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Abstract

We introduce a method which leads to upper bounds for the isotropic
constant. We prove that a positive answer to the hyperplane conjecture is
equivalent to some very strong small probability estimates for the Euclidean
norm on isotropic convex bodies. As a consequence of our method, we obtain
an alternative proof of the result of J. Bourgain that every s2-body has
bounded isotropic constant, with a slightly better estimate: If K is a convex
body in R™ such that [|(-,0)||q < B||(-,0)||2 for every § € S™~' and every
q > 2, then Lx < CpB+/log B, where C' > 0 is an absolute constant.

1 Introduction

A convex body K in R™ is called isotropic if it has volume | K| = 1, center of mass
at the origin, and its inertia matrix is a multiple of the identity. Equivalently, if
there is a constant Ly > 0 such that

(1.1) /K (2,0)2dz = L2,

for every 6 in the Euclidean unit sphere S"~!. It is not hard to see that for
every convex body K in R"™ there exists an affine transformation 7" of R™ such
that T'(K) is isotropic. Moreover, this isotropic image is unique up to orthogonal
transformations; consequently, one may define the isotropic constant Ly as an
invariant of the affine class of K.

The isotropic constant is closely related to the hyperplane conjecture (also
known as the slicing problem) which asks if there exists an absolute constant ¢ > 0
such that maxgegn—1 |[K NOL| > ¢ for every convex body K of volume 1 in R™ with
center of mass at the origin. This is because, by Brunn’s principle, for any convex
body K in R™ and any 6 € S"~!, the function ¢ — |K N (6+ + t@)\n%l is concave
on its support, and this implies that

(1.2) / (z,0)%dx ~ |K N6+ 2.
K



Using this relation one can check that an affirmative answer to the slicing problem
is equivalent to the following statement: There exists an absolute constant C' > 0
such that Ly < C for every convex body K. We refer to the article [16] of Milman
and Pajor for background information about isotropic convex bodies.

The isotropic constant and the hyperplane conjecture can be studied in the
more general setting of log-concave measures. Let f : R® — R, be an integrable
function with fR” f(z)dz = 1. We say that f is isotropic if f has center of mass at
the origin and

(1.3) /n |(z,0) > f(x)dx =1

for every § € S"~1. It is well-known that the hyperplane conjecture for convex
bodies is equivalent to the following statement: There exists an absolute constant
C > 0 such that, for every isotropic log-concave function f on R",

(1.4) for<c.

It is known that Lx > LB; > ¢ > 0 for every convex body K in R™ (we use
the letters ¢, c1, C ete. to denote absolute constants). Bourgain proved in [3] that
Lk < ci/nlogn and, a few years ago, Klartag [8] obtained the estimate Ly < ci/n.

The approach of Bourgain in [3] is to reduce the problem to the case of convex
bodies that satisfy a to-estimate (with constant 5 = O(/n)). We say that K
satisfies a 1o-estimate with constant (3 if

(1.5) 1 wMllgs < Bl yl
for all y € R™. Bourgain proved in [4] that, if (1.5) holds true, then
(1.6) Lk < CpBlogp.

The purpose of this paper is to introduce a different method which leads to
upper bounds for L. We prove that a positive answer to the hyperplane conjecture
is equivalent to some very strong small probability estimates for the Euclidean norm
on isotropic convex bodies; for —n < p < 0o, p # 0, we define

(17) )= ([ ||x||§dx)l/p

and, for § > 1, we consider the parameter
(1.8) g—c(K,0) :=max{p > 1: [L(K) < I_,(K)}.

Then, the hyperplane conjecture is equivalent to the following statement:

There exist absolute constants C, & > 0 such that, for every isotropic
convex body K in R™,

Q—C(va) = Cn.



The main results of [22] and [23] show that there exists a parameter ¢, := ¢.(K)
(related to the L,—centroid bodies of K') with the following properties: (i) g«(K)
e/, (ii) g—o(K, &) = q.(K) for some absolute constant ¢ > 1, and hence, I5(K)
&I_4 (K). The question that arises is to understand what happens with I_,(K)
when p lies in the interval [g.,n], where there are no general estimates available
up to now. In the case where K is a ts-body, one has q. ~ n and the problem is
automatically resolved.

The main idea in our approach is to start from an extremal isotropic con-
vex body K in R™ with maximal isotropic constant Lk ~ L, := sup{Lg :
K is a convex body in R"}. Building on ideas from the work [5] of Bourgain,
Klartag and Milman, we construct a second isotropic convex body K; which is also
extremal and, at the same time, is in a-regular M-position in the sense of Pisier
(see [24]). Then, we use the fact that small ball probability estimates are closely
related to estimates on covering numbers. This gives the estimate

(Kl) < Ct\/ﬁa

2
<

(1.9) LKlI_C(z—Z)tW
for t > C(a), where ¢, C' > 0 are absolute constants. The construction of K; from
K can be done inside any subclass of isotropic log-concave measures which is stable
under the operations of taking marginals or products. This leads us to the definition
of a coherent class of probability measures (see Section 4): a subclass U of the class
of probability measures P is called coherent if it satisfies two conditions:

1. If p € U is supported on R™ then, for all k <n and F € Gy i, 7p(p) € U.
2. IfmeNand y, eU,i=1,...,m,then 11 ® --- @ um € U.

It should be noted that the class of isotropic convex bodies is not coherent. This
is the reason for working with the more general class of log-concave measures. The
basic tools that enable us to pass from one language to the other come from K.
Ball’s bodies and are described in Section 2.

Our main result is the following;:

Theorem 1.1. Let U be a coherent subclass of isotropic log-concave measures and
letn>2and § > 1. Then,

3=

n en
1.10 sup f,(0)» < Cé sup 10g< >,
( ) HEUR M( ) HEU q—C(/U'7 6) Q—C(,uv 5)

where C > 0 is an absolute constant and Uy, denotes the subclass of n-dimensional
measures in U.

In Section 4, for every a € (1,2] we introduce a coherent class of isotropic log-
concave measures which is equivalent to the class of 1,-class. Then, Theorem 1.1
has the following consequence:



Theorem 1.2. Let o € (1,2] and B, > 0. Let u be an isotropic ¢, log-concave
measure with constant B, in R™. Then,

(1.11) Ju(0)% < Cy/n*5* gy fog (n*5° B2,

where C > 0 is an absolute constant. In particular, if p is o with constant B > 0,
then

(1.12) £u(0)7 < CBav/log fBa.

Moreover, for every isotropic log-concave measure f,

(1.13) fM(O)% < Cni+/logn.

From Theorem 1.2 we immediately deduce two facts:

1. If a convex body K satisfies a 1s-estimate with constant 3, then
Ly < CpBy/logp.

2. For every isotropic convex body K in R”,
Ly < C+/ny/logn.

The first fact slightly improves Bourgain’s estimate from [4]. The second one is
weaker than Klartag’s /n-bound in [8]; nevertheless, our method has the advantage
that it can take into account any additional information on the 1, behavior of K.

Acknowledgment. We would like to thank Apostolos Giannopoulos for many
interesting discussions. Also, the second named author wants to thank Assaf Naor
for several valuable comments on an earlier version of this paper.

2 Background material

2.1 Basic notation. We work in R™, which is equipped with a Euclidean structure
(,-). We denote by || - ||2 the corresponding Euclidean norm, and write By for
the Euclidean unit ball, and S™~! for the unit sphere. Volume is denoted by | - |.
We write w,, for the volume of By and o for the rotationally invariant probability
measure on S?~!. The Grassmann manifold G, 1, of k-dimensional subspaces of R"
is equipped with the Haar probability measure ji,, ;. Let k£ < n and F € G, . We
will denote by Pr the orthogonal projection from R™ onto F'.

The letters ¢, ¢, c1, ¢y ete. denote absolute positive constants which may change
from line to line. In order to facilitate reading, we will denote by ¢,n, k,&, T etc.
some (absolute) positive constants that appear in more than one places.

Whenever we write a ~ b, we mean that there exist absolute constants ¢;,co > 0
such that cja < b < cga. Also if K, L C R" we will write K ~ L if there exist
absolute constants ¢y, co > 0 such that ey K C L C oK.



2.2 Probability measures. We denote by Py, the class of all probability measures
in R™ which are absolutely continuous with respect to the Lebesgue measure. We
write A, for the Borel o-algebra in R™. The density of u € P}, is denoted by f,,.
The subclass SPy,) consists of all symmetric measures u € Pp,j; p is called
symmetric if f,, is an even function on R".
The subclass CPy,) consists of all u € P, that have center of mass at the
origin; so, p € CPy, if

(2.1) /n (x,0)du(z) =0

for all § € S™~ 1.
Let u € Py For every 1 <k <n—1and F € G, , we define the F-marginal
mr(p) of u as follows: for every A € Ap,

(2.2) (1) (A) = u(Pp (A4)).

It is clear that mp(1) € Paim ). Note that, by the definition, for every Borel
measurable function f: R™ — [0, 00) we have

(2.3) / f@) drp()(@) = | F(Pr(x) du(z).
a R”
The density of 7g (1) is the function
(2.4) 0 ()(@) = frpi (@) = / fu(y) dy.
z+FL

Let p1 € Py and py € Plny)- We will write g1 ® po for the measure in Plni4ns)
which satisfies

(255) (1 ® piz)(Ar X Az) = pa (A1) pz(Az2)
for all A; € Ay, and Ay € A,,,. It is easily checked that fu,ou, = fu fu.-

2.8 Log-concave measures. We denote by L[, the class of all log-concave probability
measures on R™. A measure p on R™ is called log-concave if for any A, B € A,, and
any A € (0,1),

(2.6) A+ (1= X)B) > (A u(B) .

A function f: R™ — [0,00) is called log-concave if log f is concave.

It is known that if 4 € Ly, and p(H) < 1 for every hyperplane H, then p € Py
and its density f, is log-concave (see [2]). As an application of the Prékopa-Leindler
inequality ([10], [25], [26]) one can check that if f is log-concave then, for every
k<n—1and F € Gpx, 7r(f) is also log-concave. As before, we write CLp,) or
SLy) for the centered or symmetric non degenerate p € L[, respectively.

2.4 Convex bodies. A convex body in R™ is a compact convex subset C' of R™ with
non-empty interior. We say that C' is symmetric if x € C implies that —x € C. We
say that C has center of mass at the origin if [ (z,0) dx = 0 for every § € "~



The support function ke : R™ — R of C is defined by he(z) = max{{(z,y) : y €
C'}. The mean width of C is defined by

2.7) W(C) = [3 he(®)o ().

For each —oo < p < o0, p # 0, we define the p-mean width of C' by

(2.8) W,(C) = ( [S N hg(e)a(de))l/p.

The radius of C is the quantity R(C) = max{||z||2 : z € C} and, if the origin is an
interior point of C, the polar body C° of C is

(2.9) C°:={yeR": (z,y) < lforallze C}.

Note that if K is a convex body in R™ then the Brunn-Minkowski inequality implies
that 1, € E[n].

We will denote by Ky, the class of convex bodies in R and by ié[n] the subclass
of bodies of volume 1. Also, CKy,; is the class of convex bodies with center of mass
at the origin and SKy,; is the class of origin symmetric convex bodies in R".

We refer to the books [28], [18] and [24] for basic facts from the Brunn-
Minkowski theory and the asymptotic theory of finite dimensional normed spaces.

2.5 Lg—centroid bodies. Let p € Pp,). For every ¢ > 1 and 6 € S"~1 we define

(2.10) @ = ([ wopsea)

where f is the density of u. If u € Ly, then hy, (,)(0) < oo for every ¢ > 1 and
every § € S"71. We define the L,-centroid body Z,(u) of u to be the centrally
symmetric convex set with support function hz, ().

L,—centroid bodies were introduced, with a different normalization, in [11] (see
also [12] where an L, affine isoperimetric inequality was proved). Here we follow
the normalization (and notation) that appeared in [21]. The original definition
concerned the class of measures 1x € Ly, where K is a convex body of volume 1.
In this case, we also write Z,(K) instead of Z,(1x).

If K is a compact set in R™ and |K| = 1, it is easy to check that Z;(K) C
Zp(K) C Zy(K) C Zoo(K) forevery 1 < p < g < 00, where Zo(K) = conv{K, —K}.
Note that if T € SL,, then Z,(T(K)) = T(Z,(K)). Moreover, if K is convex body,
as a consequence of the Brunn—Minkowski inequality (see, for example, [21]), one
can check that

(2.11) Zy(K) C¢qZs(K)
for every ¢ > 2 and, more generally,

(2.12) Z,(K) C %



for all 1 < p < g, where ¢y > 1 is an absolute constant. Also, if K has its center of
mass at the origin, then

(2.13) Z,(K) D¢k

for all ¢ > n, where ¢ > 0 is an absolute constant. For a proof of this fact and
additional information on L,—centroid bodies, we refer to [20] and [22].

2.6 Isotropic probability measures. Let p € CPp,. We say that p is isotropic
if Zo(u) = By. We write Zj,) and Ly, for the classes of isotropic probability
measures and isotropic log-concave probability measures on R™ respectively.

We say that a convex body K € CKy, is isotropic if Z»(K) is a multiple of the
FEuclidean ball. We define the isotropic constant of K by

1/n
(2.14) Ly = ('Zé;)') .

So, K is isotropic if and only if Zo(K) = Lk By. We write ZKy, for the class of
isotropic convex bodies in R". Note that K € ZK|,) if and only if L}Ql% € ILy-
K

A convex body K is called almost isotropic if K has volume one and K ~ T(K)
where T'(K) is an isotropic linear transformation of K.

We refer to [16], [7] and [22] for additional information on isotropic convex
bodies.

2.7 The bodies K,(p). A natural way to pass from log-concave measures to convex
bodies was introduced by K. Ball in [1]. Here, we will give the definition is a

somewhat more general setting: Let u € Pp,. For every p > 0 we define a set

K, (1) as follows:

(2.15) Ko = {o & p [ gtz 0 f

It is clear that K,(u) is a star shaped body with gauge function

p > 1 i
2.16 x = 7/ fulra)rP™ dr) .
(2.16) el = (5455 |t
Let 1 <k <nand F € G, . For § € Sp we define

(217) ||0||Bk+1(M7F) = ||9HKI¢+1(7TF(}A))'

In the following Proposition we give some basic properties of the star-shaped bodies
K,(1). We refer to [1], [16], [22], [23] for the proofs and additional references.

Proposition 2.1. Let p € Py, p>0, 1<k <nand F € Gy .
(i) If p € L) then Kp(p) € K. Moreover, if p € SLiy) then Kp(u) € SKpp.

(i) If € CLyy then K1 (1) € Cpny. If po € STLppy then Koy ia(p) € SKppy.



(iii) If p € ZLp then ﬁ(u) is almost isotropic.

(iv) Let 1 <p < n and p € CLy,) . Then, f,(0)% Zy(p) =~ Zy(K i1 ().
(v) Let 1 <p S k<n, F€Gug, p €CLY and K € CLy,). Then,

(2.18) Frr () (0)F Pr(Zy(12)) = £u(0)% Zy(Biia (. F))
and
(2.19) |K 0 FYE Pp(Zy(K)) = Zy(Bra (K, F)).

(vi) Let 1 <k <n, F € G,y and K € IKy,). Then,

Lenuer)

(2.20) KN FYF ~
Lk
(vii) If p € ILyy,), then
1
(2.21) Ly, ) = fu(0)m.

2.8 o-norm. Let p € Pp,y. Given a > 1, the Orlicz norm ||gl[y, of a bounded
measurable function g : R” — R with respect to u is defined by

(2.22) lglly, = inf {t >0 /n exp ((lf(t:”)')a) dp(z) < 2}.

It is not hard to check that

(229 116 s { 2 25> o .

Let € S"~!. We say that p satisfies a 1),-estimate with constant (3,0 in the
direction of 6 if

(2.24) 1G9 e < Boproll ¢ )2

We say that p is a 1),-measure with constant 3, , where 8, , := supgcgn-1 Ba,u,6,
provided that this last quantity is finite.
Similarly, if K € Kp,,; we define

hz,x)(0)
2.25 Ba, ik = SUp SUp —F————.
( ) oK fesn—1p>a pl/ahZ2(K)(9)

Note that 3., is an affine invariant, since 8, yo7-1 = Ba,, for all T € SL,,. Finally,
we define



and
(2.27) Kpny(a, ) == {K € Kin) : Ba,x < B}

2.9 The parameter k.(C). Let C be a symmetric convex body in R™. Define k. (C)
as the largest positive integer k < n for which
(2.28)

Lo i (F € Gy %W(C)(BS NF) C Pp(C) C 2W(C)(BL N F)) >

“n+k

Thus, k.(C) is the maximal dimension k such that a “random” k-dimensional pro-
jection of C' is 4-Euclidean.

The parameter k. (C) is completely determined by the global parameters W (C)
and R(C): There exist ¢1,c2 > 0 such that

W (C)?
R(C)?

w(c)?

(2.29) cn ROE

< ke(C) € can

for every symmetric convex body C' in R™. The lower bound appears in Milman’s
proof of Dvoretzky’s theorem (see [13]) and the upper bound was proved in [19].

3 Negative moments of the Euclidean norm

Let u € Ppyy. If —n < p < oo, p # 0, we define

(31) nw = ([ ||x|§du<x>)1/p.

As usual, if K is a Borel subset of R™ with Lebesgue measure equal to 1, we write
Ip(K) = I(1k).

Definition 3.1. Let p € P[n] and 6 > 1. We define

0.(n) = maxlk <n: k. (Zu(w) > k)
0-e(p8) = max{p>1: 1 ,(0) > <D}
qx (1, 0) = max{k <n:k(Zk(p)) > 5%}

One of the main results of [23] asserts that the moments of the Euclidean norm on
log-concave measures satisfy a strong reverse Holder inequality up to the value g,:

Theorem 3.2. Let € CLy,). Then for every p < q.(u),
(3.2 1) < Ly (1),

where C > 0 is an absolute constant.



It is clear from the statement that in order to apply Theorem 3.2 in a meaningful
way one should have some non-trivial estimate for the parameter g,. The next
proposition (see [22, Proposition 3.10] or [23, Proposition 5.7]) gives a lower bound
for ¢., with a dependence on the 1, constant, in the isotropic case.

Proposition 3.3. Let ju € Zj) N Ppyy(, B). Then

a
nz

(3.3) qx(p) > e

where ¢ > 0 is an absolute constant.

Definition 3.4. Let y € Pp,). We will say that p is of small diameter (with
constant A > 0) if for every p > 2 one has

(3.4) I,(w) < AL (p).

The definition that we give here is a direct generalization of the one given in [21]
for the case of convex bodies.

Let p € Py and set B := 4I5(u)By. Note that 3 < u(B) < 1. We define a new
measure i on A, in the following way: for every A € A,, we set

oAy . MANB)
HA) = =)

Assume that, additionally, 4 € L,). Then, it is not hard to check that

(3.5) I(u) = Ir(@), Za(p) = Zo(@) and  fu(0)7 = £, (0)7.

Therefore, if p € Lf,), we can always find a measure g € L, which is of small

diameter (with an absolute constant C' > 0) and satisfies fﬂ(O)% ~ fM(O)%.
Moreover, if p is isotropic, then fi is almost isotropic. As a consequence of [23,
Theorem 5.6] we have the following:

Proposition 3.5. Let u € L. Then,

(36) q*(ﬂagl) = q—c(ﬂaf?)v

where £1,& > 1 are absolute constants.

4 Coherent classes of measures

Our starting point is a simple but crucial observation from the paper [5] of Bour-
gain, Klartag and Milman. First of all, one may observe that L, := sup{Lxk :
K is a convex body in R™} is, essentially, an increasing function of n: for every
k <n, Ly < CL,, where C > 0 is an absolute constant. So, using (2.20) we see

10



that if Ko is an isotropic convex body in R™ such that Lg, =~ L,, then, for all
Fc Gn,k}a

Lg— L
(4.1) |KOmFL|1/kz%<ClL—’“ < C.
0 n

Building on the ideas of [5] one can use this property of a body Ky with “extremal
isotropic constant” to get upper bounds for the negative moments of the Euclidean
norm on Kjy. Since we want to apply this argument in different situations, we will
first introduce some terminology.

Definition 4.1. We define P := U2, Py,). Similarly, ZP := U2, TPy, etc.
Let U be a subclass of P. Set Uj,) = U NPp,). We say that U is coherent if it
satisfies the following two conditions:

1. If u € Uy, then, for all k <n and F € Gy, Tr(p) € Udim 7)-
2. It m e N and p; € Upy,, i =1,...,m, then

n1 & @ lm € u[ﬂ1+"'+nm] .

We also agree that the null class is coherent. Note that if U; and Uy are coherent
then Uy NUs is also coherent.

The following proposition is a translation of well known results to this language.
Proposition 4.2. The classes SP, CP, L, I are coherent.
Note that the class K := ;" {p € Pl : o =15 ; K € Ky} is not coherent.

Proposition 4.3. Let U be a coherent class of measures. If n is even then, for

every pp € Uy, k=45 and F € Gy,

3=

(4.2) Fre((0)F < sup £,(0)
HEU

Moreover, if p,(U) := SUPeuq,,, fH(O)%, then

pn—l(u) %
Pl(u) ) -

Proof. For the first assertion use the fact that 7p(u) ® 7p(u) € Uy, and

(4.3) puct(U) < pull) (

firrw@me ) (0) = [frpr (0)]%.

For the second assertion use the fact that if y1 € Up,_1) and p2 € Upy) then we have
1 @ p € Uppy and fiuy@p,(0) = fuy (0) fuz (0). U

11



In particular if a class satisfies
e " < pU) <e™

it is enough to bound p,, (U) for n even. Note that ZL is such a class.

Our goal in this section is to show that the class of measures that are 1, with
constant less that (3 is coherent. To do that we will use a more convenient definition
of “i), measures”.

Let u € CPyy,). For every 0 € S7=1 and every A > 0 we define

(4.4) hue(A) == h(\) = log (/ e’\<m’9>du(x)> .
Next, if a € (1, 00], we define
- L 1 Ma.0) o
(W5)  Duul®) = h)F =sup - (10g [ APau(@))
A>0 A>0 n

where a, is the conjugate exponent of «; i.e. é + a—l* =1.

Note that 1’/;047#(9) € Ry U{oo}. Indeed, by Jensen’s inequality, h(A) > 0, since
p € CPy,). The function () is strictly convex and, since h(0) = 0, the function

A @ is strictly increasing. In particular,

-~ 1 N
(4.6) Yoo, u(0) = ,\h_>H§oX10g/ @0 dy(x).
Definition 4.4. Let u be a probability measure on R™. For « € (1, 00] we define

Dauu(0)

4.7 B = sup .
.7 g fesn—1 hZz(u)(e)

We also define

(48) Poz(ﬂ) = U {,LL € P[n] :Bu,a < 6}

n=1

We will prove that, for every a € (1,2] and 3 > 0, the class P, (/) is coherent
(see Proposition 4.11). Moreover, the next Proposition shows that for every p €

CPp, and every a > 1 the quantities max{iza#w),izm#(—ﬂ)} and ||(-,0)|l,., are
equivalent up to an absolute constant.

Proposition 4.5. Let i € CPy,). For every a € (1,00) and every 0 € Sl e
have that

(4.9)  Crmax{Pa,u(0), Yau(=0)} < [1(0)llpo < Comax{va,u(0), Pau(—0)},

where Cy,Cy > 0 are absolute constants.

12



The proof will be based on the following two Lemmas:
Lemma 4.6. Ifp € (0,1] and t > 0, then

1-t¢
1—1¢p

< Eet.
p

(4.10) (" —1)

Proof. We distinguish two cases:
Case 1. t € (0,1): Let F(p) = %et(l —tP) — (et — 1)(1 —¢). Tt is enough to show
that F(p) > 0. Note that F(1) = (1 —t)te! — (e —1)(1 —t) = (1 —t) (te! — et +1).
Let g(t) := te' —e' + 1. Then ¢(0) = 0 and ¢'(t) = te' > 0. This implies that
F(1) > 0. So, the claim will follow if we show that F' is a decreasing function of p
on (0,1).

‘We compute

1 tPlogt  tP te'
o8 +>— ¢ (t? — ptPlogt — 1).

4.11 F' :tet(—— = —
(4.11) (p) e » )=

Let G(t) :=t? — ptPlogt — 1. Then, G(1) = 0 and
(4.12) G'(t) = ptP~1 — p*tP " ogt — ptP~! = —p*tP~ 1 logt > 0.

So, G is increasing and G(t) < 0. This implies that F' is decreasing and settles the
first case.

Case 2. t > 1. Note that it is enough to show that
t—1 t
<

4.1 < -
(4.13) 1S

We consider the function H(t) := t?*! — ¢ — pt + p. Note that
(4.14) H{t) =@+’ —(p+1) =0

since ¢ > 1. It follows that H is increasing. Since H(1) = 0, we have H(t) > 0 for
all ¢ > 1. This proves (4.13) and completes the proof. a

Lemma 4.7. Ifr > 1 and t > 0 then

) tr k/r
(4.15) 1+> (k) < et
k=1
Proof. Let f(z) := ;—1 ,# > 0. Then f is increasing when # < £ and decreasing

when x > % Moreover, sup,~ f(z) = ec.

Let A:={keN:k< @} and A, = {k € N\ A: %k =v(mod [r+1]).
Note that A is possibly empty but, in any case, |A| < w Note also that if
k ¢ A then f > T_’f_u > i So, in this case

0 (1) < ()
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We write

) tr k/r tr k/r tr k/r
e (F) < 2(5) + Z(F)
k=1 keA kEN\A
tlr+1] . <tLr+1J>’“/““J
< l+———ert Y [—1— .
¢ kEN\A k

Next, we write

()

keN\A v=0 meEA,
[r+1]-1 oo m—&-i“
K251
<2l 2 =
~ m+ U
v=0 m=1 m—l— |_T+]~J) [r+1]
11 i
< D T Zm
v=0 m=1
[r+1]—1
< (ef-1) Y tTm
v=0
1-—-t¢
SR el
1 —tTr+17

Combining the above, and using Lemma 4.6 with p = 1/ |r + 1], we get

0o k/r
t
1+§:<}:> < e ttlr+l]e+tr+1]et=0+2t[r+1])et
g thLrJrljet <e5rt.

This proves the Lemma. O

Proof of Proposition 4.5. Let a € (1,00) and let o, € (1, 00) be the conjugate expo-

nent of o. We set ¢_; := {/;a,u(_e)a (I {Ea,#(g)v Yo = max{{/;a,u(t‘))ﬂza,u(—g)}
and 2 == (-, 0)[[y.,-
For every A > 0,

(4.17) / M@0 dp(x) < exp(A* o).
So, by Markov’s inequality we get that, for every ¢ > 0,
(4.18) plm: M0 > " ATV Lot
Equivalently,

te o
(4.19) W {x {z,0) > 5y + Axt f} <e ',

14



Choosing A := , we get

(4.20) p{z: (,0) > 2t} < et

Similarly, for every t > 0 we have

(4.21) plx : {z,—0) > 2tp_1} <e?

Therefore,

pl [, 0)] = 2to}

il < {2,0) > 200} + pufa : (2, —0) > 2t}
plz : (z,0) > 291} + pfa: (2, —0) > 2t9_1 }
2¢7 1",

NN

The last inequality implies that 1 < C11)p.

In the opposite direction, using Lemma 4.7 we write

/ A0 du(@) < / A0 gy () <1+Z/ AP |x 0)| e

(z,0) " = (eN) (k)
< ey [ O <re Y O
k=1
Kk
B kwk 0o ((esz)“*)ﬂ*
- EEE Sl
(L) (L)a=
< 5a. 7)\@,‘(;1,2)0{* < 6)\”*(561112)“*
It follows that
1
(4.22) 1y 1= sup — 3 (log Mo ‘9>du > < bew)s.
A>0 Rn

In a similar way we check that 1_; < Hews. This completes the proof.

Corollary 4.8. For every o € (1,2],

(4.23) CP(B) C CP(a, c1/3)
and
(4.24) CP(a, c28) € CPu(B),

where c1,co > 0 are universal constants.

15



Proof. Indeed, if i1 € CP,(8) then Proposition 4.5 implies that

h 0 b,
(4.25) sup M <er osup M < e

pesn—1 hZQ(ll/)(a) fesSn—1 hZz(H)(Q)

which means that u € CP(a, c¢15) (recall (2.26)). The second inclusion is proved in
a similar way. ]

Next, we prove that the class P, () is coherent. The behavior of 1;&7 u for products
of measures is described by the following:

Proposition 4.9. Let k be a positive integer and let p; € CP,,) and 0; € Smi—L,
i=1,...k. If@ZaM(Qi) < oo for alli < k and some a € (1,00), then

k ax
(4.26) B (61, 00)) < (Z 0, (en) ,

i=1

where = 1 ® -+ @ pg. In the case a = oo,

k
(4.27) oo (01, -,00)) = " oo, (65).
=1

Proof. For every A > 0 we can write

1 0,
o log (/ e / e’\Zi'C:l@“G”duk(xk) e dul(x1)>
- R™1 R™k

as follows:
k k
1 0. 1 2 0
e log <H/ 8/\<I“01>d#i($i)> = e Zlog/R R THE
=17 %" i=1 i
k
1 « ~Ot
)\a* Z)\ " O‘jul(oi)
i=1
k

< Z ~g,*p7¢ (02)

=1

N

Taking the supremum with respect to A > 0 we get the result. The case o = oo
can be treated in a similar way, taking into account (4.6). ad

The behavior of marginals is described by the following:
Proposition 4.10. Let i € CPyp,). Let F € Gy and 0 € Sp. If a € (1,00), then

(4.28) Dovrr(w) () < Py (6).
If a = oo, then
(4.29) Voomw (1) (0) = Voo, ().

16



Proof. Note that, for every A > 0,

(4.30) [ e 0au@) = [ Aeane o
n F
It follows that

(431) - los /F N () (o) = 1o log [ M 0du(a) < i, 6),

Taking the supremum with respect to A > 0 we get the result. The case o = oo
can be treated in a similar way. |

Proposition 4.11. Let a € (1,2] and let 3 > 0. Then the class Po(8) is coherent.

Proof. Let pn € (Pa(B))p,- Fix 1 <k <nand F € Gy . Then, using (4.28) and
the fact that hz,(rp(u))(0) = hz,(u)(0) for 6 € Sp, we see that

= ~o¢7r 9 Na
(4'32) ﬁﬂF(M)’a = sup Ld F(#)( ) < sup 2 M(e)

< < Bra-
9eSpr Nzynr () (0) ~ vesp Pz, (0) .

SO; 7TF(/”L) Gpa(ﬁ)'
i :=1,...,k and set N := ny + --- + ng. Since

Next, let p; € (Pa(B)),

hz, (1 @--@ue) (01, - Or) = (Z h222 (s )(9 )) * we have

7 7;& 1R ®P‘k(91’ ok)
Bur@--@ura = sup
: oo (01,...0,)eSN -1 hZ2(lt1® ®#k)(917 s ek)

ni]7

1

(s 0 00) ™

1
2

N

sup

N—-1
(61,---0x)€S (Z?:l hzzz(m)(ei)>

( h%;(u) )(%
(zt

Zz(lh 91))

< B sup
(01,...05)eSN—1

< B
since a € [2,00), and ||z < ||z]lg. So, 1 ® - ® pk € PalB). O

Nl

5 M-positions and extremal bodies

All the results in this section are stated for the case where the dimension is even.
Proposition 4.3 shows that this is sufficient for our purposes. However, with minor
changes in the proofs, all the results remain valid in the case where the dimension
is odd.

Our main goal in this section is to prove the following:

17



Proposition 5.1. LetUd C ZL be a coherent class of probability measures, let n > 2

1

even, a € (1,2) and t > (ﬁoa)z, Then, there exists i1 € Uy such that

(5.1) Fn(0)% > Cy sup £, (0)*
VEU[,

and

(52> I*C2W(M1) < OBt\/ﬁful (O)_%7

where Cy, C1,C3 > 0 and ca > 2 are absolute constants.
Moreover, if U = TL, uy can be chosen to be of small diameter (with an absolute
constant Cq > 0).

Recall that if K and C are convex bodies in R™, then the covering number of
K with respect to C' is the minimum number of translates of C' whose union covers
K:

k
(5.3) N(K,C):= min{keN:Hzl,...zkER":KC U(ZZ+C)}

=1

Let K be a convex body of volume 1 in R™. Milman (see [14], [15] and also [16]
for the not necessarily symmetric case) proved that there exists an ellipsoid £ with
|€] = 1, such that

(5.4) log N(K,E) < kn

where k£ > 0 is an absolute constant. We will use the existence of a-regular M-
ellipsoids for symmetric convex bodies. More precisely, we need the following the-
orem of Pisier (see [24]; the result is stated and proved in the case of symmetric
convex bodies but it can be easily extended to the non-symmetric case):

Theorem 5.2. Let K be a convex body of volume 1 in R™ with center of mass at
the origin. For every o € (0,2) there exists an ellipsoid € with |E] = 1 such that,
for everyt > 1,

(5.5) log N(K,1€) < "%,

where k(a) > 0 is a constant depending only on «. One can take k(o) < 72—
where k > 0 is an absolute constant.

We will also need the following facts about ellipsoids:

Lemma 5.3. Let £ be an ellipsoid in R™. Assume that there exists a diagonal
matriz T with entries Ay = -+- 2 A\, > 0 such that € = T(BY). Then,

(5.6) max \5nF|:Fmax |Pr(E \—wkH/\

FeGy i
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and

(5.7) Frené{}k ENF| = len |Pr(E)] = wg I_IkH i

foralll<k<n-—1.

Proof. A proof of the equality minpeg,, , [N F| = wy H?:n—k—&-l A; is outlined in
[9, Lemma 4.1]. Let Fs(k) = span{en—g+1,...,en}. Then, for every F € G,, . we
have

(5-8) |Pr,6)(E)] = [ENFu(k)| < [ENF| < [Pp(E)].

This shows that

(5.9) P |Pp(E)] = 1Pr.w (€)= wr I »
i=n—k+1

and completes the proof of (5.7).
Observe that £° = T~!(BY) is also an ellipsoid; since the diagonal entries of
T-1 are )\;1 > > )\1_1 > 0, the same reasoning shows that

-1

(5.10) Frenérnlk |E°NF| = renén |Pr(E°)] = <H)\ )

Since Pp(€) is an ellipsoid in F' and £°NF is its polar in F, by the affine invariance
of the product of volumes of a body and its polar, we get |Pr(€)|-|E° N F| =
|By N F|? = w? for every F' € Gy, . This observation and (5.10) prove (5.6). O

Lemma 5.4. Let n be even and let £ be an ellipsoid in R™. Assume that there
exists a diagonal matriz T with entries Ay > -+ = Ay > 0 such that € = T(BY).
Then, there exists F' € Gy, /2 such that Pp(£) = A\ j2(By N F).

Proof. The proof can be found in [30, pp. 125-6], but we sketch it for the reader’s

convenience. We may assume that Ay > --- > X\, > 0. Write n = 2s. Then, £° N
e {x eR» L2 T A22 1} (the reason for this step is that the argument

in [30, pp. 125-6] works in odd dimensions). Since A\; > As > Ags—; for every

i < s— 1, we can define by,...,bs_1 > 0 by the equations
(5.11) AZ07 + A3, = A2(bF + 1).
Consider the subspace F' = span{vy,...,vs} € Gas s, where v; = e, and

bies w
(5.12) v = i

V241
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It is easy to check that {v1,...,v,s} is an orthonormal basis for F' and, using (5.11)
and (5.12), we see that, for every z € F,

s 2s—1
(5.13) Nllzll3 = As D {w,v)? = Y A, ei)? = |l2]f2.
i=1 i=1

This proves that £° N F = A\;1(BZ N F) and, by duality, Pr(€) = A\(By N F) =
)\n/Q(Bg M F) O

Proposition 5.5. Let K € ﬁC[n]. Let 1 <k<n-—1 and set

5.14 = KNFYk.

(5.14) 7= max | |

Then,

(5.15) min K N HY[7F >y (") ,
HeGp n—k Y

where 0 < n < 1 is an absolute constant.

Proof. Fix a = 1 and consider an a-regular M—ellipsoid £ for K given by Theorem
5.2. By the invariance of the isotropic position under orthogonal transformations,
we may assume that there exists a diagonal matrix T' with entries A\ > --- > \,, > 0
such that &€ = T'(B%). Recall that |£] = 1.
Let F' € G, 1, 1 <k <n—1. Since projecting a covering creates a covering of
the projection, we have
|Pp (K

(5.16) e SN <

We will use the Rogers-Shephard inequality (see [27]) for K and &: since |K| = 1,
we know that

=

(5.17) 1 < (|[K N FH|Pe(K))* < (") <<

where ¢; > 0 is a universal constant (see [29] or [17] for the left hand side inequality).
From (5.17) and the definition of «y in (5.14), we see that

(5.18) |Pp(K)|F > =

Using (5.16) we get

(5.19) .
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In other words,
(5.20) min |Pp(E)|[F > ZLe ¥

We can now apply the upper bound from (5.17) to get

en Kin
T Set

(5.21) LENFHE < (|PRE)|ENFH)F < e

It follows that

enln,.yk
(5.22) max [ENH|< —
HeGn nk cy
Lemma 5.3 implies that
enln,yk
2 P, < ,
(5.23) gl |Pa(e) <
and hence,
o er2nyk
(5-24) |PH(K)|<€ |PH(5)|<T

for every H € Gy, n—k, where we have used again (5.16). Applying (5.17) once
again, we have

1 oy, n—k
(5.25) a1 < (IK N HY||Py(K)|)™F < |K N H*|[7Fent (”) .
C1
This proves that

n—k
(5.26) min  |KNH|[7F > (2
HeGn n—k ¥

with n = c1e7"2, as claimed. O

Lemma 5.6. Let K € C/TCM. Assume that, for some s > 0,

(5.27) rs :=log N(K,sBy) < n.
Then,
(5.28) I, (K) < 3es.

Proof. Let zgp € R™ such that |K N(—z¢+sBY)| > |KN(z+sBY)| for every z € R™.
It follows that

(5.29) (K + 20) N sBY| - N(K, sB2) > |K| = L.
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Let g := rs < n. Then, using Markov’s inequality, the definition of I_ (K + zg)
and (5.27), we get

1

1 n — - —Ts
(530) |(K+Zo)m3 I_q(K+Zo)BQ|<3 9«9 =¢e gm

From (5.29) we obtain

(5.31) |(K + 20) N 37 (K + 20)By| < |(K + 2) N sBy|,
and this implies

(5.32) 37 (K + 20) < s.

Since K has center of mass at the origin, as an application of Fradelizi’s theorem
(see [6]), we have that I_j(K +2) > 1I_4(K) for any 1 <k <n and z € R" (a
proof appears in [23, Proposition 4.6]). This proves the Lemma. ]

Theorem 5.7. Let n be even and let K € ﬁC[n]. Set

_ 12
(5.33) v = Fgng( |[KNF~|».

%

Then, there exists Ky € fva[n] such that:
(i) %LK < Lg, < mayLk, where m,n2 > 0 are absolute constants.
(i) If a € (1,2) one has that for every t > C1v?

k(a)n

log N (K1,tv/nBY) < Cov? e

)

where k() < 525~ and Cy,Co > 0 are absolute constants.

(i) If K is a body of small diameter (with some constant A > 1) then Kj is
also a body of small diameter (with constant C3y?A > 1, where C3 is an absolute
constant).

Proof. Let € be an a-regular M—ellipsoid for K given by Theorem 5.2. As in the
proof of Proposition 5.5, we assume that £ = T'(B%) for some diagonal matrix T
with entries Ay > -+ > A, > 0. From (5.20) and Lemma 5.3 we have

n

3 - ; —nn (1) ?
(5.34) wa ()\5) f 2wz H Ai = olin |Pré| > e ('y) ,
=241

n, g

and hence (recall that wi/k ~1/Vk),

(5.35) A
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Similarly, (5.22) and Lemma 5.3 imply that

3 n
n . o py 2
630  wp(g)F <wp]Ih= max 0 HI<en (2)"
and hence,
(5.37) A < ey

Then, by Lemma 5.4 we can find Fj € G, = such that

2

(5.38) 62;/5(33 N Fy) C Pp, (&) C esyv/n(BY N Fy).

Let Ko = By 11(K, Fy) and Ky := T(Ko x K,) € R", where T € SL,, is such that
K is isotropic. Note that Ky x Ky has volume 1, center of mass at the origin and
is almost isotropic. In other words 7T is almost an isometry. We will show that K,
satisfies (i), (ii) and (iii).

(i) From Proposition 2.1(vi) we know that

(5.39) & Lx|KNFi|* < Lk, <@ Li|KNFg|*,

[¢]

where ¢;,¢ > 0 are absolute constants. Then, Proposition 5.5 shows that

(5.40) %LK < Lk, < mvLk,

where 71 = %€, 12 = ¢1. Note that Ly, = Lg,. This completes the proof of (i).
(ii) From Proposition 2.1(v) and from the fact that ¢conv{C,-C} C Zx»(C) C
conv{C, —C1} for all C in E'IVC[%], we get

COHV{Ko,—Ko} -

Zn(Bzy2(K, Fy))

ol —

1 2
C — |KNFy|"Pr(Z5(K))
CC3

1
- j’YPFO(COHV{Kv_K})
ccCs
and, similarly,
COHV{KQ,—K()} 2 Z%(B%+2(K,F0))
1 2
2 |KNFy|"Pr(Z3(K))
2 -
nc c 1
> — —-P K, —-K
> L~ Prconv(K. ~K})
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where we have used the fact that Z» (K) 2 5= Z,(K) 2 55-conv{K, —K}. In other

_c_
2¢o 2¢o
words,

(5.41) %SPFO (conv{K,—K}) C conv{Ky, — Ko} C ¢y Pr, (conv{K,—K}),

where G5, ¢ > 0 are absolute constants.
For s > 0 we have

N (K1, 5v/nBg)

N (T(Ko x Ko),sv/nBy)

N(Ky x Kg,cs\/nBj)

N(Ky x Ko, V2esv/n (BY N Fy x BY N Fy))
N (Ko, dsv/nBy N Fy)?

NN IN

where we have used the fact that T is almost an isometry, and hence, T'(Ky x Ky) C
% (Ko x Kp). Moreover, we have used the fact that if K, C are convex bodies, then

(5.42) N(K x K,C x C) < N(K,C)?

and BY x BS D %B;k
Recall that ¢ and cg are the constants in (5.38). For every r > 0,

N (Ko, csryv/n(By N Fy)) < N (conv{Ko, —Ko}, csryyv/n(BS N Fy))
< N(conv{Ky, —Ko},7Pr,(E))
< N(Gy Pr, (conv{K,—K}),rPr, (E))
< N(cgyconv{K,—K},r€)
< N (K ~ K, rs)
CeY
, 2
< N (K g) |
2c6y
So, we can write
. 4
(5.43) N(Ki,tv/nBy) < N <K, o 5)
7

for every t > 0, where &; = 1/2¢5Gg. Since € is a a-regular ellipsoid for K, for every

t> 6772 we have

derk(a)yin
t '

t
(5.44) log N(K1,tv/n B}) < 4log N (K, - 5) <

This completes the proof of (ii).
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(iii) We have that R(Kj) < ¢yAy/nLk. Indeed, by Proposition 2.1,

R(Ko) = R (E-%\';(Kv Fo))
< oR(Zyn(By(K F))
< CI\KQFOH%R(PFOZ%H(K))
< YR (conv{K,—K})
< 209R(K) < eyAvnLk.
Also,
(5.45) R(Ky) = R (Ko x Kq) = V2R(Ky).
To see this, write
(5.46) R* (Ko x Ko) = max _|lz]3 + [ly3 = 2R*(Ko).

(z,y)eKox Ko
So, using (i) we get that
(5.47) R(K1) < V2R(K) < eV2yAvnLy < Cs7v*Av/nLy, .
This completes the proof. O
Lemma 5.8. Let p € ZLp,). Fix 1<k <n-—1and F € Gy . Then,

1

— - 0)%
(5.49) R () Bt o L@ O
fu(0)=
1
(5-49) Laur) = fer(OF = L )y
and
(5.50) £u(0)" B (pt, F) ~ Bioya (K (1), F).

Proof. We will make use of the following facts (see Proposition 4.2 and Theorem
4.4 in [23]): If p € TL[y), then

(5.51) Fr) (0)F | P Zi ()| * =~ 1,
and if K € éTC[n] then

(5.52) K O F4 | Pr 2y (K| *

¢

1.

Then, taking into account Proposition 2.1(iv), we get
(5.53)

(K1 (1) N FL* o |PpZy(Kpa (1) 7F = £,(0) 7 |PpZi ()|~ * =~

=

Srr(u) (0)
fu(0)

EaE
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This proves (5.48).
(ii) Using Proposition 2.1(v) and (iv), we have that

Zs (Beni(Kua (), ) = Ky () 0 FHEPr (22 (Kuia () )
~ fﬂ;(%g?kfu(o) Pr(Z2(4)
= frp(u(0)* Pp(Z2(n))
f‘l\'F (O)kBFa

because Zs(p) = BY. Taking volumes we see that

1
(5.54) Ly &moor = T (0)F

and we conclude by Proposition 2.1(vii) and (2.17).
(iii) By Proposition 2.1(v),

(5.55) B F) = 2 (B (. ) = th(u)

and, by Proposition 2.1(v) and then (iv),

Byy1(Knt1(p), F)

12

Z (Eﬁ(ﬁ(u)f))
= [Kuia () N F41EPr (20 (Kuia (1))

o mr(p)(0)k )(0)%
AL Fu(0)% Pr(Zy (1))

(1) (0)* Pr(Zi ().

We have thus shown that
(5.56) By (Ko (1), F) = (1) (0) Pr(Ze(u).
Combining (5.55) and (5.56) we see that

(5.57) £u(0)7 Bt (p, F) = Biya (Ko (1), F).
This completes the proof. O
£,(0)7. Let

Proof of Proposition 5.1. (i) Let v € Ujy) such that sup,,cp £ (0 0)
(5.58) K:=T (f(:fl(u)) ,

where T' € SL,, is such that K € ﬁC[n]. Note that, from Proposition 2.1, T is

1

almost an isometry and Ly ~ f,(0)n.
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IfU =1L we take K :=T (I/(:;/l(ﬂ)) By Proposition 2.1 and (2.14) we have that

Lk ~ f,(0)%. The proof of the first two assertions is identical in both cases. We
write p for either v or . . .
(i) Let Fy € Gy 2, Ko € ZK[») and Ky € ZK |, as in the proof of Theorem 5.7.
Let py := 7, (1) @ 7w, (1r). Assume that the two copies of 7p, (1) live on F' and
F+ respectively, where F' € Gay, .. Since p € U and U is coherent, we have u; € U.
Moreover, using again Proposition 2.1, we have that

1 2
O = Frny 0 O = Lo (o

= L = Loy @5 0.0
= LB%H(K;FO) = Lk, = Lk,

~  fu(0)7.

This settles the first assertion of the Proposition.

(ii) Since U is coherent, for every F' € G, » we have
(5.5) Fre(0)% < fu(0).
Set v := MaXFed, o |K N F+|%. Then,

Ly, @mm e (07

(5.60) v~ ~ <C,
Li fu(0)%
where we have used again Lemma 5.8. So, by Theorem 5.7 we have that
(5.61) log N(K, ty/iBy) < —"
. o} <—-.
g ’ 2 t (2 . a)

Note that, for every p > 0 and every pair of probability measures v, v living in
F, F* respectively, we have PrZ, (11 @ v5) = Z,(11) and Pp1 Zy(11 @va) = Z,(va).
Indeed, if 6 € Sg, we have that

h%,,(lq@yg)(e) = L /FJ_ |<$ + v, 0>|pd1/2(y)d1/1 (x)
= [ 0P =1, 0.

Note that for every convex body K and F' € G, one has

(5.62) K C Pp(K) ® Pp. (K).
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So, we have that

Kpp1(pr)

N
=

R
7

1
_:h
e
3=
.-
—~
N
N3
5
a3
E
®
S
a3
E
Nt

1
_:h
—

e

1
==
—

o

&

w3
+
=
=
S5

X
=

(e
S~—

3

oy

w3
+
—
—
F
>
S~—

12

By (K1 (1), Fo) % By (Kuva (), Fo)

B%+1 (K7FO) X B%+1 (K7FO)
KO X K() = Kl.

Therefore,

(5.63) R(Kpi1(m)) < cR(K)

and

(5.64) log N (E—i-/l(ﬂl)at\/ﬁ33> < log N (K7 Ct\/ﬁBg) < to‘(2cia)

We have assumed that ¢*(2 — a) > C, and hence, by Lemma 5.6 we have

(5.65) Ly (K1 (n) < 3etv/m,

where p = ta(giia) < n. Note that if 4 € CL then for every 1 < p < n — 1 one has
(see Proposition 3.4 in [23])

(5.66) T (1) fu(0) % = Ty (K ()
It follows that
(5.67) I _cn (m) < C'tvnfu, (0)7,

and the proof of the second assertion is complete.

For the rest of the proof we set 4 = U. In this case, K is a body of small
diameter. Indeed, for p > 2, by Proposition 2.1(iv) we have
(5.68)

Ly(K) 2 (K1 (7)) = (1) £5(0)% = /i fo(0)% 2 In(Kpya (7)) = To(K).

From Theorem 5.7 we have that K3 is a body of small diameter, and this implies

that 2 Also, by the first assertion we have that
I (K1)
(5.69) L, ~ f7(0)% =~ f,, (0)% ~ Lg.



Then, from (5.63) we see that for p > 2,

L) _ LK) _ R(Knri(m)) _ R(K)
L(m) ~ nf,(0)x — Vnlk,  L(K))

So, u1 is a measure of small diameter. The proof is complete. |

~ 1.

(5.70)

6 Proof of the main result

We are now ready to state and prove the main result of the paper:

Theorem 6.1. Let U be a coherent subclass of TL and let n > 2 and 6 > 1. Then,

1 n en
6.1 sup f,(0)» < C6 sup log< ),
( ) HEU M( ) HEU \/qC(Nvé) q*C(/‘va)

where C' > 0 is an absolute constant. Moreover if U = ZL then the supremum on
right hand side can be taken over oll v € TL.

Proof. By Proposition 4.3 we can assume that n is even. Let ¢ := inf ey, —c(i, ).

Let o« := 2 — m and t = (1, /%bg %, where the absolute constant C7; > 0
q

can be chosen large enough to ensure that t*(2 — «) > Cy, where Cy > 0 is the
constant that appears in Proposition 5.1. We have

1
(6.2) 12 —a)~ “log —— = =
q " qlogt g
and hence,
n
6.3 — _~g.
(6.3) to2-a) !

1 1
n n

By Proposition 5.1 there exists a measure y; € Uy, such that f,, (0)
and

_1 n en _1
(64) Log(p) = L () < OtV (074 < €7 [ D108 g, (0) .

=~ sup,ey fu(0)

On the other hand, by the definition of ¢, we have

N
(6.5) o5 = 5le(n) S Ioq o (1) < T-q(pa)-
Combining the above we get the result. O

Remark. Observe that for the choice § = sup,,¢ fH(O)% we have

inf q_.(u,0) ~
it c(p,6) =n

(see Proposition 4.8 in [23]). This shows that the preceding result is sharp (up to
a universal constant).
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Theorem 3.2 shows that there exists an absolute constant £ > 0 such that ¢_.(u,§) >
g« () for every u € ZL. So we get the following:

Corollary 6.2. Let U be a coherent subclass of ZL. Then for any n > 1,

(6.6) sup f,(0)% < C sup \/nlog( = ) ,

/LGU[.,L] e Z/[[,,L] qx (l’[’) qx (H’)

where C > 0 is an absolute constant.

Corollary 6.3. Let a € (1,2], let 3> 0 and p € (Pa(B) NZL)(,;. Then,

(6.7) Ju0)% < Cy/n*3* o flog (n*5* ),

where C > 0 is an absolute constant.

Proof. Since u € CP,(8), by Corollary 4.8 we have that u € CP(«,c13). Then,
Proposition 3.3 shows that ¢, (p) > c%-.
Therefore, the result follows from Corollary 6.2. O

Theorem 6.4. Let o € (1,2] and by > 0. Let p be an isotropic 1, log-concave
measure with constant B, in R™. Then,

(6.9) Fu 0 < Oy 33 flog (n*3° ),

where C' > 0 is an absolute constant. In particular, if u is ¥o with constant B > 0,
then

(6.9) £u(0)7 < CBav/10g Ba.

Moreover, for every isotropic log-concave measure p,

(6.10) £.(0)7 < Cniy/logn.

Proof. Recall that, from Corollary 4.8, if u € CP(«, B,) then u € CPy(c184). Then
(6.8) follows from Corollary 6.3. In the special case @ = 2 or « tending to 1, one
gets (6.9) and (6.10) respectively (recall that log-concave measures are uniformly

). O

Remark. In the proof of Corollary 6.2 we have used the fact that ¢.(u) < g—.(u).
One may check that in general this is not sharp (for example one may check that
for f, = 15, one has q. (1) << q—c(i, &) for € ~ 1). As Proposition 3.5 shows,
this is not the case for measures of small diameter.

We conclude with the following:
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Theorem 6.5. The following statements are equivalent:
(a) There exists Cy > 0 such that

sup sup f“(())%SC’l.
n p€ZLy

(b) There exist Cy,&1 > 0 such that

n
sup sup —— < (Ch.
n pu€ILy Q—c(,uvfl)
(¢) There exists Cs,& > 0 such that
n
sup sup < (4.

n pu€LLy q*(/_j‘7£2) -

Proof. The claim that (a) implies (b) is an immediate consequence of the remark
after Theorem 6.1. The implication from (b) to (c) follows immediately from Propo-
sition 3.4. The claim that (c) implies (a) follows from Theorem 6.1. ad

We close by noting that there is a strong connection between the existence of
supergaussian directions and small ball probability estimates, and hence, in view of
Theorem 6.5, with the hyperplane conjecture as well. This connection will appear
elsewhere.
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