θ)1/16

))1/2

.

Therefore, by (9.30), we have E[X1Ax0
] > 0 which in turn implies that there exists

j0 ∈
{

1, . . . , b`/kc
}

such that Ax0 ∩ Γj0 6= ∅. By the choices of Γj0 in (9.39) and x0, it is

clear that the set Kj0 ∈
(

[n]
k

)
is as desired. The proof of Theorem 1.8 is completed.

Remark 9.5 (Analysis of the bounds). Using the Erdős–Rado theorem [ER52], it is not

hard to see that the proof of Theorem 1.8 yields a tower-type dependence of θ and `0

with respect to the parameters δ and k. More precisely, there exists a primitive recursive

ψ : N× N→ N function belonging to the class E4 of Grzegorczyk’s hierarchy16 such that

θ−1, `0 6 ψ
( ⌈
δ−1
⌉
, k
)

for every 0 < δ 6 1 and every integer k > 2.

Remark 9.6 (Extensions to families of uniform hypergraphs). Theorem 1.8 can be ex-

tended to families of d-uniform hypergraphs A ⊆ {0, 1}([n]
d ) for any integer d > 2; this

can be done by using Theorem 3.2 instead Theorem 1.5 and appropriately modifying

the notion of quasirandomness in Definition 1.7. We leave the (fairly straightforward)

formulations of these extensions to the interested reader.

16See [DK16, Appendix A] for an introduction to Grzegorczyk’s hierarchy and a discussion of its role

in analyzing bounds in Ramsey theory.
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Remark 9.7. Let A ⊆ {0, 1}([n]
2 ) be a family of graphs on [n], let K ⊆ [n] with |K| > 2,

and let S ⊆ {0, 1}(K
2 ) be a family of graphs on K. We say that A smashes S if there exists

W ⊆
(

[n]
2

)
\
(
K
2

)
such thatW∪H ∈ A for everyH ∈ S. With this terminology, Theorem 1.8

is equivalent to saying that if the family A is dense and quasirandom—in the sense of

Definition 1.7—then it smashes all graphs with at most one edge on some K ∈
(

[n]
k

)
. It

would be interesting to find quasirandomness conditions which ensure that the family A
smashes richer families of small graphs. In this direction, the following problem is the

most intriguing.

Problem 9.8. Find natural quasirandomness conditions on a family of graphs A which

ensure that A smashes all graphs on some K ∈
(

[n]
k

)
.

Appendix A. Examples

Our goal in this appendix is to present examples which show that the box independence

condition in Theorems 1.4 and 6.1 is essentially optimal. We focus on boolean random

arrays as this case already covers all underlying phenomena.

A.1. Boxes and faces. We start by introducing some terminology which will be used

throughout this section. Let d > 2 be an integer; we say that a subset B of
(N
d

)
is a

d-dimensional box of N if it is a d-dimensional box of [n] for some integer n > 2d. (See

Subsection 3.1.) Moreover, we say that a subset F of
(N
d

)
is a (d − 1)-face of N if it is

of the form Box(H) where H = (H1, . . . ,Hd) is a finite sequence of nonempty subsets of

N of cardinality at most 2 with max(Hi) < min(Hi+1) for all i ∈ [d − 1], and such that∑d
i=1 |Hi| = 2d− 1. (Thus, |Hi| = 2 for all but at one i ∈ [d].)

A.2. The two-dimensional case. We have the following proposition.

Proposition A.1. There exists a boolean, exchangeable, two-dimensional random array

X = 〈Xs : s ∈
(N

2

)
〉 on N with the following properties.

(P1) For every s ∈
(N

2

)
we have E[Xs] = 1

2 .

(P2) For every distinct s, t ∈
(N

2

)
we have E[XsXt] = 1

4 .

(P3) For every 2-dimensional box B of N and every nonempty subset G of B with

G 6= B we have E
[∏

s∈GXs

]
= ( 1

2 )|G|.

(P4) For every 2-dimensional box B of N we have E
[∏

s∈B Xs

]
= 3

2 ( 1
2 )4.

(P5) Let n > 8 be an integer, and let Xn denote the subarray of X determined

by [n]. (See Definition 1.1.) Then there exists a translated multilinear polyno-

mial f : R([n]
2 ) → R of degree 4 with E[f(Xn)] = 0 and ‖f(Xn)‖L∞ 6 1, such that

for every subset I of [n] with |I| > 8 we have P
(∣∣E[f(Xn) | FI ]

∣∣ > 2−11
)
> 2−11.

Proof. We will define the random array X by providing an integral representation of its

distribution. (Of course, this maneuver is expected by the Aldous–Hoover representation

theorem [Ald81, Hoo79].) Specifically, set V := {0, 1} and A := {(0, 0), (1, 1)} ⊆ V 2; we
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view V as a discrete probability space equipped with the uniform probability measure. We

also set Ω := {0, 1}(N
2) and we equip Ω with the product σ-algebra which we denote by Σ.

Let P be the unique probability measure on (Ω,Σ) which satisfies, for every nonempty

finite subset F of
(N

2

)
, that

(A.1) P
({

(xt)t∈(N
2)
∈ Ω : xs = 1 for all s ∈ F

})
=

1

2

(1

2

)|F|
+

1

2

∫ ∏
s∈F

1A(vs) dµ(v)

where: (i) µ denotes the product measure on V N obtained by equipping each factor

with the uniform probability measure on V , and (ii) for every v = (vi) ∈ V N and every

s = {i1 < i2} ∈
(N

2

)
by vs = (vi1 , vi2) ∈ V 2 we denote the restriction of v on the

coordinates determined by s. Next, for every s ∈
(N

2

)
let Xs : Ω → {0, 1} denote the

projection on the s-th coordinate, that is, Xs

(
(xt)t∈(N

2)
)

= xs for every (xt)t∈(N
2)
∈ Ω.

The fact that the set A is symmetric implies that the random array X = 〈Xs : s ∈
(N

2

)
〉

is exchangeable; moreover, for every nonempty finite subset F of
(N

2

)
we have

(A.2) E
[ ∏
s∈F

Xs

]
=

1

2

(1

2

)|F|
+

1

2

∫ ∏
s∈F

1A(vs) dµ(v).

Using (A.2), properties (P1)–(P4) follow from a direct computation.

In order to verify property (P5) we argue as in the proof of Proposition 2.8. Fix an

integer n > 8. Let Box(2) be the 2-dimensional box of N defined in (3.2). We define

f : R([n]
2 ) → R by setting for every x = (xt)t∈([n]

2 ) ∈ R([n]
2 )

f(x) :=
∏

s∈Box(2)

xs − E
[ ∏
s∈Box(2)

Xs

]
(A.3)

(3.2)
= x{1,3}x{1,4}x{2,3}x{2,4} − E[X{1,3}X{1,4}X{2,3}X{2,4}].

It is clear that f is a translated multilinear polynomial of degree 4 with E[f(Xn)] = 0 and

‖f(Xn)‖L∞ 6 1. (Recall that Xn denotes the subarray of X determined by [n].) Let I

be an arbitrary subset of [n] with |I| > 8. Since |I| > 8, there exists a 2-dimensional box

B of N with B ⊆
(
I
2

)
and such that min(s) > 5 for every s ∈ B. Set C :=

⋂
s∈B [Xs = 1]

and observe that C ∈ FI . Hence, by the exchangeability of X, we have

E
[
E[f(Xn) | FI ] 1C

]
= E[f(Xn)1C ](A.4)

= E
[ ∏
s∈Box(2)∪B

Xs

]
− E

[ ⋂
s∈Box(2)

Xs

]2 (A.2)
=

1

210

which implies that P
(∣∣E[f(Xn) | FI ]

∣∣ > 2−11
)
> 2−11. The proof is completed. �

A.3. The higher-dimensional case. The following result is the higher-dimensional

analogue of Proposition A.1.
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Proposition A.2. Let d > 3 be an integer. Also let δ > 0. Then there exists a boolean,

exchangeable, d-dimensional random array X = 〈Xs : s ∈
(N
d

)
〉 on N with the following

properties.

(P1) For every s ∈
(N
d

)
we have

∣∣E[Xs]− 1
2

∣∣ 6 δ.
(P2) For every distinct s, t ∈

(N
d

)
we have

∣∣E[XsXt]− 1
4

∣∣ 6 δ.
(P3) For every (d− 1)-face F of N we have

∣∣E[∏s∈F Xs

]
− ( 1

2 )|F |
∣∣ 6 δ.

(P4) For every d-dimensional box B of N we have
∣∣E[∏s∈B Xs

]
− 3

2 ( 1
2 )|B|

∣∣ 6 δ.
(P5) Set ϑ := 16−12−2d+1

. (Note that ϑ does not dependent on δ.) Let n > 4d be an

integer, and let Xn denote the subarray of X determined by [n]. Then there exists

a translated multilinear polynomial f : R([n]
d ) → R of degree 2d with E[f(Xn)] = 0

and ‖f(Xn)‖L∞ 6 1, such that for every subset I of [n] with |I| > 4d we have

P
(∣∣E[f(Xn) | FI ]

∣∣ > ϑ) > ϑ.

Remark A.3. We point out that property (P3) is rather strong. Indeed, arguing as in the

proof of Theorem 3.2, it is not hard to show that if X = 〈Xs : s ∈
(N
d

)
〉 is any boolean,

spreadable, d-dimensional random array on N which satisfies properties (P1) and (P3) of

Proposition A.2, then for every d-dimensional box B of N and every nonempty subset G

of B with G 6= B we have

(A.5)
∣∣∣E[ ∏

s∈G
Xs

]
−
(1

2

)|G|∣∣∣ = oδ→0;d(1).

Note that (A.5) barely misses to imply that X satisfies the box independence condition.

The examples provided by Proposition A.2 can be roughly described as semi-random,

in the sense that they are part random and part deterministic. The following lemma

provides us with the random component.

Lemma A.4. Let d > 3 be an integer, and let ε > 0. Then there exist a nonempty finite

set V and a symmetric17 subset A of V d−1 such that, denoting by A{ the complement

of A, for every pair F,G of disjoint (possibly empty) subsets of
(

[2d]
d−1

)
we have∣∣∣ ∫ ( ∏

s∈F
1A(vs)

)
·
( ∏
s∈G

1A{(vs)
)
dµ(v)−

(1

2

)|F |+|G|∣∣∣ 6 ε(A.6)

where: (i) µ denotes the product measure on V N obtained by equipping each factor

with the uniform probability measure on V , (ii) for every v = (vi) ∈ V N and every

s = {i1 < · · · < id−1} ∈
(N
d

)
we have vs = (vi1 , . . . , vid−1

) ∈ V d−1, and (iii) in (A.6)

we use the convention that the product of an empty family of functions is equal to the

constant function 1.

17That is, for every (v1, . . . , vd−1) ∈ V d−1 and every permutation π of [d − 1] we have that

(v1, . . . , vd−1) ∈ A if and only if (vπ(1), . . . , vπ(d−1)) ∈ A.



CONCENTRATION ESTIMATES FOR HIGH-DIMENSIONAL RANDOM ARRAYS 51

Lemma A.4 follows from a standard random selection and the Azuma–Hoeffding in-

equality; see, e.g., [DTV21, Fact 3.3 and Lemma 3.4] for a proof.

We are ready to proceed to the proof of Proposition A.2.

Proof of Proposition A.2. Let V and A be the sets obtained by Lemma A.4 applied for

(A.7) ε := min
{
δ2−d2d

, 8−12−(d+2)2d}
and observe that V can be selected so that its cardinality is an even positive integer. We

also note that in the rest of the proof we follow the notational conventions in Lemma A.4.

First, for every i ∈ [d] we define h0
i , h

1
i : V d → {0, 1} by setting for every v ∈ V d

h0
i (v) := 1A(v[d]\{i}) and h1

i (v) := 1A{(v[d]\{i}).(A.8)

Next, for every x ∈ {0, 1}d define hx : V d → {0, 1} by

hx :=

d∏
i=1

h
x(i)
i .(A.9)

Finally, set

(A.10) A :=
{
x ∈ {0, 1}d : x(1) + · · ·+ x(d) is even

}
and define H : V d → {0, 1} by

H :=
∑
x∈A

hx.(A.11)

For instance, if d = 3, then

H(v1, v2, v3) = 1A(v1, v2)1A(v2, v3)1A(v1, v3) + 1A{(v1, v2)1A{(v2, v3)1A(v1, v3)+

+ 1A{(v1, v2)1A(v2, v3)1A{(v1, v3) + 1A(v1, v2)1A{(v2, v3)1A{(v1, v3).

Note that the function H is symmetric18. In the following series of claims we isolate

several properties of H which will be used in the proofs of properties (P1)–(P5).

Claim A.5. For every k ∈ [d+ 1] set tk := {k, . . . , k + d− 1} ∈
(N
d

)
. Then we have

(A.12)
∣∣∣ ∫ H(vt1) dµ(v)− 1

2

∣∣∣ 6 2d−1ε.

Moreover, for every k ∈ {2, . . . , d+ 1} we have

(A.13)
∣∣∣ ∫ H(vt1)H(vtk) dµ(v)− 1

4

∣∣∣ 6 22d−3ε.

18That is, we have H(v1, . . . , vd) = H(vπ(1), . . . , vπ(d)) for every (v1, . . . , vd) ∈ V d and every permu-

tation π of [d].
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Proof of Claim A.5. First observe that (A.12) follows from (A.6), the fact that |A| = 2d−1

and the definition of H. Next, fix k ∈ {2, . . . , d+ 1}. Then, for every v ∈ V N we have

(A.14) H(vt1)H(vtk) =
∑
x,y∈A

( d∏
i=1

h
x(i)
i (vt1)

)( d∏
j=1

h
y(j)
j (vtk)

)
.

Therefore, if k > 2, then (A.13) also follows from (A.6) and the fact that |A| = 2d−1. So

assume that k = 2. By (A.14), for every v ∈ V N we have

(A.15) H(vt1)H(vt2) =
∑
x,y∈A

( d∏
i=2

h
x(i)
i (vt1)

)( d−1∏
j=1

h
y(j)
j (vt2)

)
h
x(1)
1 (vt1)h

y(d)
d (vt2).

Notice that for every v ∈ V N we have h0
vt1

= h0
vt2

and h1
vt1

= h1
vt2

. Thus, setting

W := {(x,y) ∈ A × A : x(1) = y(d)}, we see that h
x(1)
1 (vt1)h

y(d)
d (vt2) = 0 for every

(x,y) ∈ A× A \W. Combining this information with (A.15), we obtain that

(A.16) H(vt1)H(vt2) =
∑

(x,y)∈W

( d∏
i=2

h
x(i)
i (vt1)

)( d−1∏
j=1

h
y(j)
j (vt2)

)
h
x(1)
1 (vt1)h

y(d)
d (vt2)

for every v ∈ V N. On the other hand, by (A.6), for every (x,y) ∈ W we have

(A.17)
∣∣∣ ∫ ( d∏

i=2

h
x(i)
i (vt1)

)( d−1∏
j=1

h
y(j)
j (vt2)

)
h
x(1)
1 (vt1)h

y(d)
d (vt2) dµ(v)−

(1

2

)2d−1∣∣∣ 6 ε.
Since |W| = 22d−3, we conclude that (A.13) for k = 2 follows from (A.16) and (A.17).

The proof of Claim A.5 is completed. �

Claim A.6. Set C :=
{
u ∪ {2d − 1} : u ∈ Box(d − 1)

}
where Box(d − 1) is as in (3.2).

(Notice that C ⊆
(N
d

)
.) Then we have

(A.18)
∣∣∣ ∫ ∏

s∈C
H(vs) dµ(v)−

(1

2

)|C|∣∣∣ 6 (d+ 1)2d−2+(d−1)2d−2

ε.

Proof of Claim A.6. We start by setting j0
i := 2i − 1 and j1

i := 2i for every i ∈ [d − 1].

Next, for every ε = (εi)
d−1
i=1 ∈ {0, 1}d−1 set s(ε) :=

{
jεii : i ∈ [d−1]

}
∪{2d−1}, and notice

that C =
{
s(ε) : ε ∈ {0, 1}d−1

}
. Moreover, by (A.9) and (A.11), we have∫ ∏

s∈C
H(vs) dµ(v) =

∫ ∏
ε∈{0,1}d−1

H(vs(ε)) dµ(v) =(A.19)

=
∑

(xε)
ε∈{0,1}d−1∈A{0,1}d−1

∫ ∏
ε∈{0,1}d−1

hxε(vs(ε)) dµ(v).
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We define a subset R of A{0,1}d−1

by the rule

(xε)ε∈{0,1}d−1 ∈ R ⇔ for every j ∈ [d− 1], every ε = (εi)
d−1
i=1 ∈ {0, 1}d−1(A.20)

and every ε′ = (ε′i)
d−1
i=1 ∈ {0, 1}d−1

with εi = ε′i for all i ∈ [d− 1] \ {j}
we have xε(j) = xε′(j).

Observe that for every j ∈ [d − 1] and every ε = (εi)
d−1
i=1 , ε

′ = (ε′i)
d−1
i=1 ∈ {0, 1}d−1 with

ε

(0, 0)

(0, 1)

(1, 0)

(1, 1)

xε(1) xε(2) xε(3)

Figure 6. The structure of the set R for d = 3. Connected dots imply

equality of the corresponding coordinates.

εi = ε′i for all i ∈ [d − 1] \ {j} we have h0
j (vs(ε)) = h0

j (vs(ε′)) and h1
j (vs(ε)) = h1

j (vs(ε′))

for every v ∈ V N which, in turn, implies that h0
j (vs(ε))h

1
j (vs(ε′)) = 0. Consequently,∏

ε∈{0,1}d−1 hxε(vs(ε)) = 0 for every (xε)ε∈{0,1}d−1 ∈ A{0,1}d−1 \ R and every v ∈ V N.

Therefore, by (A.19), we obtain that

(A.21)

∫ ∏
s∈C

H(vs) dµ(v) =
∑

(xε)
ε∈{0,1}d−1∈R

∫ ∏
ε∈{0,1}d−1

hxε(vs(ε)) dµ(v).

On the other hand, by (A.6), for every (xε)ε∈{0,1}d−1 ∈ R we have∣∣∣ ∫ ∏
ε∈{0,1}d−1

hxε(vs(ε)) dµ(v)−
(1

2

)(d+1)2d−2 ∣∣∣(A.22)

=
∣∣∣ ∫ d∏

i=1

∏
ε∈{0,1}d−1

h
xε(i)
i (vs(ε)) dµ(v)−

(1

2

)(d+1)2d−2∣∣∣
=
∣∣∣ ∫ ( d−1∏

i=1

∏
ε∈{0,1}d−1

h
xε(i)
i (vs(ε))

)( ∏
ε∈{0,1}d−1

h
xε(d)
d (vs(ε))

)
dµ(v)−

(1

2

)(d+1)2d−2 ∣∣∣
6 (d+1)2d−2ε.

The estimate (A.18) follows from (A.21), (A.22), and the fact that |R| = 2(d−1)2d−2

and

|C| = 2d−1. The proof of Claim A.6 is completed. �

Claim A.7. Let Box(d) be as in (3.2). Then we have

(A.23)
∣∣∣ ∫ ∏

s∈Box(d)

H(vs)dµ(v)− 2
(1

2

)|Box(d)|∣∣∣ 6 d2d+(d−2)2d−1

ε.
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Proof of Claim A.7. As in the proof of Claim A.6, for every i ∈ [d] set j0
i := 2i − 1 and

j1
i := 2i. Moreover, for every ε = (εi)

d
i=1 ∈ {0, 1}d set s(ε) :=

{
jεii : i ∈ [d]

}
, and observe

that Box(d) =
{
s(ε) : ε ∈ {0, 1}d

}
. We define a subset Q of A{0,1}d by setting

(xε)ε∈{0,1}d ∈ Q ⇔ for every j ∈ [d], every ε = (εi)
d
i=1 ∈ {0, 1}d(A.24)

and every ε′ = (ε′i)
d
i=1 ∈ {0, 1}d

with εi = ε′i for all i ∈ [d] \ {j}
we have xε(j) = xε′(j).

By (A.9), (A.11), the definition of Q and arguing as in the proof of Claim A.6,

ε

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

xε(1) xε(2) xε(3)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

Figure 7. The structure of the set Q for d = 3. As in Figure 6, con-

nected dots imply equality of the corresponding coordinates.

∫ ∏
s∈Box(d)

H(vs) dµ(v) =

∫ ∏
ε∈{0,1}d

H(vs(ε)) dµ(v)(A.25)

=
∑

(xε)
ε∈{0,1}d∈A{0,1}

d

∫ ∏
ε∈{0,1}d

hxε(vs(ε)) dµ(v)

=
∑

(xε)
ε∈{0,1}d∈Q

∫ ∏
ε∈{0,1}d

hxε(vs(ε)) dµ(v).

By (A.6), for every (xε)ε∈{0,1}d−1 ∈ Q we have

(A.26)
∣∣∣ ∫ ∏

ε∈{0,1}d
hxε(vs(ε)) dµ(v)−

(1

2

)d2d−1∣∣∣ 6 d2d−1ε.

Finally, note that |Q| = 2(d−2)2d−1+1. Using this information, (A.23) follows from (A.25),

(A.26) and the fact that |Box(d)| = 2d. The proof of Claim A.7 is completed. �
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Claim A.8. Let B be a d-dimensional box of N such that min(s) > 2d + 1 for every

s ∈ B. Then we have

(A.27)
∣∣∣ ∫ ∏

s∈Box(d)∪B

H(vs) dµ(v)− 4
(1

2

)2|Box(d)|∣∣∣ 6 d2d+1+(d−2)2d−1

ε.

Proof of Claim A.8. It follows immediately by Claim A.7. �

After this preliminary discussion, we now enter into the main part of the proof. Let

X = 〈Xs : s ∈
(N
d

)
〉 be a boolean, exchangeable, d-dimensional random array on N whose

distribution satisfies

(A.28) E
[ ∏
s∈F

Xs

]
=

1

2

(1

2

)|F|
+

1

2

∫ ∏
s∈F

H(vs) dµ(v)

for every nonempty finite subset F of
(N
d

)
. (The existence of such a random array follows

arguing precisely as in the proof of Proposition A.1.)

First, we will show that X satisfies properties (P1) up to (P4). For property (P1), let

s ∈
(N
d

)
be arbitrary and notice that, by the exchangeability of X and (A.28),

(A.29) E[Xs] =
1

4
+

1

2

∫
H(vt1) dµ(v)

where, as in Claim A.5, we have t1 = {1, . . . , d}. By (A.12) and the choice of ε in (A.7),

we obtain that
∣∣E[Xs]− 1

2

∣∣ 6 2d−2ε 6 δ. For property (P2), let s, t ∈
(N
d

)
be distinct, and

set k := d− |s ∩ t|+ 1. Since X is exchangeable, by (A.28), we have

E[XsXt] =
1

8
+

1

2

∫
H(vt1)H(vtk) dµ(v)(A.30)

where t1 and tk are as in Claim A.5. By (A.13), (A.30) and invoking again (A.7), we see

that
∣∣E[XsXt] − 1

4

∣∣ 6 22d−4ε 6 δ. For property (P3), let F be a (d − 1)-face of N. By

the exchangeability of X, (A.28) and the choice of the set C in Claim A.6,

E
[ ∏
s∈F

Xs

]
=

1

2

(1

2

)|F |
+

1

2

∫ ∏
s∈C

H(vs) dµ(v)(A.31)

which implies, by (A.18), that

(A.32)
∣∣∣E[ ∏

s∈F
Xs

]
−
(1

2

)|F |∣∣∣ 6 (d+ 1)2d−3+(d−1)2d−2

ε
(A.7)

6 δ.

Lastly, for property (P4), let B be a d-dimensional box of N. Using once again the

exchangeability of X and (A.28), we see that

E
[ ∏
s∈B

Xs

]
=

1

2

(1

2

)|B|
+

1

2

∫ ∏
s∈Box(d)

H(vs) dµ(v)(A.33)

and so, by (A.23),

(A.34)
∣∣∣E[ ∏

s∈B
Xs

]
− 3

2

(1

2

)|B|∣∣∣ 6 d2d−1+(d−2)2d−1

ε
(A.7)

6 δ.
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Thus, it remains to verify property (P5). As expected, we will argue as in Proposi-

tion 2.8. Specifically, fix an integer n > 4d, and define f : R([n]
d ) → R by setting for every

x = (xt)t∈([n]
d ) ∈ R([n]

d )

(A.35) f(x) :=
∏

s∈Box(d)

xs − E
[ ∏
s∈Box(d)

Xs

]
.

Clearly, f is a translated multilinear polynomial of degree 2d and satisfies E[f(Xn)] = 0

and ‖f(Xn)‖L∞ 6 1. On the other hand, if B is a d-dimensional box on N such that

min(s) > 2d+ 1 for every s ∈ B, then

E
[ ∏
s∈Box(d)∪B

Xs

]
(A.28)

=
1

2

(1

2

)2d+1

+
1

2

∫ ∏
s∈Box(d)∪B

H(vs) dµ(v)(A.36)

and so, by (A.27),

(A.37)
∣∣∣E[ ∏

s∈Box(d)∪B

Xs

]
− 5

2

(1

2

)2d+1∣∣∣ 6 d2d+(d−2)2d−1

ε.

Using this estimate, property (P4) and arguing as in the proof of Proposition A.1, it is

easy to verify that the function f satisfies property (P5). The proof of Proposition A.2

is completed. �
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[Rő15] V. Rődl, Quasi-randomness and the regularity method in hypergraphs, in “Proceedings of the

International Congress of Mathematicians” Vol. I, 571–599, 2015.
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