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Abstract

Let µ be a probability measure on R
n with a bounded density f . We prove that

the marginals of f on most subspaces are well-bounded. For product measures,
studied recently by Rudelson and Vershynin, our results show there is a trade-off
between the strength of such bounds and the probability with which they hold. Our
proof rests on new affinely-invariant extremal inequalities for certain averages of f
on the Grassmannian and affine Grassmannian. These are motivated by Lutwak’s
dual affine quermassintegrals for convex sets. We show that key invariance proper-
ties of the latter, due to Grinberg, extend to families of functions. The inequalities
we obtain can be viewed as functional analogues of results due to Busemann–Straus,
Grinberg and Schneider. As an application, we show that without any additional
assumptions on µ, any marginal πE (µ), or a small perturbation thereof, satisfies a
nearly optimal small-ball probability.

1 Introduction

In this paper, we discuss connections between affine isoperimetric in-
equalities in convex geometry and concentration results for high dimen-
sional probability distributions. We address the following question: if µ
is a probability measure on R

n with a bounded density, to what extent
are its marginal densities also bounded? Recall that if µ has density f
and E is a k-dimensional subspace of Rn, the density of the marginal
πE(µ) on E is given by

fπE (µ)(x) =
∫

E⊥+x
f (y)dy (x ∈ E). (1.1)

Rudelson and Vershynin [39] recently proved that if f (x) =
∏n

i=1 fi(xi ),
where each fi is a bounded density on R, then for every 1 6 k 6 n and
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1 INTRODUCTION

every k-dimensional subspace E,

‖fπE (µ)‖
1/k
∞ 6 Cmax

i6n
‖fi‖∞ (1.2)

where C is a numeric constant and ‖·‖∞ is the L∞-norm. On the other
hand, even for products, the stronger inequality

‖fπE (µ)‖
1/k
∞ 6 C‖f ‖1/n∞ (1.3)

need not hold for all subspaces E; indeed, if f1, . . . , fk are very peaked,
the left-hand side of (1.3) can be arbitrarily large for the coordinate sub-
space E = span{e1, . . . , ek}, while the right-hand side can be well-behaved
since

‖f ‖1/n∞ 6 n
√
‖f1‖∞ · · · ‖fn‖∞ 6max

i6n
‖fi‖∞. (1.4)

Nevertheless, we show that for an arbitrary bounded density f , most of
its marginals nearly satisfy (1.3), which we quantify with respect to the
Haar probability measure µn,k on the Grassmannian manifold Gn,k of all
k-dimensional subspaces of Rn.

Theorem 1.1. Let µ be a probability measure on R
n with a bounded density

f . Then for each 1 6 k 6 n−1, there existsA ⊆ Gn,k with µn,k(A) > 1−2e−kn
such that for every E ∈ A,

fπE (µ)(x)
1/k
6 C‖f ‖1/n∞ (1.5)

for all x ∈ E, except possibly on a set of πE(µ)-measure less than e−kn.

Thus given f , first sampling E ∈ Gn,k according to µn,k and then x ∈ E
according to πE(µ), (1.5) holds with overwhelming probability; on Gn,k

this is optimal (see Lemma 6.3). Furthermore, one must exclude excep-
tional sets of positive πE(µ)-measure as can be seen by considering a
neighborhood of a Besicovitch set (see, e.g., [2, Chapter 9]).

As discussed in [39], bounds for marginals are connected to small-
ball probabilities, which are useful in random matrix theory e.g., [40].
If X is a random vector in R

n with density f , then fπE (µ) gives the den-
sity of the orthogonal projection PEX of X onto E. When f is bounded,
Theorem 1.1 implies that for every E ∈ A, ε > 0 and any z ∈ E,

P

(
|PEX − z| 6 ε

√
k
)
6 (C1ε‖f ‖1/n∞ )kn/(n+1), (1.6)
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where |·| denotes the Euclidean norm. In contrast, (1.2) implies that for
any z ∈ E

P

(
|PEX − z| 6 ε

√
k
)
6 (C2εmax

i
‖fi‖∞)k . (1.7)

Thus if f =
∏

i fi and ‖fi‖∞ are not identical, the base in the probability
in (1.6) is smaller than that in (1.7) (cf. (1.4)) but the exponent n

n+1 is
slightly worse. Furthermore, for subspaces E that do not belong to A,
one can perturb them to ensure that (1.6) holds (see Corollary 6.5).

The goal of this paper is to show that a purely probabilistic statement
such as Theorem 1.1 is ultimately based on an affine-invariance property
of certain integrals on the Grassmannian Gn,k and affine Grassmannian
Mn,k and corresponding extremal inequalities. Here Mn,k is equipped
with its cannonical rigid-motion invariant measure νn,k (see Section 2).
In particular, for non-negative, bounded integrable functions f on R

n,
we consider

∫

Gn,k

(∫
E
f (x)dx

)n

‖f |E‖n−k∞
dµn,k(E) (1.8)

where f |E is the restriction of f to E, and

∫

Mn,k

(∫
F
f (x)dx

)n+1

‖f |F‖n−k∞
dνn,k(F). (1.9)

Our interest in such quantities stems from the following notion: for
1 6 k < n, the dual affine quermassintegrals of a convex body K ⊂ R

n are
defined by

Φ̃n−k(K) =
ωn

ωk



∫

Gn,k

|K ∩E|ndµn,k(E)


1/n

(1.10)

where ωn denotes the volume of the Euclidean ball Bn
2 in R

n of radius
one and |·| denotes Lebesgue measure. These were introduced by Lutwak
(see [26], [27] for background) and have proved to be an indespensable
tool for quantitative questions concerning high-dimensional probabil-
ity distributions, e.g., [29], [34], [35]. In [18], Grinberg proved that
Φ̃n−k(K) = Φ̃n−k(SK) for each volume-preserving linear transformation
S. Motivated by Grinberg’s result, we prove that the quantities in (1.8)
and (1.9) are also invariant under volume preserving linear and affine
transformations, respectively. Our argument uses the structure of semi-
simple Lie groups.
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In the case when f = 1K , where K is a convex body (or compact set),
both (1.8) and (1.9) satisfy corresponding affine isoperimetric inequal-
ities. In particular, a result of Busemann-Straus [8] and Grinberg [18]
states that if K is a convex body in R

n and 1 6 k 6 n − 1, then
∫

Gn,k

|K ∩E|ndµn,k(E) 6
ωn
k

ωk
n

|K |k ; (1.11)

when k > 1, equality holds only for origin-symmetric ellipsoids. The
k = n − 1 case is Busemann’s seminal intersection inequality [7]. For the
other endpoint, i.e. when k = 1, (1.11) is an equality for 1K , evident from
expressing the integral in spherical coordinates.

For the affine Grassmannian Mn,k, an inequality of Schneider [41]
states that if K is a convex body in R

n and 1 6 k 6 n − 1, then
∫

Mn,k

|K ∩ F |n+1dνn,k(F) 6
ωn+1
k ωn(k+1)

ωk+1
n ωk(n+1)

|K |k+1; (1.12)

when k > 1, equality holds if and only if K is an n-dimensional ellipsoid;
when k = 1, equality holds if and only if K is a convex body, which
follows from the classical Crofton formula (e.g., [42, Theorem 5.1.1]).

While many of the latter inequalities also hold for non-convex sets,
the equality cases require additional care. Gardner [17] generalized
(1.11) and (1.12), among other related inequalities, to the class of bounded,
Borel measurable sets with a precise characterization of equality cases,
making use of results due to Pfiefer [36], [37]. In this paper, we ex-
tend such inequalities to bounded integrable functions. The analysis of
equality cases in the functional setting rests heavily on their results.

Theorem 1.2. Let 1 6 k 6 n − 1 and let f be a non-negative, bounded inte-
grable function on R

n. Then

∫

Gn,k

(∫
E
f (x)dx

)n

‖f |E‖n−k∞
dµn,k(E) 6

ωn
k

ωk
n

(∫

Rn
f (x)dx

)k
. (1.13)

We also discuss the equality cases in the latter theorem under a mild
assumption on f in which case equality holds in (1.13) when k > 1 if and
only if f = a1E a.e., where E is an origin-symmetric ellipsoid and a is a
positive constant. Furthermore, we prove a more genaral statement for
q 6 k different functions, as well as different powers (see Section 5).

The corresponding result on Mn,k is the following inequality.
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Theorem 1.3. Let 1 6 k 6 n − 1 and let f be non-negative, bounded inte-
grable function on R

n. Then

∫

Mn,k

(∫
F
f (x)dx

)n+1

‖f |F‖n−k∞
dνn,k(F) 6

ωn+1
k ωn(k+1)

ωk+1
n ωk(n+1)

(∫

Rn
f (x)dx

)k+1
. (1.14)

Under a mild assumption on f , we also prove that equality holds in
(1.14) when k > 1 if and only if f = a1E a.e., where E is an ellipsoid and
a is a positive constant.

One can interpret Theorem 1.3 as an inequality about the k-plane
transform. Recall that the k-plane transform Tn,k applied to a function
f on R

n is defined by

Tn,k(f )(F) =
∫

F
f (x)dx (F ∈Mn,k). (1.15)

When k = n − 1, Tn,k is the Radon transform and when k = 1, it is the X-
ray transform. The k-plane transform satisfies several key inequalites.
In particular, for each q ∈ [1,n+1], there is a unique p ∈ [1, (n+1)/(k+1)]
such that

‖Tn,k(f )‖q 6 C(n,k,q)‖f ‖p (1.16)

for all f ∈ Lp. The latter is a special case of a result due to Christ [10],
extending work by Drury [13]; see also the article of Baernstein and Loss
[1] for related work and a conjecture about the extremal functions; for
recent research in this direction, see Christ [9], Druout [12] and Flock
[15] and the references therein. The endpoint inequality q = n + 1 and
p = (n+1)/(k+1) in (1.16) also satisfies an affine-invariance property [9],
[12].

Organization: We close the introduction with a few words on the
main tools that we use and the organization of the paper. Section 2 is
reserved for notation and background results, including formulas from
integral geometry such as the Blaschke-Petkantschin formulas. In Sec-
tion 3, we treat affine invariance using the structure of semi-simple Lie
groups which we then specialize to the Grassmannian and affine Grass-
mannian. In Section 4, we recall a functional version of Busemann’s
random simplex inequality [7], and its variant due to Groemer [19],
[20], from [33]; the latter makes essential use of Christ’s form [10] of
the Rogers-Brascamp-Lieb-Luttinger inequality [38], [5]. The ratios in
(1.8) and (1.9) arise naturally in a suitable normalized form of the main
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inequality in [33]. In Section 5, we prove Theorems 1.2 and 1.3. We fin-
ish the paper in Section 6 with a more general version of Theorem 1.1
and we discuss connections to the Hyperplane Conjecture from convex
geometry.

2 Preliminaries

The setting is Rn with the canonical inner-product 〈·, ·〉, Euclidean norm
|·| and standard unit vector basis e1, . . . , en. We also use |·| for Lebesgue
measure and the absolute value of a scalar, the use of which will be
clear from the context. The Euclidean ball of radius one is Bn

2 with vol-
ume ωn = |Bn

2|. We reserve Dn for the Euclidean ball of volume one, i.e.,
Dn = rnB

n
2, where rn = ω−1/nn . The unit sphere is Sn−1 and is equipped

with the Haar probability measure σ. As mentioned, the Haar proba-
bility measure on the Grassmannian Gn,k is denoted by µn,k . The affine
GrassmannianMn,k is equipped with a measure as follows: for A ⊂Mn,k ,

νn,k(A) =
∫

Gn,k

|{x ∈ E⊥ : x +E ∈ A}|dµn,k(E). (2.1)

Henceforth, we will write simply dF rather than dνn,k(F) for integrals
over Mn,k; similarly, dE instead of dµn,k(E) for integrals on Gn,k. Note
that µn,k is a probabilitymeasure while νn,k is normalized so that νn,k({F ∈
Mn,k : F∩Bn

2 , ∅}) =ωn−k. We use c1, c2,C, . . . etc for positive numeric con-
stants.

We will make use of the following integral geometric identities, often
referred to as the Blaschke-Petkantschin formulas; see e.g., [42, Chapter
7.2], [13],[17, Lemmas 5.1 & 5.5], [28]; see also the generalization given
in [30, Appendix A].

Theorem 2.1. Let 1 6 q 6 k 6 n. Suppose that G is a non-negative, Borel
measurable function on (Rn)q. Then

∫

(Rn)q
G(x1, . . . ,xq)dx1 . . . dxq

= cn,k,q

∫

Gn,k

∫

Eq
G(x1, . . . ,xq)|conv{0,x1, . . . ,xq}|n−kdx1 . . . dxqdE,

where

cn,k,q = (q!)n−k
ωn−q+1 · · ·ωn

ωk−q+1 · · ·ωk
. (2.2)
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Theorem 2.2. Let 1 6 q 6 k 6 n. Suppose that G is a non-negative Borel
function on (Rn)q+1. Then
∫

(Rn)q+1
G(x1, . . . ,xq+1)dx1 . . . dxq+1

= cn,k,q

∫

Mn,k

∫

Fq+1
G(x1, . . . ,xq+1)|conv{x1, . . . ,xq+1}|n−kdx1 . . . dxq+1dF,

where cn,k,q is defined in (2.2).

If A ⊂ R
n is a Borel set with finite volume, the symmetric rearrange-

ment A∗ of A is the (open) Euclidean ball centered at the origin whose
volume is equal to that of A. The symmetric decreasing rearrangement
of 1A is defined by (1A)∗ := 1A∗ . If f : Rn→ R

+ is an integrable function,
its symmetric decreasing rearrangement f ∗ is defined by

f ∗(x) =
∫ ∞

0
1∗{f >t}(x)dt =

∫ ∞

0
1{f >t}∗(x)dt.

The latter can be compared with the “layer-cake representation” of f :

f (x) =
∫ ∞

0
1{f >t}(x)dt; (2.3)

see [25, Theorem 1.13]. The function f ∗ is radially-symmetric, decreas-
ing and equimeasurable with f , i.e., {f > α} and {f ∗ > α} have the same
volume for each α > 0. By equimeasurability one has ‖f ‖p = ‖f ∗‖p for
each 1 6 p 6∞, where ‖·‖p denotes the Lp(Rn)-norm. We refer the reader
to the book [25] for further background material on rearrangements of
functions.

3 Affine invariance

In this section we discuss linear and affine invariance properties of the
quantities in (1.8) and (1.9), respectively, as well as generalizations. We
start with the former and prove the following theorem.

Theorem 3.1. Let m be a positive integer and let pi ,αi , for i = 1, . . . ,m be
real numbers. Let fi be bounded functions on R

n, fi ∈ Lpi (Rn). Define

I(f1, . . . , fm) :=
∫

Gn,k

m∏

i=1

‖fi |x‖
αi
pi dx .

7



3 AFFINE INVARIANCE

Whenever this quantity is finite and
∑m

i=1
αi
pi

= n, for any volume-preserving

linear transformation g , we have

I(g · f1, . . . ,g · fm) = I(f1, . . . , fm) ,

where g · fi(t) = fi(g−1t).

Remark 3.2. Letting pi ,αi ,qi ,βi satisfy
∑m

i=1

(
αi
pi
− βj

qj

)
= n, Theorem 3.1

yields the linear invariance of

∫

Gn,k

m∏

i=1

‖fi |x‖
αi
pi

‖fi |x‖
βi
qi

dx ,

and letting qi →∞, also of

∫

Gn,k

m∏

i=1

‖fi |x‖
αi
pi

‖fi |x‖
βi
∞

dx .

Note that in the latter case there are no restriction on the βi ’s.

Grinberg’s approach [18], which in turn draws on Furstenberg-Tzkoni
[16], can be adapted to our setting, although we prefer to give a more
self-contained proof using the structure of semi-simple Lie groups. For
this reason, the notation in this section differs somewhat from the rest
of the paper.

3.1 Semi-simple Lie groups

We recall some basic facts from the theory of semi-simple Lie groups
as needed for our later discussion about the Grassmannian manifold.
We follow the presentation from [31]. Further information and details
about this topic can be found for example in [24].

Let G be a non-compact connected semi-simple Lie group with a fi-
nite center. We denote its Lie algebra by g. An involution θ : G→ G is
called a Cartan involution if K = Gθ := {a ∈ G : θ(a) = a} is a maximal
compact subgroup of G. In this case K is connected. We fix a Cartan
involution θ on G and the corresponding maximal compact subgroup
K . The derived involution θ̇ : g→ g will also be denoted by θ. We have
g = k⊕s, where k = gθ is the Lie algebra of K and s = {X ∈ g : θ(X) = −X}.

8



3 AFFINE INVARIANCE

Moreover, [k,k] ⊂ k, [s,s] ⊂ k, [k,s] ⊂ s. By Ad and ad, we denote the ad-
joint representation of the Lie group G and of the Lie algebra g, respec-
tively. The Killing form on g is given by 〈X,Y 〉 := Tr(ad(X)ad(Y )). And
the product

(X,Y ) := −〈X,θ(Y )〉
is an inner product on g. Note that ad(X)∗ = −ad(θ(X)). In particular, for
X ∈ s, ad(X) is a symmetric operator and hence diagonalizable over the
reals. Let a ⊂ s be abelian. Then ada is a family of commuting symmet-
ric transformations and thus can be diagonalized simultaneously, with
real eigenvalues. For each linear functional λ on a, λ ∈ a∗, let

gλ = {X ∈ g : [H,X] = λ(H)X for all H ∈ a}

and set
m = {X ∈ g : [H,X] = 0 for all H ∈ a and X ⊥ a} .

Then g0 =m⊕ a. Let ∆ = {λ ∈ a∗ \ {0} : gλ , {0}}. Elements in ∆ are called
restricted roots. We have

g =m⊕ a⊕
⊕

λ∈∆
gλ .

For λ,µ ∈ ∆∪ {0}, we have [gλ,gµ] ⊂ gλ+µ. In particular, [m ⊕ a,gλ] ⊂ gλ
for all λ ∈ ∆. Further, let ar = {H ∈ a : λ(H) , 0 for all λ ∈ ∆}. Fix H ∈ ar
and let ∆+ = {λ ∈ ∆ : λ(H) > 0}. Elements in ∆+ are called positive roots.
We have ∆ = ∆+ ∪−∆+, ∆+ ∩−∆+ = ∅ and (∆+ +∆+)∩∆ ⊂ ∆+. It follows
that

n :=
⊕

λ∈∆+

gλ

is a nilpotent subalgebra of g normalized by the Lie algebra p :=m⊕a⊕n.
In fact, p is a parabolic subalgebra of g. It is maximal if dima = 1.

Let P := {g ∈ G : Ad(g)p ⊂ p}. Then P is a closed subgroup of G with
the Lie algebra p. Let A := expa and N := expn be analytic subgroups of
G with Lie algebras a and n, respectively. The groups A,N are closed. A
is abelian and N is nilpotent. Denote by Mo the analytic subgroup of G
with the Lie algebra m. Let M := ZK (A)Mo, where ZK (A) stands for the
centralizer of A in K . M is a closed subgroup of G with finitely many
connected components. The map M ×A ×N ∋ (m,a,n) 7→ man ∈ P is an
analytic diffeomorphism. We have G = KP . Further, let L := K ∩M and
X̃ := K/L, then

K ∩ P = L and X̃ = G/P .

9



3 AFFINE INVARIANCE

The group G acts on X̃. Write

G ∋ g = k(g)m(g)a(g)n(g) ((k(g),m(g),a(g),n(g)) ∈ K ×M ×A ×N ).

The map g 7→ (a(g),n(g)) is analytic and the map g 7→ a(g) is right MN -
invariant. Thus we can view a(·) as a map G/MN → A. The elements
k(g),m(g) are not uniquely defined. However, the map

g 7→ k(g)L ∈ X̃

is well-defined and analytic. Set xo := eL, where e denotes the identity
element of G. The action of G on X̃ can now be described by g · (k · xo) =
k(gk) · xo. For x = k · xo ∈ X̃ and g ∈ G, we set a(gx) := a(gk).

We normalize the invariant measure on X̃ to have total mass one. For
f ∈ C(X̃), ∫

X̃
f (x)dx =

∫

K
f (k · x0)dk .

For λ ∈ a∗ define a homomorphism χλ : P→ R by

χλ(m exp(H)n) = eλ(H), where m ∈M,H ∈ a,n ∈N .

The shorthand notation for χλ(p) is pλ. For λ ∈ ∆, set mλ := dimgλ and
ρ := 1

2
∑

λ∈∆+mλλ ∈ a∗. Note that p2ρ = |detAd(p)|n |.
We shall need the following well known lemma.

Lemma 3.3. Let f ∈ L1(X̃) and g ∈ G. Then
∫

X̃
f (g · x)a(gx)−2ρdx =

∫

X̃
f (x)dx .

Proof. See Lemma 5.19 on p. 197 in [21]. This result is formulated there
in a slightly different form. However, the precise equality appears in the
proof as equation (25).

3.2 The Grassmannian manifold

Now we apply the general structure theory of semi-simple Lie groups
discussed above to the special case of Grassmann manifolds.

Let Gn,k denote the Grassmann manifold of all oriented k-dimension-
al subspaces of Rn and set r = n − k. Note that Gn,k � Gn,r .

Set G = SL(n), then g is the set of n × n matrices with trace zero. The
homomorphism θ : G→ G : x→ x−tr is a Cartan involution on G with

10



3 AFFINE INVARIANCE

K = Gθ = SO(n). The corresponding Cartan involution on g is θ(X) =
−Xtr . Denote by M(n) the set of n × n matrices. We have

k = {X ∈M(n) : Xtr = −X and Tr(X) = 0} ,
s = {X ∈M(n) : Xtr = X and Tr(X) = 0} .

The Killing form on g is given by 〈X,Y 〉 = 2nTr(XY ). For l ∈N, denote
by Il the l × l identity matrix. Let

Ho =

(
r
nIk 0
0 − k

nIr

)
∈ s .

We define a := RHo, then m = {X ∈ zg(a) : 〈X,Ho〉 = 0}. Fix α ∈ a∗ so that
α(Ho) = 1. We choose ∆ = {α,−α} and ∆+ = {α}. We have

m⊕ a =
{(

X 0
0 Y

)
:

X ∈M(k),
Y ∈M(r) and TrX +TrY = 0

}

= s(gl(k)× gl(r)) ,

n =

{(
0 X
0 0

)
: X ∈M(k × r)

}
,

MA =

{
m(a,b) :=

(
a 0
0 b

)
:

a ∈GL(k),
b ∈GL(r) and detadetb = 1

}

= S(GL(k)×GL(r)) ,

A =

{(
sIk 0
0 tIr

)
: s, t > 0 with sktr = 1

}
,

M =

{(
a 0
0 b

)
: deta,detb = ±1 and detadetb = 1

}
,

N =

{
n(X) :=

(
Ik X
0 Ir

)
: X ∈M(k × r)

}
,

P =

{(
a X
0 b

)
:

a ∈GL(k),
b ∈ GL(r),

detadetb = 1,
X ∈M(k × r)

}
,

L = S(O(k)×O(r)) .

Let e1, . . . , en be the canonical basis for Rn. Set xo = Re1 ⊕ · · · ⊕Rek ∈ Gn,k .
We have Gn,k = K · xo � K/L = G/P.

11



3 AFFINE INVARIANCE

We identify a∗ with R via λ 7→ n
krλ(Ho). The inverse of this map is

z 7→ z krn α. Since dimn = kr, we have

a∗ ∋ ρ =
kr

2
α←→ n

2
∈ R . (3.1)

For z ∈ R, we write pz instead of pz
kr
n α .

3.3 Linear invariance for functions on Gn,k

For g ∈ SL(n) and x ∈ Gn,k denote by Jg(x) the Jacobian determinant of
the transformation x 7→ gx. Then for f ∈ L1(x),

∫

x
f (t) |Jg (x)|dt =

∫

gx
f (g−1t)dt . (3.2)

Lemma 3.4. For k ∈ SO(n) and x ∈ Gn,k, we have |Jk(x)| = 1.

Proof. Let K ⊂ R
n be measurable and f = 1K be the characteristic func-

tion of K . For g ∈ SL(n), we compute
∫

gx
1K (g

−1t)dt =
∫

gx
1gK (t)dt = |gK ∩ gx| = |g(K ∩ x)| .

If g ∈ SO(n), then |g(K∩x)| = |(K ∩x)| =
∫
x
1K (t)dt. And the claim follows

for characteristic functions.
By an analogous computation, the claim follows for simple functions.

For a general function f , the claim follows by approximating f from
below by simple functions.

Recall the following multiplicative property of the Jacobian: Let T :
Z → Y and S : Y → X, then S ◦T : Z → X and

JS◦T (z) = JS(T (z)) JT (z) with z ∈ Z.

Lemma 3.5. For z ∈ R,x ∈ Gn,k and g ∈ SL(n), we have |Jg(x)|z = a(gx)z.

Proof. Write g = kp with k ∈ K and p ∈ P. By the multiplicative property
of the Jacobian, we have

|Jg(xo)| = |Jkp(xo)| = |Jk(p · xo)Jp(xo)| = |Jp(xo)| ,

where the last equality follows by Lemma 3.4.

12



3 AFFINE INVARIANCE

Let y ∈ Rk , then ỹ = (y,0, . . . ,0) ∈ xo. Decompose p = m(a,b)n(X) and
compute

p · ỹ =

(
a 0
0 b

)(
Ik X
0 Ir

)(
y
0

)
=

(
a X
0 b

)(
y
0

)
=

(
ay
0

)
.

Thus Jp(xo) = deta.

For some mo ∈ M and s ∈ R, m(a,b) = mo exp(sHo). Let mo =

(
u 0
0 v

)

and note that exp(sHo) =

(
es

r
n Ik 0

0 e−s
k
n Ir

)
. It follows that a = es

r
nu. Hence

deta = es
kr
n detu and so |deta| = es

kr
n .

Next observe: exp(sHo)z = χz krn α(exp(sHo)) = ez
kr
n α(sHo) = es

kr
n z. Thus

we have shown

|Jg(xo)|z = |Jp(xo)|z = |deta|z = es
kr
n z = exp(sHo)

z = a(g)z .

Write a general x ∈ Gn,k as x = k · xo. We have |Jg(x)| = |Jg(k · xo)| = |Jg(k ·
xo)Jk(xo)| = |Jgk(xo)|. Hence

|Jg(x)|z = |Jgk(xo)|z = a(gk)z = a(gx)z .

Substituting the result of Lemma 3.5 into (3.2) yields

a(gx)
∫

x
f (t)dt =

∫

gx
f (g−1t)dt . (3.3)

Proof of Theorem 3.1. Fix m ∈N and let fi ,pi ,αi ,g be as described in the
statement of the theorem. We compute

I(g · f1, . . . ,g · fm) =
∫

Gn,k

m∏

i=1

(∫

x
|fi(g−1t)|pi dt

)αi
pi

dx

=
∫

Gn,k

a(gx)−n
m∏

i=1

(∫

gx
|fi(g−1t)|pi dt

)αi
pi

dx

=
∫

Gn,k

a(gx)−n
m∏

i=1

(
a(gx)

∫

x
|fi(t)|pi dt

) αi
pi

dx

13



3 AFFINE INVARIANCE

=
∫

Gn,k

a(gx)−na(gx)
∑ αi

pi

m∏

i=1

‖fi |x‖
αi
pi dx

= I(f1, . . . , fm) .

The second equality follows by Lemma 3.3 and (3.1). The third equality
follows by (3.3).

3.4 Affine invariance for functions onMn,k

The linear-invariance property from the previous section can be trans-
ferred to an affine-invariance property on the affine Grassmannian.

Theorem 3.6. Let m be a positive integer and let pi ,αi , for i = 1, . . . ,m be
real numbers. Let fi be bounded functions on R

n, fi ∈ Lpi (Rn). Define

Ĩ(f1, . . . , fm) :=
∫

Mn,k

m∏

i=1

‖fi |x‖αi
pi dx .

Whenever this quantity is finite and
∑m

i=1
αi
pi

= n+1, for any volume-preserving

affine transformation g , we have

Ĩ(g · f1, . . . ,g · fm) = Ĩ(f1, . . . , fm) ,

where g · fi(t) = fi(g−1t).

To prove this theorem we will need an analog of Lemma 3.3, for
which, in turn, we need a couple of simple observations.

Lemma 3.7. For x ∈ Gn,k and g ∈ SL(n), we have |Jg(x⊥)| = |Jg(x)|−1.
Proof.

∫

Rn
g · f (z)dz =

∫

Rn
f (z)dz =

∫

x⊥

∫

x
f (t + s)dtds

=
∫

x⊥

∫

gx
f (g−1t + s) |Jg(x)|−1dtds

=
∫

gx⊥

∫

gx
f (g−1t + g−1s) |Jg(x)|−1dt |Jg(x⊥)|−1ds

= |Jg(x)|−1 |Jg(x⊥)|−1
∫

Rn
g · f (z)dz ,

where we applied (3.2) twice.

14



3 AFFINE INVARIANCE

Lemma 3.8. Let g ∈ SL(n). For y ∈Mn,k, let x ∈ Gn,k and s ∈ Rn be so that
y = x + s. Then |Jg(y)| = |Jg(x)|.
Proof.

∫

gy
f (g−1z) |Jg(y)|−1dz =

∫

x+s
f (z)dz =

∫

x
f (t + s)dt

=
∫

gx
f (g−1t + s) |Jg(x)|−1dt

=
∫

g(x+s)
f (g−1z) |Jg(x)|−1dz

=
∫

gy
f (g−1z) |Jg(x)|−1dz ,

where we again employed (3.2).

Lemma 3.9. Let g ∈ SL(n) and f ∈ L1(Mn,k). Then
∫

Mn,k

f (gy) |Jg(y)|−(n+1)dy =
∫

Mn,k

f (y) dy.

Proof.
∫

Mn,k

f (gy)dy =
∫

Gn,k

∫

x⊥
f (g(x + s))ds dx

=
∫

Gn,k

∫

x⊥
f (x + gs)ds |Jg−1(x)|−ndx

=
∫

Gn,k

∫

gx⊥
f (x + s) |Jg(x⊥)|−1ds |Jg(x)|ndx

=
∫

Gn,k

∫

gx⊥
f (x + s)ds |Jg(x)|n+1dx

=
∫

Mn,k

f (y) |Jg(y)|n+1dy ,

where the second equality follows by Lemma 3.3 along with Lemma
3.5.

Proof of Theorem 3.6. The result follows by an analogous computation to
the one in the proof of Theorem 3.1.

For related affine invariance properties, see [9] and [12].
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4 FUNCTIONAL FORMS OF ISOPERIMETRIC INEQUALITIES

4 Functional forms of isoperimetric inequalities

We start by recalling the main result from [33]. For positive integers
k,n and vectors x1, . . . ,xk in R

n, we view the k × n matrix [x1 · · ·xk] as an
operator from R

k to R
n. If C ⊂ R

k , then

[x1 · · ·xk]C =



k∑

i=1

cixi : c = (ci) ∈ C
 . (4.1)

For example, if C = conv {0, e1, . . . , ek}, then
[x1 · · ·xk]conv {0, e1, . . . , ek} = conv {0,x1, . . . ,xk} . (4.2)

Similarly, if x1, . . . ,xk+1 ∈ R
n and we consider C = conv {e1, . . . , ek+1} ⊂

R
k+1, we have

[x1 · · ·xk+1]conv {e1, . . . , ek+1} = conv {x1, . . . ,xk+1} .
If dimC denotes the dimension of the affine hull of C, then

dim([x1 · · ·xk]C) = min(rank([x1 · · ·xk]),dimC);

moreover, for almost every x1, . . . ,xk ∈ R
n, we have rank([x1 · · ·xk]) =

min(k,n).
Let f1, . . . , fk be non-negative bounded, integrable functions on R

n

such that ‖fi‖1 > 0 for each i = 1, . . . ,k. For a compact, convex set C ⊂ R
k

and p , 0, set

FC,p(f1, . . . , fk)

=




∫

Rn
· · ·

∫

Rn
|[x1 · · ·xk]C |p

k∏

i=1

fi(xi)
‖fi‖1

dx1 . . . dxk




1/p

. (4.3)

Here |·| denotesm-dimensional Lebesgue measure, wherem =min(k,n,dimC).
The main result from [33] (see Theorem 3.10 and Section 4.1) is the

following theorem.

Theorem 4.1. Let k and n be positive integers and C ⊂ R
k a compact convex

set. Let f1, . . . , fk be non-negative integrable functions such that ‖fi‖1 > 0 for
i = 1, . . . ,k. Then for each p , 0,

FC,p(f1, . . . , fk) > FC,p(f ∗1 , . . . , f ∗k ). (4.4)

Moreover, if ‖fi‖∞ 6 1 = ‖fi‖1 for each i = 1, . . . ,k and p > 1, then

FC,p(f ∗1 , . . . , f ∗k ) > FC,p(1Dn
, . . . ,1Dn

). (4.5)
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4 FUNCTIONAL FORMS OF ISOPERIMETRIC INEQUALITIES

Under suitable assumptions on C, the condition p > 1 can be relaxed
(e.g., when |[x1 · · ·xk]C |p is coordinate-wise increasing analogous to [11,
Lemma 4.3]).

In [33], the latter result was stated with the additional assumption
that k > n and that C ⊂ R

k is a convex body (so dimC = k). In fact, the
argument given there works for any positive integer k and any compact
convex set C ⊂ R

k . If k 6 n and dimC = k, the matrix X = [x1 · · ·xk]
represents an embedding from R

k into R
n and

|[x1 · · ·xk]C | = det(X∗X)1/2|C |; (4.6)

see, e.g., [14, Chapter 3]. In this case, the quantities F p
C,p(f1, . . . , fk) are all

multiples of
∫

Rn
· · ·

∫

Rn
|conv {0,x1, . . . ,xk}|p

k∏

i=1

fi(xi)
‖fi‖1

dx1 . . . dxk

(cf. (4.2)). When k > n, the geometry of C plays a more significant role,
and choosing C suitably gives rise to a number of isoperimetric inequal-
ities (which was our main interest in [33]).

It will be useful to have a non-normalized variant of Theorem 4.1
which relaxes the assumption ‖fi‖∞ 6 1 = ‖fi‖1. In fact, there are sev-
eral such variants, depending on the homogeneity properties of the in-
tegrand in (4.3).

For subsequent reference, we record two basic identities concerning
the volume of the sets [x1 · · ·xk]C, where x1, . . . ,xk ∈ Rn, and C ⊂ R

k is a
compact convex set. Note first that for each a > 0,

|[ax1 · · ·axk]C | = am|[x1 · · ·xk]C |, (4.7)

wherem =min(rank([x1 · · ·xk]),dimC). Moreover, if k 6 n and dimC = k,
and a1, . . . ,ak ∈ R+, then

|[a1x1 · · ·akxk]C | = a1 · · ·ak |[x1 · · ·xk]C |, (4.8)

which follows from (4.6).

Corollary 4.2. Let 1 6 k 6 n and f1, . . . , fk be non-negative, bounded inte-
grable functions on R

n such that ‖fi‖1 > 0 for each i = 1, . . . ,k. For p ∈ R,
set

∆0
p(f1, . . . , fk) =

∫

Rn
· · ·

∫

Rn
|conv {0,x1, . . . ,xk}|p

k∏

i=1

fi(xi)dx1 . . . dxk . (4.9)
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4 FUNCTIONAL FORMS OF ISOPERIMETRIC INEQUALITIES

Then for p > 0,

∆0
p(f1, . . . , fk) >




k∏

i=1

‖fi‖
1+p/n
1

ω
1+p/n
n ‖fi‖

p/n
∞


∆

0
p(1Bn

2
, . . . ,1Bn

2
). (4.10)

When −(n − k + 1) < p < 0, the inequality is reversed. Assume additionally
that {x : fi(x) = ‖fi‖∞} is a bounded subset of Rn for i = 1, . . . ,k and p , 0.
Then equality holds in (4.10) for k = n if and only if there is an origin-
symmetric ellipsoid E and positive constants ai , bi , such that fi = ai1biE a.e.
for i = 1, . . . ,k; for k < n, equality holds in (4.10) if and only if there are
positive constants ai , bi , such that fi = ai1biB

n
2
a.e. for i = 1, . . . ,k.

The condition −(n − k + 1) < p is needed for integrability. Since we
treat the equality cases in the latter corollary but there is no discus-
sion of equality cases in Theorem 4.1, it will be useful to recall one step
in the proof of (4.5). The basic ingredient is the next lemma, see e.g.,
[33, Lemma 3.5], [11, Proof of Lemma 4.3]; the equality condition is not
stated in the latter articles but it is easily obtained from the proofs. Here,
as above, rn = ω−1/nn is the radius of the Euclidean ball Dn of volume one.

Lemma4.3. Let f : R+→ [0,1] and suppose that
∫ ∞
0

f (r)rn−1dr =
∫ rn
0

rn−1dr.
Then for any increasing function φ : R+→ R

+, we have
∫ ∞

0
φ(r)f (r)rn−1dr >

∫ rn

0
φ(r)rn−1dr. (4.11)

If φ is strictly increasing, then equality holds if and only if f = 1[0,rn] a.e.

Proof of Corollary 4.2. For i = 1, . . . ,k, let ai = (‖fi‖1/‖fi‖∞)1/n and let

f̄i(x) =
fi(aix)∫

Rn fi(aiy)dy
. (4.12)

Then ‖f̄i‖1 = ‖f̄i‖∞ = 1. Using homogeneity property (4.8) for the set
C = conv {0, e1, . . . , ek}, we have

∆0
p(f1, . . . , fk) = F p

C,p(f1, . . . , fk)
k∏

i=1

‖fi‖1 (4.13)

= F p
C,p(f̄1, . . . , f̄k)

k∏

i=1

‖fi‖1+p/n

‖fi‖
p/n
∞

. (4.14)
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Repeating the latter identities for fi = 1Bn
2
and f̄i = 1Dn

, i = 1, . . . ,k and
applying Theorem 4.1 gives the desired inequality for p > 1. Next, for
p > 0, let

F(x1, . . . ,xk) = |conv {0,x1, . . . ,xk}|p.
Fix x1, . . . ,xk−1 ∈ Rn and θ ∈ Sn−1 such that x1, . . . ,xk−1,θ are linearly in-
dependent. Then

R
+ ∋ r 7→ F(x1, . . . ,xk−1, rθ)

is strictly increasing (cf. (4.8)). For i = 1, . . . ,k, let f̄i
∗
= (f̄i )∗. One can

now extend the result to p > 0 by writing ∆0
p(f̄1

∗
, . . . , f̄k

∗) in spherical co-
ordinates and applying Lemma 4.3 iteratively (as in, e.g., [11, Lemma
4.3]).

Towards the equality cases, assume that equality holds in (4.10). It
follows from (4.13) and (4.14) that

∆0
p(f̄1, . . . , f̄k) = ∆0

p(1Dn
, . . . ,1Dn

). (4.15)

Furthermore, it follows fromTheorem 4.1 applied toC = conv {0, e1, . . . , ek},
that

∆0
p(f̄1

∗
, . . . , f̄k

∗) = ∆0
p(1Dn

, . . . ,1Dn
). (4.16)

We will first argue that for each i = 1, . . . ,k, we must have f̄i
∗ = 1Dn

a.e.
Suppose towards a contradiction that the latter does not hold. Without
loss of generality, we may assume that

|{x ∈ Rn : f̄k
∗
(x) , 1Dn

(x)}| > 0.

Then h(r) := f̄k
∗
(rθ) (r > 0) is independent of θ ∈ Sn−1 and h differs from

1[0,rn] on a subset of positive measure. The equality condition in Lemma
4.3 implies

∫ ∞

0
F(x1, . . . ,xk−1, rθ)h(r)r

n−1dr >

∫ rn

0
F(x1, . . . ,xk−1, rθ)r

n−1dr.

Integrating in θ ∈ Sn−1,
∫

Sn−1

∫ ∞

0
F(x1, . . . ,xk−1, rθ)f̄k

∗(rθ)rn−1drdσ(θ)

>

∫

Sn−1

∫ rn

0
F(x1, . . . ,xk−1, rθ)r

n−1drdσ(θ).
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4 FUNCTIONAL FORMS OF ISOPERIMETRIC INEQUALITIES

In other words, for linearly independent x1, . . . ,xk−1, we have
∫

Rn
F(x1, . . . ,xk−1,xk)(f̄k)

∗(xk)dxk >
∫

Dn

F(x1, . . . ,xk−1,xk)dxk .

By continuity of F, we have

∆0
p(f̄1

∗
, . . . , f̄k

∗
) > ∆0

p(1Dn
, . . . ,1Dn

),

which contradicts (4.16).
Thus we have shown that for each i = 1, . . . ,k, f̄i

∗
= 1Dn

a.e. It follows
that f̄i = 1Ki

, where Ki is a measurable set of volume one, for i = 1, . . . ,k.
Since each set {fi = ‖fi‖∞} is bounded, so too is each Ki . Thus we have
reduced the equality cases in (4.10) to that of bounded, Borel measur-
able sets and we appeal to the work of Gardner [17, Corollary 4.2] which
draws on Pfiefer [36], [37]; we note that the latter articles state the equal-
ity conditions under the assumption that K1 = . . . = Kk , although it is
explained in [36, pgs 69-70] that the same techniques apply when the
bodies Ki are not necessarily the same.

The case p < 0 is proved in the same way.

Another variant of Theorem 4.1 is the following result.

Theorem 4.4. Let k and n be positive integers. Let f be a non-negative
bounded, integrable function on R

n with ‖f ‖1 > 0. Let C ⊂ R
k be a compact

convex set and let p > 1. Set m =min(k,n,dimC). Then

FC,p(f , . . . , f ) >
(
‖f ‖1

ωn‖f ‖∞

)m/n

FC,p(1Bn
2
, . . . ,1Bn

2
),

where the arguments in FC,p(·, . . . , ·) are repeated k-times.

Proof. Set a = (‖f ‖1/‖f ‖∞)1/n and let

f̄ (x) =
f (ax)∫

Rn f (ay)dy
. (4.17)

Then ‖f̄ ‖1 = ‖f̄ ‖∞ = 1. Using homogeneity property (4.7), we have

FC,p(f̄ , . . . , f̄ ) =
(
‖f ‖∞
‖f ‖1

)m/n

FC,p(f , . . . , f ).

Repeating the latter argument with f = 1Bn
2
and f̄ = 1Dn

, and applying
Theorem 4.1 gives the desired inequality.
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Corollary 4.5. Let 1 6 k 6 n and let f be a non-negative, bounded integrable
function on R

n with ‖f ‖1 > 0. For p , 0, set

∆p(f , . . . , f ) =
∫

Rn
· · ·

∫

Rn
|conv {x1, . . . ,xk+1}|p

k+1∏

i=1

f (xi)dx1 . . . dxk+1. (4.18)

Then for p > 1,

∆p(f , . . . , f ) >
‖f ‖k+1+kp/n1

ω
k+1+kp/n
n ‖f ‖kp/n∞

∆p(1Bn
2
, . . . ,1Bn

2
). (4.19)

Assume additionally that {f = ‖f ‖∞} is a bounded subset of Rn. Then equal-
ity holds in (4.19) when k = n if and only if there is an ellipsoid E and a
positive constant a such that f = a1E a.e.; when k < n, equality holds if and
only if there is a positive constant a and a Euclidean ball B such that f = a1B

a.e.

The proof is parallel to that of Corollary 4.2, although the equality
conditions in this case require the following additional lemma (see [33,
Lemmas 3.7, 3.8]).

Lemma 4.6. Let 1 6 k 6 n and let x1, . . . ,xk ∈Rn. Then for each p > 1,

R
+ ∋ r 7→

∫

Sn−1
|conv {x1, . . . ,xk , rθ}|pdσ(θ) (4.20)

is increasing.

Here and throughout, “increasing” is used in the non-strict sense.

Remark 4.7. If k = n = 1, the condition p > 1 in the latter lemma is
needed. Indeed, in this case S0 = {−1,1} and the function R

+ ∋ r 7→
1
2 (|r − x1|p + |r + x1|p) is not monotone if p < 1, p , 0 and x1 , 0.

Proof of Corollary 4.5. Set C = conv {e1, . . . , ek+1} ⊂ R
k+1 so that dimC = k.

Observe that
∆p(f , . . . , f ) = ‖f ‖k+11 FC,p(f , . . . , f )p,

where the arguments in FC,p(·, . . . , ·) are repeated k + 1 times. The in-
equality follows from Theorem 4.4 (with k +1 in place of k and m = k).

Assume now that equality holds in (4.19). It follows that

∆p(f̄ , . . . , f̄ ) = ∆p(1Dn
, . . . ,1Dn

), (4.21)
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where f̄ is defined in (4.17). In turn, we must have equality in both
inequalities in Theorem 4.1. In particular,

∆p(f̄
∗, . . . , f̄ ∗) = ∆p(1Dn

, . . . ,1Dn
) , (4.22)

where f̄ ∗ := (f̄ )∗. As above, we claim that f̄ ∗ = 1Dn
a.e. For a contradic-

tion, we assume that

|{x ∈Rn : f̄ ∗(x) , 1Dn
(x)}| > 0.

Let
F(x1, . . . ,xk+1) = |conv {x1, . . . ,xk+1}|p.

By Lemma 4.6, for any x1, . . . ,xk ∈ Rn, the function

R
+ ∋ r 7→

∫

Sn−1
F(x1, . . . ,xk , rθ)dσ(θ)

is increasing. By Lemma 4.3, we have
∫ ∞

0

∫

Sn−1
F(x1, . . . ,xk , rθ)f̄

∗(rθ)rn−1dσ(θ)dr

>

∫ rn

0

∫

Sn−1
F(x1, . . . ,xk , rθ)r

n−1dσ(θ)dr.

i.e.∫

Rn
F(x1, . . . ,xk ,xk+1)f̄

∗(xk+1)dxk+1 >
∫

Dn

F(x1, . . . ,xk ,xk+1)dxk+1. (4.23)

Assume now that x1, . . . ,xk are affinely independent points inside the
support of f̄ ∗, and 0 ∈ conv {x1, . . . ,xk}. Then

F(x1, . . . ,xk , rθ)
1/p = (1/k)|conv {x1, . . . ,xk}||PE(rθ)|,

where E = span{x1, . . . ,xk}⊥. In particular, for such fixed x1, . . . ,xk , F is a
strictly increasing function of r. Consequenlty, for such xi the inequal-
ity in (4.23) is strict by Lemma 4.3. By continuity of F, and another
application of Theorem 4.4, we get

∆p(f̄
∗, . . . , f̄ ∗, f̄ ∗) > ∆p(f̄

∗, . . . , f̄ ∗,1Dn
) > ∆p(1Dn

, . . . ,1Dn
),

which contradicts (4.22).
Thus f̄ ∗ = 1Dn

a.e., hence f̄ = 1K , for some measurable set K of vol-
ume one. Arguing as in the proof of Corollary 4.2, we reduce the equal-
ity case in (4.19) to that of bounded Borel measurable sets and we ap-
peal again to the work of Gardner [17, Corollary 4.2] and Pfiefer [36],
[37].
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5 INTEGRAL INEQUALITIES ON GN,K AND MN,K

5 Integral inequalities on Gn,k andMn,k

In this section we prove Theorems 1.2 and 1.3. We start with a general-
ization of the former.

Theorem 5.1. Let 1 6 q 6 k 6 n − 1 and let f1, . . . , fq be non-negative,
bounded integrable functions on R

n. Then for 0 6 p 6 n − k,
∫

Gn,k

q∏

i=1

‖fi |E‖
1+p/k
1

‖fi |E‖
p/k
∞

dE 6
ω

q(k+p)/k
k

ω
q(k+p)/n
n

q∏

i=1

‖fi‖
(k+p)/n
1 ‖fi‖

(n−k−p)/n
∞ . (5.1)

In particular, when q = k and p = n − k, we have
∫

Gn,k

k∏

i=1

‖fi |E‖n/k1

‖fi |E‖
(n−k)/k
∞

dE 6
ωn
k

ωk
n

k∏

i=1

‖fi‖1. (5.2)

Assume additionally that {fi = ‖fi‖∞} is bounded and fi is continuous at 0
for each i = 1, . . . ,k and p > 0. Then equality holds in (5.1) for k = 1 if and
only if f1 = a1K a.e., where a > 0 and K ⊂ R

n is star-shaped about the origin;
for 1 6 q < k or 0 < p < n − k if and only if there are positive constants ai ,
bi , such that fi = ai1biB

n
2
a.e.; equality holds in (5.2) if and only if there is

an origin-symmetric ellipsoid E ⊂ R
n and positive constants ai , bi , such that

fi = ai1biE a.e. for i = 1, . . . ,k.

Proof of Theorem 5.1. Wewill use the following well-known identity from
integral geometry: for p > −(k − q +1), we have

∆0
−(n−k−p)(f1, . . . , fq) = cn,k,q

∫

Gn,k

∆0
p(f1|E , . . . , fq |E)dE, (5.3)

where ∆0
p is defined in (4.9); this is simply Theorem 2.1 applied to the

function

F(x1, . . . ,xq) =
q∏

i=1

fi(xi)|conv{0,x1, . . . ,xq}|−(n−k−p).

Assume now that E ∈ Gn,k and ‖fi |E‖∞ > 0 for i = 1, . . . ,q. Applying
Corollary 4.2 on E (with k in place of n and q in place of k), we have

q∏

i=1

‖fi |E‖
1+p/k
1

‖fi |E‖
p/k
∞
6 ω

q(k+p)/k
k

∆0
p(f1|E , . . . , fq |E)

∆0
p(1Bn

2∩E , . . . ,1Bn
2∩E)

. (5.4)
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Note that ∆0
p(1Bn

2∩E , . . . ,1Bn
2∩E) is independent of E. Thus, integrating

over Gn,k , using (5.3) and Corollary 4.2 once more, we have

∫

Gn,k

q∏

i=1

‖fi |E‖
1+p/k
1

‖fi |E‖
p/k
∞

dE 6 ω
q(k+p)/k
k

∫
Gn,k

∆0
p(f1|E , . . . , fq |E)dE

∫
Gn,k

∆0
p(1Bn

2∩E , . . . ,1Bn
2∩E)dE

(5.5)

= ω
q(k+p)/k
k

∆0
−(n−k−p)(f1, . . . , fq)

∆0
−(n−k−p)(1Bn

2
, . . . ,1Bn

2
)

(5.6)

6
ω

q(k+p)/k
k

ω
q(k+p)/n
n

q∏

i=1

‖fi‖
(k+p)/n
1 ‖fi‖

(n−k−p)/n
∞ . (5.7)

The equality cases follow from those of Corollary 4.2 and Gardner’s
characterizations of sets that are ellipsoids, Euclidean balls or star-shaped,
up to sets of measure zero, in [17, Section 6].

Theorem 5.2. Let 1 6 k 6 n−1 and f be a non-negative bounded integrable
function on R

n. Then

∫

Mn,k

(∫
F
f (x)dx

)n+1

‖f |F‖n−k∞
dF 6

ωn+1
k ωn(k+1)

ωk+1
n ωk(n+1)

(∫

Rn
f (x)dx

)k+1
. (5.8)

Assume additionally that {f = ‖f ‖∞} is bounded. Then equality holds in
(5.8) when k = 1 if and only if f = 1K , where K ⊂ R

n is a convex body; when
k > 1 if and only if there a positive constant a and an ellipsoid E such that
f = a1E a.e.

When f = 1K , where K is a convex body in R
n, a more general result

is due to Schneider [41]: for s ∈ {1, . . . ,n},
∫

Mn,k

|K ∩ F |s+1dF 6
ωs+1
k

ω
(n+ks)/n
n

ωn+ks

ωk+ks
|K |1+ks/n. (5.9)

It is natural to try to extend Theorem 5.2 to powers 1 6 s 6 n as in (5.9).
Following the line of proof of Theorem 5.1 would require a statement
such as Corollary 4.5 for p < 1 (in particular p < 0); it is unclear to us if
this is possible.

Proof of Theorem 5.2. Let F ∈ Mn,k and assume ‖f |F‖∞ > 0. Applying
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Corollary 4.5 on F with p = n − k (replacing n by k) we have
(∫

F
f (x)dx

)n+1

‖f |F‖n−k∞
6 ωn+1

k

∆n−k(f |F , . . . , f |F)
∆n−k(1Bk

2
, . . . ,1Bk

2
)
, (5.10)

where the arguments in ∆n−k are repeated k + 1 times. Integrating over
Mn,k and applying Theorem 2.2, we get

∫

Mn,k

(∫
F
f (x)dx

)n+1

‖f |F‖n−k∞
dF 6

ωn+1
k

∫
Mn,k

∆n−k(f1|F , . . . , fk+1|F)dF
∆n−k(1Bk

2
, . . . ,1Bk

2
)

(5.11)

=
ωn+1
k

cn,k,k∆n−k(1Bk
2
, . . . ,1Bk

2
)

(∫

Rn
f (x)dx

)k+1
.

If f = 1Bn
2
, then inequality (5.10) is an equality (as noted in [41]), hence

so is (5.11). Consequently, using the expression in the equality case in
(1.12) and rearranging terms, we get

∆n−k(1Bk
2
, . . . ,1Bk

2
) = cn,k,kω

k+1
n

ωk(n+1)

ωn(k+1)
,

The latter also follows from results of Kingman [22] andMiles [28]. This
proves the inequality.

The equality cases follow from those of Corollary 4.5 and [17, Corol-
lary 6.8].

6 Bounds for marginals

In this section we state and prove a generalization of Theorem 1.1. We
also discuss marginals of log-concave measures and connections to the
Hyperplane Conjecture.

Theorem 6.1. Suppose µ is a probability measure on R
n with a bounded

density f . Then for each 1 6 k 6 n − 1 and s > 1, there exists As ⊆ Gn,k with

µn,k(As) > 1− 2s−kn such that:

(i) for every E ∈ As and t > 1, there exists a setBt ⊆ E such thatπE(µ)(Bt) 6
t−kn and

fπE (µ)(x)
1/k
6 c1st‖f ‖1/n∞ , (x ∈ (E \ Bt)∪ {0}); (6.1)
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(ii) for every E ∈ As, ε > 0 and any z ∈ E,

πE(µ)
(
{x ∈ E : |x − z| 6 ε

√
k}

)
6 (c2sε‖f ‖1/n∞ )kn/(n+1). (6.2)

Proof. By Fubini’s Theorem and Theorem 1.3,




∫

Gn,k

∫

E

(∫
E⊥+x

f (y)dy
)n

‖f |E⊥+x‖k∞
dπE(µ)(x)dE




1
kn

=




∫

Mn,n−k

(∫
F
f (y)dy

)n+1

‖f |F‖k∞
dF




1
kn

6




ωn+1
n−kωn(n−k+1)

ωn−k+1
n ω(n−k)(n+1)




1
kn

≃ 1.

By Markov’s inequality, for each s > 1, the µn,k-measure of the set A(1)
s of

E ∈ Gn,k such that

∫

E

(∫
E⊥+x

f (y)dy
)n

‖f |E⊥+x‖k∞
dπE(µ)(x) 6 (cs)kn (6.3)

is at least 1 − s−kn. For E ∈ A(1)
s and t > 1, we apply Markov’s inequality

once more to get that the πE(µ)-measure of the set Bt of x ∈ E such that
(∫

E⊥+x
f (y)dy

)n

‖f |E⊥+x‖k∞
> (cst)kn (6.4)

is less than t−kn. Note that for every x ∈ E \ Bt,
(∫

E⊥+x
f (y)dy

)1/k
6 cst‖f |E⊥+x‖1/n∞ 6 cst‖f ‖1/n∞ .

Applying now Theorem 1.2, we have



∫

Gn,k

fπE (µ)(0)
n

‖f |E⊥‖k∞
dE




1
nk

=




∫

Gn,k

(∫
E⊥

f (y)dy
)n

‖f |E⊥‖k∞
dE




1
nk

6

(
ωn
n−k

ωn−k
n

) 1
nk

≃ 1.

By Markov’s inequality, for each s > 1, the µn,k-measure of the set A(2)
s of

E ∈ Gn,k such that

fπE (µ)(0)
1
k 6 cs‖f |E⊥‖

1
n∞
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is at least 1− s−nk. For every E ∈ A(2)
s , we have that

fπE (µ)(0)
1
k 6 cs‖f |E⊥‖

1
n∞ 6 cs‖f ‖

1
n∞.

Setting As :=A1
s ∪A

(2)
s , we conlude that (6.1) holds.

Towards (6.2), let s, t > 1, E ∈ As, z ∈ E and ε > 0. Then

πE(µ)
(
{x ∈ E : |x − z| 6 ε

√
k}

)

=
∫

B(z,ε
√
k)
fπE (µ)(y)dy

=
∫

B(z,ε
√
k)∩Bt

fπE (µ)(y)dy +
∫

B(z,ε
√
k)∩Bct

fπE (µ)(y)dy

= πE(µ) (Bt) + sup
y∈E\Bt

fπE (µ)(y)|B(z,ε
√
k)|

6 t−nk + (c1st‖f ‖1/n∞ )k(c0ε)
k .

We choose t := (c2εs‖f ‖1/n∞ )−
1

n+1 and we get (6.2).

Remark 6.2. If As is the set in Theorem 1.1, E ∈ As and ε > 0, then we
have the stronger small-ball probability

πE(µ)
(
{x ∈ E : |x| 6 ε

√
k}

)
6 (c3sε‖f ‖1/n∞ )k . (6.5)

The proof is analogous to that of (6.2) (use Theorem 1.2).

The next lemma shows that the probability estimate for the µn,k-
measure in Theorem 6.1 is sharp in each dimension k.

Lemma 6.3. Let 1 6 k 6 n − 1 and set σ = (2π)−n/(2k). Let f be the Gaus-
sian density with law µ = N (0,D), where D is the diagonal matrix D =
diag(σ2, . . . ,σ2,1, . . . ,1), with σ2 repeated k times. Then for each 1 6 s 6 σ−1,

µn,k
(
{E ∈ Gn,k : ‖fπE (µ)‖

1/k
∞ > s}

)
> (2s)−k(n−k). (6.6)

The proof relies on the following proposition, which is a direct conse-
quence of a result of Szarek [43]; this formulation is from [35, Corollary
2.2]; here we equip Gn,k with the metric d(E0,E1) which is the operator
norm ‖PE0 −PE1 : ℓn2 → ℓn2‖.
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Proposition 6.4. Let 1 6 k 6 n − 1, E ∈ Gn,k and ε ∈ (0,2). Then

µn,k
({F ∈ Gn,k : d(E,F) 6 ε}) > (cε)k(n−k),

where c is a numeric constant.

Proof of Lemma 6.3. Let g be a standard Gaussian vector in R
n. Let E0 be

the span of first k coordinate unit vectors and note that

‖f ‖∞ = (2πσ2)−k/2(2π)−(n−k)/2 = 1 ,

while
‖fπE0 (µ)

‖∞ = (2π)(n−k)/2.

Let ε > 0 and assume that E1 ∈ Gn,k satisfies d(E0,E1) < ε. Write

PE1D = σPE1PE0 +PE1PE⊥0 .

Using singular value decomposition, there exist orthonormal bases u1, . . . ,uk
of E0 and v1, . . . ,vk of E1 such that

PE1PE0 =
k∑

i=1

aiui ⊗ vi ,

where 0 6 ai = 〈ui ,vi〉 6 1. Since PE1PE⊥0 = PE1(I −PE0), we can write

PE1PE⊥0 =
k∑

i=1

vi ⊗ vi −
k∑

i=1

aiui ⊗ vi =
∑

i:ai,1

√
1− a2i fi ⊗ vi ,

where fi =
vi−aiui√

1−a2i
. Set γi = 〈g,ui〉 and γ ′i = 〈g,fi〉. Since ui and fi are

orthogonal, γi and γ ′i are independent. Note that

PE1Dg =
∑

i:ai=1

σγivi +
∑

i:ai,1

(
σaiγi +

√
1− a2i γ ′i

)
vi .

Sicne
√
1− a2i 6 ‖PE0 −PE1‖ = d(E0,E1) 6 ε for each i = 1, . . . ,k, the covari-

ance matrix A of PE1Dg satisfies

(det(A))1/k 6
1
k
tr(A) =

1
k

k∑

i=1

(σ2a2i +1− a2i ) 6 σ2 + ε2.
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It follows that for any E1 with d(E0,E1) 6 ε, we have

‖fπE1 (µ)
‖1/k∞ =

1

((2π)k det(A))1/(2k)
>

1√
2π(σ2 + ε2)

.

We now apply Proposition 6.4 with ε = 1/(cs) to obtain (6.6).

6.1 Concluding remarks

In light of Theorem 6.1, a natural question arises here: under what addi-
tional condition(s), can one guarantee that allmarginal densities of such
functions f are suitably bounded, i.e.,

‖fπE (µ)‖
1
k∞ 6 C‖f ‖

1
n∞, ∀E ∈ Gn,k , (6.7)

as in the case of Rudelson and Vershynin’s result (1.2). The example
of independent Gaussians with different variances in Lemma 6.3 shows
that one needs a type of non-degeneracy condition. For instance, one
may assume that µ is isotropic, namely,

∫

Rn
〈x,θ〉dµ(x) = 0 and

∫

Rn
|〈x,θ〉|2dµ(x) = 1 ∀θ ∈ Sn−1. (6.8)

If µ is an isotropic, subgaussian, log-concave probability measure then
(6.7) holds as a consequence of a result of Bourgain on the isotropic
constant of such measures [4]. If µ is isotropic and log-concave, the
isotropic constant of µ is defined by Lµ := ‖fµ‖1/n∞ . A major open problem
known as the Hyperplane Conjecture asks if there exists an absolute
constant C (independent of n and µ) such that Lµ 6 C. The best known
bound (of order n1/4) is due to Klartag [23], improving an earlier result
of Bourgain [3]. For detailed discussion on this conjecture, see [6]. Thus
in the class of isotropic log-concave probability measures µ, inequality
(6.7) amounts to asking if

LπE(µ) 6 CLµ, ∀E ∈ Gn,k . (6.9)

It is not difficult to show that the above question is just another equiva-
lent formulation of the Hyperplane Conjecture. (For a proof of this fact
see [32]). The inequality of Busemann-Straus and Grinberg (1.11) has
been used recently in [35] to show that the marginals that satisfy the
Hyperplane Conjecture form a 1-net in Gn,k for k 6

√
n. One of the main
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ingredients in the proof is entropy numbers on the Grassmanian estab-
lished by Szarek (Proposition 6.4 above). Using these estimates along
with Theorem 1.1, we get the following corollary.

Corollary 6.5. Let µ be a probability on R
n with a bounded density f . Then

for every 1 6 k 6 n − 1, E ∈ Gn,k and η > 0, there exists E0 ∈ Gn,k with
d(E0,E) 6 η such that for any z ∈ E0,

πE0(µ)
(
{x ∈ E0 : |x − z| 6 ε

√
k}

)
6

(
c2

ε

η
‖f ‖1/n∞

) kn
n+1

. (6.10)

In other words, given any E ∈ Gn,k , there exists E0, close to E such
that E0 has a nearly optimal small-ball probability estimate.
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