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SHARP INEQUALITIES FOR SYMMETRIC POLYNOMIALS, HUNTER’S
CONJECTURE, AND MOMENTS OF EXPONENTIAL RANDOM
VARIABLES

SILOUANOS BRAZITIKOS AND CHRISTOS PANDIS

ABSTRACT. We prove Hunter’s conjecture on complete homogeneous symmetric polynomials.
For even n and every integer k > 1, we show that under the constraint » 7 , a? = 1 the
global minimum of the even-degree polynomial hog (a1, .. .,ar) is attained precisely at the half-
plus/half-minus vector and we compute the optimal value in closed form. The proof combines
algebraic properties of hoj with the probabilistic representation k!hg(a) = E(3-1 a; X;)¥,
where X1,..., X, are i.i.d. standard exponential random variables with density e™*1,;~0 and
a combinatorial identity. This viewpoint further yields sharp upper and lower bounds for
E|>"" ; a;X;|? under natural constraints on the coefficients, including the spherical constraint
>~ a? =1 combined with the non-negative regime a; > 0, or the centred regime > a; = 0. More-
over, we determine the exact minimum of hgy on the foo-sphere Soo = {a € R" : ||a||oc = 1},
which yields sharp norm comparison inequalities between the matrix norms induced by complete

homogeneous symmetric polynomials and the classical operator and Schatten norms.
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Complete homogeneous symmetric (CHS) polynomials play a fundamental role in algebraic com-

binatorics, representation theory, and the study of moment inequalities in probability. Let hy
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denote the degree-k CHS polynomial in n real variables a1, ..., a,, defined by
hi(ar,...,a,) = Z @iy - Q-
1<y << <n

We adopt the convention that hg(a) = 1. The interplay between the algebraic structure of hy
and the analytic properties of polynomials on R” is particularly transparent in low degrees. For
instance,

n n

hl(a):Zai, hg(a):Za?—i- Z a;a;.

i=1 i=1 1<i<j<n

Crucially, the quadratic polynomial admits the sum-of-squares decomposition

n n

ha(a) = %Zaf + %(Zaiy.

i=1 i=1
Consequently, hs is manifestly positive definite. It is natural to inquire whether higher even-
degree CHS polynomials enjoy similar positivity properties. While positivity fails trivially for odd
degrees (since hog11(—a) = —hag+1(a)), Hunter initiated the systematic study of this phenomenon
for even degrees in [17]. In [18], he established that for any integer k > 1,

n k
(1.1) hap(a) > ﬁ (Z ag) ,

Equality holds in (1.1) if and only if £ = 1 and > ;a; = 0. Hunter’s positivity theorem
has since been revisited and re-proved by several authors using various techniques (see, e.g.,
[21, 4]). More recently, Bouthat, Chévez and Garcia [4] developed a systematic probabilistic and
operator-theoretic framework around Hunter’s theorem, interpreting even-degree CHS polynomials
as building blocks of “random vector norms” on spaces of matrices and surveying many of the

existing proofs and generalizations.

In the same work [18], Hunter also conjectured a substantially stronger statement. Specifically, he
conjectured that when n is even, under the normalization Y a? = 1, the global minimum of hgy

is attained at the “half-plus/half-minus” vector

a:(i 1 _;)
IRy v i ey L

n/2 n/2

Progress on this conjecture has been incremental. Baston [2] sharpened Hunter’s original bound
by adding a correction term depending on (3 a;)?*. More recently, Tao [21] demonstrated that
each hgg is Schur-convex on R™, which implies that if one fixes > a; = 1, then the minimum
is attained at the flat vector (1/n,...,1/n). However, the global minimization problem on the

sphere S"~! has remained open.

A different line of work was recently initiated by Garcia and Vol¢i¢ [14], who introduced noncom-
mutative complete homogeneous symmetric (NCHS) polynomials and proved a noncommutative

Hunter-type theorem. They obtained optimal operator-valued lower bounds

Hor(X1,. o, Xp) = o g (XPF 4+ 4 X2F)



for Hermitian operators X;, together with explicit sum-of-hermitian-squares representations. In

the commutative scalar case this yields new inequalities of the form

Bk ok
hor(ay,...,a,) > # lall5",

which improve Hunter’s original constant whenever d is sufficiently large compared to n. Nev-

ertheless, the exact best lower bound for scalar CHS polynomials—that is, the optimal constant

and the extremizing configurations on the Euclidean sphere—remained unknown in [14].

1.1. Probabilistic and geometric perspectives. Beyond their algebraic utility, CHS poly-
nomials possess an elegant probabilistic representation, which will be central to our approach
(see, e.g., [21, 4]). If X;,...,X,, are independent and identically distributed (i.i.d.) standard

exponential random variables (with density e”*1,s¢), then for every integer k > 0,
n k
(1.2) k! i (a) :E(Zajxj) .
j=1

This identity bridges algebraic combinatorics with the study of optimal moment inequalities: the
problem of minimizing hoj on the sphere becomes the problem of minimizing the even moments of

linear combinations of independent exponential random variables under a fixed variance constraint.

This probabilistic framework also interfaces naturally with the geometry of convex bodies. Mo-
ments of such sums are closely related to the volume of hyperplane sections of the regular simplex
A,. From the geometric viewpoint (see, for example, [22]), the constraint Y a; = 0 is precisely
the condition that the hyperplane a passes through the centroid of the simplex, and questions

about extremal moments in the zero-sum regime are inherently linked to central sections of A,,.

There are thus two particularly compelling reasons to single out the zero-sum hyperplane

Geometrically, as just noted, it encodes central sections of the simplex. From the probabilistic
viewpoint, if Xq,...,X, are i.i.d. standard exponentials with EX; = 1, then

E(;aiXi> - (Xn:ai)]EXl,

i=1
so the linear form Y a;X; is centred if and only if > a; = 0. Thus the zero-sum regime is
simultaneously the natural geometric setting for simplex slicing and the natural probabilistic

setting for sharp moment inequalities of centred exponential distributions.

1.2. Main contributions. In this paper, we leverage the probabilistic perspective to provide a
complete description of the extremal behaviour of complete homogeneous symmetric polynomials
under natural constraints. Our analysis is organized into four regimes, according to the structure

of the coefficient vector a = (ay,...,a,).

1. The unconditional regime (Hunter’s conjecture). Our first main result is an affirmative

resolution of Hunter’s conjecture for all even degrees.
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Theorem (Informal version of Theorem 3.2). Let n be an even integer and k > 1. For any a € R”
with 3" a? = 1,
hax(a) > har(a),
where @ is the half-plus/half-minus vector. The explicit value of this minimum is given by
. (n/2+k—-1)
h — e r )
2(4) = L2 Tk

and equality holds if and only if a is a permutation of a.

On the upper side, it is clear that the maximizers of hgj under the constraint > a? = 1 coincide

with those in the non-negative regime, which we describe in detail below.

2. The non-negative regime. We next analyze the behaviour of moments and CHS polynomials
when the coefficients are constrained to be non-negative, a; > 0, with Y~ a? = 1. For small degrees,

we use Schur-type arguments to show that for & < 4 the map
n k
((El, Ce 71'“) — E(Z VT Xj>
=1

is Schur-concave on R, yielding sharp two-sided bounds for hjy in terms of extremal vectors with
either one nonzero coordinate or all coordinates equal. Schur-concavity (or convexity) breaks for
k > 4, thus for higher degrees we turn to an explicit interpolation formula for E( ZaiXi)k in
terms of the coefficients a; and Gamma functions. A detailed analysis of this formula shows that,
for each fixed integer k and under the constraint Y a? = 1, every minimizer among non-negative
vectors has a very rigid structure: it is supported on a subset of coordinates on which all entries
are equal, and all remaining coordinates are zero. In other words, all minimizers are of the form
(a1,...,an) =(t,...,t,0,...,0),

—

m times
for some m € {1,...,n} and t > 0 determined by the normalization. The optimal support size
m is characterized via a one-dimensional function. Dually, we prove that all maximizers in the
non-negative regime are vectors with exactly n — 1 equal coordinates, that is, of the form

(a1, an) = (s, t,...,t),
——

n—1 times

with ¢ < s and (s,t) explicitly determined by k and n as a root of an explicit polynomial. These

maximizers are, of course, maximizers for the unconditional regime.

3. The centred (geometric) regime. Motivated by the simplex slicing problem and the

probabilistic setting of centred random variables, we analyze in detail the case where

n n
E a; = O7 E a? =1.
i=1 i=1

We prove that for even n the lower bound for hs, under the zero-sum constraint coincides with
the unconditional Hunter bound, and is again attained at the half-plus/half-minus vector. We
also determine the exact maximizers under the same constraint, which turn out to be vectors with

n — 1 equal coordinates and one opposite coordinate.
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When dealing with the sum of three exponential random variables, we combine these ideas with
Fourier-analytic formulas for moments to obtain sharp upper and lower bounds for nearly all
exponents ¢ € (—1,00). This leads to a complete description of the extremizers for E| > a;X;|?

under the zero-sum constraint.

4. Matrix-norm inequalities. A further motivation for our work comes from unitarily invariant
norms on matrices induced by complete homogeneous symmetric polynomials. Following Aguilar,
Chévez, Garcia and Vol¢i¢ [1], given A € M,,(C) with singular values s;(A) > -+ > s,(A) > 0
and an even integer d = 2k, one can define the CHS—norm

Al e, o= ha(s1(A), ..., sn(A))".

These norms interpolate between classical Schatten norms, and the authors proved two-sided
comparisons with the operator norm || - ||op; see in particular [1, Theorem 38]. The dependence of
their constants on d and n is not optimal for the lower bound, and the authors explicitly asked for
the sharp form of such inequalities. Our results in Section 6 answer this question, see Theorem 6.1,

and lead to the optimal order of the best constant in the comparison between || - ||z, and || - | op-

Organization of the paper. The rest of the paper is organized as follows: In Section 2, we collect
some preliminaries and further develop the necessary background, focusing on Schur-convexity
and majorization, which are central to the properties of the complete homogeneous symmetric
polynomials and the Fourier-analytic formulas for moments. In Section 3, we provide an affirmative
answer to Hunter’s conjecture. Section 4 is devoted to the case of non-negative coeflicients.
Section 5 addresses the centred case and in Section 6 we study the minimisation of complete

homogeneous symmetric polynomials under the constraint ||al/s = 1.

2. PRELIMINARIES AND BACKGROUND

2.1. Schur-convexity and majorization. Schur-convexity-type arguments have recently ap-
peared in probabilistic settings (see, for example, [10, 9]), leading to sharp results ranging from
moment comparison inequalities to entropy inequalities. For a concise exposition on majorization
and Schur-convexity, we refer to Chapter II of [3]. We recall here the basic notions that will be

used throughout the paper.
Definition 2.1 (Decreasing rearrangement). Given z = (z1,...,z,) € R”, we denote by z* =
(x3%,...,2}) its decreasing rearrangement, i.e.

* * *
x12x22...>xn'

Definition 2.2 (Majorization). For any two vectors z,y € R™, we say that x is majorized by y,

and write x < y, if

n n k k
in:Zyi and meﬁny for every k =1,2,...,n.
i=1 i=1 i=1 i=1
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As a direct consequence, for every vector a = (a1,...,a,) € R} such that E?:l a; = 1, we have

1 1
(n,...,n)'<(al,...,an)'<(].,0,...,0).
More specifically, if i | a? = 1, then
(2.1) ! ! < (a? 2y < (1,0 0)
. — = ay,...,a ...,0).
TL’ 777, 1 sy Un y Yy ’

Definition 2.3 (Schur-convexity/concavity). A function f : R™ — R is said to be Schur-convex
(resp. Schur-concave) if # < y implies f(z) < f(y) (vesp. f(z) > f(y)).

A central criterion for establishing the Schur-convexity or Schur-concavity of a function is due to
Schur and Ostrowski.

Theorem 2.4 (Schur-Ostrowski). Let f : R™ — R be a symmetric function with continuous

partial derivatives. Then f is Schur-convex (resp. Schur-concave) if and only if

(i — ;) (g‘g-gg)zo (resp. < 0)

for all x € R™ and for all 1 <i,j <n.

2.2. Complete homogeneous symmetric polynomials. In the Introduction we defined the
complete homogeneous symmetric polynomial hg(aq,...,a,) by
hi(ai,az, ... a,) = Z iy Wiy - - -
1<i1 <ip<--<ig<n
One can also define all the complete homogeneous symmetric polynomials of n variables simulta-
neously by means of the generating function:

1
(1 —tay)(1 —tas)...(1 —tay)

(22) th.(al,ag,. ..,an)tk =
k=0

As a direct consequence of the generating function representation, we obtain the following two

important properties.

Lemma 2.5 (Lemmas 1 and 2 in [18]). Ifa # b, then

(2.3) hi—1(z,a) — hg—1(z,b) = (a — b)hp_2(z, a,b),
and
(2.4) 0 hi(x) = hg—1(z, ;)

8%1'
for every k > 1.

Another well-known formula for CHS polynomials is the Lagrange interpolation formula

n x’l_’L-’rk—l
(2.5) hi(z1,...,xp) = _t
i=1 Hj#i(xi - )
6



We also recall the probabilistic representation already used in the introduction. Let X1,..., X,

be i.i.d. standard exponential random variables. Then for any k € N we have

k k!
_ M ma L me L e
E(a1X1—|— —i—aan) _E< S X X )
mi+-+mp==k
E(X™) ... E(X™n
Ly BOTUEOR

mq!---my!
Myt =k ! n

=k!- hk(ala .. '7an)a

where in the last step we used the definition of hj and the moment identity E(X;") = m;!. This

is exactly the representation (1.2).

In [18], Hunter was the first to show that even-degree CHS polynomials are positive definite.

Theorem 2.6 (Hunter). Let n,k be non-negative integers. Then hog(x1,...,2,) is a positive
definite function on R™, i.e. hog(x1,...,2,) > 0 for all x # 0.

Tao established the positive definiteness and Schur-convexity of the CHS polynomials in [21].

Theorem 2.7 (Tao). Let n,k be non-negative integers. Then, for any x € R™, the following hold.

(i) Positive definiteness: hor(x) > 0, with equality if and only if x = 0.
(ii) Schur-convexity: hop(z) < hop(y) whenever x < y. Moreover, equality holds if and only
if x is a permutation of y.
(iii) Schur—Ostrowski criterion: For every 1 <i < j <mn,
0 0
=) (5 = o ) hak(@) > 0,
(= mf)(axi ax) 2(2) 2

with strict inequality unless x; = x;.

Hunter’s positivity theorem for CHS polynomials has been rediscovered and proved many times;

for additional proofs and extensions we refer to [4] and the references therein.

2.3. Power-sum symmetric polynomials. The power-sum symmetric polynomial of degree m

in the variables 1, ..., z, is defined, for m € N, by
P (T1, .. xp) =2 2y 4+ -+,

often written p,,(x) or simply p,,, when the variables are clear from context. The CHS polynomi-
als and the power-sum polynomials are connected by the following well-known identity (see, for
instance, [19, 20]):

k e
(2.6) () = > 11 %

mi+2mo+---+kmp=k t=1
m12>0,...,mp>0

All coefficients in this expansion are nonnegative. This combinatorial identity will play a crucial
role in our proof of Hunter’s conjecture, as it allows us to compare ho, on different vectors by

comparing only the corresponding power sums.
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2.4. Fourier-analytic formulas. Fourier-analytic formulas for moments and negative moments
of random vectors have played a crucial role in the study of various slicing problems in convex

geometry; see, for example, [7, 8, 10]. We recall here the classical formulas that we shall need.

Lemma 2.8 (Lemma 3 in [15]). Let X be a random vector in R? and let p € (0,d). Then

BIXI = by [ ox(OlPdr
R

provided that the right-hand side integral exists, where ¢x(t) = EetX) is the characteristic
function of X, | - || is the Euclidean norm on R%, and
I'((d—p)/2
bp.a = 271}71'7(1/27(( p)/ ) .
I'(p/2)

There are also Fourier-type formulas for positive moments.
Lemma 2.9 (Lemmas 2.3 and 2.4 in [16]). Let
2
Cp = =T'(1+p)sin (E) .
T

2

For a real-valued random variable X with characteristic function ¢x(t) = E(e®®X), we have, for

€ (0,2),

1= R(ox(t)
For p € (2,4), assuming E(X*) < oo, it holds that
(2.8) E|X|P = -C, / < —1+ ]E(XQ)tQ) t= P+ gy,

Using the method introduced in [16] to prove the above lemmas we can actually prove the following:

Lemma 2.10. Let X be a real-valued random variable that satisfies EX® < co. For p € (4,6) we
have - ) )
E|X[P = C,,/ (—R(px (1)) +1— 51E(X2)t2 + E]E(X‘*)f*)t*@“)dt,
0 !

where C), is the previous constant.

Proof. Let x € R, we will compute

1 1
M = / —cos(xt) +1— 2% 22 4 gx‘lt‘l)t_p_l dx.

Notice that — cos(u) + 1 — 2u® + Lu* > 0 for u > 0. Since, cos(t) =1 — 1t2 + Lt* + O(t%) for
t — 0 and cos(t) = 1— 2>+ $t* + O(t*) for t — oo we see that M is finite. Using the substitution
u = |z|t and integrating by parts, we get

M:|x\p/ (—cosu+1— Lu*+ Fuh)uP ' du
0

= Jf” - — cosu)u"PT3 du
= e By, (e
_ |z|P L mpi
Tplp-Dp-2)(p—3) Cpms T Cp

8



In the last steps we used the facts that p(p —1)Cp_2 = —Cp, 0 < p—4 < 2 and

[e.¢] 1 1
(1 —cosu)u™ 97" = —
J J

for 0 < ¢ < 2 (see [16]). Thus,

o 1 1
|z]P = Cp/ (—cos(zt) +1 — §x2t2 + 1:174t4)t*p*1
0 .

The result follows from the fact R(¢x(t)) = R(E(e!®)) = E(cos(tX)) combined with Fubini’s
Theorem. (]

2.5. Weighted sums of exponential random variables. We next recall an explicit represen-
tation of the density of weighted sums of independent exponentials. It is a folklore result (see,
e.g., [6]) that the density of the linear combination a1 X; + -+ + a,X,, denoted by G, where

Xq,..., X, are i.i.d. standard exponential random variables, is given by

N aj —t/a
G(t):Z;H ——e™H% 1y o0y ()

that is, for ¢ # 0,

" 1 n a; —t/a, " 1 - a; —t/a
(2.9) Gt)= > ;H aj_jake Y% g 00 (E) = ;H , VLo 0)(8),

and

1~ a;
(2.10) Z H aj —ay Z a; H a; — ag

a; i
Jj=1 k=1 Jj=
a;j>0 k#j a;

or

This, in turn, implies the following interpolation formula:
q

(2.11) Zaj I'(1+gq)- Z|aj|qHaJ -

Jj=1 i#£]

which remains valid for all ¢ +1 > 0, and also for ¢+ 1 < 0 provided that ¢ 4+ 1 is not an integer.

Here I denotes the Euler gamma function, defined by

I'(a) = / t*“te~tdt for R(a) > 0,
0

and extended to all a < 0 except at its poles {0,—1,—2,...} by the recurrence I'(a) =T'(a +1)/a.

2.6. Palindromic and anti-palindromic polynomials. Finally, we record a simple algebraic

notion that will be used in some auxiliary arguments.
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Definition 2.11. Given a polynomial P(z) = ag+a1z+. ..+ a,a™, we say that it is palindromic
if a; = ap_; for all i = 0,1,...,n, i.e. if its coefficients, when the polynomial is written in the

order of ascending or descending powers, form a palindrome.

Similarly, a polynomial P of degree n is called anti-palindromic if a; = —a,_; foralli =0,1,... n.

An immediate property of an anti-palindromic polynomial P(z) is that x = 1 is always a root.

3. A Proor orF HUNTER’S CONJECTURE

In this section we prove our first main result, which gives a complete solution to Hunter’s conjecture
in the scalar case. We begin with the precise description of the extremizers for h,4, and then proceed

to all even degrees.

Proposition 3.1. Let ay,...,a, be real numbers such that E?:l a? = 1. Then hy attains its
maximum at the vector
_ 1 1
a=(—,...,— |,
(\/ﬁ vn )
while it attains its minimum at the “half-plus/half-minus” vector

1 1 1

1
ARREE Sy~ by~ R by
n/2 n/2

Y
Il

when n is even, and at a vector of the form

when n is odd. Here a appears ”T_l times, b appears ”TH times, and § minimizes the function

2
2+ 1+ (2o + 243)
n—1,2  ntl
7 T

Our main theorem settles Hunter’s conjecture for all even degrees.

Theorem 3.2. Let n be an even integer, and let aq, ..., a, be real numbers such that E?:l a? =1.
Then, for every integer r > 1,
(2 +r—1)!

> = 7
h27‘(a1; aan) el ’I‘!' (% _1)!'nrv

and this inequality is sharp, with equality achieved if and only if (a1,...,a,) is a permutation of

the half-plus/half-minus vector a.

One may now ask about the maximum of ho, under the normalization condition ,a? = 1. To
this end, we observe that a straightforward application of the triangle inequality in identity (1.2)
reduces the problem to the case where a; > 0 and ZZ a% = 1. We will elaborate on this reduction

later when treating the case involving positive coefficients.
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Before proceeding to the proof of the conjecture, we present a useful Proposition suggesting that

the extrema of hoy are attained under specific structural conditions.

Proposition 3.3. Letn > 1 and d > 3 be a non-negative even integer. Then the extrema of hy

on the unit sphere S*~1 are of the form

x=|a,...,a,b,...,bc,...,C
—— —— ——
7 Y2 3
Here, a appears v1 times, b appears o times, and c appears 3 times, subject to the constraints

mna® +72b? + 93¢ =1 and 11 + 72 + 93 = n.

Proof. The unit sphere in R™ is compact. Therefore, hy must attain its extrema @ on the unit
sphere in R™. The method of Lagrange multipliers ensures that if « is a extrema, there exists A
such that

ahd(iL')
3.1 —— +2\z; =0
for each ¢ = 1,2,...,n. We multiply by z; and sum over all ¢ to obtain
- ahd(w)
3.2 i 2\ = 0.
(32) ; s

From Euler’s homogeneous function theorem, equation (3.2) becomes
dhg(x) +2X2 =0.
Substituting and using the differentiating property of the CHS polynomials 2.4, we obtain
(3.3) ha—1(x, x;) = dzx;hq(x)
for each i =1,2,...,n.
The vector with all coordinates equal satisfies equation (3.3). Thus, we may assume that there

exist coordinates z; # x;. Applying equation (3.3) to z; and x;, and subtracting the results,

combined with the difference property, suggests that
(.231‘ — a;j)hd_g(ac, i, l‘j) = hd—1($7$i) — hd_1($,l‘j) = d(a:z — x])hd(m)

Then,

(3.4) ha(z) = W

Assume that there exists a third distinct coordinate xj # x;, ;. By applying relation (3.4) once

again for x; and xj, and subtracting as before, we obtain

(3.5) hd_g(w,xi,xj,xk) =0.

If we further consider, #; # x;,;, z) in the same manner we obtain
ha—a(x, zi, ), K, 21) = 0.

For d > 4, since d — 4 is even, the positivity of the even degree CHS polynomials leads to a

contradiction. O
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We proceed by deriving sharp bounds for h4 through appropriate estimates of its extrema. This

will play a crucial role as the inductive step.

Proof of Proposition 3.1. For the maximum notice that

4 4
1 - 1 - 1 1
ha(as,. ., an) = ;E (ZaiXZ) < 4E (Z |ai|Xi> < hy (ﬁﬁ) 7
: =1 ’ =1

where we used Corollary 4.2 for k = 4.

For the minimum, we shall use the method of Lagrange multipliers as in proof of Proposition 3.3
to bound the extrema of hy(aq,. .., a,) which exist since the domain is compact. We are searching
for all = (21,...,2,) and the real number \. By following the preceding argument verbatim,
we find that Relation (3.5) asserts that

hl(a:a T, Tj, l’k) =0
or equivalently, if we set S := 3" x;,
(3.6) S+a;+x;+x,=0.

We also obtained the following identity (3.4):

(1+27 +a3 +a3).

N =

1 n
4 hy(x) = ho(x, 25, 25) = 3 {Z:ﬂ%—kx?—kxi—&-(s—kxi—&-mjf} =

m=1
As established in Proposition 3.3, the extrema are attained under specific structural conditions,
that is
x=\|a,...,a,b,....,b,c,...,c|,
——— N — ——
71 72 3
where v;a? + v2b? 4+ v3c? = 1. For the moment, we assume that the parameters a, b, and c are all

distinct.

Thus, relation (3.6) suggests than it suffices to lower bound for a? + b% + ¢? under the conditions

m+Da+(r2+1)b+(3+1)ec=0
710® 4 72b® + y3c* =1

with v1,72,v3 = 1 and v1 +v2 + v3 = n.

A direct computation shows that hy(a) = % + ﬁ. Thus, it remains to prove the inequality

2
A+t
n—1

Without loss of generality, we may assume that ¢ # 0. We write this as

(a/c)* + (b/c)® +1

n(a/c)? +72(b/c)* + s’
12

a>+ b2+ =




By setting z := ¢ and y := 2, and using the fact that (yvi + 1)z + (v2 + L)y + (3 + 1) = 0, we

¢
reduce the bound to the following quadratic inequality:

22 {(’ngrl)Q (1 ZT >+(m+1)2 <1 272 )] +2(y1 + 1)(ys + 1) (1 272 >

1 n—1 n—1

272 273
1)2(1- 1)2(1- >
+ (13 +1) ( n_1)+(’72+) ( n—l) 0

Setting now d; := ; — 1 > 0, we notice that the coefficient in front of 22 is non-negative, since
(d2+2)?(do+ds—d1)+(d142)*(di+d3—d2) = (d1—d2)? (d1+da+4)+d3 [(d2 + 2)* + (d1 +2)*] > 0.

The discriminant A, equals

(7 +1)2- [(% +1)2 (1 — n2121> (1 - n2111> + (72 +1)? (1 - T?jll) (1 - n2131>

+(m+1)? (1 - 712121> (1 - ;131) }

We will prove that A is non-positive. Due to symmetry, we may assume that ;3 > o > 73. Then

substituting n = v, + 72 + 73, it suffices to prove that
> (di +2)*(dy + dp — ds)(dy + ds — d2) > 0.
If d3 = 0, then the inequality can be rewritten in the form
(dy — do)?(d? + 2dyds + d3 + 4dy + 4dy — 4) > 0,

which is true.

If d3 = 1, then the inequality is equivalent to
(d2 —d3)*+(dy+dz) (dy — do)*+(2d3 —10d3 +4dy +1+17d1dg) + (2d5 —10d3 +4da +1+17dyd2) > 0,

which holds.
Finally, if dy, d2, ds > 2, we rewrite the inequality as

> (dr+2)*(dy — ds)(dy — d2) + D _(da +2)%ds(dy — ds) + > _(dy + 2)?dads > 0.
The last sum is clearly non-negative. For the first sum notice that it can be expressed as
(dy — d2) [(dy +2)*(dy — d2) — (da +2)*(d — ds)] + (d3 + 2)*(d3 — d2)(d3 —d1) > 0
since dy > do > d3. For the second one, after collecting the same terms, equals to
D (di = ds)*(dads — 4) > 0,

which is again true, since dy, ds,ds > 2.

In the case where x has exactly two distinct coordinates, equation (3.5) does not hold. Without

loss of generality assume b # 0. In this case

~v1 times ~2 times

and ;a2 + 92b? = 1 holds. In this case, from relation (3.4), we need to lower bound

a? + 02+ (71 4+ Da+ (2 +1)b)°.

13



Then we will find the best constant % >c> %, such that the inequality

(3.7) a® + 5" + (1 + Da+ (32 + DB = e(n1a® +72b°)
holds for all a,b. This can be equivalently expressed as
14+ (m+D? —en] +22(n + D2+ 1) + (12 +1)* +1— e > 0.

Notice that since ¢ < 1 we have
I+ (m+1)°—en >0
and that
Vi A1+ =1+ Mm+1)?—cn) 1+ (2 +1)* —c72).
We use the fact that 71 + 72 = n, to write the last one as a function of v;. The derivative of this

function with respect to v; equals to
(= + en +4c+2)(n — 271).

The first parenthesis is of course non-negative, therefore the function is increasing for v; < n/2
and decreasing for 41 > n/2. If n is even, then it takes its maximum for ;3 = n/2. The maximum
equals to

1
Z(_2 +cn) (6 +4n — cn +n?),

which is non-positive for ¢ < % Therefore, for even n we have that

2
(33) @+ 8+ [+ Do+ (92 + DB > = (720° + 920°)

and the equality holds when 1 = 9 = n/2 and a = —b.

In the case where n is odd, 1 cannot be equal to n/2, therefore the function takes its maximum

for 41 = 251 (or 4 = "7“) In the first case, the discriminant is equal to

2
1
I (1 =n?)+c(—4+ Tn+4n> +n®) = 2(T+4n +n?)) .

The last one is non-positive if and only if ¢ < p1(n) or ¢ > pa(n). However, pa(n) > —2-, therefore,

the largest value that ¢ can take is

—4+Tn+4n? +n® — (n+ 3)vV/8 — 8n + n? + 2n3 + nt
2n2 — 2 '

c=pi(n) =

Note that
(n) 2
P1 n

as n — 4+o00. We conclude that for n odd the inequality
(3.9) a® + b+ [(m + Da+ (y2 + DB = pa(n)(ma® +72b?)

holds, and we have equality when v, = (n —1)/2, 92 = (n+ 1)/2 and § = z, where x is the
minimum value of the function )
2L (s )

n—1,92 n+1
7 T+ 5

We now proceed with the proof of Hunter’s conjecture.
14



Proof of Theorem 3.2. We will prove, by induction on k, that every extremum x of hop on the
sphere S*1, when n is even, satisfies

(n/2+k—1)!
kEl-(n/2 —1)!-nk

We have already established the cases k¥ = 1 and k = 2. Now, assume the statement holds for

hor(x) = hor(a) =

k — 1 and that the extrema are of the form

where v1a? 4+ y2b% 4+ 3¢ = 1.
Due to the symmetry, we can assume that a > |b| > |c|.

If v1 = 2 + 73 then hok(x) > hor(a). Indeed, in this case we have that
Pom1(x) = y1a*™ T 4+ b 4 432 > 0 = poyy g1 (@)

and using the Power-Mean inequality

9

(*ylazm + 2b?™ + 7302’”)1/7” S 710® +92b® + 3”1
MY+ T o omtrtn on
which can be written as
P2m(T) = pam(a).
Then, from identity (2.6), which expresses the CHS polynomial solely in terms of the power-sum

polynomials, we conclude the desired inequality.

If v1 < 72 + 73, we proceed using the already established relation (3.4)
_ har—a(aln +1],bly2 +1])

hay () %
B (1+a2+b2)k’1h x a b
B 2k 2(k_l)<\/1+a2+b2’\/1+a2+b2’x/1+a2+l)2>‘
In this case, we obtain that
a®+ %> 3
n

which helps us to complete the induction. Assume now that the extrema is of the form

~v1 times 2 times

where a, b are distinct and appear v; and -, times respectively and thus also yia? + v.b? = 1.

Setting b = ¢ in the argument above which helps us to complete the induction.

15



4. THE NON-NEGATIVE COEFFICIENTS CASE

In this section we study the extremal behaviour of moments and complete homogeneous symmetric
polynomials when the coefficients are constrained to be non-negative. Throughout we assume
a;>0and Y, af =1.

For positive integer moments up to order four we have the following Schur-concavity result.

Theorem 4.1. Let X1, Xs,... be independent and identically distributed standard expomnential
random variables. For any positive integer k < 4 and n € N, the function
. k
(Il,...7l‘n)i—>]E Z\/EXJ
j=1

is Schur-concave on R’_}_.

Note that for k > 4 Schur-concavity or Schur-convexity breaks.

As an immediate corollary, we obtain two-sided moment bounds in terms of the extreme non-

negative configurations.

Corollary 4.2. For X1,Xs,... i.i.d standard exponential random variables. For any positive
integer k < 4 and n € N,
. k
]EX{C < E Zanj < E

Jj=1

(X1 +;/-7~17+Xn>’“'

Remark 4.3. By a similar argument, Theorem 4.1 remains valid when the standard exponential
random variables are replaced with Gamma(vy) random variables, for any positive integer k <
2y + 2.

Fot our next results we need the following definition.

Definition 4.4. Let X7, Xs,..., X, be ii.d. standard exponential random variables. For a real

number ¢, we define

p(1,q) :==E[X{], p(2,q) :=]E<X1+X2) ,

V2

Xi+--+X, q
Vn '

Theorem 4.5. Let k be a non-negative integer, and let ay,...,a, be non-negative real numbers

and for general n € N,

p(n,q) :==E (

such that 2?21 a? =1. If Xq,...,X, are i.i.d. standard exponential random variables, then
E (CLle +ee aan)k > mHl{p(l, k)a s 7p(n7 k)}v

while the mazimum will occur at a unit vector with nonzero coordinates, (n—1) of which are equal,
that is, of the form

(alv"'7an):(57 tv"'7t )a
——

n—1 times
16



with t < s and (s,t) explicitly determined by k and n as a root of an explicit polynomial, see the

Remark below for details.

In the following remarks we explain in details the behavior of the minimizer and the maximizer

respectively.

Remark 4.6. We fix some k. In order to find the minimum of p(s,k), consider the function
g:(0,00) = (0,00),

k—1
(4.1) o) = 17 I(]ff) ==t

Differentiating the logarithm with respect to n gives

k—1

g'(n) = %(lng(n)) = Jz: 1 - — g % = h(n).

g(n) —n+J

Since g(n) > 0 for all n > 0, the sign of ¢’(n) coincides with the sign of h(n), and the critical

points of g in (0, 00) are exactly the zeros of h.

To analyse h, first multiply by n > 0:

k—1 k—1

1
nh(n) =
() Jzn+j 2 j201+

3.

Introduce the new variable x = % > 0 and define

1k
F(x)zzlﬂx_i'
=0

Then

The derivative of F' is

k—1 .
d
! — R
F(w)_jz_;)dx<1+]x) Zl+]x

Jj=1

For k> 2 and x > 0 every term in the last sum is negative, hence
F'(r) <0  forallz >0and k> 2.
Thus F is strictly decreasing on (0, c0) whenever k > 2.

The limits of F' at 07 and +o0 are easily computed. One has

k—1
lim F(x 1-—

z—0*t

_k

w\w

k
T2

)
Jj=0

and, since for j > 1 we have 1 + jx — co as © — o0,

lim F(z)=1-

T—00

N |

17



Combining these observations with the monotonicity of F' leads to the following conclusions about
the equation F'(z) = 0 (equivalently h(n) = 0). For k = 2 one has
F(0") =1, lim F(z) =0,
T—r0o0
and F is strictly decreasing. Therefore F'(xz) > 0 for all z > 0, again implying that h(n) has no

zero in (0, 00).

For k > 3 one has
k k
F(0M) = 5 >0, lim F(z) =1- 5
and F is strictly decreasing on (0,00). Hence, by the intermediate value theorem, there exists a

<0,

unique xx > 0 such that F(x) = 0. This implies that there is a unique ng > 0 with
1
— = Tk, h(nk) =0.
ng

Therefore, for every integer k > 3, the function g has exactly one critical point ng in (0, c0).

For k > 3 the expression (4.1) can be rewritten as

g(n) _ n(n+1)nk/(;1+kfl)

Asn — 07, the factors n+1,...,n+k—1 tend to positive constants, so the behaviour is dominated
by
g(n) ~ Ck nl—k/2

for some constant Cy > 0. Since 1 —k/2 < 0 for k > 3, one has g(n) — oo as n — 07. Asn — oo,
the product n(n +1)---(n + k — 1) behaves like n*, hence

g(n) ~ nh=k/2 = pkl2 5 oo

as n — oo. Together with the fact that ¢’ changes sign only once (because h has exactly one
zero), this shows that for £ > 3 the function g is strictly decreasing on (0,ny), strictly increasing

on (ng,00), and attains a unique global minimum at n = n.

The preceding discussion also ensures that, for fixed k& and n, the maximum of p(s, k), for s =

1,...,n, is attained either at p(1,k) or at p(n, k).

It is also useful to obtain an asymptotic approximation for the location of this minimum when &
is moderately large. The defining equation for ny is h(ny) = 0, that is

jzoﬂk-&-j 2ng

Approximating the sum by an integral gives

1 M ode n+k k
- R =In :ln(1+—).
n+jJ o Nn+x n n

Thus, for n = ny, one expects approximately

ln(l + ﬁ) ~ i
ng an

N

-1

<
I
=)

18



Introducing the ratio

this becomes the transcendental equation

In(1 + u) = g

which no longer involves k. This equation has a unique positive solution ug, and a simple numerical

computation shows that
ug ~ 2.51.

Consequently,

k
np~ — ~0.40k
uo

for large k. In other words, the location of the continuous minimizer grows asymptotically linearly

in k with slope slightly below 0.4.

For concrete values of k, one can solve the equation h(n) = 0 numerically. The following table
lists, for k = 5,...,15, an approximation of the unique minimizer ny in (0,00) together with its

integer part |[ng .

k  ny (approx.) [ng]

5 1.2900 1
6 1.6958 1
7 2.0989 2
8 2.5006 2
9 2.9014 2
10 3.3015 3
11 3.7012 3
12 4.1005 4
13 4.4997 4
14 4.8986 4
15 5.2974 5

TABLE 1. Approximate continuous minimizer ny of g(n) and its integer part for
various values of k.

Remark 4.7. Let x = s/t < 1. The maximizing configuration occurs as a root of the polynomial

(see the proof below)

g(z) = (T)F(n)l“(k) + kz;ixj“ [(?)r(j +n—1DIk—-j+1)(n—-1)(j—k)

+(j+2)(jf_2>r(j+n+1)F(i<:—j— 1)} — (kf 1>F(k+n—2)2(n— 1a”.

Moreover, let f(z) be the logarithm of

r E(zD(n—1)+01)"
T ((n—1)a2 + 1)k/2

E(sI'(n — 1) +tI'(1))

19



There are inherent limitations in giving an exact description of the maximizer. In some cases it
occurs at © = 1 (see Figure 1), whereas in other cases it may occur at one of the two additional

roots of g (see Figures 2 and 3).

9.2 E
11 =
9 -
10.5 s
8.8 |
10 |- s
8.6 - |
| | | | | |
0 0.5 1 0 0.5 1
FIGURE 1. Plot of f(x) for FIGURE 2. Plot of f(x) for
n=k=r1. n="7k=28.
15.5 s
15| .
14.5 .
| | |
0 0.5 1

FIGURE 3. Plot of f(x) for n =7 and k =10

We also conjecture that this behavior holds for every real ¢ > 0, as expressed in the following

conjecture:
Conjecture 4.8. Let ¢ > 0 be a real number, and let aq,...,a, be non-negative real numbers
satisfying """, a? = 1. If Xy,..., X,, are i.i.d. standard exponential random variables, then

E(a1X1 + et aan)q > min{p(1,q),...,p(n,q)}.

4.1. Characterization of Extrema. We first introduce a Lemma that will be useful for the

characterization of the global extrema.

Lemma 4.9. Let x,y,z and a,b, c be non-negative real numbers such that xt +y+z=a+b+c,

22+ y? + 22 =a’ + b2 + 2, and xyz < abe. Then, for any integer k > 1, we have
¥ yF R <k b R
Respectively, if xyz > abe, then

xk+yk+zk>ak+bk+ck.
20



Proof of Lemma 4.9. Let a, b and ¢ be pairwise distinct numbers and set a+b+c¢ = u, ab+ac+bc =

v and abc = w.

Since a* + b* + ¥ is a symmetric polynomial, it can be expressed as
a? +0F + & = fu,v,w),

and we must show that f increases as a function of w. For this, it is enough to show that % > 0.

Computing the partial derivatives we get

dla+b+c) Oda  0b  Oc

T ow o o ow
_0(ab+acH+bc)  Oa Ob da Oc 0b Oc
=" % Taltat Tt e e e’
da b Jdc
= (b+c)% +(a+c)% +(a+b)%.
Moreover,
_0(abc) . Oa Ob Oc
0= S bc% —l—ac% + ab%.
The determinant of this system equals
1 1 1
A= b+c a+c a+bd zz:(ab(a—&-c)—bc(a—|—c))z(a—b)(a—c)(b—c)7
bc ac ab eye
which gives
da 1
ow (a—b)a—c)
Similarly,
ob 1
ow  (b—a)(b—c)
and

Oc 1

ow  (c—a)(lc—b)

To this end, note that

k—1

of of Oa kaF—1 B a _
B0~ 2B e B e Tam g ealabe) 20

cyc

for all k£ > 3, where in the last equality we used (2.5).

Since the above proof is valid for a — b+ and for b — ¢* and since f is a continuous function, we

obtain that f increases for any non-negative a, b and c. ([

Proposition 4.10. Let n > 1 and k > 2 be a non-negative integer. Then the extrema of hy in

the the space Si_l are of the form

x=|a,...,a,b,...,b
—— ——
71 V2
Here, a appears y1 times, b appears o times, subject to the constraints y1a> + v2b> = 1 and

Y1 +’}/2 =nN.
21



Moreover, if a > b > 0, the global minimum is attained at a vector of the form

where (n — 1)a? + b? = 1, while the global mazimum is attained at a vector of the form

x=|0b,....,0,a],
——
n—1
where (n — 1)b% + a? = 1, or where the extrema are attained at a vector with some components

equal to zero and the remainder equal; specifically,

1 1
., —,0,...,0],
\ﬁ \/’?H/—’
M—/ n—-y
v

fory=1,...,n.

Proof. We follow verbatim the proof of Proposition 3.3 for the case of extrema lying in the interior;
unlike before, we now have a boundary. Since all coefficients are positive, the argument terminates
at relation (3.5), where for distinct x;,z;, xx, we have hqg_s(x, z;, ¢, x;) = 0, which is clearly a
contradiction. The extrema on the boundary will occur when at least one coordinate is zero, then
our argument shows that the remaining non-zero coordinates must be equal completing the first

part of the proof.

For the second part, without loss of generality, we may assume that a > b > 0. (If b = 0 we
get exactly the third described form.) Suppose, for the sake of contradiction, that the vector
attaining the global minimum is not of the desired form, and assume that there exist at least two
occurrences of b. A similar argument provides the maximum.
Define the set

S:={(z,y,2) ER} tx+y+2=2b+a and 2°+y*+ 2> =2b2—|—a2}.
It is clear that S is non-empty and compact. Thus, we can choose z,y,z in S such that the

product xyz is minimized.

Observe that xyz < b%a and the inequality is strict since Corollary 1.8 in [11] suggests that the

minimum cannot be attained at (a, b, b).
Applying Lemma 4.9 we obtain that for every non-negative integer m > 2
pm (a‘""7b7b) >pm (x’a7""a7y7z)7
where the right-hand side is obtained from the vector (a,...,b,b) by replacing one occurrence of

a with x, and by replacing two occurrences of b with y and z, respectively.

Therefore, by the representation (2.6), we arrive at hy (a,...,a,b,b) > hy (z,a,...,a,y,z), which

is clearly a contradiction. O
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4.2. Proofs.

Proof of Theorem 4.1. We view the moment generating function of Z?zl VZ;X; in two ways,
using on the one hand independence and on the other the Taylor expansion of the exponential

function, namely

oo

Eet 25=1 VZiXi — Z ﬁ zn: VT X;

k= j=1

1
(1—t\/z;

1

=
for all ¢ such that the above is well defined. If we let Fy(z1,...,2,) = [[—,(1 — t./7;)" !,

=
differentiating we get

or t
or;  2ymi(l —ty@)
for every ¢ = 1,...,n, which leads to

N R R OV RV
ij (9{,131 - 2~/$,‘£L'j (1 — \/.Et)(l — \/@t)
F— /T (ST T — t
:H(lft\/xk)'\/@ v (@2\/?) 2
Py 2ymiwy (1= /@t)*(1 - /z;t)
for every i # j. Taylor expanding around 0, we see that

(a+b)t2—t
(1 — at)2(1 — bt)?

= —t— (a+b)t* — (a® + b*)t3 — (a — b)*(a + b)t* + O(t°).

In particular, the coefficient of t* is non-positive for any a,b > 0 when k < 4. The wanted

statement follows then by the Schur-Ostrowski criterion. O

Remark 4.11. It is worth to note that the above argument works only for k < 4. For example the
2

Taylor coefficient of #° in the expansion of % is —a* + 2a3b + 3a2b? + 2ab® — b*, which

does not preserve sign, e.g. is positive when a = b.

Proof of Corollary 4.2. This is a direct application of the function to the majorization sequence
(2.1). O

Proof of Theorem 4.5. The importance of Proposition 4.10 lies in the fact that it reduces the
problem to one involving only two variables, namely the study of E(aGy + bG2)* when ;a2 +
79b? = 1. We can further reduce this to a one-variable problem by dividing by (y1a? + y2b?)*/?

and factoring out a common factor of b. Thus, we are ultimately led to study the following;:

For any a,b > 0, let © := a/b, and define the function f : (0,00) — R by

k k . . j k 2
= log ZO (j.)F(J + )k —j+72)2’ | —log ([(m)L'(72)) — 5 log(miz” +72).
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its derivative can be computed as:

) = g() ’
(122 +72) (X5 (TG +70)0(k = j +72)a7)
where
k—2
9(w) =2 (f)l“(l + )k —1+72) + ; LI+ [(?)F(j + )Tk = j+72)n( — k)

+(j+2)72<j—Ii2>r(j+2+%)r(k_j_2”2)] B (kﬁl

)F(k — 14701 + y2)m 2k

Observe that g(0) > 0 and lim, o g(x) = —00.

We aim to better understand the coefficient in front of 7+, say zj, which can be simplified as
1
E—j—1

by factoring out

. . 1 . .
k—j—14+m)k—jF—24+r2)nm+—20+1+7)J+m)

2= — -
J j+1

REGAm = DHE = =3+ 70)!
k=7 -2)! '

This can be rewritten as
1
G+D(k—j5+1

] [ =73 +72) + 32 (k21 + 2) — 471 — 292) — 5 (KPy1 4+ k(=5y1 — v2) + 712

+71 (B =2%24+5)+72) —n(F+Ek(—nre+12—3)+ 1+ — 272+ 2)]

According to Descartes’ Rule of Signs, the number of positive real roots of a polynomial is at
most equal, or is less than it by an even number, to the number of sign changes in the sequence
of its coefficients. Since the numerator of z; is a cubic polynomial, it can exhibit up to three sign
changes, and therefore, in the worst-case scenario g can have three sign changes in the sequence

of its coefficients.
Combining all the above, we conclude that g has at most three positive roots.

We now claim that f’(1) = 0, and thus the obvious root of the polynomial g is = 1. To verify
this, we compute the derivatives of E[(zG + G2)*]. By differentiting under the integral sign we

obtain J
—E [(2G1 + G2)*] = kE [(2G1 + G2)F 1G]
Moreover
k-1 . it Y A | . _
E[(IG1+G2)]€71G1] =E Z ( . )(:L‘Gl)j+1G§1] = Z < ; >xj+1E(Gj1+1)E(G12€1])'
Jj=0 =0

The moment formula for Gamma distributions gives:
j Fm+i+1) k—1—j
E(GIT)y = =5~~~ and E(G 7) =
( 1 ) P(’h) ( 2 )

D(ya+k—1-3)
L'(72)

Therefore,

k-1 , .
-1\ ;T 1) T —1-
E[(2G1 + G2)* 1G] = (k j )xm (n+i+1) Tla+k-1-j)

I'(m1) [(72)

<.
Il
o
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This sum simplifies to

- E[(2Gs + Ga)* ]
where G3 ~ I'(y1 + 1), G4 ~ I'(y2) where G3 ~ I'(y1 + 1) and is independent of G1,Gs. In
particular, for z = 1, either expression above can be evaluated directly. Similarly, we obtain the

second derivative to be

L B2y + G2)*] = bk — Dya(n — DE[(@C4 + )],

dx?
where G4 ~ I'(y1 + 2) and is independed from the others. We observe also that
I'(n+k)
E[(G1 + Go)F] = ———2.
[(G1+G2)] = — )
Thus, putting everything together:
E ok
F)=m- - o
n n

A similar argument as above yields the second derivative at x = 1:

Therefore, by the second-order derivative test, we conclude the following:

o If k> n+2, then f/(1) > 0, so f has a local minimum at x = 1.
o If k <n+2, then f(1) <0, so f has a local maximum at = = 1.

Since g(0) > 0 and g(+o00) < 0, we conclude that for k > n+ 2, the other two roots s < ¢ must be
positioned as 0 < s < 1 <t and thus the function f may attain its minimum at one of the points
=0,z =1, or x =+4oco. That is, the possible candidates for the minimum of f are f(0), f(1),
and f(4o00). The maximum will be attained at one of f(s), f(¢).

In the case where k = n 4 2, f has a root of multiplicity two at x = 1. Therefore, the possible

minima occur at f(0) and f(400).

In the case where k < n+ 2, there are two possible configurations. In the first scenario, the global
maximum is attained at x = 1, and the potential minima are at f(0) and f(+00). In the second
scenario, the polynomial g admits two distinct roots s and t such that 0 < s <t <1 (orl < s <t).
In this case, the maximum of f occurs at z = s or x = 1 and the minimum could potentially occur

at f(t), in addition to f(0) and f(+00). Both scenarios are possible so this argument cannot work.

For k < n + 1, we employ a different approach. Recall (see Proposition 4.10) that the global

minimum will be attained at a vector of the form

z=|a,...,a,b],
——

n—1
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for a > b > 0 or at a vector of the form

1 1
— ., —,0,...,0
\ﬁ \ﬁ ——
— 71—y
M
where v = 1,...,n. We proceed by induction on k to show that for every natural number n and

x > 1, the following inequality holds:

E(CEGl + Gg)k > F(n — 14+ k)
(n—1)x2 + 1)’“/2 T T'(n—1)(n—1)k2’

where G1,Gy are independent I'(n — 1) and T'(1) random variables respectively. This would

complete the argument. We observe that the cases kK = 1,2 hold, so we assume the statement
holds for k — 1.

Consider the function .
E (ZL’Gl + GQ)

((n—1)22 +1)"*

h(z) =

As before, we compute its derivative:

k/2 k/2—1

k(n —1)E (2G3 + G2)* " (n — )22 +1)"" — k(n — 1)z E (G + Go)* (n — 1)a + 1)
(@ —1)+ 1)

where G1, G2 and G3 are independent Gamma random variables with distributions Gy ~ I'(n—1),

G2 ~T'(1) and G3 ~ T'(n), respectively.

B (x) =

)

Therefore, at any root y of h'(z) we have

E (yG1 + Ga)"
((n = 1y2+ )"
_E@Gs+Gy)" T (w1
e+ )Ry (-2 )t

h(y) =

) =172

Notice that the function
)(kfl)/ 2

k/2—1°

(ny? +1
y((n—1)y*>+1)

9(y) =

has derivative
(WP (k —n—1) — Doy + 1)
Pl =D+
and thus is decreasing for k£ < n + 1. Therefore,
p(k=1)/2
9(y) 2 m

g'(y) =

Combining this estimate with the inductive hypothesis completes the proof. O

To support Conjecture 4.8 concerning real exponents, we provide a proof for the two-dimensional

case.
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Proposition 4.12. Let ¢ be a non-negative real number and a,b > 0 such that a> +b%> = 1. Then

E(aX +bY)? > min {IE(X\};Y)(],E(X{’)} .

For the regime ¢ < 4 we will need the following log-concavity Lemma (see for example [5]).

Lemma 4.13. If f: (0,400) — (0, +00) is log-concave then

1

Glq) = Iw/oootqf(t)dt

is also log-concave on (—1,400).

Proof of Proposition 4.12. We will first work on the regime ¢ < 4. We apply Lemma 4.13 for the
density of aX + bY, given by
1

—x/a —x/b
d(x) = a—b(e w/a _ ¢ T/>1(0$+oo).

By log-concavity,

1 g . E(aX +0Y)*\ "
B (aX 4 0Y)" = Glg) > G(0) FEW)? = <M> > 1,
1

since, by Corollary 4.2, E (aX + bY)4 >EX{ =4!.
For ¢ > 4, the desired quantity becomes
qdtl — pati
(a — b)(a? + b2)a/2
for all a,b > 0. Without loss of generality let b # 0, z := a/b and define f : (0,00) — R by

f(z) =log <$qu_11> - %log(ac2 +1).

To this end, we examine the monotonicity of f.
() = g™t —(g+ D2 +1 gz
(z — 1)(zet! — 1) 22 +1

T gttt — (g + 1) + 2 (q+ 1) —qz + 1
(= D)(22 4+ 1)(za+t = 1)
Note that the numerator, say g, has five sign changes in its coefficients, therefore by the extension

of Descartes’ rule of signs [13] it has at most five positive roots, and thus the same will hold for

f’. Tt is easy to check that g(z) has a root of multiplicity three at = = 1.

We observe that ¢"’(1) = g(q + 1)(¢ —4) > 0 for ¢ > 4 and thus from the higher order derivative

test, z = 1 is a saddle point and a strictly increasing point of inflection. O

5. THE CENTRED CASE: PROOFS

5.1. Characterization of Extrema. For the centred case, where > "'  a; = 0and Y, a? = 1,

we have the following theorem.
27



When n is even, the lower bound for every even degree coincides with the one stated in Theo-

rem 3.2, but in this case we are able to determine the exact upper bound.

Theorem 5.1. Letn be an even integer and k > 1 be an integer, and let aq, ..., a, be real numbers
such that Y a? =1 and > 1, a; = 0. Then

n4 k1)l
har(ai, ... an) > k'(z(”l)')nk’

5 —

and equality is attained at the vector a.

The mazimum, for both odd and even non-negative integers n, is attained at the vector where all

of a; except of one are equal, that is

1 1 n—1
_\/n(n—l)’”.’_«/n(n—l)’ n .

n—1

We also provide a proof of the lower bound for h4 for both odd and even integers n.

Proposition 5.2. Let ai,...,a, € R satisfy > a; =0 and Y, a? = 1. Then the quantity

ha(ai,...,an) attains the minimum at

w3
wl3

if n is even, or

n+1 n+1 n—1 _ n—1
nn—1)"\ nn-1) nn+1)"""" nn+1) |’

n+41

2 2

if n is odd.

In the case n = 3, we are able to obtain sharp upper and lower bounds for nearly all moments.

Proposition 5.3. Let

1 1 2 1 1
o= (s = ()
and define
fla1,az,a3) == Ela1 X1 + a2 Xy + a3 X3|?,

subject to the constraints a; + az + a3 =0 and a3 + a3 + a3 = 1.

(i) For q € (—1,0)U(2,4), the function [ attains its minimum at x1 and its mazimum at To.
(ii) For q € (0,2) U (4,6), the function f is minimized at T2 and maximized at ;.
(iti) For q = k > 3, where k is a non-negative integer, the function f is minimized at xo and

mazimized at x1.
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(iv) Moreover, for ¢ = 2 and q = 4, the function f is constant.

Before proceeding with the proofs, we first characterize the extrema in the geometric case, that is
> a;=0and >, a? = 1. Following almost verbatim the proof of Proposition 3.3 we obtain

the following;:

Proposition 5.4. Letn > 1 and d > 3 be a even integer. Then the extrema of hg on the space
S:={(z1,...,x,) ER": 30 2; =0,> 1" a2 = 1} are of the form

Here, a appears 1 times, b appears s times, and c appears 3 times, subject to the constraints
constraints y1a2 + ¥2b% + 3¢ =1 and y1 + v2 + 713 = n.
5.2. Sharp Bounds for p,,.

Proposition 5.5. Letn > 2, and let a,b,c be real numbers such that
y1a+y2b+v3c=0 and yia® +y2b® + y3ct = 1,

and set

Then, for every positive integer m, pm, () = y1a™ + ¥2b™ + v3¢™ attains its mazimum at

1 1 /n—1
_«/n(nfl)w”’_\/n(n—l)’ n ’

n—1

that is, the vector in which all but one coordinate are equal.

Proof. Since n = 2 is trivial, assume that n > 3, v1,72,73 = 1 and m > 3 since p;(x) = 0,
po(x) = 1. We will distinguish two cases. If m is odd, say m = 2k + 1, then using the Lagrange
multiplier method, we find that an extreme point (a, b, ¢) satisfies

(2k + 1)a?* — 2 x — = 0,

2k

for x = a, b, c. Since " is convex, it has at most two points of intersection with a affine function,

therefore, two of a, b, c are equal, say a = b. Then, if we set ;1 + 72 = v we obtain
Pm = ya"™ +y3c™

under the conditions ya + vs¢ = 0 and ya? + 3¢ = 1. Solving for a, ¢ we and using v3 = n — 7,

1 ((n—wmﬂ V2 )

nm/2 Am/2=1 o (n —~)m/2-1

we write

Pm =

which is clearly maximized for v = 1.
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If m is even, say m = 2k, then using the Lagrange multiplier method we find that the vector

(a, b, c) which attains the maximum satisfies
(5.1) 2k 2?1 — 2 x — =0,

for x = a,b,c. We can multiply this relation by 1, 72,73, respectively, and add them to ob-
tain kpor = A. We multiply this relation by ~via,~2b,vsc, respectively, and add them to get
2kpog—1 = nu. If substitute this into (5.1), and divide by 2m,

2k—1 P2k—1
T = T pak + .
n

Due to the even power, suppose, without loss of generality, that a is positive and |c¢| > a > |b].
Under this assumption, we first prove that
1 1
<a

n(n —1) = Nea

For the upper bound, note that
202 < (11 +13)a? < y1a® + b? +93c® = 1.

For the lower bound we write

aQ + 2 a+ b 2
(71 +172) > 71a2 +72b2 + (11 Y2b)
3 V3

(1 +72)a” + =1

9

or

From the odd case, we know that

o1\ (2R-1/2 - 1 (2k—1)/2
> — = — —1)°F - _ .
DPok—1 > —An2k—1 ( " ) +(-1) (n—1) ((n — 1)n)

On the other hand, since (a, b, ¢) is the point that achieves the maximum we have that

Dok > Ap 2k-

Therefore, from the main relation for a satisfies the inequality

Ap k-1
a? Tt > a Ay gy —

We consider the following function:

Ay ok
fu(x) = 21 — x Ap ok + In2k—1

In—1 1 1
§ = 7 ti\/ﬁ’ wf\—ﬁ.

Notice that from Descartes’s rule or signs, fi has at most 2 positive roots.

and the constants:

We aim to prove that fi(w) < 0 for every n > 3 and k > 2. The conclusion is that fi has two
positive roots, one of them is ¢t and the other is larger than w, since the limit of f; as x grows to
+00 is +00. This means that in the open interval (t,w) fj is negative. Therefore, a = ¢. In all

the above inequalities, equality must hold, therefore, v3 = 1 and a = b.

Let us begin with £ > 2 and n > 6.
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We express fi(w) as:
fr(w) = (w—1) [ka*Q + w22 A 2k]
= (w— ) Qu(w).

Since the prefactor w — ¢ > 0, for n > 3 the sign of Qp(w) is the same as that of fi(w). If we set

t
qg:=—<1
w
then
2k-2 _ k=2 k2
S(w) — Z 1 w2k7271 — w2k72 Z qz < . ,

° : —q
1=0 =0

which gives
S(w) < 1 ow2 2 <w2)k < w2 (w2>2 o w
52k 1—q s 1-q\s2) “1-q\s2/  s4(l—9q)

since s* > (5/6)% and ¢ < \/%, for n > 6. This means

S(w) — (s + (n — 1)t?*) < 0.

2

<1,

Finally, we can easily check that the above argument implies that fx(w) < 0 also holds for n > 4
and k > 3. Indeed, For n = 5 we have s> = 4/5 and q = t/w = /1/10 < 1/3, which implies
w? 1/2 75
S =—< 1a
s*(1—¢q) — (16/25)-(2/3) 64

and the same conclusion follows. For n = 4 we retain the factor (w?/s%)* and use that

S(w) w2 [w? b 2 /2\k

EE 1—g¢q <S2> N Tq<§>

with ¢ = 1/v/6. It is then easy to check that the right-hand side is < 1 for all & > 4, hence
fr(w) < 0 in this range. Finally, in the remaining case (n, k) = (4,3) we compute explicitly

o =B

In particular, we have fi(w) < 0 for all n > 4 and k > 3.

Therefore, it remains to check only the casesn = 3and any k > 2, (n, k) = (5,2) and (n, k) = (4,2).
The cases for k = 2 have been already settled, as it can be seen in Proposition 2.1 of [12]. For
n =3 and k > 2 it suffices to consider the quantity

a2k 4 p2k 4 o2k
Since a + b+ ¢ = 0 and a® + b%> + ¢ = 1, we can without loss of generality assume that a,c

are non-negative, ¢ # 0 and set * = a/c > 0 and y = b/c to obtain a function of one variable

f:(0,00) = R as follows:

2?4 (x4 1) 41

fl@) = —5 g ) %
2k(x2 + 2 +1)

We will prove that f attains its maximum at = 1. Let g be the numerator of f’, then a direct

computation shows that

%x) =2 322 Lol L (1 —a) (2 4+ 1) — 227 — 32— 1
x
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Since k is a integer we can expand the binomial and by setting a; := (2].]“) we obtain

x _ _
% = — 2 N (=3 —agk + agk—1) — 2”3 (—2 — agk_1 + azk_2)
2k—3
+ Z (@j41 —aj)z? + (=24 as —a1) + (=3 + a1 — ap).
j=2
Since a; = agk—j, it follows immediately that i(f; is an anti-palindromic polynomial. In particular,
x = 1 is a root. The uniqueness of the positive root then follows from the sign of the sequence
2k—2j—1

aj+1 — a; = a; =5, together with Descartes” Rule of Signs.

Proof of Theorem 5.1. For the lower bound, applying Theorem 3.2 we conclude:

n/2+r—1)!
har () 2 T!(. (2/2 — 1) -)nf“'

For the maximum, notice that relation (2.6) suggest

mws > [

my42mo+t-Fhkmy=k j=1
my1>0,...,mp >0

Notice also that psi, > 0. Moreover, if w is a maximizer of pop_1, then since pop_1 is an odd

function, it follows that —x is a minimizer. Thus,

|p2k—1] < par—1(w).

The characterization of the extrema Proposition 5.4 and Proposition 5.5 now finishes the proof. [

Proof of Proposition 5.2. We will find upper and lower bounds for

n 4 n
ZaiXi :3+6Zaf,
=1 =1

under the conditions > ;a; = 0 and Y ., a7 = 1. We will use the method of Lagrange multi-

E

pliers to find the maximum and the minimum which exist since the domain is compact. We are
searching for all @ = (aq,...,a,) and the real numbers A, p1 such that for all indices i = 1,...,n
we have

4a3 —2\a; +p = 0.
Multiplying by a; and summing for all ¢ we get

(5.2) 4y af—2x=0.
=1

If for the indices 7 # j it is true that a; # a;, then subtracting the two relations we get

(5.3) 4(a? + aia; +a?) —2X = 0.
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Therefore if there exists one more index k, such that a; # a; and a # a;, then a; +a; +ar = 0.

Therefore the vector a has the form

(x’x""7x7y’y)""y7z7z)""z)7

where x +y + z = 0. Suppose that x appears s times, y appears t times and z appears w times
and due to the symmetry we assume that s > ¢ > w. From (5.3) and (5.2), it suffices to find

upper bounds for 22 + y? + 22, under the conditions

z+y+2=0

sr+ty+wz=0

st +ty? w2t =1
If s=t=w, then 22 + 3% + 22 = % Otherwise, we can solve the above system with respect to
x,y, z and find that

2,2, 2 (8=t +(t—w)’+(s—w)?
Ty e Cw(s—1)2 4+ s(t —w)2 +t(s —w)?’

We will prove the following double inequality.

2 < (s =)+ (t —w)? + (s — w)?
n—17 w(s—t)2+s(t—w)2+ts—w)?

For the left-hand side inequality, note that n = w + s 4+ ¢ and after some algebraic manipulations

we end up proving that
(w—1Dw—-s)w—t)+E—-1t—s)t—w)+(s—1)(s—w)(s—1t) > 0.
To this end, note that the last one is equivalent to
(s =l(s =1)(s —w) = (t = Dt —w)] + (w = 1)(s —w)(t —w) 20,
which is true, since w,s,t > 1 and s >t > w.
We also need to consider the case where exactly one group is zero, say z. In this case, since

z +y =0 and also sz + ty = 0, together with the condition sz + ty2 = 1, we are led to s = ¢,

and a vector of the form

1 1 1 1
e e 0,...,0
V2s V2s  /2s V25 SN——
(n—2s)-times
s-times s-times

Note also that 2s = n — w. Since we only need to bound z? = 2%, which is decreasing in s, it

suffices to consider the case 2s = n — 1 for the minimum and s = 1 for the maximum.

It remains to check the case where the vector a has the form

(x’x7"'7:r’y’y7"'7y)’

where x appears s times and y appears ¢ times. Without loss of generality, assume that x > 0

and y < 0. Then, from (5.3) and (5.2), it suffices to find upper the maximum and the minimum
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for 22 4+ xy + 92, under the conditions
st+ty=20
st +ty? =1
Solving the system we get that
1/t s 1 /n—s s
332+y2+xy=(+—1)=< + —1>.
n\s t n s n—s

The function in the parenthesis takes its maximum value for s =1 (or s = n—1) and its minimum

value for s = | % ]. It is easy now to compare the extrema. (]

Proof of Proposition 5.3. For (iv), we observe that since a; + as + az = 0 and a? + a3 + a3 = 1,
it follows that
E \ale —+ a2X2 + a3X3|2 = ].,

and
E|a1 X1 + as Xy + asXs|* = 3+ 6(al + ai + ad) = 6.

For (i), (ii) and (iii), a simple point-wise bound for R (¢ 4,x,), combined with the Fourier
formulas (2.7), (2.8) and (2.10) suffices.

We observe that

1 1 —idt(ay +az +az) — t2(ayas + azas + ayaz) — i*t2ajaza3

o(t) = (1 +iait)(1 + iast)(L + iagt) (14 a22)(1 + a2t2)(1 + a2t?)

Since a1 + a2 + as = 0 and a? + a3 + a2 = 1, this simplifies to
1 2 3

1+¢2/2

R(o(t)) = (1+ a22)(1 + a22)(1 + a2t2)’

We now establish a bound for R(4(t)):

(1+12/2)2 < (1 + a3t?)(1 4+ a3t?) (1 + a3t?) < (1 +12/6)2(1 + 2t2/3),
where the upper bound is attained at x5 and the lower bound at x;.
This can be proven by expanding the product:

(1+a3t?)(1 + a3t?) (1 + a3t?) = 1+ t%(a? + a3 + a3) + t*(ata3 + a3a3 + aia3) + t%afa3aj.

The lower bound is immediate. For the upper bound, we may assume without loss of generality

that two of the variables share the same sign; let a1, as > 0.

Applying the Cauchy—Schwarz inequality yields

2
a; + a
1-a%+a§+a§22<12 2) Jrag,

. . . 2 2
which implies a3 < 3.
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Using the AM—GM inequality, we obtain

4 6 3
a%agag < (al ‘|2'a2> Cl% _as < (2/3) 1

T 24 =16 54

For integers k > 3, a different approach is required. We define the function

o, a0 = FI0K1+02Xs sy
1, 42,03 (a%—l—a%—i—ag)qm

Let ay,as > 0, as # 0, and a3 < 0, and write —az < 0, so that the expression becomes a3 X; +

asXs — a3 Xs. Let x = ay/as and y = az/az, then it equals

]E|ZCX1 —|— XQ — yX3|q
(2% +y? + 1)ar2

Since a; + az — a3 = 0 and a? + a2 + a2 = 1, it follows that

N 24/2(22 + x4+ 1)4/2

We now utilize formula (2.11) and drop the gg}jﬁ) constant for simplicity:

1 =204 222+ 23 (2 - 1)(1 + x)? e
@) = e s D 1ot )i

As a motivating example, when ¢ = 7, we compute:
~ —3x(10z? + 802® + 249x" + 3632° + 1832° — 1832 — 363z — 2492% — 80z — 10)
B 2(z2 + (1 +2))%2(1 + 22)2(2 + 2)2 '

The function f’ has a unique root at z = 1 by Descartes’ rule of signs.

f'(x)

Claim. Let g = k be a non-negative integer. The numerator of f’, denoted g, has a root at x = 1
and exhibits exactly one sign change in its coefficients. More generally, ¢g is an anti-palindromic

polynomial with a single sign change in its coefficients.

Proof of Claim 5.2. From expanding (z + 1)*+2, we get

2052 2 4 YR 4 ((W) + 3)

f(z) = (22 +a + 1)k/2(2x +1)(z+2)

Direct computation shows:

k+1
: k+2
g(z) = (22" + 72® 4+ 92% + Tz + 2) 2(k+2)z’““+2jx71(< B >+3>
j

j=1

k+1
1 , 2
- 5(a,=3(4k +8) + 2?(12k + 18) + x(9k + 18) + 2k + 10) | 2272 424> " af ((k;r ) + 3)
j=1
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Define a; = (k;‘2) + 3, we notice that the constant term, *+°, and z¥** vanish, and thus a direct
computation shows:

g(z)

xT

=ay(2 — k) + 4ay — (9 + 18)
+ 2 (~2kar + (9 — k)ag + 6az — (12k + 18))
+ 2% [—(4k + 8) — (6k + 2)a1 + (9 — 2k) as + (16 — k)az + 8a4]

k—3
+) a2t [(2;’ — 2k —4)a; + (7j — 6k — 2)aj41 + (9 — 3k +9) ajio + (75 — k 4+ 16)a;5 + (25 + 8)aj+4}
j=1

+ {Ek [(4k + 8) + (Gk + 2)ak+1 — ( - %k) ap — (16 - k)ak,1 - 8ak,2}
+ 2" [Skags — (9 — k)ay — 6ag_1 + (12k + 18)]
+ 252 [—(2 — K)apg1 — dag, + (9 + 18)]

Note that a; = agt2—;, and all coefficients of g(z) are symmetric except for a sign flip. So we

write:
k+2
gl@) =z B,
§=0
and its easy to see that 8; = —fr42—j, i€, g(x)/x is anti-palindromic. Let z := z;; be the

quantity inside the sum for j and w := w;, for K — j — 2. Then,

z2=0a;j(2] —2k —4)+a;1(7j — 6k —2) + a;12(9j —9/2k +9) + a;+3(7j — k+16) + a;14(2j + 8)
and

W= ag—;j—2(—2j—8)+ar_;—1(k—=7j—16)+ar—;(9/2k—95—9)+ar—_;+1(6k—Tj+2)+ar_;+2(2k—2j+4)

We now notice that z = —w, proving anti-palindromicity and thus confirming x = 1 is a root.

To ensure uniqueness of the root, we show the first |(k + 2)/2] coefficients have the same sign.
Since we can easily deal we the terms outside of the sum, we want to prove that z;; > 0 for
j=12,...,](k—2)/2]. Direct computations show that

(k+2)1(25 —k+2)(52 +j(2 — k) — 2k* — Tk + 3)
= -G+ DG+ 2G 3k -+ k- )k —j 1)

_ (k—2j-2) <(k+2)!(2k:2+7k:—j2+j(k—2)—3) _81>

2 (G+3)(k—j+1) '

Since k — 25 — 2 > 0, it suffices to show that the second parenthesis is non-negative. Indeed, we
have that for k > 6

81
Zjk = +3(2j—k+2)

k2
2k2+7k—j2+j(k—2)—3277+8k—4>81

and

> 1.

(k +2)! (k+2 1 k+2 4
<j+3>!<kj+1>!‘(j+1)<j+2><j+3)2( 2 )(k+2><k+4>

This inequality holds for k > 6, and for 3 < k£ <5 it can be checked directly.
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Finally, we verify positivity of the remaining coefficients:
1
81 = §(k —2)(k—4)(k+9) >0,

1
By = E(k — 4)(2k® 4 15k* + 49k — 270) > 0.

By Descartes’ rule of signs, f’ has a unique root with sign pattern 4+, — so = 0 is a minimum

and x = 1 a maximum. O

6. MINIMUM OF hgj, UNDER THE ||Z|lcc CONSTRAINT

In our setting, the sharp lower comparison between || Al g, and the operator norm ||Al,p is con-

trolled by the minimum of hy on the £, —sphere, since

A%, = ha(s1(A), ..., s0(A)) = | A]2, hd(sl(A) Sn(A)) ’

[Allop™ " 1 Allop

so the best constant C), 4 in an inequality of the form
Cn.allAllop < Al 1,

is exactly the d-th root of min{hg(z) : ||#|lcc = 1}. In Theorem 6.1 below we show that every
non-vertex local minimiser of hgp on the f.,—sphere has the very rigid form (¢,...,¢, 1), with
t determined by a one-variable polynomial equation. This reduces the optimal comparison be-
tween ||A|| g, and || A||op to a one-dimensional optimisation problem and characterises the extremal
matrices as those whose normalised singular-value vector has this (¢,. .., ¢, 1) structure; see Corol-
lary 6.4.

Theorem 6.1. Let n > 2 and k > 1 be integers, and let S 1 = {x € R" : ||x|oc = 1}. The
global minimum of hag on STt is always attained at a point of the form (t,...,t,1) where t is
the unique oot of
Ok (t) == hog_1(t,...,t, 1)
e

in (—1,0). Moreover, the value of hoy at this vector equals
n+2k—1\ o
.
2k

Proof. Since hgy, is continuous and S7%! is compact, hgy, attains a global minimum on S%°!. Let

*

x* = (af,..., 2

*) € S%! be a global minimiser which is not a vertex of {£1}". Since hoy is

invariant under permutations of the coordinates and under the global sign change x — —z, we
may assume without loss of generality that ), = 1. We will first show that

|lzi] <1,
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for i = 1,...,n — 1. If this is not the case, then there exists some j, k, such that |x;‘| =1 and
|z}| = s < 1. Using Theorem 2.7
how(x*) > har(y"),
where y* has exactly the same coordinates as z*, except z7,z}, where y* has their arithmetic
mean. Since y* € ST, we arrive at a contradiction. Thus x* lies in the relative interior of the
(n — 1)—dimensional face
F:={ze[-1,1]" 2, =1}.
On the relative interior of F' the coordinates x1,...,x,_1 are unconstrained, so the restriction of

hor to F' has vanishing gradient at z*, i.e.

0
h *) =0,
63% Qk(x )
foralli=1,...,n—1. By Lemma 2.5 we have, for each i,

0
83%

hok(x) = hog—1(z,z;),

Hence

hgkfl(l'*, l';k) =0
foralli=1,...,n—1. Fix distinct indices 4,5 € {1,...,n—1}. Using the difference identity (2.3)
with

we obtain
hor—1(z*,x7) — hag—1 (2", 25) = (2] — 2}) hap—2(z", 2], 7).

The left-hand side vanishes, so

(z} — x;‘) hog—o(x*, 27, x;‘) =0.

By Hunter’s positivity theorem (Theorem 2.6), the even-degree polynomial hoj_o is strictly posi-

tive at every non-zero vector. The vector

*

($*,$;,$J) = (a:ik,...,:rz,zf,$*)

J

is non-zero because r;, = 1, hence hgx_o(2*, 2}, 2}) > 0. Therefore we must have x; = z7 for all

1 <1i,j7 < n—1. This shows that every non-vertex local minimiser has the form

for some t € (—1,1).

To find the global minimiser we need to check the value of hgy at every vertex of the cube {£1}".

However, if (e1,...,e,—1) € {£1}"71, using Theorem 2.7, we obtain

hok(€r, ... €en—1,1) > hor(A,..., A1),

where )
D €
A= nz_ll . € [71’1]a
therefore the minimum is not attained at a vertex, except possibly the vertices (1,...,1) and
(-1,...,—1,1). We know that the global maximum is attained in the first one. For the latter,
observe that Theorem 2.7 reassures that hgy achieves a smaller value at (1,1,...,1,0,0). This

38



observation completes the proof. The uniqueness of ¢t and the exact form of the minimum will

follow from the lemmata below.

Lemma 6.2. Fiz integers n > 2 and k > 1. Fort € R and m € N set

HM(t) := hy(t, ..., t,1).

Then

m
1\ .
(6.1) H™ (1) §:<n+] )ﬂ.
7=0
In particular, there exists a unique t, € (—1,0) such that

HQ(Z)—l(thC) = hog—1(tp[n],1) =0,

and the corresponding interior critical point for the minimization of hoy on the Lo, —sphere {a €

R™: ||lalloo = 1} is a* = (tnk,-- -5 tnk, 1). At this point we have the closed form
—_————
n—1
N n+2k—1\ o
(6.2) hgk(a ) = hgk(tn,k, cos bk, 1) = ok tn,k
a/_/
n—1

Proof. The generating function representation

Zh (117‘. an+1) = 1

C(1—a12)--- (1 —apg12)

with a; =--- =a, =t and a,4+1 = 1 gives
o0
1
DIt AR ——
— (1 —t2)"(1—2)
Expanding
1 Z/n+j—1\ . 1 >
—_— = t] ‘7 = T
e i

and collecting the coefficient of 2™ yields (6.1).

We next relate ho on (¢,...,t,1) and on (¢,...,¢,1,0). Using the difference identity h,,—1(x,a) —
him—1(2,b) = (a—0b) hyp—2(2, a,b) from Lemma 2.5 with a = ¢t and b = 0 we obtain, for any m > 1,
ho (tn — 1],1) = hyy(t[n], 1,0) — t hyp—1 (¢[n — 1], 1,¢,0).

By symmetry of h,, this becomes

(6.3) ho(ty o 1) = B (fs .o £, 1) = thoy (£, ... 1, 1).

Let t,, € (—1,0) be a solution of the stationarity equation

h2k—1(tn,k[n]a 1) = Hé:)_l(tn,k) = 0.
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(Existence and uniqueness of such a solution in (—1,0) is stated in Lemma 6.3 below.) Plugging

m = 2k and t = t,, 1, into (6.3) and using hog_1(tnk[n],1) = 0 gives

(6.4) hote(tn il — 1,1) = hoi(tuln], 1) = HSY (tns).

Finally, applying (6.1) with m = 2k we have

2k .
n n+j—1\ ; n n+2k—1
H (1) = ;:0: ( : ) t=H (1) + ( S

Evaluating at ¢ = ¢, and using Hz(le(tn7k) = 0 yields
H2k (tn,k) = < Qk tn,k'
Combining this with (6.4) gives (6.2). O

Lemma 6.3. For each n > 1 and k > 1 there exists a unique t, € (—1,0) such that

hok—1(tn - -+ tngs 1) = 0.
T
The sequence {t, i }k>1 satisfies
klirgo tor = —1.
Proof. Let X1,...,X,4+1 be ii.d. standard exponential random variables. By the moment repre-

sentation of complete homogeneous symmetric polynomials,

1 2k—1
@(t) = hgkfl(t, . 7t, 1) = m ]E(t(Xl + .-+ Xn) + Xn+1) .
Set
S=X1+--+X,, Y :=tS + Xp41,
so that )
_ s 2k—1
(I)(t)_ (Qk—l)!E(Y; )

Since all moments of Y; are finite and ¢ — Y; is affine, we may differentiate under the expectation
to obtain, for every t € R,

1

¥ = =)

ﬁ E[(2k — 1)SY,?*72] =

]E[S }/;2]072] ]
Now fix t € (—1,0). Then S > 0 almost surely, and 2k — 2 is even, so Yt%f2 > 0 almost surely.

Moreover, the joint law of (S, X,,11) is absolutely continuous, hence
]P’(SzO) :IP’(Y}=O) =0,
which implies
SY,?72 >0 almost surely.

Therefore )

(2k — 2)!
so ® is strictly increasing on (—1,0).

P'(t) = E[SY,** 2] >0 forallte (-1,0),
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Consequently ® can have at most one zero in (—1,0). On the other hand,
‘I)(O) = hgk_l(o, ...,0, 1) =1>0,

and a direct computation from the explicit formula for hop_1(t, ..., t, 1) shows that ®(—1) < 0. By
the intermediate value theorem there exists t, € (—1,0) with ®(¢,) = 0, and by strict monotonicity

this zero is unique. Since ®’(t.) > 0, the root is simple.

To understand the asymptotic behaviour, note that for |p| < 1
e n4+j—1\ .
e =3 (T
j=0

Thus, for 0 < p < 1 we may write

(L+0) 7" = Palp) + Rue(p)y Ruslp) i= D (<1 (nﬂ:_l)”j '

j=2k J

At the root p = pp i = —tnr we have P, x(ppr) = 0, and hence

(6.5) (L4 pnk) " = R k(pnk)-

Fix ¢ € (0,1) and set ¢ := 1 —e. For 0 < p < ¢ and all j > 2k we use the crude bound

("+§_1) < Cpj"™ 1 (for some constant C,, depending only on n) to obtain

IEOESS <”+j B 1>pf <0y Y < O 2k)" g,

j=2k j=2k
for a suitable constant CJ,. The right-hand side tends to 0 as k — oo, uniformly in 0 < p < ¢. On
the other hand (14 p)™™ > (1 4+ ¢)™™ > 0 for all such p. Therefore, for k sufficiently large the
identity (6.5) cannot hold with p, ; < ¢. Since ¢ < 1 was arbitrary, it follows that p,  — 1 as
k — oo, and hence t, , = —ppr — —1. O

Corollary 6.4. Let d = 2k be an even integer, and let A € M, (C) have singular values s1(A) >

<+ > 8,(A) > 0. Define the norm induced by the complete homogeneous symmetric polynomial hy
by

Al e, = ha(s1(A), ..., sn(A)".

n+2k—1 1/2k
(") el Al < AL <

where ty, 1 s the unique number in (—1,0) such that

Then,

n+2k—1 1/2kHAH
2k o

hzk—l(tn,m cos bk, 1) =0,
———
n
and the bound is optimal. Equality in the lower bound can occur only if the normalised singular-

value vector s(A)/||Allop is a minimiser of hq on S™1.
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Proof. Let A € M, (C) and put z = s(A4)/||A]lop- Then ||z]cc = 1 and, by definition,
1A%, = ha(s1(A), .., su(A)) = [Allg, ha().

Taking the minimum and maximum of hq(z) over {z € R™ : ||z||o = 1} yields the stated inequality.
Optimality is immediate by evaluating at matrices whose normalised singular-value vector is a

minimiser of hg on S the structural description of such minimisers is given by Theorem 6.1. [
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