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Abstract. We prove Hunter’s conjecture on complete homogeneous symmetric polynomials.
For even n and every integer k ≥ 1, we show that under the constraint

∑n
i=1 a

2
i = 1 the

global minimum of the even-degree polynomial h2k(a1, . . . , an) is attained precisely at the half-
plus/half-minus vector and we compute the optimal value in closed form. The proof combines
algebraic properties of h2k with the probabilistic representation k!hk(a) = E(

∑n
i=1 aiXi)

k,
where X1, . . . , Xn are i.i.d. standard exponential random variables with density e−x1x>0 and
a combinatorial identity. This viewpoint further yields sharp upper and lower bounds for
E|

∑n
i=1 aiXi|q under natural constraints on the coefficients, including the spherical constraint∑

a2i = 1 combined with the non-negative regime ai ≥ 0, or the centred regime
∑

ai = 0. More-
over, we determine the exact minimum of h2k on the ℓ∞-sphere S∞ = {a ∈ Rn : ∥a∥∞ = 1},
which yields sharp norm comparison inequalities between the matrix norms induced by complete
homogeneous symmetric polynomials and the classical operator and Schatten norms.
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1. Introduction

Complete homogeneous symmetric (CHS) polynomials play a fundamental role in algebraic com-
binatorics, representation theory, and the study of moment inequalities in probability. Let hk
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denote the degree-k CHS polynomial in n real variables a1, . . . , an, defined by

hk(a1, . . . , an) =
∑

1≤i1≤···≤ik≤n

ai1 · · · aik .

We adopt the convention that h0(a) = 1. The interplay between the algebraic structure of hk

and the analytic properties of polynomials on Rn is particularly transparent in low degrees. For
instance,

h1(a) =

n∑
i=1

ai, h2(a) =

n∑
i=1

a2i +
∑

1≤i<j≤n

aiaj .

Crucially, the quadratic polynomial admits the sum-of-squares decomposition

h2(a) =
1

2

n∑
i=1

a2i +
1

2

( n∑
i=1

ai

)2
.

Consequently, h2 is manifestly positive definite. It is natural to inquire whether higher even-
degree CHS polynomials enjoy similar positivity properties. While positivity fails trivially for odd
degrees (since h2k+1(−a) = −h2k+1(a)), Hunter initiated the systematic study of this phenomenon
for even degrees in [17]. In [18], he established that for any integer k ≥ 1,

(1.1) h2k(a) ≥
1

k! · 2k

(
n∑

i=1

a2i

)k

.

Equality holds in (1.1) if and only if k = 1 and
∑n

i=1 ai = 0. Hunter’s positivity theorem
has since been revisited and re-proved by several authors using various techniques (see, e.g.,
[21, 4]). More recently, Bouthat, Chávez and Garcia [4] developed a systematic probabilistic and
operator-theoretic framework around Hunter’s theorem, interpreting even-degree CHS polynomials
as building blocks of “random vector norms” on spaces of matrices and surveying many of the
existing proofs and generalizations.

In the same work [18], Hunter also conjectured a substantially stronger statement. Specifically, he
conjectured that when n is even, under the normalization

∑
a2i = 1, the global minimum of h2k

is attained at the “half-plus/half-minus’’ vector

ã =
(

1√
n
, . . . , 1√

n︸ ︷︷ ︸
n/2

,− 1√
n
, . . . ,− 1√

n︸ ︷︷ ︸
n/2

)
.

Progress on this conjecture has been incremental. Baston [2] sharpened Hunter’s original bound
by adding a correction term depending on (

∑
ai)

2k. More recently, Tao [21] demonstrated that
each h2k is Schur-convex on Rn, which implies that if one fixes

∑
ai = 1, then the minimum

is attained at the flat vector (1/n, . . . , 1/n). However, the global minimization problem on the
sphere Sn−1 has remained open.

A different line of work was recently initiated by Garcia and Volčič [14], who introduced noncom-
mutative complete homogeneous symmetric (NCHS) polynomials and proved a noncommutative
Hunter-type theorem. They obtained optimal operator-valued lower bounds

H2k(X1, . . . , Xn) � µn,k (X
2k
1 + · · ·+X2k

n )

2



for Hermitian operators Xi, together with explicit sum-of-hermitian-squares representations. In
the commutative scalar case this yields new inequalities of the form

h2k(a1, . . . , an) ≥
µn,k

nk−1
‖a‖2k2 ,

which improve Hunter’s original constant whenever d is sufficiently large compared to n. Nev-
ertheless, the exact best lower bound for scalar CHS polynomials—that is, the optimal constant
and the extremizing configurations on the Euclidean sphere—remained unknown in [14].

1.1. Probabilistic and geometric perspectives. Beyond their algebraic utility, CHS poly-
nomials possess an elegant probabilistic representation, which will be central to our approach
(see, e.g., [21, 4]). If X1, . . . , Xn are independent and identically distributed (i.i.d.) standard
exponential random variables (with density e−x1x>0), then for every integer k ≥ 0,

(1.2) k!hk(a) = E
( n∑

j=1

ajXj

)k
.

This identity bridges algebraic combinatorics with the study of optimal moment inequalities: the
problem of minimizing h2k on the sphere becomes the problem of minimizing the even moments of
linear combinations of independent exponential random variables under a fixed variance constraint.

This probabilistic framework also interfaces naturally with the geometry of convex bodies. Mo-
ments of such sums are closely related to the volume of hyperplane sections of the regular simplex
∆n. From the geometric viewpoint (see, for example, [22]), the constraint

∑
ai = 0 is precisely

the condition that the hyperplane a⊥ passes through the centroid of the simplex, and questions
about extremal moments in the zero-sum regime are inherently linked to central sections of ∆n.

There are thus two particularly compelling reasons to single out the zero-sum hyperplane
n∑

i=1

ai = 0.

Geometrically, as just noted, it encodes central sections of the simplex. From the probabilistic
viewpoint, if X1, . . . , Xn are i.i.d. standard exponentials with EXi = 1, then

E
( n∑

i=1

aiXi

)
=
( n∑

i=1

ai

)
EX1,

so the linear form
∑

aiXi is centred if and only if
∑

ai = 0. Thus the zero-sum regime is
simultaneously the natural geometric setting for simplex slicing and the natural probabilistic
setting for sharp moment inequalities of centred exponential distributions.

1.2. Main contributions. In this paper, we leverage the probabilistic perspective to provide a
complete description of the extremal behaviour of complete homogeneous symmetric polynomials
under natural constraints. Our analysis is organized into four regimes, according to the structure
of the coefficient vector a = (a1, . . . , an).

1. The unconditional regime (Hunter’s conjecture). Our first main result is an affirmative
resolution of Hunter’s conjecture for all even degrees.
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Theorem (Informal version of Theorem 3.2). Let n be an even integer and k ≥ 1. For any a ∈ Rn

with
∑

a2i = 1,
h2k(a) ≥ h2k(ã),

where ã is the half-plus/half-minus vector. The explicit value of this minimum is given by

h2k(ã) =
(n/2 + k − 1)!

k! (n/2− 1)!nk
,

and equality holds if and only if a is a permutation of ã.

On the upper side, it is clear that the maximizers of h2k under the constraint
∑

a2i = 1 coincide
with those in the non-negative regime, which we describe in detail below.

2. The non-negative regime. We next analyze the behaviour of moments and CHS polynomials
when the coefficients are constrained to be non-negative, ai ≥ 0, with

∑
a2i = 1. For small degrees,

we use Schur-type arguments to show that for k ≤ 4 the map

(x1, . . . , xn) 7→ E
( n∑

j=1

√
xj Xj

)k
is Schur-concave on Rn

+, yielding sharp two-sided bounds for hk in terms of extremal vectors with
either one nonzero coordinate or all coordinates equal. Schur-concavity (or convexity) breaks for
k > 4, thus for higher degrees we turn to an explicit interpolation formula for E

(∑
aiXi

)k in
terms of the coefficients ai and Gamma functions. A detailed analysis of this formula shows that,
for each fixed integer k and under the constraint

∑
a2i = 1, every minimizer among non-negative

vectors has a very rigid structure: it is supported on a subset of coordinates on which all entries
are equal, and all remaining coordinates are zero. In other words, all minimizers are of the form

(a1, . . . , an) = (t, . . . , t︸ ︷︷ ︸
m times

, 0, . . . , 0),

for some m ∈ {1, . . . , n} and t > 0 determined by the normalization. The optimal support size
m is characterized via a one-dimensional function. Dually, we prove that all maximizers in the
non-negative regime are vectors with exactly n− 1 equal coordinates, that is, of the form

(a1, . . . , an) = (s, t, . . . , t︸ ︷︷ ︸
n−1 times

),

with t ≤ s and (s, t) explicitly determined by k and n as a root of an explicit polynomial. These
maximizers are, of course, maximizers for the unconditional regime.

3. The centred (geometric) regime. Motivated by the simplex slicing problem and the
probabilistic setting of centred random variables, we analyze in detail the case where

n∑
i=1

ai = 0,

n∑
i=1

a2i = 1.

We prove that for even n the lower bound for h2k under the zero-sum constraint coincides with
the unconditional Hunter bound, and is again attained at the half-plus/half-minus vector. We
also determine the exact maximizers under the same constraint, which turn out to be vectors with
n− 1 equal coordinates and one opposite coordinate.
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When dealing with the sum of three exponential random variables, we combine these ideas with
Fourier-analytic formulas for moments to obtain sharp upper and lower bounds for nearly all
exponents q ∈ (−1,∞). This leads to a complete description of the extremizers for E|

∑
aiXi|q

under the zero-sum constraint.

4. Matrix-norm inequalities. A further motivation for our work comes from unitarily invariant
norms on matrices induced by complete homogeneous symmetric polynomials. Following Aguilar,
Chávez, Garcia and Volčič [1], given A ∈ Mn(C) with singular values s1(A) ≥ · · · ≥ sn(A) ≥ 0

and an even integer d = 2k, one can define the CHS–norm

‖A‖Hd
:= hd

(
s1(A), . . . , sn(A)

)1/d
.

These norms interpolate between classical Schatten norms, and the authors proved two-sided
comparisons with the operator norm ‖ · ‖op; see in particular [1, Theorem 38]. The dependence of
their constants on d and n is not optimal for the lower bound, and the authors explicitly asked for
the sharp form of such inequalities. Our results in Section 6 answer this question, see Theorem 6.1,
and lead to the optimal order of the best constant in the comparison between ‖ · ‖Hd

and ‖ · ‖op.

Organization of the paper. The rest of the paper is organized as follows: In Section 2, we collect
some preliminaries and further develop the necessary background, focusing on Schur-convexity
and majorization, which are central to the properties of the complete homogeneous symmetric
polynomials and the Fourier-analytic formulas for moments. In Section 3, we provide an affirmative
answer to Hunter’s conjecture. Section 4 is devoted to the case of non-negative coefficients.
Section 5 addresses the centred case and in Section 6 we study the minimisation of complete
homogeneous symmetric polynomials under the constraint ‖a‖∞ = 1.

2. Preliminaries and Background

2.1. Schur-convexity and majorization. Schur-convexity-type arguments have recently ap-
peared in probabilistic settings (see, for example, [10, 9]), leading to sharp results ranging from
moment comparison inequalities to entropy inequalities. For a concise exposition on majorization
and Schur-convexity, we refer to Chapter II of [3]. We recall here the basic notions that will be
used throughout the paper.

Definition 2.1 (Decreasing rearrangement). Given x = (x1, . . . , xn) ∈ Rn, we denote by x∗ =

(x∗
1, . . . , x

∗
n) its decreasing rearrangement, i.e.

x∗
1 ≥ x∗

2 ≥ · · · ≥ x∗
n.

Definition 2.2 (Majorization). For any two vectors x, y ∈ Rn, we say that x is majorized by y,
and write x ≺ y, if

n∑
i=1

xi =

n∑
i=1

yi and
k∑

i=1

x∗
i ≤

k∑
i=1

y∗i for every k = 1, 2, . . . , n.

5



As a direct consequence, for every vector a = (a1, . . . , an) ∈ Rn
+ such that

∑n
i=1 ai = 1, we have(

1

n
, . . . ,

1

n

)
≺ (a1, . . . , an) ≺ (1, 0, . . . , 0).

More specifically, if
∑n

i=1 a
2
i = 1, then

(2.1)
(
1

n
, . . . ,

1

n

)
≺ (a21, . . . , a

2
n) ≺ (1, 0, . . . , 0).

Definition 2.3 (Schur-convexity/concavity). A function f : Rn → R is said to be Schur-convex
(resp. Schur-concave) if x ≺ y implies f(x) ≤ f(y) (resp. f(x) ≥ f(y)).

A central criterion for establishing the Schur-convexity or Schur-concavity of a function is due to
Schur and Ostrowski.

Theorem 2.4 (Schur–Ostrowski). Let f : Rn → R be a symmetric function with continuous
partial derivatives. Then f is Schur-convex (resp. Schur-concave) if and only if

(xi − xj)

(
∂f

∂xi
− ∂f

∂xj

)
≥ 0 (resp. ≤ 0)

for all x ∈ Rn and for all 1 ≤ i, j ≤ n.

2.2. Complete homogeneous symmetric polynomials. In the Introduction we defined the
complete homogeneous symmetric polynomial hk(a1, . . . , an) by

hk(a1, a2, . . . , an) :=
∑

1≤i1≤i2≤···≤ik≤n

ai1ai2 . . . aik .

One can also define all the complete homogeneous symmetric polynomials of n variables simulta-
neously by means of the generating function:

(2.2)
∞∑
k=0

hk(a1, a2, . . . , an)t
k =

1

(1− ta1)(1− ta2) . . . (1− tan)
.

As a direct consequence of the generating function representation, we obtain the following two
important properties.

Lemma 2.5 (Lemmas 1 and 2 in [18]). If a 6= b, then

(2.3) hk−1(x, a)− hk−1(x, b) = (a− b)hk−2(x, a, b),

and

(2.4) ∂

∂xi
hk(x) = hk−1(x, xi)

for every k ≥ 1.

Another well-known formula for CHS polynomials is the Lagrange interpolation formula

(2.5) hk(x1, . . . , xn) =

n∑
i=1

xn+k−1
i∏

j ̸=i(xi − xj)
.
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We also recall the probabilistic representation already used in the introduction. Let X1, . . . , Xn

be i.i.d. standard exponential random variables. Then for any k ∈ N we have

E
(
a1X1 + · · ·+ anXn

)k
= E

( ∑
m1+···+mn=k

k!

m1! · · ·mn!
am1
1 · · · amn

n Xm1
1 · · ·Xmn

n

)

= k!
∑

m1+···+mn=k

E(Xm1
1 ) · · ·E(Xmn

n )

m1! · · ·mn!
am1
1 · · · amn

n

= k! · hk(a1, . . . , an),

where in the last step we used the definition of hk and the moment identity E(Xmi
i ) = mi!. This

is exactly the representation (1.2).

In [18], Hunter was the first to show that even-degree CHS polynomials are positive definite.

Theorem 2.6 (Hunter). Let n, k be non-negative integers. Then h2k(x1, . . . , xn) is a positive
definite function on Rn, i.e. h2k(x1, . . . , xn) > 0 for all x 6= 0.

Tao established the positive definiteness and Schur-convexity of the CHS polynomials in [21].

Theorem 2.7 (Tao). Let n, k be non-negative integers. Then, for any x ∈ Rn, the following hold.

(i) Positive definiteness: h2k(x) ≥ 0, with equality if and only if x = 0.
(ii) Schur-convexity: h2k(x) ≤ h2k(y) whenever x ≺ y. Moreover, equality holds if and only

if x is a permutation of y.
(iii) Schur–Ostrowski criterion: For every 1 ≤ i < j ≤ n,

(xi − xj)
( ∂

∂xi
− ∂

∂xj

)
h2k(x) ≥ 0,

with strict inequality unless xi = xj.

Hunter’s positivity theorem for CHS polynomials has been rediscovered and proved many times;
for additional proofs and extensions we refer to [4] and the references therein.

2.3. Power-sum symmetric polynomials. The power-sum symmetric polynomial of degree m

in the variables x1, . . . , xn is defined, for m ∈ N, by

pm(x1, . . . , xn) = xm
1 + xm

2 + · · ·+ xm
n ,

often written pm(x) or simply pm when the variables are clear from context. The CHS polynomi-
als and the power-sum polynomials are connected by the following well-known identity (see, for
instance, [19, 20]):

(2.6) hk(x) =
∑

m1+2m2+···+kmk=k
m1≥0,...,mk≥0

k∏
i=1

pi(x)
mi

mi! imi
.

All coefficients in this expansion are nonnegative. This combinatorial identity will play a crucial
role in our proof of Hunter’s conjecture, as it allows us to compare h2k on different vectors by
comparing only the corresponding power sums.
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2.4. Fourier-analytic formulas. Fourier-analytic formulas for moments and negative moments
of random vectors have played a crucial role in the study of various slicing problems in convex
geometry; see, for example, [7, 8, 10]. We recall here the classical formulas that we shall need.

Lemma 2.8 (Lemma 3 in [15]). Let X be a random vector in Rd and let p ∈ (0, d). Then

E‖X‖−p = bp,d

∫
Rd

ϕX(t)‖t‖p−d dt,

provided that the right-hand side integral exists, where ϕX(t) = Eei⟨t,X⟩ is the characteristic
function of X, ‖ · ‖ is the Euclidean norm on Rd, and

bp,d = 2−pπ−d/2Γ
(
(d− p)/2

)
Γ(p/2)

.

There are also Fourier-type formulas for positive moments.

Lemma 2.9 (Lemmas 2.3 and 2.4 in [16]). Let

Cp =
2

π
Γ(1 + p) sin

(pπ
2

)
.

For a real-valued random variable X with characteristic function ϕX(t) = E(eitX), we have, for
p ∈ (0, 2),

(2.7) E|X|p = Cp

∫ ∞

0

1−<(ϕX(t))

tp+1
dt.

For p ∈ (2, 4), assuming E(X4) < ∞, it holds that

(2.8) E|X|p = −Cp

∫ ∞

0

(
<(ϕX(t))− 1 +

1

2
E(X2)t2

)
t−(p+1) dt.

Using the method introduced in [16] to prove the above lemmas we can actually prove the following:

Lemma 2.10. Let X be a real-valued random variable that satisfies EX6 < ∞. For p ∈ (4, 6) we
have

E|X|p = Cp

∫ ∞

0

(−<(ϕX(t)) + 1− 1

2
E(X2)t2 +

1

4!
E(X4)t4)t−(p+1)dt,

where Cp is the previous constant.

Proof. Let x ∈ R, we will compute

M :=

∫ ∞

0

(− cos(xt) + 1− 1

2!
x2t2 +

1

4!
x4t4)t−p−1 dx.

Notice that − cos(u) + 1 − 1
2u

2 + 1
4!u

4 > 0 for u > 0. Since, cos(t) = 1 − 1
2 t

2 + 1
4! t

4 + O(t6) for
t → 0 and cos(t) = 1− 1

2 t
2+ 1

4! t
4+O(t4) for t → ∞ we see that M is finite. Using the substitution

u = |x|t and integrating by parts, we get

M = |x|p
∫ ∞

0

(− cosu+ 1− 1
2!u

2 + 1
4!u

4)u−p−1 du

=
|x|p

p(p− 1)(p− 2)(p− 3)

∫ ∞

0

(1− cosu)u−p+3 du

=
|x|p

p(p− 1)(p− 2)(p− 3)

1

Cp−4
= |x|p 1

Cp
.

8



In the last steps we used the facts that p(p− 1)Cp−2 = −Cp, 0 < p− 4 < 2 and∫ ∞

0

(1− cosu)u−q−1 =
1

Cq
,

for 0 < q < 2 (see [16]). Thus,

|x|p = Cp

∫ ∞

0

(− cos(xt) + 1− 1

2
x2t2 +

1

4!
x4t4)t−p−1

The result follows from the fact <(ϕX(t)) = <(E(eitx)) = E(cos(tX)) combined with Fubini’s
Theorem. □

2.5. Weighted sums of exponential random variables. We next recall an explicit represen-
tation of the density of weighted sums of independent exponentials. It is a folklore result (see,
e.g., [6]) that the density of the linear combination a1X1 + · · · + anXn, denoted by G, where
X1, . . . , Xn are i.i.d. standard exponential random variables, is given by

G(t) =

n∑
j=1
aj>0

1

aj

n∏
k=1
k ̸=j

aj
aj − ak

e−t/aj 1[0,∞)(t)

= −
n∑

j=1
aj<0

1

aj

n∏
k=1
k ̸=j

aj
aj − ak

e−t/aj 1(−∞,0](t),

that is, for t 6= 0,

(2.9) G(t) =

n∑
j=1
aj>0

1

aj

n∏
k=1
k ̸=j

aj
aj − ak

e−t/aj1[0,∞)(t)−
n∑

j=1
aj<0

1

aj

n∏
k=1
k ̸=j

aj
aj − ak

e−t/aj1(−∞,0](t),

and

(2.10) G(0) =
1

2

 n∑
j=1
aj>0

1

aj

n∏
k=1
k ̸=j

aj
aj − ak

−
n∑

j=1
aj<0

1

aj

n∏
k=1
k ̸=j

aj
aj − ak

 .

This, in turn, implies the following interpolation formula:

(2.11) E

∣∣∣∣∣∣
n∑

j=1

ajXj

∣∣∣∣∣∣
q

= Γ(1 + q) ·

 n∑
j=1

|aj |q
∏
i ̸=j

aj
aj − ai

 ,

which remains valid for all q + 1 > 0, and also for q + 1 < 0 provided that q + 1 is not an integer.
Here Γ denotes the Euler gamma function, defined by

Γ(a) =

∫ ∞

0

ta−1e−t dt for <(a) > 0,

and extended to all a < 0 except at its poles {0,−1,−2, . . .} by the recurrence Γ(a) = Γ(a+1)/a.

2.6. Palindromic and anti-palindromic polynomials. Finally, we record a simple algebraic
notion that will be used in some auxiliary arguments.
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Definition 2.11. Given a polynomial P (x) = a0+a1x+ . . .+anx
n, we say that it is palindromic

if ai = an−i for all i = 0, 1, . . . , n, i.e. if its coefficients, when the polynomial is written in the
order of ascending or descending powers, form a palindrome.

Similarly, a polynomial P of degree n is called anti-palindromic if ai = −an−i for all i = 0, 1, . . . , n.

An immediate property of an anti-palindromic polynomial P (x) is that x = 1 is always a root.

3. A Proof of Hunter’s Conjecture

In this section we prove our first main result, which gives a complete solution to Hunter’s conjecture
in the scalar case. We begin with the precise description of the extremizers for h4, and then proceed
to all even degrees.

Proposition 3.1. Let a1, . . . , an be real numbers such that
∑n

i=1 a
2
i = 1. Then h4 attains its

maximum at the vector
a =

(
1√
n
, . . . ,

1√
n

)
,

while it attains its minimum at the “half-plus/half-minus” vector

ã =

 1√
n
, . . . , 1√

n︸ ︷︷ ︸
n/2

,− 1√
n
, . . . ,− 1√

n︸ ︷︷ ︸
n/2


when n is even, and at a vector of the forma, . . . , a︸ ︷︷ ︸

n−1
2

, b, . . . , b︸ ︷︷ ︸
n+1
2

 ,

when n is odd. Here a appears n−1
2 times, b appears n+1

2 times, and a
b minimizes the function

x2 + 1 +
(
n+1
2 x+ n+3

2

)2
n−1
2 x2 + n+1

2

.

Our main theorem settles Hunter’s conjecture for all even degrees.

Theorem 3.2. Let n be an even integer, and let a1, . . . , an be real numbers such that
∑n

i=1 a
2
i = 1.

Then, for every integer r ≥ 1,

h2r(a1, . . . , an) ≥
(
n
2 + r − 1

)
!

r! ·
(
n
2 − 1

)
! · nr

,

and this inequality is sharp, with equality achieved if and only if (a1, . . . , an) is a permutation of
the half-plus/half-minus vector ã.

One may now ask about the maximum of h2r under the normalization condition
∑

i a
2
i = 1. To

this end, we observe that a straightforward application of the triangle inequality in identity (1.2)
reduces the problem to the case where ai ≥ 0 and

∑
i a

2
i = 1. We will elaborate on this reduction

later when treating the case involving positive coefficients.
10



Before proceeding to the proof of the conjecture, we present a useful Proposition suggesting that
the extrema of h2k are attained under specific structural conditions.

Proposition 3.3. Let n ⩾ 1 and d > 3 be a non-negative even integer. Then the extrema of hd

on the unit sphere Sn−1 are of the form

x =

a, . . . , a︸ ︷︷ ︸
γ1

, b, . . . , b︸ ︷︷ ︸
γ2

, c, . . . , c︸ ︷︷ ︸
γ3

 .

Here, a appears γ1 times, b appears γ2 times, and c appears γ3 times, subject to the constraints
γ1a

2 + γ2b
2 + γ3c

2 = 1 and γ1 + γ2 + γ3 = n.

Proof. The unit sphere in Rn is compact. Therefore, hd must attain its extrema x on the unit
sphere in Rn. The method of Lagrange multipliers ensures that if x is a extrema, there exists λ

such that

(3.1) ∂hd(x)

∂xi
+ 2λxi = 0

for each i = 1, 2, . . . , n. We multiply by xi and sum over all i to obtain

(3.2)
n∑

i=1

xi
∂hd(x)

∂xi
+ 2λ = 0.

From Euler’s homogeneous function theorem, equation (3.2) becomes

dhd(x) + 2λ = 0.

Substituting and using the differentiating property of the CHS polynomials 2.4, we obtain

(3.3) hd−1(x, xi) = dxihd(x)

for each i = 1, 2, . . . , n.

The vector with all coordinates equal satisfies equation (3.3). Thus, we may assume that there
exist coordinates xi 6= xj . Applying equation (3.3) to xi and xj , and subtracting the results,
combined with the difference property, suggests that

(xi − xj)hd−2(x, xi, xj) = hd−1(x, xi)− hd−1(x, xj) = d(xi − xj)hd(x).

Then,

(3.4) hd(x) =
hd−2(x, xi, xj)

d
.

Assume that there exists a third distinct coordinate xk 6= xi, xj . By applying relation (3.4) once
again for xi and xk, and subtracting as before, we obtain

(3.5) hd−3(x, xi, xj , xk) = 0.

If we further consider, xl 6= xi, xj , xk in the same manner we obtain

hd−4(x, xi, xj , xk, xl) = 0.

For d ⩾ 4, since d − 4 is even, the positivity of the even degree CHS polynomials leads to a
contradiction. □
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We proceed by deriving sharp bounds for h4 through appropriate estimates of its extrema. This
will play a crucial role as the inductive step.

Proof of Proposition 3.1. For the maximum notice that

h4(a1, . . . , an) =
1

4!
E

(
n∑

i=1

aiXi

)4

⩽ 1

4!
E

(
n∑

i=1

|ai|Xi

)4

⩽ h4

(
1√
n
, . . . ,

1√
n

)
,

where we used Corollary 4.2 for k = 4.

For the minimum, we shall use the method of Lagrange multipliers as in proof of Proposition 3.3
to bound the extrema of h4(a1, . . . , an) which exist since the domain is compact. We are searching
for all x = (x1, . . . , xn) and the real number λ. By following the preceding argument verbatim,
we find that Relation (3.5) asserts that

h1(x, xi, xj , xk) = 0

or equivalently, if we set S :=
∑n

i=1 xi,

(3.6) S + xi + xj + xk = 0.

We also obtained the following identity (3.4):

4 · h4(x) = h2(x, xi, xj) =
1

2

{
n∑

m=1

x2
m + x2

i + x2
j + (S + xi + xj)

2

}
=

1

2

(
1 + x2

i + x2
j + x2

k

)
.

As established in Proposition 3.3, the extrema are attained under specific structural conditions,
that is

x =

a, . . . , a︸ ︷︷ ︸
γ1

, b, . . . , b︸ ︷︷ ︸
γ2

, c, . . . , c︸ ︷︷ ︸
γ3

 ,

where γ1a
2 + γ2b

2 + γ3c
2 = 1. For the moment, we assume that the parameters a, b, and c are all

distinct.

Thus, relation (3.6) suggests than it suffices to lower bound for a2 + b2 + c2 under the conditions(γ1 + 1)a+ (γ2 + 1)b+ (γ3 + 1)c = 0

γ1a
2 + γ2b

2 + γ3c
2 = 1

with γ1, γ2, γ3 ⩾ 1 and γ1 + γ2 + γ3 = n.

A direct computation shows that h4(ã) =
1
8 + 1

4n . Thus, it remains to prove the inequality

a2 + b2 + c2 ⩾ 2

n− 1

Without loss of generality, we may assume that c 6= 0. We write this as

a2 + b2 + c2 =
(a/c)2 + (b/c)2 + 1

γ1(a/c)2 + γ2(b/c)2 + γ3
.

12



By setting x := a
c and y := b

c , and using the fact that (γ1 + 1)x + (γ2 + 1)y + (γ3 + 1) = 0, we
reduce the bound to the following quadratic inequality:

x2

[
(γ2 + 1)2

(
1− 2γ1

n− 1

)
+ (γ1 + 1)2

(
1− 2γ2

n− 1

)]
+ 2x(γ1 + 1)(γ3 + 1)

(
1− 2γ2

n− 1

)
+ (γ3 + 1)2

(
1− 2γ2

n− 1

)
+ (γ2 + 1)2

(
1− 2γ3

n− 1

)
⩾ 0

Setting now di := γi − 1 ≥ 0, we notice that the coefficient in front of x2 is non-negative, since

(d2+2)2(d2+d3−d1)+(d1+2)2(d1+d3−d2) = (d1−d2)
2(d1+d2+4)+d3

[
(d2 + 2)2 + (d1 + 2)2

]
⩾ 0.

The discriminant ∆, equals

−4(γ2 + 1)2 ·
[
(γ3 + 1)2

(
1− 2γ2

n− 1

)(
1− 2γ1

n− 1

)
+ (γ2 + 1)2

(
1− 2γ1

n− 1

)(
1− 2γ3

n− 1

)
+(γ1 + 1)2

(
1− 2γ2

n− 1

)(
1− 2γ3

n− 1

)]
.

We will prove that ∆ is non-positive. Due to symmetry, we may assume that γ1 ≥ γ2 ≥ γ3. Then
substituting n = γ1 + γ2 + γ3, it suffices to prove that∑

(d1 + 2)2(d1 + d2 − d3)(d1 + d3 − d2) ≥ 0.

If d3 = 0, then the inequality can be rewritten in the form

(d1 − d2)
2(d21 + 2d1d2 + d22 + 4d1 + 4d2 − 4) ≥ 0,

which is true.
If d3 = 1, then the inequality is equivalent to

(d21−d22)
2+(d1+d2)(d1−d2)

2+(2d31−10d21+4d1+1+17d1d2)+(2d32−10d22+4d2+1+17d1d2) ≥ 0,

which holds.
Finally, if d1, d2, d3 ≥ 2, we rewrite the inequality as∑

(d1 + 2)2(d1 − d3)(d1 − d2) +
∑

(d1 + 2)2d3(d1 − d3) +
∑

(d1 + 2)2d2d3 ≥ 0.

The last sum is clearly non-negative. For the first sum notice that it can be expressed as

(d1 − d2)
[
(d1 + 2)2(d1 − d2)− (d2 + 2)2(d2 − d3)

]
+ (d3 + 2)2(d3 − d2)(d3 − d1) ⩾ 0

since d1 ⩾ d2 ⩾ d3. For the second one, after collecting the same terms, equals to∑
(d1 − d3)

2(d1d3 − 4) ≥ 0,

which is again true, since d1, d2, d3 ≥ 2.

In the case where x has exactly two distinct coordinates, equation (3.5) does not hold. Without
loss of generality assume b 6= 0. In this case

x = (a, . . . , a︸ ︷︷ ︸
γ1 times

, b, . . . , b︸ ︷︷ ︸
γ2 times

)

and γ1a
2 + γ2b

2 = 1 holds. In this case, from relation (3.4), we need to lower bound

a2 + b2 + ((γ1 + 1)a+ (γ2 + 1)b)
2
.

13



Then we will find the best constant 2
n−1 ≥ c ≥ 2

n , such that the inequality

(3.7) a2 + b2 + [(γ1 + 1)a+ (γ2 + 1)b]
2 ⩾ c(γ1a

2 + γ2b
2)

holds for all a, b. This can be equivalently expressed as

x2
[
1 + (γ1 + 1)2 − cγ1

]
+ 2x(γ1 + 1)(γ2 + 1) + (γ2 + 1)2 + 1− cγ2 ⩾ 0.

Notice that since c ≤ 1 we have
1 + (γ1 + 1)2 − cγ1 ⩾ 0

and that
∆

4
= (γ1 + 1)2(γ2 + 1)2 −

(
1 + (γ1 + 1)2 − cγ1

) (
1 + (γ2 + 1)2 − cγ2

)
.

We use the fact that γ1 + γ2 = n, to write the last one as a function of γ1. The derivative of this
function with respect to γ1 equals to

(−c2 + cn+ 4c+ 2)(n− 2γ1).

The first parenthesis is of course non-negative, therefore the function is increasing for γ1 ≤ n/2

and decreasing for γ1 ≥ n/2. If n is even, then it takes its maximum for γ1 = n/2. The maximum
equals to

1

4
(−2 + cn)(6 + 4n− cn+ n2),

which is non-positive for c ≤ 2
n . Therefore, for even n we have that

(3.8) a2 + b2 + [(γ1 + 1)a+ (γ2 + 1)b]
2 ⩾ 2

n
(γ1a

2 + γ2b
2)

and the equality holds when γ1 = γ2 = n/2 and a = −b.

In the case where n is odd, γ1 cannot be equal to n/2, therefore the function takes its maximum
for γ1 = n−1

2 (or γ1 = n+1
2 ). In the first case, the discriminant is equal to

1

4

(
c2(1− n2) + c(−4 + 7n+ 4n2 + n3)− 2(7 + 4n+ n2)

)
.

The last one is non-positive if and only if c ≤ ρ1(n) or c ≥ ρ2(n). However, ρ2(n) ≥ 2
n−1 , therefore,

the largest value that c can take is

c = ρ1(n) =
−4 + 7n+ 4n2 + n3 − (n+ 3)

√
8− 8n+ n2 + 2n3 + n4

2n2 − 2
.

Note that
ρ1(n) ∼

2

n
as n → +∞. We conclude that for n odd the inequality

(3.9) a2 + b2 + [(γ1 + 1)a+ (γ2 + 1)b]
2 ⩾ ρ1(n)(γ1a

2 + γ2b
2)

holds, and we have equality when γ1 = (n − 1)/2, γ2 = (n + 1)/2 and a
b = x, where x is the

minimum value of the function
x2 + 1 +

(
n+1
2 x+ n+3

2

)2
n−1
2 x2 + n+1

2

.

□

We now proceed with the proof of Hunter’s conjecture.
14



Proof of Theorem 3.2. We will prove, by induction on k, that every extremum x of h2k on the
sphere Sn−1, when n is even, satisfies

h2k(x) ⩾ h2k(ã) =
(n/2 + k − 1)!

k! · (n/2− 1)! · nk

We have already established the cases k = 1 and k = 2. Now, assume the statement holds for
k − 1 and that the extrema are of the form

x =

a, . . . , a︸ ︷︷ ︸
γ1

, b, . . . , b︸ ︷︷ ︸
γ2

, c, . . . , c︸ ︷︷ ︸
γ3

 ,

where γ1a
2 + γ2b

2 + γ3c
2 = 1.

Due to the symmetry, we can assume that a > |b| > |c|.

If γ1 ⩾ γ2 + γ3 then h2k(x) ⩾ h2k(ã). Indeed, in this case we have that

p2m+1(x) = γ1a
2m+1 + γ2b

2m+1 + γ3c
2m+1 ⩾ 0 = p2m+1(ã)

and using the Power-Mean inequality(
γ1a

2m + γ2b
2m + γ3c

2m

γ1 + γ2 + γ3

)1/m

⩾ γ1a
2 + γ2b

2 + γ3c
2

γ1 + γ2 + γ3
=

1

n
,

which can be written as
p2m(x) ⩾ p2m(ã).

Then, from identity (2.6), which expresses the CHS polynomial solely in terms of the power-sum
polynomials, we conclude the desired inequality.

If γ1 ⩽ γ2 + γ3, we proceed using the already established relation (3.4)

h2k(x) =
h2k−2(a[γ1 + 1], b[γ2 + 1])

2k

=
(1 + a2 + b2)k−1

2k
h2(k−1)

(
x√

1 + a2 + b2
,

a√
1 + a2 + b2

,
b√

1 + a2 + b2

)
.

In this case, we obtain that
a2 + b2 ⩾ 2

n
,

which helps us to complete the induction. Assume now that the extrema is of the form

x = (a, . . . , a︸ ︷︷ ︸
γ1 times

, b, . . . , b︸ ︷︷ ︸
γ2 times

)

where a, b are distinct and appear γ1 and γ2 times respectively and thus also γ1a
2 + γ2b

2 = 1.
Setting b = c in the argument above which helps us to complete the induction.

□
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4. The Non-Negative Coefficients Case

In this section we study the extremal behaviour of moments and complete homogeneous symmetric
polynomials when the coefficients are constrained to be non-negative. Throughout we assume
ai ≥ 0 and

∑n
i=1 a

2
i = 1.

For positive integer moments up to order four we have the following Schur-concavity result.

Theorem 4.1. Let X1, X2, . . . be independent and identically distributed standard exponential
random variables. For any positive integer k ≤ 4 and n ∈ N, the function

(x1, . . . , xn) 7→ E

 n∑
j=1

√
xjXj

k

is Schur-concave on Rn
+.

Note that for k > 4 Schur-concavity or Schur-convexity breaks.

As an immediate corollary, we obtain two-sided moment bounds in terms of the extreme non-
negative configurations.

Corollary 4.2. For X1, X2, . . . i.i.d standard exponential random variables. For any positive
integer k ≤ 4 and n ∈ N,

EXk
1 ≤ E

 n∑
j=1

ajXj

k

≤ E
(
X1 + · · ·+Xn√

n

)k

.

Remark 4.3. By a similar argument, Theorem 4.1 remains valid when the standard exponential
random variables are replaced with Gamma(γ) random variables, for any positive integer k ≤
2γ + 2.

Fot our next results we need the following definition.

Definition 4.4. Let X1, X2, . . . , Xn be i.i.d. standard exponential random variables. For a real
number q, we define

ρ(1, q) := E[Xq
1 ], ρ(2, q) := E

(
X1 +X2√

2

)q

,

and for general n ∈ N,

ρ(n, q) := E
(
X1 + · · ·+Xn√

n

)q

.

Theorem 4.5. Let k be a non-negative integer, and let a1, . . . , an be non-negative real numbers
such that

∑n
i=1 a

2
i = 1. If X1, . . . , Xn are i.i.d. standard exponential random variables, then

E (a1X1 + · · ·+ anXn)
k ≥ min{ρ(1, k), . . . , ρ(n, k)},

while the maximum will occur at a unit vector with nonzero coordinates, (n−1) of which are equal,
that is, of the form

(a1, . . . , an) = (s, t, . . . , t︸ ︷︷ ︸
n−1 times

),
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with t ≤ s and (s, t) explicitly determined by k and n as a root of an explicit polynomial, see the
Remark below for details.

In the following remarks we explain in details the behavior of the minimizer and the maximizer
respectively.

Remark 4.6. We fix some k. In order to find the minimum of ρ(s, k), consider the function
g : (0,∞) → (0,∞),

(4.1) g(n) =
Γ(n+ k)

nk/2 Γ(n)
=

∏k−1
j=0 (n+ j)

nk/2
.

Differentiating the logarithm with respect to n gives

g′(n)

g(n)
=

d

dn

(
ln g(n)

)
=

k−1∑
j=0

1

n+ j
− k

2

1

n
:= h(n).

Since g(n) > 0 for all n > 0, the sign of g′(n) coincides with the sign of h(n), and the critical
points of g in (0,∞) are exactly the zeros of h.

To analyse h, first multiply by n > 0:

nh(n) =

k−1∑
j=0

n

n+ j
− k

2
=

k−1∑
j=0

1

1 + j
n

− k

2
.

Introduce the new variable x = 1
n > 0 and define

F (x) =

k−1∑
j=0

1

1 + jx
− k

2
.

Then
h(n) = 0 ⇐⇒ F

(
1

n

)
= 0.

The derivative of F is

F ′(x) =

k−1∑
j=0

d

dx

(
1

1 + jx

)
= −

k−1∑
j=1

j

(1 + jx)2
.

For k ≥ 2 and x > 0 every term in the last sum is negative, hence

F ′(x) < 0 for all x > 0 and k ≥ 2.

Thus F is strictly decreasing on (0,∞) whenever k ≥ 2.

The limits of F at 0+ and +∞ are easily computed. One has

lim
x→0+

F (x) =

k−1∑
j=0

1− k

2
= k − k

2
=

k

2
,

and, since for j ≥ 1 we have 1 + jx → ∞ as x → ∞,

lim
x→∞

F (x) = 1− k

2
.
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Combining these observations with the monotonicity of F leads to the following conclusions about
the equation F (x) = 0 (equivalently h(n) = 0). For k = 2 one has

F (0+) = 1, lim
x→∞

F (x) = 0,

and F is strictly decreasing. Therefore F (x) > 0 for all x > 0, again implying that h(n) has no
zero in (0,∞).

For k ≥ 3 one has
F (0+) =

k

2
> 0, lim

x→∞
F (x) = 1− k

2
< 0,

and F is strictly decreasing on (0,∞). Hence, by the intermediate value theorem, there exists a
unique xk > 0 such that F (xk) = 0. This implies that there is a unique nk > 0 with

1

nk
= xk, h(nk) = 0.

Therefore, for every integer k ≥ 3, the function g has exactly one critical point nk in (0,∞).

For k ≥ 3 the expression (4.1) can be rewritten as

g(n) =
n(n+ 1) · · · (n+ k − 1)

nk/2
.

As n → 0+, the factors n+1, . . . , n+k−1 tend to positive constants, so the behaviour is dominated
by

g(n) ∼ Ck n
1−k/2

for some constant Ck > 0. Since 1−k/2 < 0 for k ≥ 3, one has g(n) → ∞ as n → 0+. As n → ∞,
the product n(n+ 1) · · · (n+ k − 1) behaves like nk, hence

g(n) ∼ nk−k/2 = nk/2 → ∞

as n → ∞. Together with the fact that g′ changes sign only once (because h has exactly one
zero), this shows that for k ≥ 3 the function g is strictly decreasing on (0, nk), strictly increasing
on (nk,∞), and attains a unique global minimum at n = nk.

The preceding discussion also ensures that, for fixed k and n, the maximum of ρ(s, k), for s =

1, . . . , n, is attained either at ρ(1, k) or at ρ(n, k).

It is also useful to obtain an asymptotic approximation for the location of this minimum when k

is moderately large. The defining equation for nk is h(nk) = 0, that is
k−1∑
j=0

1

nk + j
=

k

2nk
.

Approximating the sum by an integral gives
k−1∑
j=0

1

n+ j
≈
∫ k

0

dx

n+ x
= ln

n+ k

n
= ln

(
1 +

k

n

)
.

Thus, for n = nk, one expects approximately

ln
(
1 +

k

nk

)
≈ k

2nk
.
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Introducing the ratio
u =

k

nk

this becomes the transcendental equation

ln(1 + u) =
u

2
,

which no longer involves k. This equation has a unique positive solution u0, and a simple numerical
computation shows that

u0 ≈ 2.51.

Consequently,
nk ≈ k

u0
≈ 0.40 k

for large k. In other words, the location of the continuous minimizer grows asymptotically linearly
in k with slope slightly below 0.4.

For concrete values of k, one can solve the equation h(n) = 0 numerically. The following table
lists, for k = 5, . . . , 15, an approximation of the unique minimizer nk in (0,∞) together with its
integer part bnkc.

k nk (approx.) bnkc

5 1.2900 1
6 1.6958 1
7 2.0989 2
8 2.5006 2
9 2.9014 2
10 3.3015 3
11 3.7012 3
12 4.1005 4
13 4.4997 4
14 4.8986 4
15 5.2974 5

Table 1. Approximate continuous minimizer nk of g(n) and its integer part for
various values of k.

Remark 4.7. Let x = s/t ⩽ 1. The maximizing configuration occurs as a root of the polynomial
(see the proof below)

g(x) =

(
k

1

)
Γ(n)Γ(k) +

k−2∑
j=0

xj+1

[(
k

j

)
Γ(j + n− 1)Γ(k − j + 1)(n− 1)(j − k)

+ (j + 2)

(
k

j + 2

)
Γ(j + n+ 1)Γ(k − j − 1)

]
−
(

k

k − 1

)
Γ(k + n− 2)2(n− 1)xk.

Moreover, let f(x) be the logarithm of

E (sΓ(n− 1) + tΓ(1))
k
=

E (xΓ(n− 1) + Γ(1))
k

((n− 1)x2 + 1)k/2
.
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There are inherent limitations in giving an exact description of the maximizer. In some cases it
occurs at x = 1 (see Figure 1), whereas in other cases it may occur at one of the two additional
roots of g (see Figures 2 and 3).

0 0.5 1

8.6

8.8

9

9.2

Figure 1. Plot of f(x) for
n = k = 7.

0 0.5 1

10

10.5

11

Figure 2. Plot of f(x) for
n = 7, k = 8.

0 0.5 1

14.5

15

15.5

Figure 3. Plot of f(x) for n = 7 and k = 10

We also conjecture that this behavior holds for every real q > 0, as expressed in the following
conjecture:

Conjecture 4.8. Let q > 0 be a real number, and let a1, . . . , an be non-negative real numbers
satisfying

∑n
i=1 a

2
i = 1. If X1, . . . , Xn are i.i.d. standard exponential random variables, then

E
(
a1X1 + · · ·+ anXn

)q ⩾ min{ρ(1, q), . . . , ρ(n, q)}.

4.1. Characterization of Extrema. We first introduce a Lemma that will be useful for the
characterization of the global extrema.

Lemma 4.9. Let x, y, z and a, b, c be non-negative real numbers such that x+ y + z = a+ b+ c,
x2 + y2 + z2 = a2 + b2 + c2, and xyz ⩽ abc. Then, for any integer k ⩾ 1, we have

xk + yk + zk ≤ ak + bk + ck.

Respectively, if xyz ⩾ abc, then

xk + yk + zk ⩾ ak + bk + ck.
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Proof of Lemma 4.9. Let a, b and c be pairwise distinct numbers and set a+b+c = u, ab+ac+bc =

v and abc = w.

Since ak + bk + ck is a symmetric polynomial, it can be expressed as

ak + bk + ck := f(u, v, w),

and we must show that f increases as a function of w. For this, it is enough to show that ∂f
∂w ≥ 0.

Computing the partial derivatives we get

1 =
∂(a+ b+ c)

∂u
=

∂a

∂u
+

∂b

∂u
+

∂c

∂u
,

0 =
∂(ab+ ac+ bc)

∂u
=

∂a

∂u
b+

∂b

∂u
a+

∂a

∂u
c+

∂c

∂u
a+

∂b

∂u
c+

∂c

∂u
b

= (b+ c)
∂a

∂u
+ (a+ c)

∂b

∂u
+ (a+ b)

∂c

∂u
.

Moreover,
0 =

∂(abc)

∂u
= bc

∂a

∂u
+ ac

∂b

∂u
+ ab

∂c

∂u
.

The determinant of this system equals

∆ =

∣∣∣∣∣∣∣
 1 1 1

b+ c a+ c a+ b

bc ac ab


∣∣∣∣∣∣∣ =

∑
cyc

(ab(a+ c)− bc(a+ c)) = (a− b)(a− c)(b− c),

which gives
∂a

∂w
=

1

(a− b)(a− c)
.

Similarly,
∂b

∂w
=

1

(b− a)(b− c)

and
∂c

∂w
=

1

(c− a)(c− b)
.

To this end, note that

∂f

∂w
=
∑
cyc

∂f

∂a

∂a

∂w
=
∑
cyc

kak−1

(a− b)(a− c)
= k

∑
cyc

ak−1

(a− b)(a− c)
= khk−3(a, b, c) ≥ 0,

for all k ≥ 3, where in the last equality we used (2.5).

Since the above proof is valid for a → b+ and for b → c+ and since f is a continuous function, we
obtain that f increases for any non-negative a, b and c. □

Proposition 4.10. Let n ⩾ 1 and k > 2 be a non-negative integer. Then the extrema of hk in
the the space Sn−1

+ are of the form

x =

a, . . . , a︸ ︷︷ ︸
γ1

, b, . . . , b︸ ︷︷ ︸
γ2

 .

Here, a appears γ1 times, b appears γ2 times, subject to the constraints γ1a
2 + γ2b

2 = 1 and
γ1 + γ2 = n.
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Moreover, if a ⩾ b > 0, the global minimum is attained at a vector of the form

x =

a, . . . , a︸ ︷︷ ︸
n−1

, b

 ,

where (n− 1)a2 + b2 = 1, while the global maximum is attained at a vector of the form

x =

b, . . . , b︸ ︷︷ ︸
n−1

, a

 ,

where (n − 1)b2 + a2 = 1 , or where the extrema are attained at a vector with some components
equal to zero and the remainder equal; specifically, 1

√
γ
, . . . ,

1
√
γ︸ ︷︷ ︸

γ

, 0, . . . , 0︸ ︷︷ ︸
n−γ

 ,

for γ = 1, . . . , n.

Proof. We follow verbatim the proof of Proposition 3.3 for the case of extrema lying in the interior;
unlike before, we now have a boundary. Since all coefficients are positive, the argument terminates
at relation (3.5), where for distinct xi, xj , xk, we have hd−3(x, xi, xj , xk) = 0, which is clearly a
contradiction. The extrema on the boundary will occur when at least one coordinate is zero, then
our argument shows that the remaining non-zero coordinates must be equal completing the first
part of the proof.

For the second part, without loss of generality, we may assume that a > b > 0. (If b = 0 we
get exactly the third described form.) Suppose, for the sake of contradiction, that the vector
attaining the global minimum is not of the desired form, and assume that there exist at least two
occurrences of b. A similar argument provides the maximum.

Define the set

S :=
{
(x, y, z) ∈ R3

+ : x+ y + z = 2b+ a and x2 + y2 + z2 = 2b2 + a2
}
.

It is clear that S is non-empty and compact. Thus, we can choose x, y, z in S such that the
product xyz is minimized.

Observe that xyz < b2a and the inequality is strict since Corollary 1.8 in [11] suggests that the
minimum cannot be attained at (a, b, b).

Applying Lemma 4.9 we obtain that for every non-negative integer m > 2

pm (a, . . . , b, b) > pm (x, a, . . . , a, y, z) ,

where the right-hand side is obtained from the vector (a, . . . , b, b) by replacing one occurrence of
a with x, and by replacing two occurrences of b with y and z, respectively.

Therefore, by the representation (2.6), we arrive at hk (a, . . . , a, b, b) > hk (x, a, . . . , a, y, z) , which
is clearly a contradiction. □
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4.2. Proofs.

Proof of Theorem 4.1. We view the moment generating function of
∑n

j=1

√
xjXj in two ways,

using on the one hand independence and on the other the Taylor expansion of the exponential
function, namely

Eet
∑n

j=1

√
xjXj =

∞∑
k=1

tk

k!
E

 n∑
j=1

√
xjXj

k

=

n∏
j=1

(1− t
√
xj)

−1,

for all t such that the above is well defined. If we let Ft(x1, . . . , xn) =
∏n

j=1(1 − t
√
xj)

−1,
differentiating we get

∂F

∂xi
= F · t

2
√
xi(1− t

√
xi)

for every i = 1, . . . , n, which leads to(
∂

∂xj
− ∂

∂xi

)
F = F ·

√
xj −

√
xi

2
√
xixj

t2(
√
xj +

√
xi)− t

(1−√
xit)(1−

√
xjt)

=
∏
k ̸=i,j

(1− t
√
xk) ·

√
xj −

√
xi

2
√
xixj

t2(
√
xj +

√
xi)− t

(1−√
xit)2(1−

√
xjt)2

,

for every i 6= j. Taylor expanding around 0, we see that

(a+ b)t2 − t

(1− at)2(1− bt)2
= −t− (a+ b)t2 − (a2 + b2)t3 − (a− b)2(a+ b)t4 +O(t5).

In particular, the coefficient of tk is non-positive for any a, b > 0 when k ⩽ 4. The wanted
statement follows then by the Schur-Ostrowski criterion. □

Remark 4.11. It is worth to note that the above argument works only for k ⩽ 4. For example the
Taylor coefficient of t5 in the expansion of (a+b)t2−t

(1−at)2(1−bt)2 is −a4 + 2a3b+ 3a2b2 + 2ab3 − b4, which
does not preserve sign, e.g. is positive when a = b.

Proof of Corollary 4.2. This is a direct application of the function to the majorization sequence
(2.1). □

Proof of Theorem 4.5. The importance of Proposition 4.10 lies in the fact that it reduces the
problem to one involving only two variables, namely the study of E(aG1 + bG2)

k when γ1a
2 +

γ2b
2 = 1. We can further reduce this to a one-variable problem by dividing by (γ1a

2 + γ2b
2)k/2

and factoring out a common factor of b. Thus, we are ultimately led to study the following:

For any a, b > 0, let x := a/b, and define the function f : (0,∞) → R by

f(x) = log

 k∑
j=0

(
k

j

)
Γ(j + γ1)Γ(k − j + γ2)x

j

− log (Γ(γ1)Γ(γ2))−
k

2
log(γ1x

2 + γ2).
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its derivative can be computed as:

f ′(x) =
g(x)

(γ1x2 + γ2)
(∑k

j=0

(
k
j

)
Γ(j + γ1)Γ(k − j + γ2)xj

) ,
where

g(x) = γ2

(
k

1

)
Γ(1 + γ1)Γ(k − 1 + γ2) +

k−2∑
j=0

xj+1

[(
k

j

)
Γ(j + γ1)Γ(k − j + γ2)γ1(j − k)

+ (j + 2)γ2

(
k

j + 2

)
Γ(j + 2 + γ1)Γ(k − j − 2 + γ2)

]
−
(

k

k − 1

)
Γ(k − 1 + γ1)Γ(1 + γ2)γ1x

k.

Observe that g(0) > 0 and limx→+∞ g(x) = −∞.

We aim to better understand the coefficient in front of xj+1, say zj , which can be simplified as

zj := − 1

k − j − 1
(k − j − 1 + γ2)(k − j − 2 + γ2)γ1 +

1

j + 1
γ2(j + 1 + γ1)(j + γ1),

by factoring out
k! (j + γ1 − 1)! (k − j − 3 + γ2)!

j! (k − j − 2)!
.

This can be rewritten as
1

(j + 1)(k − j + 1)

[
− j3(γ1 + γ2) + j2 (k(2γ1 + γ2)− 4γ1 − 2γ2)− j

(
k2γ1 + k(−5γ1 − γ2) + γ2

1γ2

+ γ1(γ
2
2 − 2γ2 + 5) + γ2

)
− γ1

(
k2 + k(−γ1γ2 + γ2 − 3) + γ1γ2 + γ2

2 − 2γ2 + 2
)]
.

According to Descartes’ Rule of Signs, the number of positive real roots of a polynomial is at
most equal, or is less than it by an even number, to the number of sign changes in the sequence
of its coefficients. Since the numerator of zj is a cubic polynomial, it can exhibit up to three sign
changes, and therefore, in the worst-case scenario g can have three sign changes in the sequence
of its coefficients.

Combining all the above, we conclude that g has at most three positive roots.

We now claim that f ′(1) = 0, and thus the obvious root of the polynomial g is x = 1. To verify
this, we compute the derivatives of E[(xG1 + G2)

k]. By differentiting under the integral sign we
obtain

d

dx
E
[
(xG1 +G2)

k
]
= kE

[
(xG1 +G2)

k−1G1

]
.

Moreover

E[(xG1+G2)
k−1G1] = E

k−1∑
j=0

(
k − 1

j

)
(xG1)

j+1Gk−1−j
2

 =

k−1∑
j=0

(
k − 1

j

)
xj+1E(Gj+1

1 )E(Gk−1−j
2 ).

The moment formula for Gamma distributions gives:

E(Gj+1
1 ) =

Γ(γ1 + j + 1)

Γ(γ1)
and E(Gk−1−j

2 ) =
Γ(γ2 + k − 1− j)

Γ(γ2)
.

Therefore,

E[(xG1 +G2)
k−1G1] =

k−1∑
j=0

(
k − 1

j

)
xj+1Γ(γ1 + j + 1)

Γ(γ1)
· Γ(γ2 + k − 1− j)

Γ(γ2)
.
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This sum simplifies to
γ1 · E[(xG3 +G4)

k−1]

where G3 ∼ Γ(γ1 + 1), G4 ∼ Γ(γ2) where G3 ∼ Γ(γ1 + 1) and is independent of G1, G2. In
particular, for x = 1, either expression above can be evaluated directly. Similarly, we obtain the
second derivative to be

d2

dx2
E[(xG1 +G2)

k] = k(k − 1)γ1(γ1 − 1)E[(xG4 +G2)
k−1],

where G4 ∼ Γ(γ1 + 2) and is independed from the others. We observe also that

E[(G1 +G2)
k] =

Γ(n+ k)

Γ(n)
.

Thus, putting everything together:

f ′(1) = γ1
k

n
− kγ1

n
= 0.

A similar argument as above yields the second derivative at x = 1:

f ′′(1) =
kγ1
n

γ2(k − n− 2)

n(n+ 1)
.

Therefore, by the second-order derivative test, we conclude the following:

• If k > n+ 2, then f ′′(1) > 0, so f has a local minimum at x = 1.
• If k < n+ 2, then f ′′(1) < 0, so f has a local maximum at x = 1.

Since g(0) > 0 and g(+∞) < 0, we conclude that for k > n+2, the other two roots s < t must be
positioned as 0 < s < 1 < t and thus the function f may attain its minimum at one of the points
x = 0, x = 1, or x = +∞. That is, the possible candidates for the minimum of f are f(0), f(1),
and f(+∞). The maximum will be attained at one of f(s), f(t).

In the case where k = n + 2, f has a root of multiplicity two at x = 1. Therefore, the possible
minima occur at f(0) and f(+∞).

In the case where k < n+2, there are two possible configurations. In the first scenario, the global
maximum is attained at x = 1, and the potential minima are at f(0) and f(+∞). In the second
scenario, the polynomial g admits two distinct roots s and t such that 0 < s < t < 1 (or 1 < s < t).
In this case, the maximum of f occurs at x = s or x = 1 and the minimum could potentially occur
at f(t), in addition to f(0) and f(+∞). Both scenarios are possible so this argument cannot work.

For k ≤ n + 1, we employ a different approach. Recall (see Proposition 4.10) that the global
minimum will be attained at a vector of the form

x =

a, . . . , a︸ ︷︷ ︸
n−1

, b

 ,
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for a ⩾ b > 0 or at a vector of the form 1
√
γ
, . . . ,

1
√
γ︸ ︷︷ ︸

γ

, 0, . . . , 0︸ ︷︷ ︸
n−γ


where γ = 1, . . . , n. We proceed by induction on k to show that for every natural number n and
x ≥ 1, the following inequality holds:

E (xG1 +G2)
k

((n− 1)x2 + 1)
k/2

≥ Γ(n− 1 + k)

Γ(n− 1) (n− 1)k/2
,

where G1, G2 are independent Γ(n − 1) and Γ(1) random variables respectively. This would
complete the argument. We observe that the cases k = 1, 2 hold, so we assume the statement
holds for k − 1.

Consider the function

h(x) =
E (xG1 +G2)

k

((n− 1)x2 + 1)
k/2

.

As before, we compute its derivative:

h′(x) =
k(n− 1)E (xG3 +G2)

k−1 (
(n− 1)x2 + 1

)k/2 − k(n− 1)xE (xG1 +G2)
k (

(n− 1)x2 + 1
)k/2−1

(x2(n− 1) + 1)
k

,

where G1, G2 and G3 are independent Gamma random variables with distributions G1 ∼ Γ(n−1),
G2 ∼ Γ(1) and G3 ∼ Γ(n), respectively.

Therefore, at any root y of h′(x) we have

h(y) =
E (yG1 +G2)

k

((n− 1)y2 + 1)
k/2

=
E (yG3 +G2)

k−1

(ny2 + 1)
(k−1)/2

·
(
ny2 + 1

)(k−1)/2

y ((n− 1)y2 + 1)
k/2−1

.

Notice that the function

g(y) =

(
ny2 + 1

)(k−1)/2

y ((n− 1)y2 + 1)
k/2−1

,

has derivative

g′(y) =
(y2(k − n− 1)− 1)(ny2 + 1)

k−3
2

y2((n− 1)y2 + 1)k/2
,

and thus is decreasing for k ≤ n+ 1. Therefore,

g(y) ⩾ n(k−1)/2

(n− 1)k/2−1
.

Combining this estimate with the inductive hypothesis completes the proof. □

To support Conjecture 4.8 concerning real exponents, we provide a proof for the two-dimensional
case.
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Proposition 4.12. Let q be a non-negative real number and a, b ⩾ 0 such that a2 + b2 = 1. Then

E(aX + bY )q ≥ min

{
E
(
X + Y√

2

)q

,E
(
Xq

1

)}
.

For the regime q ⩽ 4 we will need the following log-concavity Lemma (see for example [5]).

Lemma 4.13. If f : (0,+∞) → (0,+∞) is log-concave then

G(q) =
1

Γ(1 + q)

∫ ∞

0

tqf(t) dt

is also log-concave on (−1,+∞).

Proof of Proposition 4.12. We will first work on the regime q ≤ 4. We apply Lemma 4.13 for the
density of aX + bY , given by

d(x) =
1

a− b

(
e−x/a − e−x/b

)
1(0,+∞).

By log-concavity,

1

EXq
1

E (aX + bY )
q
= G(q) ⩾ G(0)1−

q
4G(4)

q
4 =

(
E (aX + bY )

4

4!

) q
4

⩾ 1,

since, by Corollary 4.2, E (aX + bY )
4 ⩾ EX4

1 = 4! .

For q ⩾ 4, the desired quantity becomes

aq+1 − bq+1

(a− b)(a2 + b2)q/2

for all a, b ⩾ 0. Without loss of generality let b 6= 0, x := a/b and define f : (0,∞) → R by

f(x) = log

(
xq+1 − 1

x− 1

)
− q

2
log(x2 + 1).

To this end, we examine the monotonicity of f .

f ′(x) =
qxq+1 − (q + 1)xq + 1

(x− 1)(xq+1 − 1)
− qx

x2 + 1

=
−xq+2 + qxq+1 − xq(q + 1) + x2(q + 1)− qx+ 1

(x− 1)(x2 + 1)(xq+1 − 1)

Note that the numerator, say g, has five sign changes in its coefficients, therefore by the extension
of Descartes’ rule of signs [13] it has at most five positive roots, and thus the same will hold for
f ′. It is easy to check that g(x) has a root of multiplicity three at x = 1.

We observe that g′′′(1) = q(q + 1)(q − 4) > 0 for q > 4 and thus from the higher order derivative
test, x = 1 is a saddle point and a strictly increasing point of inflection. □

5. The Centred Case: Proofs

5.1. Characterization of Extrema. For the centred case, where
∑n

i=1 ai = 0 and
∑n

i=1 a
2
i = 1,

we have the following theorem.
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When n is even, the lower bound for every even degree coincides with the one stated in Theo-
rem 3.2, but in this case we are able to determine the exact upper bound.

Theorem 5.1. Let n be an even integer and k ≥ 1 be an integer, and let a1, . . . , an be real numbers
such that

∑n
i=1 a

2
i = 1 and

∑n
i=1 ai = 0. Then

h2k(a1, . . . , an) ≥
(
n
2 + k − 1

)
!

k! ·
(
n
2 − 1

)
! · nk

,

and equality is attained at the vector ã.

The maximum, for both odd and even non-negative integers n, is attained at the vector where all
of ai except of one are equal, that is− 1√

n(n− 1)
, . . . ,− 1√

n(n− 1)︸ ︷︷ ︸
n−1

,

√
n− 1

n

 .

We also provide a proof of the lower bound for h4 for both odd and even integers n.

Proposition 5.2. Let a1, . . . , an ∈ R satisfy
∑n

i=1 ai = 0 and
∑n

i=1 a
2
i = 1. Then the quantity

h4(a1, . . . , an) attains the minimum at 1√
n
, . . . ,

1√
n︸ ︷︷ ︸

n
2

,− 1√
n
, . . . ,− 1√

n︸ ︷︷ ︸
n
2


if n is even, or 

√
n+ 1

n(n− 1)
, . . . ,

√
n+ 1

n(n− 1)︸ ︷︷ ︸
n−1
2

,−

√
n− 1

n(n+ 1)
, . . . ,−

√
n− 1

n(n+ 1)︸ ︷︷ ︸
n+1
2

 ,

if n is odd.

In the case n = 3, we are able to obtain sharp upper and lower bounds for nearly all moments.

Proposition 5.3. Let

x1 =

(
1√
6
,
1√
6
,− 2√

6

)
, x2 =

(
1√
2
,− 1√

2
, 0

)
,

and define
f(a1, a2, a3) := E |a1X1 + a2X2 + a3X3|q ,

subject to the constraints a1 + a2 + a3 = 0 and a21 + a22 + a23 = 1.

(i) For q ∈ (−1, 0)∪ (2, 4), the function f attains its minimum at x1 and its maximum at x2.
(ii) For q ∈ (0, 2) ∪ (4, 6), the function f is minimized at x2 and maximized at x1.

(iii) For q = k > 3, where k is a non-negative integer, the function f is minimized at x2 and
maximized at x1.
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(iv) Moreover, for q = 2 and q = 4, the function f is constant.

Before proceeding with the proofs, we first characterize the extrema in the geometric case, that is∑n
i=1 ai = 0 and

∑n
i=1 a

2
i = 1. Following almost verbatim the proof of Proposition 3.3 we obtain

the following:

Proposition 5.4. Let n ⩾ 1 and d > 3 be a even integer. Then the extrema of hd on the space
S := {(x1, . . . , xn) ∈ Rn :

∑n
i=1 xi = 0,

∑n
i=1 x

2
i = 1} are of the form

x =

a, . . . , a︸ ︷︷ ︸
γ1

, b, . . . , b︸ ︷︷ ︸
γ2

, c, . . . , c︸ ︷︷ ︸
γ3

 .

Here, a appears γ1 times, b appears γ2 times, and c appears γ3 times, subject to the constraints
constraints γ1a

2 + γ2b
2 + γ3c

2 = 1 and γ1 + γ2 + γ3 = n.

5.2. Sharp Bounds for pm.

Proposition 5.5. Let n ≥ 2, and let a, b, c be real numbers such that

γ1a+ γ2b+ γ3c = 0 and γ1a
2 + γ2b

2 + γ3c
2 = 1,

and set

x =

a, . . . , a︸ ︷︷ ︸
γ1

, b, . . . , b︸ ︷︷ ︸
γ2

, c, . . . , c︸ ︷︷ ︸
γ3

 .

Then, for every positive integer m, pm (x) = γ1a
m + γ2b

m + γ3c
m attains its maximum at− 1√

n(n− 1)
, . . . ,− 1√

n(n− 1)︸ ︷︷ ︸
n−1

,

√
n− 1

n

 ,

that is, the vector in which all but one coordinate are equal.

Proof. Since n = 2 is trivial, assume that n ⩾ 3, γ1, γ2, γ3 ⩾ 1 and m ⩾ 3 since p1(x) = 0,
p2(x) = 1. We will distinguish two cases. If m is odd, say m = 2k + 1, then using the Lagrange
multiplier method, we find that an extreme point (a, b, c) satisfies

(2k + 1)x2k − 2λx− µ = 0,

for x = a, b, c. Since x2k is convex, it has at most two points of intersection with a affine function,
therefore, two of a, b, c are equal, say a = b. Then, if we set γ1 + γ2 = γ we obtain

pm = γam + γ3c
m

under the conditions γa+ γ3c = 0 and γa2 + γ3c
2 = 1. Solving for a, c we and using γ3 = n− γ,

we write
pm =

1

nm/2

(
(n− γ)m/2

γm/2−1
− γm/2

(n− γ)m/2−1

)
,

which is clearly maximized for γ = 1.
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If m is even, say m = 2k, then using the Lagrange multiplier method we find that the vector
(a, b, c) which attains the maximum satisfies

(5.1) 2k x2k−1 − 2λx− µ = 0,

for x = a, b, c. We can multiply this relation by γ1, γ2, γ3, respectively, and add them to ob-
tain kp2k = λ. We multiply this relation by γ1a, γ2b, γ3c, respectively, and add them to get
2kp2k−1 = nµ. If substitute this into (5.1), and divide by 2m,

x2k−1 = x p2k +
p2k−1

n
.

Due to the even power, suppose, without loss of generality, that a is positive and |c| > a > |b|.
Under this assumption, we first prove that

1√
n(n− 1)

≤ a ≤ 1√
2
.

For the upper bound, note that

2a2 ≤ (γ1 + γ3)a
2 ≤ γ1a

2 + γ2b
2 + γ3c

2 = 1.

For the lower bound we write

(γ1 + γ2)a
2 +

a2(γ1 + γ2)
2

γ3
≥ γ1a

2 + γ2b
2 +

(γ1a+ γ2b)
2

γ3
= 1,

or
a2 ≥ γ3

n(n− γ3)
≥ 1

n(n− 1)
.

From the odd case, we know that

p2k−1 ≥ −An,2k−1 := −

[(
n− 1

n

)(2k−1)/2

+ (−1)2k−1(n− 1)

(
1

(n− 1)n

)(2k−1)/2
]
.

On the other hand, since (a, b, c) is the point that achieves the maximum we have that

p2k ≥ An,2k.

Therefore, from the main relation for a satisfies the inequality

a2k−1 ≥ aAn,2k − An,2k−1

n
.

We consider the following function:

fk(x) = x2k−1 − xAn,2k +
An,2k−1

n
.

and the constants:
s =

√
n− 1

n
, t =

1√
n(n− 1)

, w =
1√
2
.

Notice that from Descartes’s rule or signs, fk has at most 2 positive roots.

We aim to prove that fk(w) < 0 for every n ⩾ 3 and k ⩾ 2. The conclusion is that fk has two
positive roots, one of them is t and the other is larger than w, since the limit of fk as x grows to
+∞ is +∞. This means that in the open interval (t, w) fk is negative. Therefore, a = t. In all
the above inequalities, equality must hold, therefore, γ3 = 1 and a = b.

Let us begin with k ≥ 2 and n ≥ 6.
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We express fk(w) as:

fk(w) = (w − t)
[
w2k−2 + w2k−3t+ · · ·+ t2k−2 −An,2k

]
:= (w − t)Qk(w).

Since the prefactor w − t > 0, for n ≥ 3 the sign of Qk(w) is the same as that of fk(w). If we set

q :=
t

w
< 1

then

S(w) :=

2k−2∑
i=0

ti w2k−2−i = w2k−2
2k−2∑
i=0

qi <
w2k−2

1− q
,

which gives

S(w)

s2k
<

1

1− q

w2k−2

s2k
=

w−2

1− q

(w2

s2

)k
≤ w−2

1− q

(w2

s2

)2
=

w2

s4(1− q)
< 1,

since s4 ≥ (5/6)2 and q ⩽ 1√
15

, for n ≥ 6. This means

S(w)−
(
s2k + (n− 1)t2k

)
< 0.

Finally, we can easily check that the above argument implies that fk(w) < 0 also holds for n ≥ 4

and k ≥ 3. Indeed, For n = 5 we have s2 = 4/5 and q = t/w =
√
1/10 < 1/3, which implies

w2

s4(1− q)
≤ 1/2

(16/25) · (2/3)
=

75

64
< 1,

and the same conclusion follows. For n = 4 we retain the factor (w2/s2)k and use that

S(w)

s2k
<

w−2

1− q

(
w2

s2

)k

=
2

1− q

(2
3

)k
with q = 1/

√
6. It is then easy to check that the right-hand side is < 1 for all k ≥ 4, hence

fk(w) < 0 in this range. Finally, in the remaining case (n, k) = (4, 3) we compute explicitly

f3(w) =
20

√
3− 25

√
2

288
< 0.

In particular, we have fk(w) < 0 for all n ≥ 4 and k ≥ 3.

Therefore, it remains to check only the cases n = 3 and any k ⩾ 2, (n, k) = (5, 2) and (n, k) = (4, 2).
The cases for k = 2 have been already settled, as it can be seen in Proposition 2.1 of [12]. For
n = 3 and k ⩾ 2 it suffices to consider the quantity

a2k + b2k + c2k

(a2 + b2 + c2)k
.

Since a + b + c = 0 and a2 + b2 + c2 = 1, we can without loss of generality assume that a, c

are non-negative, c 6= 0 and set x = a/c ⩾ 0 and y = b/c to obtain a function of one variable
f : (0,∞) → R as follows:

f(x) =
x2k + (x+ 1)2k + 1

2k(x2 + x+ 1)k
.

We will prove that f attains its maximum at x = 1. Let g be the numerator of f ′, then a direct
computation shows that

g(x)

kx
= x2k+1 + 3x2k + 2x2k−1 + (1− x)(x+ 1)2k − 2x2 − 3x− 1
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Since k is a integer we can expand the binomial and by setting aj :=
(
2k
j

)
we obtain

g(x)

kx2
= − x2k−1(−3− a2k + a2k−1)− x2k−2(−2− a2k−1 + a2k−2)

+

2k−3∑
j=2

(aj+1 − aj)x
j + x(−2 + a2 − a1) + (−3 + a1 − a0).

Since aj = a2k−j , it follows immediately that g(x)
kx2 is an anti-palindromic polynomial. In particular,

x = 1 is a root. The uniqueness of the positive root then follows from the sign of the sequence
aj+1 − aj = aj

2k−2j−1
j+1 , together with Descartes’ Rule of Signs.

□

Proof of Theorem 5.1. For the lower bound, applying Theorem 3.2 we conclude:

h2r(x) ≥
(n/2 + r − 1)!

r! · (n/2− 1)! · nr
.

For the maximum, notice that relation (2.6) suggest

hk(x) ⩽
∑

m1+2m2+···+kmk=k

m1≥0,...,mk≥0

k∏
i=1

|pi|mi(x)

mi! imi
.

Notice also that p2k ≥ 0. Moreover, if w is a maximizer of p2k−1, then since p2k−1 is an odd
function, it follows that −x is a minimizer. Thus,

|p2k−1| ≤ p2k−1(w).

The characterization of the extrema Proposition 5.4 and Proposition 5.5 now finishes the proof. □

Proof of Proposition 5.2. We will find upper and lower bounds for

E

∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣
4

= 3 + 6

n∑
i=1

a4i ,

under the conditions
∑n

i=1 ai = 0 and
∑n

i=1 a
2
i = 1. We will use the method of Lagrange multi-

pliers to find the maximum and the minimum which exist since the domain is compact. We are
searching for all a = (a1, . . . , an) and the real numbers λ, µ such that for all indices i = 1, . . . , n

we have
4a3i − 2λai + µ = 0.

Multiplying by ai and summing for all i we get

(5.2) 4

n∑
i=1

a4i − 2λ = 0.

If for the indices i 6= j it is true that ai 6= aj , then subtracting the two relations we get

(5.3) 4(a2i + aiaj + a2j )− 2λ = 0.
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Therefore if there exists one more index k, such that ak 6= ai and ak 6= aj , then ai + aj + ak = 0.
Therefore the vector a has the form

(x, x, . . . , x, y, y, . . . , y, z, z, . . . , z),

where x + y + z = 0. Suppose that x appears s times, y appears t times and z appears w times
and due to the symmetry we assume that s ≥ t ≥ w. From (5.3) and (5.2), it suffices to find
upper bounds for x2 + y2 + z2, under the conditions

x+ y + z = 0

sx+ ty + wz = 0

sx2 + ty2 + wz2 = 1

If s = t = w, then x2 + y2 + z2 = 3
n . Otherwise, we can solve the above system with respect to

x, y, z and find that

x2 + y2 + z2 =
(s− t)2 + (t− w)2 + (s− w)2

w(s− t)2 + s(t− w)2 + t(s− w)2
.

We will prove the following double inequality.

2

n− 1
≤ (s− t)2 + (t− w)2 + (s− w)2

w(s− t)2 + s(t− w)2 + t(s− w)2
.

For the left-hand side inequality, note that n = w + s+ t and after some algebraic manipulations
we end up proving that

(w − 1)(w − s)(w − t) + (t− 1)(t− s)(t− w) + (s− 1)(s− w)(s− t) ≥ 0.

To this end, note that the last one is equivalent to

(s− t)[(s− 1)(s− w)− (t− 1)(t− w)] + (w − 1)(s− w)(t− w) ≥ 0,

which is true, since w, s, t ≥ 1 and s ≥ t ≥ w.

We also need to consider the case where exactly one group is zero, say z. In this case, since
x + y = 0 and also sx + ty = 0, together with the condition sx2 + ty2 = 1, we are led to s = t,
and a vector of the form 1√

2s
, . . . ,

1√
2s︸ ︷︷ ︸

s-times

,− 1√
2s

, . . . ,− 1√
2s︸ ︷︷ ︸

s-times

, 0, . . . , 0︸ ︷︷ ︸
(n−2s)-times

 .

Note also that 2s = n − w. Since we only need to bound x2 = 1
2s , which is decreasing in s, it

suffices to consider the case 2s = n− 1 for the minimum and s = 1 for the maximum.

It remains to check the case where the vector a has the form

(x, x, . . . , x, y, y, . . . , y),

where x appears s times and y appears t times. Without loss of generality, assume that x > 0

and y < 0. Then, from (5.3) and (5.2), it suffices to find upper the maximum and the minimum
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for x2 + xy + y2, under the conditions sx+ ty = 0

sx2 + ty2 = 1

Solving the system we get that

x2 + y2 + xy =
1

n

(
t

s
+

s

t
− 1

)
=

1

n

(
n− s

s
+

s

n− s
− 1

)
.

The function in the parenthesis takes its maximum value for s = 1 (or s = n−1) and its minimum
value for s = bn

2 c. It is easy now to compare the extrema. □

Proof of Proposition 5.3. For (iv), we observe that since a1 + a2 + a3 = 0 and a21 + a22 + a23 = 1,
it follows that

E |a1X1 + a2X2 + a3X3|2 = 1,

and
E |a1X1 + a2X2 + a3X3|4 = 3 + 6(a41 + a42 + a43) = 6.

For (i), (ii) and (iii), a simple point-wise bound for <
(
ϕ∑

aiXi

)
, combined with the Fourier

formulas (2.7), (2.8) and (2.10) suffices.

We observe that

ϕ(t) =
1

(1 + ia1t)(1 + ia2t)(1 + ia3t)
=

1− it(a1 + a2 + a3)− t2(a1a2 + a2a3 + a1a3)− i3t3a1a2a3
(1 + a21t

2)(1 + a22t
2)(1 + a23t

2)
.

Since a1 + a2 + a3 = 0 and a21 + a22 + a23 = 1, this simplifies to

<(ϕ(t)) = 1 + t2/2

(1 + a21t
2)(1 + a22t

2)(1 + a23t
2)
.

We now establish a bound for <(ϕ(t)):

(1 + t2/2)2 ≤ (1 + a21t
2)(1 + a22t

2)(1 + a23t
2) ≤ (1 + t2/6)2(1 + 2t2/3),

where the upper bound is attained at x2 and the lower bound at x1.

This can be proven by expanding the product:

(1 + a21t
2)(1 + a22t

2)(1 + a23t
2) = 1 + t2(a21 + a22 + a23) + t4(a21a

2
2 + a22a

2
3 + a21a

2
3) + t6a21a

2
2a

2
3.

The lower bound is immediate. For the upper bound, we may assume without loss of generality
that two of the variables share the same sign; let a1, a2 ⩾ 0.

Applying the Cauchy–Schwarz inequality yields

1 = a21 + a22 + a23 ≥ 2

(
a1 + a2

2

)2

+ a23,

which implies a23 ≤ 2
3 .
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Using the AM–GM inequality, we obtain

a21a
2
2a

2
3 ≤

(
a1 + a2

2

)4

a23 =
a63
24

≤ (2/3)3

16
=

1

54
.

For integers k > 3, a different approach is required. We define the function

f(a1, a2, a3) =
E|a1X1 + a2X2 + a3X3|q

(a21 + a22 + a23)
q/2

.

Let a1, a2 ⩾ 0, a2 6= 0, and a3 ⩽ 0, and write −a3 ⩽ 0, so that the expression becomes a1X1 +

a2X2 − a3X3. Let x = a1/a2 and y = a3/a2, then it equals
E|xX1 +X2 − yX3|q

(x2 + y2 + 1)q/2
.

Since a1 + a2 − a3 = 0 and a21 + a22 + a23 = 1, it follows that

f(x) =
E|xX1 +X2 − (1 + x)X3|q

2q/2(x2 + x+ 1)q/2
.

We now utilize formula (2.11) and drop the Γ(1+q)
2q/2+1 constant for simplicity:

f(x) =
−1− 2x+ 2x2+q + x3+q + (x− 1)(1 + x)2+q

(x− 1)(x+ 2)(2x+ 1)(x2 + x+ 1)q/2
.

As a motivating example, when q = 7, we compute:

f ′(x) =
−3x(10x9 + 80x8 + 249x7 + 363x6 + 183x5 − 183x4 − 363x3 − 249x2 − 80x− 10)

2(x2 + (1 + x))9/2(1 + 2x)2(2 + x)2
.

The function f ′ has a unique root at x = 1 by Descartes’ rule of signs.

Claim. Let q = k be a non-negative integer. The numerator of f ′, denoted g, has a root at x = 1

and exhibits exactly one sign change in its coefficients. More generally, g is an anti-palindromic
polynomial with a single sign change in its coefficients.

Proof of Claim 5.2. From expanding (x+ 1)k+2, we get

f(x) =
2xk+2 + 2 +

∑k+1
j=1 x

j
((

k+2
j

)
+ 3
)

(x2 + x+ 1)k/2(2x+ 1)(x+ 2)
.

Direct computation shows:

g(x) = (2x4 + 7x3 + 9x2 + 7x+ 2)

2(k + 2)xk+1 +

k+1∑
j=1

jxj−1

((
k + 2

j

)
+ 3

)
− 1

2
(x3(4k + 8) + x2(12k + 18) + x(9k + 18) + 2k + 10)

2xk+2 + 2 +

k+1∑
j=1

xj

((
k + 2

j

)
+ 3

) .
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Define aj =
(
k+2
j

)
+3, we notice that the constant term, xk+5, and xk+4 vanish, and thus a direct

computation shows:
g(x)

x
= a1(2− k) + 4a2 − (9k + 18)

+ x
(
− 9

2k a1 + (9− k)a2 + 6a3 − (12k + 18)
)

+ x2
[
−(4k + 8)− (6k + 2)a1 +

(
9− 9

2k
)
a2 + (16− k)a3 + 8a4

]
+

k−3∑
j=1

xj+2
[
(2j − 2k − 4)aj + (7j − 6k − 2)aj+1 +

(
9j − 9

2k + 9
)
aj+2 + (7j − k + 16)aj+3 + (2j + 8)aj+4

]
+ xk

[
(4k + 8) + (6k + 2)ak+1 −

(
9− 9

2k
)
ak − (16− k)ak−1 − 8ak−2

]
+ xk+1

[
9
2k ak+1 − (9− k)ak − 6ak−1 + (12k + 18)

]
+ xk+2 [−(2− k)ak+1 − 4ak + (9k + 18)]

Note that aj = ak+2−j , and all coefficients of g(x) are symmetric except for a sign flip. So we
write:

g(x) = x

k+2∑
j=0

βjx
j ,

and its easy to see that βj = −βk+2−j , i.e., g(x)/x is anti-palindromic. Let z := zj,k be the
quantity inside the sum for j and w := wj,k for k − j − 2. Then,

z = aj(2j − 2k− 4) + aj+1(7j − 6k− 2) + aj+2(9j − 9/2k+ 9) + aj+3(7j − k+ 16) + aj+4(2j + 8)

and

w = ak−j−2(−2j−8)+ak−j−1(k−7j−16)+ak−j(9/2k−9j−9)+ak−j+1(6k−7j+2)+ak−j+2(2k−2j+4)

We now notice that z = −w, proving anti-palindromicity and thus confirming x = 1 is a root.

To ensure uniqueness of the root, we show the first b(k + 2)/2c coefficients have the same sign.
Since we can easily deal we the terms outside of the sum, we want to prove that zj,k ⩾ 0 for
j = 1, 2, . . . , b(k − 2)/2c. Direct computations show that

zj,k =
(k + 2)!(2j − k + 2)(j2 + j(2− k)− 2k2 − 7k + 3)

2j!(k − j − 2)!(j + 1)(j + 2)(j + 3)(k − j + 1)(k − j)(k − j − 1)
+

81

2
(2j − k + 2)

=
(k − 2j − 2)

2

(
(k + 2)!(2k2 + 7k − j2 + j(k − 2)− 3)

(j + 3)!(k − j + 1)!
− 81

)
.

Since k − 2j − 2 ⩾ 0, it suffices to show that the second parenthesis is non-negative. Indeed, we
have that for k ≥ 6

2k2 + 7k − j2 + j(k − 2)− 3 ≥ 7k2

4
+ 8k − 4 > 81

and
(k + 2)!

(j + 3)!(k − j + 1)!
=

(
k + 2

j + 1

)
1

(j + 2)(j + 3)
≥
(
k + 2

2

)
4

(k + 2)(k + 4)
> 1.

This inequality holds for k ≥ 6, and for 3 < k ≤ 5 it can be checked directly.
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Finally, we verify positivity of the remaining coefficients:

β0 = (k − 2)(k − 4) ≥ 0,

β1 =
1

2
(k − 2)(k − 4)(k + 9) ≥ 0,

β2 =
1

12
(k − 4)(2k3 + 15k2 + 49k − 270) ≥ 0.

□

By Descartes’ rule of signs, f ′ has a unique root with sign pattern +,− so x = 0 is a minimum
and x = 1 a maximum. □

6. Minimum of h2k under the ‖x‖∞ constraint

In our setting, the sharp lower comparison between ‖A‖Hd
and the operator norm ‖A‖op is con-

trolled by the minimum of hd on the ℓ∞–sphere, since

‖A‖dHd
= hd

(
s1(A), . . . , sn(A)

)
= ‖A‖dop hd

(
s1(A)

‖A‖op
, . . . ,

sn(A)

‖A‖op

)
,

so the best constant Cn,d in an inequality of the form

Cn,d ‖A‖op ≤ ‖A‖Hd

is exactly the d-th root of min{hd(x) : ‖x‖∞ = 1}. In Theorem 6.1 below we show that every
non-vertex local minimiser of h2k on the ℓ∞–sphere has the very rigid form (t, . . . , t, 1), with
t determined by a one-variable polynomial equation. This reduces the optimal comparison be-
tween ‖A‖Hd

and ‖A‖op to a one-dimensional optimisation problem and characterises the extremal
matrices as those whose normalised singular-value vector has this (t, . . . , t, 1) structure; see Corol-
lary 6.4.

Theorem 6.1. Let n ≥ 2 and k ≥ 1 be integers, and let Sn−1
∞ := {x ∈ Rn : ‖x‖∞ = 1}. The

global minimum of h2k on Sn−1
∞ is always attained at a point of the form (t, . . . , t, 1) where t is

the unique root of
φk,n(t) := h2k−1(t, . . . , t︸ ︷︷ ︸

n−1

, 1)

in (−1, 0). Moreover, the value of h2k at this vector equals(
n+ 2k − 1

2k

)
t2k.

Proof. Since h2k is continuous and Sn−1
∞ is compact, h2k attains a global minimum on Sn−1

∞ . Let
x∗ = (x∗

1, . . . , x
∗
n) ∈ Sn−1

∞ be a global minimiser which is not a vertex of {±1}n. Since h2k is
invariant under permutations of the coordinates and under the global sign change x 7→ −x, we
may assume without loss of generality that x∗

n = 1. We will first show that

|x∗
i | < 1,
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for i = 1, . . . , n − 1. If this is not the case, then there exists some j, k, such that |x∗
j | = 1 and

|x∗
k| = s < 1. Using Theorem 2.7

h2k(x
∗) > h2k(y

∗),

where y∗ has exactly the same coordinates as x∗, except x∗
j , x

∗
k, where y∗ has their arithmetic

mean. Since y∗ ∈ Sn−1
∞ , we arrive at a contradiction. Thus x∗ lies in the relative interior of the

(n− 1)–dimensional face
F := {x ∈ [−1, 1]n : xn = 1}.

On the relative interior of F the coordinates x1, . . . , xn−1 are unconstrained, so the restriction of
h2k to F has vanishing gradient at x∗, i.e.

∂

∂xi
h2k(x

∗) = 0,

for all i = 1, . . . , n− 1. By Lemma 2.5 we have, for each i,
∂

∂xi
h2k(x) = h2k−1(x, xi),

Hence
h2k−1(x

∗, x∗
i ) = 0

for all i = 1, . . . , n−1. Fix distinct indices i, j ∈ {1, . . . , n−1}. Using the difference identity (2.3)
with

x = (x∗
1, . . . , x

∗
n), a = x∗

i , b = x∗
j ,

we obtain
h2k−1(x

∗, x∗
i )− h2k−1(x

∗, x∗
j ) = (x∗

i − x∗
j )h2k−2(x

∗, x∗
i , x

∗
j ).

The left-hand side vanishes, so

(x∗
i − x∗

j )h2k−2(x
∗, x∗

i , x
∗
j ) = 0.

By Hunter’s positivity theorem (Theorem 2.6), the even-degree polynomial h2k−2 is strictly posi-
tive at every non-zero vector. The vector

(x∗, x∗
i , x

∗
j ) = (x∗

1, . . . , x
∗
n, x

∗
i , x

∗
j )

is non-zero because x∗
n = 1, hence h2k−2(x

∗, x∗
i , x

∗
j ) > 0. Therefore we must have x∗

i = x∗
j for all

1 ≤ i, j ≤ n− 1. This shows that every non-vertex local minimiser has the form

x∗ = (t, . . . , t, 1)

for some t ∈ (−1, 1).

To find the global minimiser we need to check the value of h2k at every vertex of the cube {±1}n.
However, if (ϵ1, . . . , ϵn−1) ∈ {±1}n−1, using Theorem 2.7, we obtain

h2k(ϵ1, . . . , ϵn−1, 1) ≥ h2k(A, . . . , A, 1),

where
A =

∑n−1
i=1 ϵi
n− 1

∈ [−1, 1],

therefore the minimum is not attained at a vertex, except possibly the vertices (1, . . . , 1) and
(−1, . . . ,−1, 1). We know that the global maximum is attained in the first one. For the latter,
observe that Theorem 2.7 reassures that h2k achieves a smaller value at (1, 1, . . . , 1, 0, 0). This
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observation completes the proof. The uniqueness of t and the exact form of the minimum will
follow from the lemmata below.

Lemma 6.2. Fix integers n ≥ 2 and k ≥ 1. For t ∈ R and m ∈ N set

H(n)
m (t) := hm(t, . . . , t︸ ︷︷ ︸

n

, 1).

Then

(6.1) H(n)
m (t) =

m∑
j=0

(
n+ j − 1

j

)
tj .

In particular, there exists a unique tn,k ∈ (−1, 0) such that

H
(n)
2k−1(tn,k) = h2k−1(tn[n], 1) = 0,

and the corresponding interior critical point for the minimization of h2k on the ℓ∞–sphere {a ∈
Rn : ‖a‖∞ = 1} is a∗ = (tn,k, . . . , tn,k︸ ︷︷ ︸

n−1

, 1). At this point we have the closed form

(6.2) h2k(a
∗) = h2k(tn,k, . . . , tn,k︸ ︷︷ ︸

n−1

, 1) =

(
n+ 2k − 1

2k

)
t2kn,k.

Proof. The generating function representation
∞∑

m=0

hm(a1, . . . , an+1)z
m =

1

(1− a1z) · · · (1− an+1z)

with a1 = · · · = an = t and an+1 = 1 gives
∞∑

m=0

H(n)
m (t) zm =

1

(1− tz)n(1− z)
.

Expanding
1

(1− tz)n
=

∞∑
j=0

(
n+ j − 1

j

)
tjzj ,

1

1− z
=

∞∑
r=0

zr

and collecting the coefficient of zm yields (6.1).

We next relate h2k on (t, . . . , t, 1) and on (t, . . . , t, 1, 0). Using the difference identity hm−1(x, a)−
hm−1(x, b) = (a− b)hm−2(x, a, b) from Lemma 2.5 with a = t and b = 0 we obtain, for any m ≥ 1,

hm(t[n− 1], 1) = hm(t[n], 1, 0)− t hm−1(t[n− 1], 1, t, 0).

By symmetry of hm this becomes

(6.3) hm(t, . . . , t︸ ︷︷ ︸
n−1

, 1) = hm(t, . . . , t︸ ︷︷ ︸
n

, 1)− t hm−1(t, . . . , t︸ ︷︷ ︸
n

, 1).

Let tn,k ∈ (−1, 0) be a solution of the stationarity equation

h2k−1(tn,k[n], 1) = H
(n)
2k−1(tn,k) = 0.
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(Existence and uniqueness of such a solution in (−1, 0) is stated in Lemma 6.3 below.) Plugging
m = 2k and t = tn,k into (6.3) and using h2k−1(tn,k[n], 1) = 0 gives

(6.4) h2k(tn,k[n− 1], 1) = h2k(tn,k[n], 1) = H
(n)
2k (tn,k).

Finally, applying (6.1) with m = 2k we have

H
(n)
2k (t) =

2k∑
j=0

(
n+ j − 1

j

)
tj = H

(n)
2k−1(t) +

(
n+ 2k − 1

2k

)
t2k.

Evaluating at t = tn,k and using H
(n)
2k−1(tn,k) = 0 yields

H
(n)
2k (tn,k) =

(
n+ 2k − 1

2k

)
t2kn,k.

Combining this with (6.4) gives (6.2). □

Lemma 6.3. For each n ≥ 1 and k ≥ 1 there exists a unique tn,k ∈ (−1, 0) such that

h2k−1(tn,k, . . . , tn,k︸ ︷︷ ︸
n

, 1) = 0.

The sequence {tn,k}k≥1 satisfies
lim
k→∞

tn,k = −1.

Proof. Let X1, . . . , Xn+1 be i.i.d. standard exponential random variables. By the moment repre-
sentation of complete homogeneous symmetric polynomials,

Φ(t) = h2k−1(t, . . . , t︸ ︷︷ ︸
n

, 1) =
1

(2k − 1)!
E
(
t(X1 + · · ·+Xn) +Xn+1

)2k−1
.

Set
S := X1 + · · ·+Xn, Yt := tS +Xn+1,

so that
Φ(t) =

1

(2k − 1)!
E
(
Y 2k−1
t

)
.

Since all moments of Yt are finite and t 7→ Yt is affine, we may differentiate under the expectation
to obtain, for every t ∈ R,

Φ′(t) =
1

(2k − 1)!
E
[
(2k − 1)S Y 2k−2

t

]
=

1

(2k − 2)!
E
[
S Y 2k−2

t

]
.

Now fix t ∈ (−1, 0). Then S > 0 almost surely, and 2k − 2 is even, so Y 2k−2
t ≥ 0 almost surely.

Moreover, the joint law of (S,Xn+1) is absolutely continuous, hence

P
(
S = 0

)
= P

(
Yt = 0

)
= 0,

which implies
S Y 2k−2

t > 0 almost surely.

Therefore
Φ′(t) =

1

(2k − 2)!
E
[
S Y 2k−2

t

]
> 0 for all t ∈ (−1, 0),

so Φ is strictly increasing on (−1, 0).
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Consequently Φ can have at most one zero in (−1, 0). On the other hand,

Φ(0) = h2k−1(0, . . . , 0, 1) = 1 > 0,

and a direct computation from the explicit formula for h2k−1(t, . . . , t, 1) shows that Φ(−1) < 0. By
the intermediate value theorem there exists t∗ ∈ (−1, 0) with Φ(t∗) = 0, and by strict monotonicity
this zero is unique. Since Φ′(t∗) > 0, the root is simple.

To understand the asymptotic behaviour, note that for |ρ| < 1

(1 + ρ)−n =

∞∑
j=0

(−1)j
(
n+ j − 1

j

)
ρj .

Thus, for 0 < ρ < 1 we may write

(1 + ρ)−n = Pn,k(ρ) +Rn,k(ρ), Rn,k(ρ) :=

∞∑
j=2k

(−1)j
(
n+ j − 1

j

)
ρj .

At the root ρ = ρn,k = −tn,k we have Pn,k(ρn,k) = 0, and hence

(6.5) (1 + ρn,k)
−n = Rn,k(ρn,k).

Fix ε ∈ (0, 1) and set q := 1 − ε. For 0 < ρ ≤ q and all j ≥ 2k we use the crude bound(
n+j−1

j

)
≤ Cnj

n−1 (for some constant Cn depending only on n) to obtain

|Rn,k(ρ)| ≤
∞∑

j=2k

(
n+ j − 1

j

)
ρj ≤ Cn

∞∑
j=2k

jn−1qj ≤ C ′
n(2k)

n−1q2k,

for a suitable constant C ′
n. The right-hand side tends to 0 as k → ∞, uniformly in 0 < ρ ≤ q. On

the other hand (1 + ρ)−n ≥ (1 + q)−n > 0 for all such ρ. Therefore, for k sufficiently large the
identity (6.5) cannot hold with ρn,k ≤ q. Since q < 1 was arbitrary, it follows that ρn,k → 1 as
k → ∞, and hence tn,k = −ρn,k → −1. □

□

Corollary 6.4. Let d = 2k be an even integer, and let A ∈ Mn(C) have singular values s1(A) ≥
· · · ≥ sn(A) ≥ 0. Define the norm induced by the complete homogeneous symmetric polynomial hd

by
‖A‖Hd

:= hd

(
s1(A), . . . , sn(A)

)1/d
.

Then, (
n+ 2k − 1

2k

)1/2k

|tn,k| ‖A‖op ≤ ‖A‖H2k
≤
(
n+ 2k − 1

2k

)1/2k

‖A‖op,

where tn,k is the unique number in (−1, 0) such that

h2k−1(tn,k, . . . , tn,k︸ ︷︷ ︸
n

, 1) = 0,

and the bound is optimal. Equality in the lower bound can occur only if the normalised singular-
value vector s(A)/‖A‖op is a minimiser of hd on Sn−1

∞ .
41



Proof. Let A ∈ Mn(C) and put x = s(A)/‖A‖op. Then ‖x‖∞ = 1 and, by definition,

‖A‖dHd
= hd

(
s1(A), . . . , sn(A)

)
= ‖A‖dop hd(x).

Taking the minimum and maximum of hd(x) over {x ∈ Rn : ‖x‖∞ = 1} yields the stated inequality.
Optimality is immediate by evaluating at matrices whose normalised singular-value vector is a
minimiser of hd on Sn−1

∞ ; the structural description of such minimisers is given by Theorem 6.1. □
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