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Abstract

We introduce a method which leads to upper bounds for the isotropic
constant. We prove that a positive answer to the hyperplane conjecture is
equivalent to some very strong small probability estimates for the Euclidean
norm on isotropic convex bodies. As a consequence of our method, we obtain
an alternative proof of the result of J. Bourgain that every ψ2-body has
bounded isotropic constant, with a slightly better estimate: If K is a convex
body in Rn such that ‖〈·, θ〉‖q ≤ β‖〈·, θ〉‖2 for every θ ∈ Sn−1 and every
q > 2, then LK 6 Cβ

√
log β, where C > 0 is an absolute constant.

1 Introduction

A convex body K in Rn is called isotropic if it has volume |K| = 1, center of mass
at the origin, and its inertia matrix is a multiple of the identity. Equivalently, if
there is a constant LK > 0 such that

(1.1)
∫
K

〈x, θ〉2dx = L2
K

for every θ in the Euclidean unit sphere Sn−1. It is not hard to see that for
every convex body K in Rn there exists an affine transformation T of Rn such
that T (K) is isotropic. Moreover, this isotropic image is unique up to orthogonal
transformations; consequently, one may define the isotropic constant LK as an
invariant of the affine class of K.

The isotropic constant is closely related to the hyperplane conjecture (also
known as the slicing problem) which asks if there exists an absolute constant c > 0
such that maxθ∈Sn−1 |K ∩ θ⊥| > c for every convex body K of volume 1 in Rn with
center of mass at the origin. This is because, by Brunn’s principle, for any convex
body K in Rn and any θ ∈ Sn−1, the function t 7→ |K ∩ (θ⊥ + tθ)|

1
n−1 is concave

on its support, and this implies that

(1.2)
∫
K

〈x, θ〉2dx ' |K ∩ θ⊥|−2.
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Using this relation one can check that an affirmative answer to the slicing problem
is equivalent to the following statement: There exists an absolute constant C > 0
such that LK 6 C for every convex body K. We refer to the article [16] of Milman
and Pajor for background information about isotropic convex bodies.

The isotropic constant and the hyperplane conjecture can be studied in the
more general setting of log-concave measures. Let f : Rn → R+ be an integrable
function with

∫
Rn f(x)dx = 1. We say that f is isotropic if f has center of mass at

the origin and

(1.3)
∫

Rn
|〈x, θ〉|2f(x)dx = 1

for every θ ∈ Sn−1. It is well-known that the hyperplane conjecture for convex
bodies is equivalent to the following statement: There exists an absolute constant
C > 0 such that, for every isotropic log-concave function f on Rn,

(1.4) f(0)1/n 6 C.

It is known that LK > LBn2 > c > 0 for every convex body K in Rn (we use
the letters c, c1, C etc. to denote absolute constants). Bourgain proved in [3] that
LK 6 c 4

√
n log n and, a few years ago, Klartag [8] obtained the estimate LK 6 c 4

√
n.

The approach of Bourgain in [3] is to reduce the problem to the case of convex
bodies that satisfy a ψ2-estimate (with constant β = O( 4

√
n)). We say that K

satisfies a ψ2-estimate with constant β if

(1.5) ‖〈·, y〉‖ψ2 ≤ β‖〈·, y〉‖2

for all y ∈ Rn. Bourgain proved in [4] that, if (1.5) holds true, then

(1.6) LK 6 Cβ log β.

The purpose of this paper is to introduce a different method which leads to
upper bounds for LK . We prove that a positive answer to the hyperplane conjecture
is equivalent to some very strong small probability estimates for the Euclidean norm
on isotropic convex bodies; for −n < p 6 ∞, p 6= 0, we define

(1.7) Ip(K) :=
(∫

K

‖x‖p2dx
)1/p

and, for δ > 1, we consider the parameter

(1.8) q−c(K, δ) := max{p > 1 : I2(K) ≤ δI−p(K)}.

Then, the hyperplane conjecture is equivalent to the following statement:

There exist absolute constants C, ξ > 0 such that, for every isotropic
convex body K in Rn,

q−c(K, ξ) > Cn.
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The main results of [22] and [23] show that there exists a parameter q∗ := q∗(K)
(related to the Lq–centroid bodies of K) with the following properties: (i) q∗(K) >
c
√
n, (ii) q−c(K, ξ) > q∗(K) for some absolute constant ξ > 1, and hence, I2(K) 6

ξI−q∗(K). The question that arises is to understand what happens with I−p(K)
when p lies in the interval [q∗, n], where there are no general estimates available
up to now. In the case where K is a ψ2-body, one has q∗ ' n and the problem is
automatically resolved.

The main idea in our approach is to start from an extremal isotropic con-
vex body K in Rn with maximal isotropic constant LK ' Ln := sup{LK :
K is a convex body in Rn}. Building on ideas from the work [5] of Bourgain,
Klartag and Milman, we construct a second isotropic convex body K1 which is also
extremal and, at the same time, is in α-regular M -position in the sense of Pisier
(see [24]). Then, we use the fact that small ball probability estimates are closely
related to estimates on covering numbers. This gives the estimate

(1.9) LK1I−c n
(2−α)tα

(K1) 6 Ct
√
n,

for t > C(α), where c, C > 0 are absolute constants. The construction of K1 from
K can be done inside any subclass of isotropic log-concave measures which is stable
under the operations of taking marginals or products. This leads us to the definition
of a coherent class of probability measures (see Section 4): a subclass U of the class
of probability measures P is called coherent if it satisfies two conditions:

1. If µ ∈ U is supported on Rn then, for all k 6 n and F ∈ Gn,k, πF (µ) ∈ U .

2. If m ∈ N and µi ∈ U , i = 1, . . . ,m, then µ1 ⊗ · · · ⊗ µm ∈ U .

It should be noted that the class of isotropic convex bodies is not coherent. This
is the reason for working with the more general class of log-concave measures. The
basic tools that enable us to pass from one language to the other come from K.
Ball’s bodies and are described in Section 2.

Our main result is the following:

Theorem 1.1. Let U be a coherent subclass of isotropic log-concave measures and
let n > 2 and δ > 1. Then,

(1.10) sup
µ∈U[n]

fµ(0)
1
n 6 Cδ sup

µ∈U[n]

√
n

q−c(µ, δ)
log
(

en

q−c(µ, δ)

)
,

where C > 0 is an absolute constant and U[n] denotes the subclass of n-dimensional
measures in U .

In Section 4, for every α ∈ (1, 2] we introduce a coherent class of isotropic log-
concave measures which is equivalent to the class of ψα-class. Then, Theorem 1.1
has the following consequence:
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Theorem 1.2. Let α ∈ (1, 2] and βα > 0. Let µ be an isotropic ψα log-concave
measure with constant βα in Rn. Then,

(1.11) fµ(0)
1
n 6 C

√
n

2−α
2 βαα

√
log
(
n

2−α
2 βαα

)
,

where C > 0 is an absolute constant. In particular, if µ is ψ2 with constant β2 > 0,
then

(1.12) fµ(0)
1
n 6 Cβ2

√
log β2.

Moreover, for every isotropic log-concave measure µ,

(1.13) fµ(0)
1
n 6 Cn

1
4
√

log n.

From Theorem 1.2 we immediately deduce two facts:

1. If a convex body K satisfies a ψ2-estimate with constant β, then

LK 6 Cβ
√

log β.

2. For every isotropic convex body K in Rn,

LK 6 C 4
√
n
√

log n.

The first fact slightly improves Bourgain’s estimate from [4]. The second one is
weaker than Klartag’s 4

√
n-bound in [8]; nevertheless, our method has the advantage

that it can take into account any additional information on the ψα behavior of K.
Acknowledgment. We would like to thank Apostolos Giannopoulos for many

interesting discussions. Also, the second named author wants to thank Assaf Naor
for several valuable comments on an earlier version of this paper.

2 Background material

2.1 Basic notation. We work in Rn, which is equipped with a Euclidean structure
〈·, ·〉. We denote by ‖ · ‖2 the corresponding Euclidean norm, and write Bn2 for
the Euclidean unit ball, and Sn−1 for the unit sphere. Volume is denoted by | · |.
We write ωn for the volume of Bn2 and σ for the rotationally invariant probability
measure on Sn−1. The Grassmann manifold Gn,k of k-dimensional subspaces of Rn
is equipped with the Haar probability measure µn,k. Let k 6 n and F ∈ Gn,k. We
will denote by PF the orthogonal projection from Rn onto F .

The letters c, c′, c1, c2 etc. denote absolute positive constants which may change
from line to line. In order to facilitate reading, we will denote by c, η, κ, ξ, τ etc.
some (absolute) positive constants that appear in more than one places.

Whenever we write a ' b, we mean that there exist absolute constants c1, c2 > 0
such that c1a 6 b 6 c2a. Also if K,L ⊆ Rn we will write K ' L if there exist
absolute constants c1, c2 > 0 such that c1K ⊆ L ⊆ c2K.
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2.2 Probability measures. We denote by P[n] the class of all probability measures
in Rn which are absolutely continuous with respect to the Lebesgue measure. We
write An for the Borel σ-algebra in Rn. The density of µ ∈ P[n] is denoted by fµ.

The subclass SP [n] consists of all symmetric measures µ ∈ P[n]; µ is called
symmetric if fµ is an even function on Rn.

The subclass CP [n] consists of all µ ∈ P[n] that have center of mass at the
origin; so, µ ∈ CP [n] if

(2.1)
∫

Rn
〈x, θ〉dµ(x) = 0

for all θ ∈ Sn−1.
Let µ ∈ P[n]. For every 1 6 k 6 n− 1 and F ∈ Gn,k, we define the F -marginal

πF (µ) of µ as follows: for every A ∈ AF ,

(2.2) πF (µ)(A) := µ(P−1
F (A)).

It is clear that πF (µ) ∈ P[dimF ]. Note that, by the definition, for every Borel
measurable function f : Rn → [0,∞) we have

(2.3)
∫
F

f(x) dπF (µ)(x) =
∫

Rn
f(PF (x)) dµ(x).

The density of πF (µ) is the function

(2.4) πF (fµ)(x) := fπF (µ)(x) =
∫
x+F⊥

fµ(y) dy.

Let µ1 ∈ P[n1] and µ2 ∈ P[n2]. We will write µ1 ⊗ µ2 for the measure in P[n1+n2]

which satisfies

(2.5) (µ1 ⊗ µ2)(A1 ×A2) = µ1(A1)µ2(A2)

for all A1 ∈ An1 and A2 ∈ An2 . It is easily checked that fµ1⊗µ2 = fµ1fµ2 .
2.3 Log-concave measures. We denote by L[n] the class of all log-concave probability
measures on Rn. A measure µ on Rn is called log-concave if for any A,B ∈ An and
any λ ∈ (0, 1),

(2.6) µ(λA+ (1− λ)B) > µ(A)λµ(B)1−λ.

A function f : Rn → [0,∞) is called log-concave if log f is concave.
It is known that if µ ∈ L[n] and µ(H) < 1 for every hyperplane H, then µ ∈ P[n]

and its density fµ is log-concave (see [2]). As an application of the Prékopa-Leindler
inequality ([10], [25], [26]) one can check that if f is log-concave then, for every
k 6 n − 1 and F ∈ Gn,k, πF (f) is also log-concave. As before, we write CL[n] or
SL[n] for the centered or symmetric non degenerate µ ∈ L[n] respectively.
2.4 Convex bodies. A convex body in Rn is a compact convex subset C of Rn with
non-empty interior. We say that C is symmetric if x ∈ C implies that −x ∈ C. We
say that C has center of mass at the origin if

∫
C
〈x, θ〉 dx = 0 for every θ ∈ Sn−1.
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The support function hC : Rn → R of C is defined by hC(x) = max{〈x, y〉 : y ∈
C}. The mean width of C is defined by

(2.7) W (C) =
∫
Sn−1

hC(θ)σ(dθ).

For each −∞ < p <∞, p 6= 0, we define the p-mean width of C by

(2.8) Wp(C) =
(∫

Sn−1
hpC(θ)σ(dθ)

)1/p

.

The radius of C is the quantity R(C) = max{‖x‖2 : x ∈ C} and, if the origin is an
interior point of C, the polar body C◦ of C is

(2.9) C◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ C}.

Note that if K is a convex body in Rn then the Brunn-Minkowski inequality implies
that 1K̃ ∈ L[n].

We will denote by K[n] the class of convex bodies in Rn and by K̃[n] the subclass
of bodies of volume 1. Also, CK[n] is the class of convex bodies with center of mass
at the origin and SK[n] is the class of origin symmetric convex bodies in Rn.

We refer to the books [28], [18] and [24] for basic facts from the Brunn-
Minkowski theory and the asymptotic theory of finite dimensional normed spaces.
2.5 Lq–centroid bodies. Let µ ∈ P[n]. For every q > 1 and θ ∈ Sn−1 we define

(2.10) hZq(µ)(θ) :=
(∫

Rn
|〈x, θ〉|qf(x) dx

)1/q

,

where f is the density of µ. If µ ∈ L[n] then hZq(µ)(θ) < ∞ for every q > 1 and
every θ ∈ Sn−1. We define the Lq-centroid body Zq(µ) of µ to be the centrally
symmetric convex set with support function hZq(µ).

Lq–centroid bodies were introduced, with a different normalization, in [11] (see
also [12] where an Lq affine isoperimetric inequality was proved). Here we follow
the normalization (and notation) that appeared in [21]. The original definition
concerned the class of measures 1K ∈ L[n] where K is a convex body of volume 1.
In this case, we also write Zq(K) instead of Zq(1K).

If K is a compact set in Rn and |K| = 1, it is easy to check that Z1(K) ⊆
Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for every 1 6 p 6 q 6 ∞, where Z∞(K) = conv{K,−K}.
Note that if T ∈ SLn then Zp(T (K)) = T (Zp(K)). Moreover, if K is convex body,
as a consequence of the Brunn–Minkowski inequality (see, for example, [21]), one
can check that

(2.11) Zq(K) ⊆ c0 q Z2(K)

for every q > 2 and, more generally,

(2.12) Zq(K) ⊆ c0
q

p
Zp(K)
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for all 1 6 p < q, where c0 > 1 is an absolute constant. Also, if K has its center of
mass at the origin, then

(2.13) Zq(K) ⊇ cK

for all q > n, where c > 0 is an absolute constant. For a proof of this fact and
additional information on Lq–centroid bodies, we refer to [20] and [22].
2.6 Isotropic probability measures. Let µ ∈ CP [n]. We say that µ is isotropic
if Z2(µ) = Bn2 . We write I[n] and IL[n] for the classes of isotropic probability
measures and isotropic log-concave probability measures on Rn respectively.

We say that a convex body K ∈ C̃K[n] is isotropic if Z2(K) is a multiple of the
Euclidean ball. We define the isotropic constant of K by

(2.14) LK :=
(
|Z2(K)|
|Bn2 |

)1/n

.

So, K is isotropic if and only if Z2(K) = LKB
n
2 . We write IK[n] for the class of

isotropic convex bodies in Rn. Note that K ∈ IK[n] if and only if LnK1 K
LK

∈ IL[n].

A convex body K is called almost isotropic if K has volume one and K ' T (K)
where T (K) is an isotropic linear transformation of K.

We refer to [16], [7] and [22] for additional information on isotropic convex
bodies.
2.7 The bodies Kp(µ). A natural way to pass from log-concave measures to convex
bodies was introduced by K. Ball in [1]. Here, we will give the definition is a
somewhat more general setting: Let µ ∈ P[n]. For every p > 0 we define a set
Kp(µ) as follows:

(2.15) Kp(µ) :=
{
x ∈ Rn : p

∫ ∞

0

fµ(rx)rp−1dr > fµ(0)
}
.

It is clear that Kp(µ) is a star shaped body with gauge function

(2.16) ‖x‖Kp(µ) :=
(

p

fµ(0)

∫ ∞

0

fµ(rx)rp−1dr

)−1/p

.

Let 1 6 k < n and F ∈ Gn,k. For θ ∈ SF we define

(2.17) ‖θ‖Bk+1(µ,F ) := ‖θ‖Kk+1(πF (µ)).

In the following Proposition we give some basic properties of the star-shaped bodies
Kp(µ). We refer to [1], [16], [22], [23] for the proofs and additional references.

Proposition 2.1. Let µ ∈ P[n], p > 0, 1 6 k < n and F ∈ Gn,k.
(i) If µ ∈ L[n] then Kp(µ) ∈ K[n]. Moreover, if µ ∈ SL[n] then Kp(µ) ∈ SK[n].

(ii) If µ ∈ CL[n] then Kn+1(µ) ∈ CK[n]. If µ ∈ SIL[n] then K̃n+2(µ) ∈ S̃K[n].
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(iii) If µ ∈ IL[n] then K̃n+1(µ) is almost isotropic.

(iv) Let 1 6 p 6 n and µ ∈ CL[n]. Then, fµ(0)
1
nZp(µ) ' Zp(K̃n+1(µ)).

(v) Let 1 6 p 6 k < n, F ∈ Gn,k, µ ∈ CL[n] and K ∈ CL[n]. Then,

(2.18) fπF (µ)(0)
1
kPF (Zp(µ)) ' fµ(0)

1
nZp(B̃k+1(µ, F ))

and

(2.19) |K ∩ F⊥| 1kPF (Zp(K)) ' Zp(B̃k+1(K,F )).

(vi) Let 1 6 k < n, F ∈ Gn,k and K ∈ IK[n]. Then,

(2.20) |K ∩ F⊥| 1k '
L
B̃k+1(K,F )

LK
.

(vii) If µ ∈ IL[n], then

(2.21) LKn+1(µ) ' fµ(0)
1
n .

2.8 ψα-norm. Let µ ∈ P[n]. Given α > 1, the Orlicz norm ‖g‖ψα of a bounded
measurable function g : Rn → R with respect to µ is defined by

(2.22) ‖g‖ψα = inf
{
t > 0 :

∫
Rn

exp
((

|f(x)|
t

)α)
dµ(x) ≤ 2

}
.

It is not hard to check that

(2.23) ‖f‖ψα ' sup
{
‖f‖p
p1/α

: p ≥ α

}
.

Let θ ∈ Sn−1. We say that µ satisfies a ψα-estimate with constant βα,µ,θ in the
direction of θ if

(2.24) ‖〈·, y〉‖ψα ≤ βα,µ,θ‖〈·, y〉‖2.

We say that µ is a ψα-measure with constant βα,µ where βα,µ := supθ∈Sn−1 βα,µ,θ,
provided that this last quantity is finite.

Similarly, if K ∈ K̃[n] we define

(2.25) βα,K := sup
θ∈Sn−1

sup
p≥α

hZp(K)(θ)
p1/αhZ2(K)(θ)

.

Note that βα,µ is an affine invariant, since βα,µ◦T−1 = βα,µ for all T ∈ SLn. Finally,
we define

(2.26) P[n](α, β) := {µ ∈ P[n] : βα,µ 6 β}
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and

(2.27) K[n](α, β) := {K ∈ K̃[n] : βα,K 6 β}.

2.9 The parameter k∗(C). Let C be a symmetric convex body in Rn. Define k∗(C)
as the largest positive integer k 6 n for which
(2.28)

µn,k

(
F ∈ Gn,k :

1
2
W (C)(Bn2 ∩ F ) ⊆ PF (C) ⊆ 2W (C)(Bn2 ∩ F )

)
>

n

n+ k
.

Thus, k∗(C) is the maximal dimension k such that a “random” k-dimensional pro-
jection of C is 4-Euclidean.

The parameter k∗(C) is completely determined by the global parameters W (C)
and R(C): There exist c1, c2 > 0 such that

(2.29) c1n
W (C)2

R(C)2
6 k∗(C) 6 c2n

W (C)2

R(C)2

for every symmetric convex body C in Rn. The lower bound appears in Milman’s
proof of Dvoretzky’s theorem (see [13]) and the upper bound was proved in [19].

3 Negative moments of the Euclidean norm

Let µ ∈ P[n]. If −n < p 6 ∞, p 6= 0, we define

(3.1) Ip(µ) :=
(∫

Rn
‖x‖p2dµ(x)

)1/p

.

As usual, if K is a Borel subset of Rn with Lebesgue measure equal to 1, we write
Ip(K) := Ip(1K).

Definition 3.1. Let µ ∈ P[n] and δ > 1. We define

q∗(µ) := max{k 6 n : k∗(Zk(µ)) ≥ k}

q−c(µ, δ) := max{p > 1 : I−p(µ) >
1
δ
I2(µ)}

q∗(µ, δ) := max{k 6 n : k∗(Zk(µ)) ≥ k

δ2
}.

One of the main results of [23] asserts that the moments of the Euclidean norm on
log-concave measures satisfy a strong reverse Hölder inequality up to the value q∗:

Theorem 3.2. Let µ ∈ CL[n]. Then for every p 6 q∗(µ),

(3.2) Ip(µ) 6 CI−p(µ),

where C > 0 is an absolute constant.
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It is clear from the statement that in order to apply Theorem 3.2 in a meaningful
way one should have some non-trivial estimate for the parameter q∗. The next
proposition (see [22, Proposition 3.10] or [23, Proposition 5.7]) gives a lower bound
for q∗, with a dependence on the ψα constant, in the isotropic case.

Proposition 3.3. Let µ ∈ I[n] ∩ P[n](α, β). Then

(3.3) q∗(µ) ≥ c
n
α
2

βα
,

where c > 0 is an absolute constant.

Definition 3.4. Let µ ∈ P[n]. We will say that µ is of small diameter (with
constant A > 0) if for every p > 2 one has

(3.4) Ip(µ) 6 AI2(µ).

The definition that we give here is a direct generalization of the one given in [21]
for the case of convex bodies.

Let µ ∈ P[n] and set B := 4I2(µ)Bn2 . Note that 3
4 6 µ(B) 6 1. We define a new

measure µ̄ on An in the following way: for every A ∈ An we set

µ̄(A) :=
µ(A ∩B)
µ(B)

.

Assume that, additionally, µ ∈ L[n]. Then, it is not hard to check that

(3.5) I2(µ) ' I2(µ̄), Z2(µ) ' Z2(µ̄) and fµ̄(0)
1
n ' fµ(0)

1
n .

Therefore, if µ ∈ L[n], we can always find a measure µ̄ ∈ L[n] which is of small
diameter (with an absolute constant C > 0) and satisfies fµ̄(0)

1
n ' fµ(0)

1
n .

Moreover, if µ is isotropic, then µ̄ is almost isotropic. As a consequence of [23,
Theorem 5.6] we have the following:

Proposition 3.5. Let µ ∈ L. Then,

(3.6) q∗(µ̄, ξ1) ' q−c(µ̄, ξ2),

where ξ1, ξ2 > 1 are absolute constants.

4 Coherent classes of measures

Our starting point is a simple but crucial observation from the paper [5] of Bour-
gain, Klartag and Milman. First of all, one may observe that Ln := sup{LK :
K is a convex body in Rn} is, essentially, an increasing function of n: for every
k 6 n, Lk 6 CLn, where C > 0 is an absolute constant. So, using (2.20) we see
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that if K0 is an isotropic convex body in Rn such that LK0 ' Ln, then, for all
F ∈ Gn,k,

(4.1) |K0 ∩ F⊥|1/k '
L
B̃k+1(K0,F )

LK0

6 C1
Lk
Ln

6 C2.

Building on the ideas of [5] one can use this property of a body K0 with “extremal
isotropic constant” to get upper bounds for the negative moments of the Euclidean
norm on K0. Since we want to apply this argument in different situations, we will
first introduce some terminology.

Definition 4.1. We define P := ∪∞i=1P[n]. Similarly, IP := ∪∞i=1IP[n], etc.
Let U be a subclass of P. Set U[n] = U ∩ P[n]. We say that U is coherent if it

satisfies the following two conditions:

1. If µ ∈ U[n] then, for all k 6 n and F ∈ Gn,k, πF (µ) ∈ U[dimF ].

2. If m ∈ N and µi ∈ U[ni], i = 1, . . . ,m, then

µ1 ⊗ · · · ⊗ µm ∈ U[n1+···+nm] .

We also agree that the null class is coherent. Note that if U1 and U2 are coherent
then U1 ∩ U2 is also coherent.

The following proposition is a translation of well known results to this language.

Proposition 4.2. The classes SP, CP, L, I are coherent.

Note that the class K :=
⋃∞
n=1{µ ∈ P[n] : µ = 1K̃ ; K ∈ K[n]} is not coherent.

Proposition 4.3. Let U be a coherent class of measures. If n is even then, for
every µ ∈ U[n], k = n

2 and F ∈ Gn,k,

(4.2) fπF (µ)(0)
1
k 6 sup

µ∈U[n]

fµ(0)
1
n .

Moreover, if ρn(U) := supµ∈U[n]
fµ(0)

1
n , then

(4.3) ρn−1(U) 6 ρn(U)
(
ρn−1(U)
ρ1(U)

) 1
n

.

Proof. For the first assertion use the fact that πF (µ)⊗ πF (µ) ∈ U[n] and

f(πF (µ)⊗πF (µ))(0) = [fπF (µ)(0)]2.

For the second assertion use the fact that if µ1 ∈ U[n−1] and µ2 ∈ U[1] then we have
µ1 ⊗ µ2 ∈ U[n] and fµ1⊗µ2(0) = fµ1(0)fµ2(0). 2
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In particular if a class satisfies

e−n 6 ρn(U) 6 en ,

it is enough to bound ρn(U) for n even. Note that IL is such a class.

Our goal in this section is to show that the class of measures that are ψα with
constant less that β is coherent. To do that we will use a more convenient definition
of “ψα measures”.

Let µ ∈ CP [n]. For every θ ∈ Sn−1 and every λ > 0 we define

(4.4) hµ,θ(λ) := h(λ) = log
(∫

Rn
eλ〈x,θ〉dµ(x)

)
.

Next, if α ∈ (1,∞], we define

(4.5) ψ̃α,µ(θ) := sup
λ>0

1
λ
h(λ)

1
α∗ = sup

λ>0

1
λ

(
log
∫

Rn
eλ〈x,θ〉dµ(x)

) 1
α∗

,

where α∗ is the conjugate exponent of α, i.e. 1
α + 1

α∗
= 1.

Note that ψ̃α,µ(θ) ∈ R+ ∪ {∞}. Indeed, by Jensen’s inequality, h(λ) > 0, since
µ ∈ CP [n]. The function h(λ) is strictly convex and, since h(0) = 0, the function
λ 7→ h(λ)

λ is strictly increasing. In particular,

(4.6) ψ̃∞,µ(θ) = lim
λ→∞

1
λ

log
∫

Rn
eλ〈x,θ〉dµ(x).

Definition 4.4. Let µ be a probability measure on Rn. For α ∈ (1,∞] we define

(4.7) β̃µ,α := sup
θ∈Sn−1

ψ̃α,µ(θ)
hZ2(µ)(θ)

.

We also define

(4.8) Pα(β) :=
∞⋃
n=1

{
µ ∈ P[n] : β̃µ,α 6 β

}
We will prove that, for every α ∈ (1, 2] and β > 0, the class Pα(β) is coherent

(see Proposition 4.11). Moreover, the next Proposition shows that for every µ ∈
CP [n] and every α > 1 the quantities max{ψ̃α,µ(θ), ψ̃α,µ(−θ)} and ‖〈·, θ〉‖ψα are
equivalent up to an absolute constant.

Proposition 4.5. Let µ ∈ CP [n]. For every α ∈ (1,∞) and every θ ∈ Sn−1 we
have that

(4.9) C1 max{ψ̃α,µ(θ), ψ̃α,µ(−θ)} 6 ‖〈·, θ〉‖ψα 6 C2 max{ψ̃α,µ(θ), ψ̃α,µ(−θ)},

where C1, C2 > 0 are absolute constants.
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The proof will be based on the following two Lemmas:

Lemma 4.6. If p ∈ (0, 1] and t > 0, then

(4.10)
(
et − 1

) 1− t

1− tp
6
t

p
et.

Proof. We distinguish two cases:
Case 1. t ∈ (0, 1): Let F (p) = t

pe
t(1 − tp) − (et − 1)(1 − t). It is enough to show

that F (p) > 0. Note that F (1) = (1− t)tet− (et− 1)(1− t) = (1− t) (tet − et + 1).
Let g(t) := tet − et + 1. Then g(0) = 0 and g′(t) = tet > 0. This implies that
F (1) > 0. So, the claim will follow if we show that F is a decreasing function of p
on (0, 1).

We compute

(4.11) F ′(p) = tet
(
− 1
p2

− tp log t
p

+
tp

p2

)
=
tet

p2
(tp − ptp log t− 1) .

Let G(t) := tp − ptp log t− 1. Then, G(1) = 0 and

(4.12) G′(t) = ptp−1 − p2tp−1 log t− ptp−1 = −p2tp−1 log t > 0.

So, G is increasing and G(t) 6 0. This implies that F is decreasing and settles the
first case.
Case 2. t > 1: Note that it is enough to show that

(4.13)
t− 1
tp − 1

6
t

p
.

We consider the function H(t) := tp+1 − t− pt+ p. Note that

(4.14) H ′(t) = (p+ 1)tp − (p+ 1) > 0

since t > 1. It follows that H is increasing. Since H(1) = 0, we have H(t) > 0 for
all t > 1. This proves (4.13) and completes the proof. 2

Lemma 4.7. If r > 1 and t > 0 then

(4.15) 1 +
∞∑
k=1

(
tr

k

)k/r
6 e5rt.

Proof. Let f(x) := tx

xx , x > 0. Then f is increasing when x 6 t
e and decreasing

when x > t
e . Moreover, supx>0 f(x) = e

t
e .

Let A := {k ∈ N : k 6 tbr+1c
e } and Aυ = {k ∈ N \ A : k ≡ υ (mod br + 1c).

Note that A is possibly empty but, in any case, |A| 6 tbr+1c
e . Note also that if

k /∈ A then k
r > k

br+1c >
t
e . So, in this case

(4.16)
(
tr

k

)k/r
6

(
t br + 1c

k

)k/br+1c

.
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We write

1 +
∞∑
k=1

(
tr

k

)k/r
6 1 +

∑
k∈A

(
tr

k

)k/r
+
∑
k∈N\A

(
tr

k

)k/r

6 1 +
t br + 1c

e
e
t
e +

∑
k∈N\A

(
t br + 1c

k

)k/br+1c

.

Next, we write

∑
k∈N\A

(
t br + 1c

k

)k/br+1c

=
br+1c−1∑
υ=0

∑
m∈Aυ

(
t br + 1c

k

)k/br+1c

6
br+1c−1∑
υ=0

∞∑
m=1

tm+ υ
br+1c

(m+ υ
br+1c )

m+ υ
br+1c

6
br+1c−1∑
υ=0

t
υ

br+1c

∞∑
m=1

tm

m!

6
(
et − 1

) br+1c−1∑
υ=0

t
υ

br+1c

=
(
et − 1

) 1− t

1− t
1

br+1c
.

Combining the above, and using Lemma 4.6 with p = 1/ br + 1c, we get

1 +
∞∑
k=1

(
tr

k

)k/r
6 et + t br + 1c et + t br + 1c et = (1 + 2t br + 1c) et

6 e2tbr+1cet 6 e5rt.

This proves the Lemma. 2

Proof of Proposition 4.5. Let α ∈ (1,∞) and let α∗ ∈ (1,∞) be the conjugate expo-
nent of α. We set ψ−1 := ψ̃α,µ(−θ), ψ1 := ψ̃α,µ(θ), ψ0 := max{ψ̃α,µ(θ), ψ̃α,µ(−θ)}
and ψ2 := ‖〈·, θ〉‖ψα .
For every λ > 0,

(4.17)
∫

Rn
eλ〈x,θ〉dµ(x) 6 exp(λα∗ψα∗1 ).

So, by Markov’s inequality we get that, for every t > 0,

(4.18) µ{x : eλ〈x,θ〉 > et
α

eλ
α∗ψα∗1 } 6 e−t

α

.

Equivalently,

(4.19) µ

{
x : 〈x, θ〉 >

tα

λ
+ λα∗−1ψα∗1

}
6 e−t

α

.
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Choosing λ := tα−1

ψ1
, we get

(4.20) µ{x : 〈x, θ〉 > 2tψ1} 6 e−t
α

.

Similarly, for every t > 0 we have

(4.21) µ{x : 〈x,−θ〉 ≥ 2tψ−1} 6 e−t
α

.

Therefore,

µ{x : |〈x, θ〉| ≥ 2tψ0} = µ{x : 〈x, θ〉 ≥ 2tψ0}+ µ{x : 〈x,−θ〉 ≥ 2tψ0}
6 µ{x : 〈x, θ〉 ≥ 2tψ1}+ µ{x : 〈x,−θ〉 ≥ 2tψ−1}
6 2e−t

α

.

The last inequality implies that ψ2 6 C1ψ0.
In the opposite direction, using Lemma 4.7 we write∫

Rn
eλ〈x,θ〉dµ(x) 6

∫
Rn
eλ|〈x,θ〉|dµ(x) 6 1 +

∞∑
k=1

∫
Rn

λk|〈x, θ〉|k

k!
dµ(x)

6 1 +
∞∑
k=1

∫
Rn

(eλ)k|〈x, θ〉|k

kk
dµ(x) 6 1 +

∞∑
k=1

(eλ)k(k)
k
αψk2

kk

= 1 +
∞∑
k=1

( eλ

α
1/α∗
∗

)kψk2

( k
α∗

)
k
α∗

= 1 +
∞∑
k=1

(
(eλψ2)

α∗

α∗

) k
α∗

( k
α∗

)
k
α∗

6 e5α∗
λα∗ (eψ2)α∗

α∗ 6 eλ
α∗ (5eψ2)

α∗
.

It follows that

(4.22) ψ1 := sup
λ>0

1
λ

(
log
∫

Rn
eλ〈x,θ〉dµ(x)

) 1
α∗

6 5eψ2.

In a similar way we check that ψ−1 6 5eψ2. This completes the proof. 2

Corollary 4.8. For every α ∈ (1, 2],

(4.23) CPα(β) ⊆ CP(α, c1β)

and

(4.24) CP(α, c2β) ⊆ CPα(β),

where c1, c2 > 0 are universal constants.
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Proof. Indeed, if µ ∈ CPα(β) then Proposition 4.5 implies that

(4.25) sup
θ∈Sn−1

hψα(µ)(θ)
hZ2(µ)(θ)

6 c1 sup
θ∈Sn−1

ψ̃α,µ(θ)
hZ2(µ)(θ)

6 c1β

which means that µ ∈ CP(α, c1β) (recall (2.26)). The second inclusion is proved in
a similar way. 2

Next, we prove that the class Pα(β) is coherent. The behavior of ψ̃α,µ for products
of measures is described by the following:

Proposition 4.9. Let k be a positive integer and let µi ∈ CP [ni] and θi ∈ Sni−1,
i = 1, . . . k. If ψ̃α,µi(θi) <∞ for all i 6 k and some α ∈ (1,∞), then

(4.26) ψ̃α,µ ((θ1, . . . , θk)) 6

(
k∑
i=1

ψ̃α∗α,µi(θi)

) 1
α∗

,

where µ = µ1 ⊗ · · · ⊗ µk. In the case α = ∞,

(4.27) ψ̃∞,µ ((θ1, . . . , θk)) =
k∑
i=1

ψ̃∞,µi(θi).

Proof. For every λ > 0 we can write

1
λα∗

log
(∫

Rn1

. . .

∫
Rnk

eλ
∑k
i=1〈xi,θi〉dµk(xk) . . . dµ1(x1)

)
as follows:

1
λα∗

log

(
k∏
i=1

∫
Rni

eλ〈xi,θi〉dµi(xi)

)
=

1
λα∗

k∑
i=1

log
∫

Rni
eλ〈xi,θi〉dµi(xi)

6
1
λα∗

k∑
i=1

λα∗ ψ̃α∗α,µi(θi)

6
k∑
i=1

ψ̃α∗α,µi(θi).

Taking the supremum with respect to λ > 0 we get the result. The case α = ∞
can be treated in a similar way, taking into account (4.6). 2

The behavior of marginals is described by the following:

Proposition 4.10. Let µ ∈ CP [n]. Let F ∈ Gn,k and θ ∈ SF . If α ∈ (1,∞), then

(4.28) ψ̃α,πF (µ)(θ) 6 ψ̃α,µ(θ).

If a = ∞, then

(4.29) ψ̃∞,πF (µ)(θ) = ψ̃∞,µ(θ).
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Proof. Note that, for every λ > 0,

(4.30)
∫

Rn
eλ〈x,θ〉dµ(x) =

∫
F

eλ〈x,θ〉dπF (µ)(x)

It follows that

(4.31)
1
λα∗

log
∫
F

eλ〈x,θ〉dπF (µ)(x) =
1
λα∗

log
∫

Rn
eλ〈x,θ〉dµ(x) 6 ψ̃α∗α,µ(θ).

Taking the supremum with respect to λ > 0 we get the result. The case α = ∞
can be treated in a similar way. 2

Proposition 4.11. Let α ∈ (1, 2] and let β > 0. Then the class Pα(β) is coherent.

Proof. Let µ ∈ (Pα(β))[n]. Fix 1 6 k < n and F ∈ Gn,k. Then, using (4.28) and
the fact that hZ2(πF (µ))(θ) = hZ2(µ)(θ) for θ ∈ SF , we see that

(4.32) β̃πF (µ),α = sup
θ∈SF

ψ̃α,πF (µ)(θ)
hZ2(πF (µ))(θ)

6 sup
θ∈SF

ψ̃α,µ(θ)
hZ2(µ)(θ)

6 β̃µ,α.

So, πF (µ) ∈ Pα(β).
Next, let µi ∈ (Pα(β))[ni], i := 1, . . . , k and set N := n1 + · · · + nk. Since

hZ2(µ1⊗···⊗µk)(θ1, . . . θk) =
(∑k

i=1 h
2
Z2(µi)

(θi)
) 1

2
, we have

β̃µ1⊗···⊗µk,α = sup
(θ1,...θk)∈SN−1

ψ̃α,µ1⊗···⊗µk(θ1, . . . θk)
hZ2(µ1⊗···⊗µk)(θ1, . . . θk)

6 sup
(θ1,...θk)∈SN−1

(∑k
i=1 ψ̃

α∗
α,µi(θi)

) 1
α∗

(∑k
i=1 h

2
Z2(µi)

(θi)
) 1

2

6 β sup
(θ1,...θk)∈SN−1

(∑k
i=1 h

α∗
Z2(µi)

(θi)
) 1
α∗

(∑k
i=1 h

2
Z2(µi)

(θi)
) 1

2

6 β

since α∗ ∈ [2,∞), and ‖x‖`kα∗ 6 ‖x‖`k2 . So, µ1 ⊗ · · · ⊗ µk ∈ Pα(β). 2

5 M-positions and extremal bodies

All the results in this section are stated for the case where the dimension is even.
Proposition 4.3 shows that this is sufficient for our purposes. However, with minor
changes in the proofs, all the results remain valid in the case where the dimension
is odd.

Our main goal in this section is to prove the following:
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Proposition 5.1. Let U ⊆ IL be a coherent class of probability measures, let n > 2

even, α ∈ (1, 2) and t >
(
C0

2−α

) 1
α

. Then, there exists µ1 ∈ U[n] such that

(5.1) fµ1(0)
1
n > C1 sup

ν∈U[n]

fν(0)
1
n

and

(5.2) I−c2 n
(2−α)tα

(µ1) 6 C3t
√
nfµ1(0)−

1
n ,

where C0, C1, C3 > 0 and c2 > 2 are absolute constants.
Moreover, if U = IL, µ1 can be chosen to be of small diameter (with an absolute

constant C4 > 0).

Recall that if K and C are convex bodies in Rn, then the covering number of
K with respect to C is the minimum number of translates of C whose union covers
K:

(5.3) N(K,C) := min

{
k ∈ N : ∃z1, . . . zk ∈ Rn : K ⊂

k⋃
i=1

(zi + C)

}
.

Let K be a convex body of volume 1 in Rn. Milman (see [14], [15] and also [16]
for the not necessarily symmetric case) proved that there exists an ellipsoid E with
|E| = 1, such that

(5.4) log N(K, E) 6 κn,

where κ > 0 is an absolute constant. We will use the existence of α-regular M–
ellipsoids for symmetric convex bodies. More precisely, we need the following the-
orem of Pisier (see [24]; the result is stated and proved in the case of symmetric
convex bodies but it can be easily extended to the non-symmetric case):

Theorem 5.2. Let K be a convex body of volume 1 in Rn with center of mass at
the origin. For every α ∈ (0, 2) there exists an ellipsoid E with |E| = 1 such that,
for every t > 1,

(5.5) log N(K, tE) 6
κ(α)
tα

n,

where κ(α) > 0 is a constant depending only on α. One can take κ(α) 6 κ
2−α ,

where κ > 0 is an absolute constant.

We will also need the following facts about ellipsoids:

Lemma 5.3. Let E be an ellipsoid in Rn. Assume that there exists a diagonal
matrix T with entries λ1 > · · · > λn > 0 such that E = T (Bn2 ). Then,

(5.6) max
F∈Gn,k

|E ∩ F | = max
F∈Gn,k

|PF (E)| = ωk

k∏
i=1

λi
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and

(5.7) min
F∈Gn,k

|E ∩ F | = min
F∈Gn,k

|PF (E)| = ωk

n∏
i=n−k+1

λi

for all 1 6 k 6 n− 1.

Proof. A proof of the equality minF∈Gn,k |E ∩ F | = ωk
∏n
i=n−k+1 λi is outlined in

[9, Lemma 4.1]. Let Fs(k) = span{en−k+1, . . . , en}. Then, for every F ∈ Gn,k we
have

(5.8) |PFs(k)(E)| = |E ∩ Fs(k)| 6 |E ∩ F | 6 |PF (E)|.

This shows that

(5.9) min
F∈Gn,k

|PF (E)| = |PFs(k)(E)| = ωk

n∏
i=n−k+1

λi

and completes the proof of (5.7).
Observe that E◦ = T−1(Bn2 ) is also an ellipsoid; since the diagonal entries of

T−1 are λ−1
n > · · · > λ−1

1 > 0, the same reasoning shows that

(5.10) min
F∈Gn,k

|E◦ ∩ F | = min
F∈Gn,k

|PF (E◦)| = ωk

(
k∏
i=1

λi

)−1

.

Since PF (E) is an ellipsoid in F and E◦∩F is its polar in F , by the affine invariance
of the product of volumes of a body and its polar, we get |PF (E)| · |E◦ ∩ F | =
|Bn2 ∩ F |2 = ω2

k for every F ∈ Gn,k. This observation and (5.10) prove (5.6). 2

Lemma 5.4. Let n be even and let E be an ellipsoid in Rn. Assume that there
exists a diagonal matrix T with entries λ1 > · · · > λn > 0 such that E = T (Bn2 ).
Then, there exists F ∈ Gn,n/2 such that PF (E) = λn/2(Bn2 ∩ F ).

Proof. The proof can be found in [30, pp. 125-6], but we sketch it for the reader’s
convenience. We may assume that λ1 > · · · > λn > 0. Write n = 2s. Then, E◦ ∩
e⊥n =

{
x ∈ R2s−1 :

∑2s−1
i=1 λ2

ix
2
i 6 1

}
(the reason for this step is that the argument

in [30, pp. 125-6] works in odd dimensions). Since λi > λs > λ2s−i for every
i 6 s− 1, we can define b1, . . . , bs−1 > 0 by the equations

(5.11) λ2
i b

2
i + λ2

2s−i = λ2
s(b

2
i + 1).

Consider the subspace F = span{v1, . . . , vs} ∈ G2s,s, where vs = es and

(5.12) vi =
biei + e2s−i√

b2i + 1
, i = 1, . . . , s− 1.
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It is easy to check that {v1, . . . , vs} is an orthonormal basis for F and, using (5.11)
and (5.12), we see that, for every x ∈ F ,

(5.13) λ2
s‖x‖2

2 = λs

s∑
i=1

〈x, vi〉2 =
2s−1∑
i=1

λ2
i 〈x, ei〉2 = ‖x‖2

E .

This proves that E◦ ∩ F = λ−1
s (Bn2 ∩ F ) and, by duality, PF (E) = λs(Bn2 ∩ F ) =

λn/2(Bn2 ∩ F ). 2

Proposition 5.5. Let K ∈ ĨK[n]. Let 1 6 k 6 n− 1 and set

(5.14) γ := max
F∈Gn,k

|K ∩ F⊥| 1k .

Then,

(5.15) min
H∈Gn,n−k

|K ∩H⊥|
1

n−k > γ

(
η

γ

) n
n−k

,

where 0 < η < 1 is an absolute constant.

Proof. Fix α = 1 and consider an α-regular M–ellipsoid E for K given by Theorem
5.2. By the invariance of the isotropic position under orthogonal transformations,
we may assume that there exists a diagonal matrix T with entries λ1 > · · · > λn > 0
such that E = T (Bn2 ). Recall that |E| = 1.

Let F ∈ Gn,k, 1 6 k 6 n− 1. Since projecting a covering creates a covering of
the projection, we have

(5.16)
|PF (K)|
|PF (E)|

6 N(K, E) 6 eκn.

We will use the Rogers-Shephard inequality (see [27]) for K and E : since |K| = 1,
we know that

(5.17) c1 6
(
|K ∩ F⊥||PF (K)|

) 1
k 6

(
n

k

) 1
k

6
en

k
,

where c1 > 0 is a universal constant (see [29] or [17] for the left hand side inequality).
From (5.17) and the definition of γ in (5.14), we see that

(5.18) |PF (K)| 1k >
c1
γ
.

Using (5.16) we get

(5.19)
c1
γ

6 e
κn
k |PF (E)| 1k .
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In other words,

(5.20) min
F∈Gn,k

|PF (E)| 1k >
c1
γ
e−

κn
k .

We can now apply the upper bound from (5.17) to get

(5.21)
c1
γ
|E ∩ F⊥| 1k 6 e

κn
k

(
|PF (E)||E ∩ F⊥|

) 1
k 6 e

κn
k
en

k
6 e

κ1n
k .

It follows that

(5.22) max
H∈Gn,n−k

|E ∩H| 6 eκ1nγk

ck1
.

Lemma 5.3 implies that

(5.23) max
H∈Gn,n−k

|PH(E)| 6 eκ1nγk

ck1
,

and hence,

(5.24) |PH(K)| 6 eκn|PH(E)| 6 eκ2nγk

ck1

for every H ∈ Gn,n−k, where we have used again (5.16). Applying (5.17) once
again, we have

(5.25) c1 6
(
|K ∩H⊥||PH(K)|

) 1
n−k 6 |K ∩H⊥|

1
n−k e

κ2n
n−k

(
γ

c1

) k
n−k

.

This proves that

(5.26) min
H∈Gn,n−k

|K ∩H⊥|
1

n−k > γ

(
η

γ

) n
n−k

with η = c1e
−κ2 , as claimed. 2

Lemma 5.6. Let K ∈ C̃K[n]. Assume that, for some s > 0,

(5.27) rs := logN(K, sBn2 ) < n.

Then,

(5.28) I−rs(K) 6 3es.

Proof. Let z0 ∈ Rn such that |K∩ (−z0 +sBn2 )| > |K∩ (z+sBn2 )| for every z ∈ Rn.
It follows that

(5.29) |(K + z0) ∩ sBn2 | ·N(K, sBn2 ) > |K| = 1.
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Let q := rs < n. Then, using Markov’s inequality, the definition of I−q(K + z0)
and (5.27), we get

(5.30) |(K + z0) ∩ 3−1I−q(K + z0)Bn2 | 6 3−q < e−q = e−rs 6
1

N(K, sBn2 )
.

From (5.29) we obtain

(5.31) |(K + z0) ∩ 3−1I−q(K + z0)Bn2 | < |(K + z0) ∩ sBn2 |,

and this implies

(5.32) 3−1I−q(K + z0) 6 s.

Since K has center of mass at the origin, as an application of Fradelizi’s theorem
(see [6]), we have that I−k(K + z) > 1

eI−k(K) for any 1 6 k < n and z ∈ Rn (a
proof appears in [23, Proposition 4.6]). This proves the Lemma. 2

Theorem 5.7. Let n be even and let K ∈ ĨK[n]. Set

(5.33) γ := max
F∈Gn, n2

|K ∩ F⊥| 2n .

Then, there exists K1 ∈ ĨK[n] such that:
(i) η1

γ LK 6 LK1 6 η2γLK , where η1, η2 > 0 are absolute constants.
(ii) If α ∈ (1, 2) one has that for every t > C1γ

2

logN
(
K1, t

√
nBn2

)
6 C2γ

2κ(α)n
tα

,

where κ(α) 6 κ
2−α and C1, C2 > 0 are absolute constants.

(iii) If K is a body of small diameter (with some constant A > 1) then K1 is
also a body of small diameter (with constant C3γ

2A > 1, where C3 is an absolute
constant).

Proof. Let E be an α-regular M–ellipsoid for K given by Theorem 5.2. As in the
proof of Proposition 5.5, we assume that E = T (Bn2 ) for some diagonal matrix T
with entries λ1 > · · · > λn > 0. From (5.20) and Lemma 5.3 we have

(5.34) ωn
2

(
λn

2

)n
2 > ωn

2

n∏
i=n

2 +1

λi = min
F∈Gn, n2

|PFE| > e−κn
(
c1
γ

)n
2

,

and hence (recall that ω1/k
k ' 1/

√
k),

(5.35) λn
2

>
c2
√
n

γ
.
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Similarly, (5.22) and Lemma 5.3 imply that

(5.36) ωn
2

(
λn

2

)n
2 6 ωn

2

n
2∏
i=1

λi = max
H∈Gn, n2

|E ∩H| 6 eκ1n

(
γ

c1

)n
2

,

and hence,

(5.37) λn
2

6 c3γ
√
n.

Then, by Lemma 5.4 we can find F0 ∈ Gn,n2 such that

(5.38)
c2
√
n

γ
(Bn2 ∩ F0) ⊆ PF0(E) ⊆ c3γ

√
n(Bn2 ∩ F0).

Let K0 := B̃n
2 +1(K,F0) and K1 := T (K0 ×K0) ∈ Rn, where T ∈ SLn is such that

K1 is isotropic. Note that K0 ×K0 has volume 1, center of mass at the origin and
is almost isotropic. In other words T is almost an isometry. We will show that K1

satisfies (i), (ii) and (iii).

(i) From Proposition 2.1(vi) we know that

(5.39) c2 LK |K ∩ F⊥
0 |

2
n 6 LK0 6 c1 LK |K ∩ F⊥

0 |
2
n ,

where c1, c2 > 0 are absolute constants. Then, Proposition 5.5 shows that

(5.40)
η1
γ
LK 6 LK0 6 η2γLK ,

where η1 = η2c2, η2 = c1. Note that LK1 = LK0 . This completes the proof of (i).
(ii) From Proposition 2.1(v) and from the fact that c conv{C,−C} ⊆ Zn

2
(C) ⊆

conv{C,−C} for all C in C̃K[n2 ], we get

conv{K0,−K0} ⊆ 1
c
Zn

2
(B̃n

2 +2(K,F0))

⊆ 1
c c3

|K ∩ F⊥
0 |

2
nPF0(Zn

2
(K))

⊆ 1
c c3

γPF0(conv{K,−K})

and, similarly,

conv{K0,−K0} ⊇ Zn
2
(B̃n

2 +2(K,F0))

⊇ 1
c4
|K ∩ F⊥

0 |
2
nPF0(Zn

2
(K))

⊇ η2

c4

c

2c0
1
γ
PF0(conv{K,−K}),
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where we have used the fact that Zn
2
(K) ⊇ 1

2c0
Zn(K) ⊇ c

2c0
conv{K,−K}. In other

words,

(5.41)
c5
γ
PF0(conv{K,−K}) ⊆ conv{K0,−K0} ⊆ c6γPF0(conv{K,−K}),

where c5, c6 > 0 are absolute constants.
For s > 0 we have

N
(
K1, s

√
nBn2

)
= N

(
T (K0 ×K0), s

√
nBn2

)
6 N(K0 ×K0, cs

√
nBn2 )

6 N(K0 ×K0,
√

2cs
√
n (Bn2 ∩ F0 ×Bn2 ∩ F0))

6 N
(
K0, c

′s
√
nBn2 ∩ F0

)2
,

where we have used the fact that T is almost an isometry, and hence, T (K0×K0) ⊆
1
c (K0 ×K0). Moreover, we have used the fact that if K,C are convex bodies, then

(5.42) N(K ×K,C × C) 6 N(K,C)2

and Bk2 ×Bk2 ⊇ 1√
2
B2k

2 .
Recall that c2 and c3 are the constants in (5.38). For every r > 0,

N
(
K0, c3rγ

√
n(Bn2 ∩ F0)

)
6 N

(
conv{K0,−K0}, c3rγ

√
n(Bn2 ∩ F0)

)
6 N(conv{K0,−K0}, rPF0(E))
6 N(c6γ PF0 (conv{K,−K}) , rPF0(E))
6 N(c6γ conv{K,−K}, r E)

6 N

(
K −K,

r

c6γ
E
)

6 N

(
K,

r

2c6γ
E
)2

.

So, we can write

(5.43) N(K1, t
√
nBn2 ) 6 N

(
K,

t

c7γ2
E
)4

for every t > 0, where c7 =
√

2c2c6. Since E is a α-regular ellipsoid for K, for every
t > c7γ

2 we have

(5.44) logN(K1, t
√
nBn2 ) 6 4 logN

(
K,

t

c7γ2
E
)

6
4c7κ(α)γ2n

tα
.

This completes the proof of (ii).
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(iii) We have that R(K0) 6 cγA
√
nLK . Indeed, by Proposition 2.1,

R (K0) = R
(
B̃n

2 +1(K,F0)
)

6 cR
(
Zn

2 +1(B̃n
2 +1(K,F0)

)
6 c′|K ∩ F⊥

0 |
2
nR
(
PF0Zn

2 +1(K)
)

6 c′γR (conv{K,−K})
6 2c′γR (K) 6 cγA

√
nLK .

Also,

(5.45) R(K1) = R (K0 ×K0) =
√

2R(K0).

To see this, write

(5.46) R2 (K0 ×K0) = max
(x,y)∈K0×K0

‖x‖2
2 + ‖y‖2

2 = 2R2(K0).

So, using (i) we get that

(5.47) R(K1) 6
√

2R(K0) 6 c
√

2γA
√
nLK 6 C3γ

2A
√
nLK1 .

This completes the proof. 2

Lemma 5.8. Let µ ∈ IL[n]. Fix 1 6 k < n− 1 and F ∈ Gn,k. Then,

(5.48) |K̃n+1(µ) ∩ F⊥| 1k '
fπF (µ)(0)

1
k

fµ(0)
1
n

,

(5.49) LBk+1(µ,F ) ' fπF (µ)(0)
1
k ' L

Bk+1(K̃n+1(µ),F )
,

and

(5.50) fµ(0)
1
n B̃k+1(µ, F ) ' B̃k+1(K̃n+1(µ), F ).

Proof. We will make use of the following facts (see Proposition 4.2 and Theorem
4.4 in [23]): If µ ∈ IL[n], then

(5.51) fπF (µ)(0)
1
k |PFZk(µ)| 1k ' 1,

and if K ∈ C̃K[n] then

(5.52) |K ∩ F⊥| 1k |PFZk(K)| 1k ' 1.

Then, taking into account Proposition 2.1(iv), we get
(5.53)

|K̃n+1(µ) ∩ F⊥| 1k ' |PFZk(K̃n+1(µ))|− 1
k ' fµ(0)−

1
n |PFZk(µ)|− 1

k '
fπF (µ)(0)

1
k

fµ(0)
1
n

.
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This proves (5.48).
(ii) Using Proposition 2.1(v) and (iv), we have that

Z2

(
B̃k+1(K̃n+1(µ), F )

)
' |K̃n+1(µ) ∩ F⊥| 1kPF

(
Z2

(
K̃n+1(µ)

))
'

fπF (µ)(0)
1
k

fµ(0)
1
n

fµ(0)
1
nPF (Z2(µ))

= fπF (µ)(0)
1
kPF (Z2(µ))

= fπF (µ)(0)
1
kBF ,

because Z2(µ) = Bn2 . Taking volumes we see that

(5.54) L
Bk+1(K̃n+1(µ),F )

' fπF (µ)(0)
1
k

and we conclude by Proposition 2.1(vii) and (2.17).
(iii) By Proposition 2.1(v),

(5.55) B̃k+1(µ, F ) ' Zk

(
B̃k+1(µ, F )

)
' πF (µ)(0)

1
k

fµ(0)
1
n

PFZk(µ)

and, by Proposition 2.1(v) and then (iv),

B̃k+1(K̃n+1(µ), F ) ' Zk

(
B̃k+1(K̃n+1(µ), F )

)
' |K̃n+1(µ) ∩ F⊥| 1kPF

(
Zk

(
K̃n+1(µ)

))
' πF (µ)(0)

1
k

fµ(0)
1
n

fµ(0)
1
nPF (Zk(µ))

= πF (µ)(0)
1
kPF (Zk(µ)).

We have thus shown that

(5.56) B̃k+1(K̃n+1(µ), F ) ' πF (µ)(0)
1
kPF (Zk(µ)).

Combining (5.55) and (5.56) we see that

(5.57) fµ(0)
1
n B̃k+1(µ, F ) ' B̃k+1(K̃n+1(µ), F ).

This completes the proof. 2

Proof of Proposition 5.1. (i) Let ν ∈ U[n] such that supµ∈U[n]
fµ(0)

1
n = fν(0)

1
n . Let

(5.58) K := T
(
K̃n+1(ν)

)
,

where T ∈ SLn is such that K ∈ ĨK[n]. Note that, from Proposition 2.1, T is
almost an isometry and LK ' fν(0)

1
n .
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If U = IL we take K := T
(
K̃n+1(ν̄)

)
. By Proposition 2.1 and (2.14) we have that

LK ' fν(0)
1
n . The proof of the first two assertions is identical in both cases. We

write µ for either ν or ν̄.
(i) Let F0 ∈ Gn,n2 , K0 ∈ ĨK[n2 ] and K1 ∈ ĨK[n] as in the proof of Theorem 5.7.

Let µ1 := πF0(µ) ⊗ πF0(µ). Assume that the two copies of πF0(µ) live on F and
F⊥ respectively, where F ∈ G2n,n. Since µ ∈ U and U is coherent, we have µ1 ∈ U .

Moreover, using again Proposition 2.1, we have that

fµ1(0)
1
n = fπF0 (µ)(0)

2
n ' L

K̃n
2 +1(πF0 (µ))

= L
B̃n

2 +1(µ,F0)
' L

Bn
2 +1(K̃n+1(µ),F0)

' LBn
2 +1(K,F0) = LK0 = LK1

' fµ(0)
1
n .

This settles the first assertion of the Proposition.
(ii) Since U is coherent, for every F ∈ Gn,n2 we have

(5.59) fπF (µ)(0)
2
n 6 fµ(0)

1
n .

Set γ := maxF∈Gn, n2 |K ∩ F⊥| 2n . Then,

(5.60) γ '
L
Bn

2 +1(K̃n+1(µ),F )

LK
'
fπF (µ)(0)

2
n

fµ(0)
1
n

6 C,

where we have used again Lemma 5.8. So, by Theorem 5.7 we have that

(5.61) logN(K, t
√
nBn2 ) 6

Cn

tα(2− α)
.

Note that, for every p > 0 and every pair of probability measures ν1, ν2 living in
F, F⊥ respectively, we have PFZp(ν1⊗ν2) = Zp(ν1) and PF⊥Zp(ν1⊗ν2) = Zp(ν2).
Indeed, if θ ∈ SF , we have that

hpZp(ν1⊗ν2)(θ) =
∫
F

∫
F⊥

|〈x+ y, θ〉|pdν2(y)dν1(x)

=
∫
F

|〈x, θ〉|pdν1(x) = hpZp(ν1)(θ).

Note that for every convex body K and F ∈ Gn,k one has

(5.62) K ⊆ PF (K)⊗ PF⊥(K).
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So, we have that

K̃n+1(µ1) ⊆ PF

(
K̃n+1(µ1)

)
× PF⊥

(
K̃n+1(µ1)

)
' PF

(
Zn

2
(K̃n+1(µ1)

)
× PF⊥

(
Zn

2
(K̃n+1(µ1)

)
' fµ(0)

1
nPF

(
Zn

2
(πF0(µ)⊗ πF0(µ))

)
×fµ(0)

1
nPF⊥

(
Zn

2
(πF0(µ)⊗ πF0(µ))

)
' fµ(0)

1
nZn

2
(πF0(µ))× fµ(0)

1
nZn

2
(πF0(µ))

' fµ(0)
1
n B̃n

2 +1 (µ, F0)× fµ(0)
1
n B̃n

2 +1 (µ, F0)

' B̃n
2 +1

(
K̃n+1(µ), F0

)
× B̃n

2 +1

(
K̃n+1(µ), F0

)
' B̃n

2 +1 (K,F0)× B̃n
2 +1 (K,F0)

= K0 ×K0 = K1.

Therefore,

(5.63) R(K̃n+1(µ1)) 6 cR(K1)

and

(5.64) logN
(
K̃n+1(µ1), t

√
nBn2

)
6 logN

(
K, ct

√
nBn2

)
6

Cn

tα(2− α)
.

We have assumed that tα(2− a) > C, and hence, by Lemma 5.6 we have

(5.65) I−p( ˜Kn+1(µ)) 6 3et
√
n,

where p = Cn
tα(2−a) < n. Note that if µ ∈ CL then for every 1 6 p 6 n− 1 one has

(see Proposition 3.4 in [23])

(5.66) I−p(µ)fµ(0)
1
n ' I−p(K̃n+1(µ)).

It follows that

(5.67) I− Cn
tα(2−a)

(µ1) 6 C ′t
√
nfµ1(0)−

1
n ,

and the proof of the second assertion is complete.
For the rest of the proof we set µ = ν̄. In this case, K is a body of small

diameter. Indeed, for p > 2, by Proposition 2.1(iv) we have
(5.68)

Ip(K) ' Ip(K̃n+1(ν̄)) ' Ip(µ)fν̄(0)
1
n '

√
nfν̄(0)

1
n ' I2(K̃n+1(ν̄)) ' I2(K).

From Theorem 5.7 we have that K1 is a body of small diameter, and this implies
that R(K1)

I2(K1)
' 1. Also, by the first assertion we have that

(5.69) LK1 ' fν̄(0)
1
n ' fµ1(0)

1
n ' LK .
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Then, from (5.63) we see that for p > 2,

(5.70)
Ip(µ1)
I2(µ1)

' Ip(K̃n+1(µ1))√
nfµ1(0)

1
n

6 c
R(K̃n+1(µ1))√

nLK1

' R(K1)
I2(K1)

' 1.

So, µ1 is a measure of small diameter. The proof is complete. 2

6 Proof of the main result

We are now ready to state and prove the main result of the paper:

Theorem 6.1. Let U be a coherent subclass of IL and let n > 2 and δ > 1. Then,

(6.1) sup
µ∈U[n]

fµ(0)
1
n 6 Cδ sup

µ∈U[n]

√
n

q−c(µ, δ)
log
(

en

q−c(µ, δ)

)
,

where C > 0 is an absolute constant. Moreover if U = IL then the supremum on
right hand side can be taken over all ν̄ ∈ IL.

Proof. By Proposition 4.3 we can assume that n is even. Let q := infµ∈U[n] q−c(µ, δ).

Let α := 2 − 1
log (enq ) and t = C1

√
n
q log en

q , where the absolute constant C1 > 0

can be chosen large enough to ensure that tα(2 − α) > C0, where C0 > 0 is the
constant that appears in Proposition 5.1. We have

(6.2) tα(2− α) ' n

q
log

en

q

1
log en

q

=
n

q
,

and hence,

(6.3)
n

tα(2− α)
' q.

By Proposition 5.1 there exists a measure µ1 ∈ U[n] such that fµ1(0)
1
n ' supµ∈U fµ(0)

1
n

and

(6.4) I−q(µ1) = I− cn
tα(2−α)

(µ1) 6 C ′t
√
nfµ1(0)−

1
n 6 C ′′

√
n

q
log

en

q

√
nfµ1(0)−

1
n .

On the other hand, by the definition of q, we have

(6.5)
√
n

δ
=

1
δ
I2(µ1) 6 I−q−c(µ1,δ)(µ1) 6 I−q(µ1).

Combining the above we get the result. 2

Remark. Observe that for the choice δ = supµ∈U[n]
fµ(0)

1
n we have

inf
µ∈U[n]

q−c(µ, δ) ' n

(see Proposition 4.8 in [23]). This shows that the preceding result is sharp (up to
a universal constant).
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Theorem 3.2 shows that there exists an absolute constant ξ > 0 such that q−c(µ, ξ) >
q∗(µ) for every µ ∈ IL. So we get the following:

Corollary 6.2. Let U be a coherent subclass of IL. Then for any n > 1,

(6.6) sup
µ∈U[n]

fµ(0)
1
n 6 C sup

µ∈U[n]

√
n

q∗(µ)
log
(

en

q∗(µ)

)
,

where C > 0 is an absolute constant.

Corollary 6.3. Let α ∈ (1, 2], let β > 0 and µ ∈ (Pα(β) ∩ IL)[n]. Then,

(6.7) fµ(0)
1
n 6 C

√
n

2−α
2 βα

√
log
(
n

2−α
2 βα

)
,

where C > 0 is an absolute constant.

Proof. Since µ ∈ CPα(β), by Corollary 4.8 we have that µ ∈ CP(α, c1β). Then,
Proposition 3.3 shows that q∗(µ) > cn

α
2

bα .
Therefore, the result follows from Corollary 6.2. 2

Theorem 6.4. Let α ∈ (1, 2] and bα > 0. Let µ be an isotropic ψα log-concave
measure with constant βα in Rn. Then,

(6.8) fµ(0)
1
n 6 C

√
n

2−α
2 βαα

√
log
(
n

2−α
2 βαα

)
,

where C > 0 is an absolute constant. In particular, if µ is ψ2 with constant β2 > 0,
then

(6.9) fµ(0)
1
n 6 Cβ2

√
log β2.

Moreover, for every isotropic log-concave measure µ,

(6.10) fµ(0)
1
n 6 Cn

1
4
√

log n.

Proof. Recall that, from Corollary 4.8, if µ ∈ CP(α, βα) then µ ∈ CPα(c1βα). Then
(6.8) follows from Corollary 6.3. In the special case α = 2 or α tending to 1, one
gets (6.9) and (6.10) respectively (recall that log-concave measures are uniformly
ψ1). 2

Remark. In the proof of Corollary 6.2 we have used the fact that q∗(µ) 6 q−c(µ).
One may check that in general this is not sharp (for example one may check that
for fµ := 1

B̃n1
one has q∗(µ) << q−c(µ, ξ) for ξ ' 1). As Proposition 3.5 shows,

this is not the case for measures of small diameter.

We conclude with the following:
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Theorem 6.5. The following statements are equivalent:
(a) There exists C1 > 0 such that

sup
n

sup
µ∈IL[n]

fµ(0)
1
n ≤ C1.

(b) There exist C2, ξ1 > 0 such that

sup
n

sup
µ∈IL[n]

n

q−c(µ, ξ1)
≤ C2.

(c) There exists C3, ξ2 > 0 such that

sup
n

sup
µ∈IL[n]

n

q∗(µ̄, ξ2)
≤ C3.

Proof. The claim that (a) implies (b) is an immediate consequence of the remark
after Theorem 6.1. The implication from (b) to (c) follows immediately from Propo-
sition 3.4. The claim that (c) implies (a) follows from Theorem 6.1. 2

We close by noting that there is a strong connection between the existence of
supergaussian directions and small ball probability estimates, and hence, in view of
Theorem 6.5, with the hyperplane conjecture as well. This connection will appear
elsewhere.
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Birkhäuser, Basel, (1972), 182-184.

[11] E. Lutwak and G. Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47
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[26] A. Prékopa, On logarithmic concave measures and functions, Acta Sci. Math.
(Szeged), 34 (1973), 335-343.

[27] C. A. Rogers and G. C. Shephard, Convex bodies associated with a given convex
body, J. London Soc. 33 (1958), 270–281.

[28] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of
Mathematics and its Applications 44, Cambridge University Press, Cambridge
(1993).

32



[29] J. Spingarn, An inequality for sections and projections of a convex set, Proc. Amer.
Math. Soc. 118 (1993), 1219–1224.

[30] C. Zong, Strange phenomena in convex and discrete geometry, Universitext,
Springer (2003).

Nikos Dafnis
Department of Mathematics
University of Athens
Panepistimioupolis 157 84, Athens, Greece
E-mail: nikdafnis@googlemail.com

Grigoris Paouris
Department of Mathematics
Texas A & M University
College Station, TX 77843 U.S.A.
E-mail: grigoris paouris@yahoo.co.uk

33


