
SHARP ESTIMATES FOR SOME INTEGRAL-GEOMETRIC QUANTITIES

RELATED TO TRANSVERSALITY, CURVATURE AND VISIBILITY

SILOUANOS BRAZITIKOS AND DIMITRIS-MARIOS LIAKOPOULOS

Abstract. We investigate integral-geometric quantities arising from harmonic analysis which

measure visibility and transversality. Motivated by their applications in multilinear Kakeya

problems and affine-invariant measures on surfaces, we derive exact lower and upper bounds
employing geometric and functional inequalities of convex geometry.

1. Introduction

In the intersection of convex geometry, integral geometry, and harmonic analysis, certain
fundamental quantities have recently emerged that capture essential geometric properties of
surfaces and vector fields. A central object of study in this paper, as well as in recent literature,
is a family of integral-geometric quantities that measure the global transversality of vector fields.

Let S = (S, σ, v) be a generalised d-hypersurface, defined as a triple where (S, σ) is a σ-finite
measure space and v : S → Rd is a measurable vector field. For a j-tuple of such hypersurfaces,
(S1, . . . ,Sj) with j ≤ d, the quantities Qp

j for p > 0 were defined in [6] as:

Qp
j (S1, . . . ,Sj) :=

(∫
Sj

· · ·
∫
S1

|v1(x1) ∧ · · · ∧ vj(xj)|pdσ1(x1)...dσj(xj)

)1/jp

where |v1∧· · ·∧vj | denotes the j-dimensional volume of the parallelotope spanned by the vectors
v1, . . . , vj . These quantities effectively provide an Lp average of the joint transversality of the
vector fields over the product space S1 × · · ·×Sj . In the diagonal case, where S1 = · · · = Sj = S,
we use the abbreviated notation Qp

j (S). These quantities have found significant applications,
particularly in the context of multilinear Kakeya problems and in the development of affine-
invariant measures on surfaces.

A foundational result in the study of these quantities was recently provided in [6]. The authors
established a general Finner-type inequality which provides an upper bound for Qp

j in terms of

quantities with a smaller number of vector fields. Specifically, ifAi ⊆ {1, . . . , j} and αi are positive
numbers for 1 ≤ i ≤ m, such that for all 1 ≤ l ≤ j,

∑m
i=1 αiχAi(l) = 1, then {(Ai, αi)}mi=1 is

called a uniform cover of {1, . . . , j}. Moreover, if A ⊆ {1, . . . , j}, let ΠA(S1, . . . ,Sj) = (Sn)n∈A

be a projection. The authors of [6] proved that

(1) Qp
j (S1, . . . ,Sj) ≤

m∏
i=1

Qp
ki
(ΠAi(S1, . . . ,Sj))αiki/j .

The proof of this inequality relies on a geometric lemma concerning the volume of parallelotopes,
followed by an application of the abstract Finner inequality on the resulting product of functions.
While this inequality is sharp in general, its sharpness is typically achieved for systems of mutually
orthogonal vectors.
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Our primary contribution is to provide a refinement of this inequality, which is sensitive to
the angular configuration of the vectors involved. This result, Theorem 2.1, establishes a tighter
upper bound by introducing a term that explicitly quantifies the geometric arrangement of the
vector fields. We show that:

(2) Qp
j (S1, . . . ,Sj) ≤

(
m∏
i=1

Qp
ki
(ΠAi(S1, . . . ,Sj))αiki

)1/(jp)

· sup
x∈ΠnSn

ρ(x)1/j .

The novel factor ρ(x) is defined through the Gram matrix of the unit directions of the vectors:

ρ(x) :=
(detC(x))1/2∏m

i=1(detCA,i(x))α,/2
,

where C(x) is the Gram matrix of the unit vectors {v̂n(xn)}jn=1 and CAi
(x) are its principal

submatrices. This factor ρ(x) serves as an “angular deficit” term; it is equal to 1 when the vectors
are orthogonal and strictly less than 1 otherwise.

Our proof operates on a local level first. We begin with the classical Gram identity, which
allows us to establish an exact local identity at each point x = (x1, . . . , xj):

|v1 ∧ · · · ∧ vj |p = (

m∏
i=1

|
∧

n∈Ai

vn|αip)ρ(x)p

This identity elegantly separates the norms of the projected sub-parallelotopes from the angular
dependence captured by ρ(x). The final inequality is then obtained by integrating this local
identity and applying the abstract Finner inequality to the product of functions Fi = |

∧
n∈Ai

vn|p.
This local-to-global approach is the key to preserving the geometric information contained in the
angles between the vectors.

The second contribution of our present work is to prove a generalisation of this inequality,
when p = 1, concerning mixed volumes, starting from an inequality proved in [2, Theorem 1.5],
improving an inequality in [8, Theorem 1.2]. This appears here as Theorem 3.3.

Another central theme in [6] is the study of sharp inequalities in the diagonal case, particularly
for p = 1, 2. A key result there, Theorem 1.2, demonstrates that the sequence Qp

j (S) exhibits a

specific monotonicity property, with the unit sphere Sd−1 acting as the extremizer:

Qp
j+1(S) ≤

Qp
j+1(Sd−1)

Qp
j (Sd−1)

Qp
j (S), for p ∈ {1, 2}.

This result is derived from the deep log-concavity properties of mixed volumes (for p = 1)
and mixed discriminants (for p = 2), as captured by the Aleksandrov-Fenchel and Aleksandrov
inequalities, respectively.

Our work approaches the problem for other values of p. We restrict ourselves to the case where
we have a general measure on the sphere and we establish a general sharp inequality, showing
that for 1 < p < 2, the uniform measure is the unique maximizer, whereas for p > 2, it is not
a maximizer. This generalises the work of Tilli, [14, Theorem 4.1], where the planar case was
considered, only for p = 1. Moreover, we show that for p > 2 the maximizer is a discrete measure
on the sphere supported on {±e1, . . . ,±ed}.

In the last section, we provide sharp bounds for visibility. In [6] the quantities Qp
j (S) were

related to the notion of visibility which has arisen in harmonic analysis [11] in connection with
the multilinear Kakeya problem.
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Let S = (S, σ, v) be a generalised d-hypersurface, let 1 ≤ p < ∞ and let

Kp = Kp(S) :=

{
y ∈ Rd :

(∫
S

|⟨y, v(x)⟩|pdσ(x)
)1/p

≤ 1

}
.

Then Kp is a closed, balanced and convex subset of Rd which has nonempty interior, and which
under certain mild conditions on S will be compact. The p-visibility of S is defined by

visp(S) := vol(Kp(S))−1/d.

Note that this definition differs from some of the literature ([11, 15, 16]), where, in the case p = 1,
vis1(S) is taken to be vol(K1(S))−1 rather than vol(K1(S))−1/d. The following was proved in [6].

Proposition 1.1. Let k1 + · · ·+ km = d. We have

vis(S) ∼d inf
Ej∈Gd,kj

(
σ(E1, S) . . . σ(Em, S)

|E1 ∧ · · · ∧ Em|

)1/d

,

and the infimum is essentially achieved when each Ej is the span of some kj vectors from the
principal directions of the John ellipsoid of K(S).

Applying this to m = 1 we obtain the following characterization of the quantity Q1
d(S) in

terms of visibility:

Corollary 1.2. We have

vis(S) ∼d

(∫
S

· · ·
∫
S

|v(x1) ∧ · · · ∧ v(xd)|dσ(x1) . . . dσ(xd)

)1/d

= Q1
d(S).

In our work, we establish a sharp version, in terms of the constants that depend on d and
ki. One of the ingredients of the proof in [6] was an inequality from [15, Theorem 3.1]. We first
observe that this inequality is in fact the reverse Santaló or Bourgain Milman inequality, see for
example [3, Theorem 8.2.2], which provides a lower bound for the product of the volume of a
convex body and its polar. While it is an open problem to find the exact lower bound for general
convex bodies, it is known in the class of generalised zonoids, which is the case for ΠS. Moreover,
the fact that the class of extremisers of this inequality are also extremisers for the affine-invariant
Loomis–Whitney inequality allows us to obtain a sharp inequality for the upper bound.

On the other hand, for the lower bound, instead of using the axes of the John ellipsoid, we
use the axes of the Binet ellipsoid. Utilizing the isotropicity present there, with the aid of a
refinement of the Continuous Brascamp–Lieb inequality, see Lemma 5.6, we are able to obtain
a sharp lower bound. We note that the lower bound is also connected with the reverse Loomis–
Whitney inequalities from [12] and [1]. Here we prove such an inequality for all zonoids and
k-dimensional projections, see Theorem 5.8.

Finally, we obtain sharp bounds for visp for other values of p. In Theorem 5.12, a sharp
inequality for p = 2 is obtained, while in Theorem 5.19, we prove that in general

visp(S) ∼d,p

(∫
S

· · ·
∫
S

|v(x1) ∧ · · · ∧ v(xd)|pdσ(x1) . . . dσ(xd)

)1/pd

= Qp
d(S).

The proof proceeds via Lewis’s position. The advantage there is that the transformation preserves
volume, so it does not change visp, and, in a sense, places the body in an isotropic position,
allowing the use of the continuous Brascamp–Lieb inequality.
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2. Proof of Inequality (2)

In this section, for a fixed p, we provide an upper bound for the quantity Qp
j (S) by the geometric

means of the quantities Qp
i (S) for i < j and a quantity that is sensitive to the angles of the

corresponding vectors. This is a refinement of inequality (1).

Theorem 2.1. For each x = (x1, . . . , xj) ∈
∏j

n=1 Sn define the unit vectors

v̂n(xn) :=

{
vn(xn)/|vn(xn)|, vn(xn) ̸= 0,

ũn, vn(xn) = 0,

where each ũn is an arbitrary unit vector. Let

C(x) :=
(
⟨v̂a(xa), v̂b(xb)⟩

)j
a,b=1

be the Gram matrix of the unit directions and for each Ai denote by CAi(x) the corresponding
principal submatrix. Define

(3) ρ(x) :=
(detC(x))1/2

m∏
i=1

(detCAi
(x))αi/2

.

Then the following inequality holds:

(4) Qp
j (S1, . . . ,Sj) ≤

( m∏
i=1

Qp
ki
(ΠAi

(S1, . . . ,Sj))αiki

)1/(jp)

· sup
x∈

∏
n Sn

ρ(x)1/j .

In particular,

Qp
j (S1, . . . ,Sj) ≤ sup

x
ρ(x)1/j

m∏
i=1

Qp
ki
(ΠAi

(S))αiki/j ,

where

sup
x

ρ(x) = sup
(u1,...,uj)∈V1×···×Vj

(
det(⟨ua, ub⟩)a,b

)1/2
m∏
i=1

(
det(⟨ua, ub⟩)a,b∈Ai

)αi/2

.

Proof. The classical Gram identity yields, at any point x where all vn(xn) ̸= 0,

(5) |v1(x1) ∧ · · · ∧ vj(xj)|2 =
( j∏

n=1

|vn(xn)|2
)
detC(x).

Consequently, for any p > 0,

(6) |v1 ∧ · · · ∧ vj |p =
( j∏

n=1

|vn|p
)(

detC
)p/2

.

For any subset A ⊂ {1, . . . , j} the same identity applied to the vectors indexed by A gives

(7)
∣∣∣ ∧
n∈A

vn

∣∣∣p =
( ∏

n∈A

|vn|p
)(

detCA

)p/2
,

where CA denotes the corresponding principal submatrix of C.
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Using (7) for each Ai and multiplying the powers αi, and observing that the condition∑
i αiχAi

(n) = 1 causes the product of scalar norms to cancel, we arrive at the exact local
identity

(8) |v1 ∧ · · · ∧ vj |p =
( m∏

i=1

∣∣∣ ∧
n∈Ai

vn

∣∣∣αip)
ρ(x)p,

where ρ(x) is defined by (3). The verification is direct: multiplying the right-hand side yields the
full product of |vn|p and the ratio of determinants which is precisely ρ(x)p.

Define for each i the function

Fi

(
(xn)n∈Ai

)
:=
∣∣∣ ∧
n∈Ai

vn(xn)
∣∣∣p.

Integrating identity (8) over
∏

n Sn with respect to the product measure dµ :=
∏j

n=1 dσn(xn)
yields

Qj(S1, . . . ,Sj)jp =

∫
∏

n Sn

|v1 ∧ · · · ∧ vj |p dµ(x)

=

∫
∏

n Sn

( m∏
i=1

Fi((xn)n∈Ai)
αi

)
ρ(x)p dµ(x).

By the abstract Finner inequality we have∫ m∏
i=1

Fαi
i dµ ≤

m∏
i=1

(∫
∏

n∈Ai
Sn

Fi

∏
n∈Ai

dσn

)αi

.

Using that ρ(x)p ≤ (supx ρ(x))
p for all x we get

Qj(S)jp =

∫ (∏
i

Fαi
i

)
ρp dµ

≤ (sup
x

ρ(x))p
∫ ∏

i

Fαi
i dµ

≤ (sup
x

ρ(x))p
m∏
i=1

(∫
∏

n∈Ai
Sn

Fi

∏
n∈Ai

dσn

)αi

.

Taking the (jp)-th root and recalling that
∫∏

n∈Ai
Sn

Fi = Qki
(ΠAi

(S))kip yields inequality (4).

□

Remark 2.2. The proof gives immediately a stronger formulation where the factor supx ρ(x)
1/j

may be replaced by the more precise

R :=
(∫ ( m∏

i=1

( Fi∫
Fi

)αi
)
ρp dµ

)1/(jp)
≤ sup

x
ρ(x)1/j ,

so that one has the refined inequality

Qj(S) ≤
( m∏

i=1

Qki(ΠAi(S))αiki

)1/(jp)
· R.

The factor R depends explicitly on the Gram matrices (hence on the mutual directions of the
vn) and quantifies the angular deficit compared with the angle-blind bound.
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3. Generalised Bézout Type Inequality

In this section, we give a Bézout-type inequality concerning mixed volumes of an arbitrary convex
body K ⊂ Rd and a finite family of zonoids. An immediate consequence is an upper bound for
the quantity Q1

j (S).
We introduce some terminology and notation. For every non-empty τ ⊂ [d] := {1, . . . , d} we

set Fτ = span{ej : j ∈ τ} and Eτ = F⊥
τ , where e1, . . . , ed is the standard basis of Rd. Given

s ≥ 1 and σ ⊂ [d] we say that (not necessarily distinct) sets σ1, . . . , σr ⊆ σ form an s-uniform
cover of σ if every j ∈ σ belongs to exactly s of the sets σi.

We start with the affine local Loomis–Whitney inequality proved in [2].

Theorem 3.1 (Affine local Loomis–Whitney, [2]). Let {w1, . . . , wd} be a basis of Rd. Let r ≥ 1
and let (σ1, . . . , σr) be a uniform cover of σ ⊆ [d] with weights (p1, . . . , pr). Set

Fσ = span{wj : j ∈ σ}, Fσi
= span{wj : j ∈ σi},

and denote di := |σi| and p :=
∑r

i=1 pi. For Eσ = F⊥
σ and Eσi = F⊥

σi
the following holds for

every convex body K ⊂ Rd:

(9) |K|p−1|PEσ
(K)| ≤

∏r
i=1 | ∧j∈σi wj |pi

| ∧j∈σ wj |

∏r
i=1

(
d−di

d−|σ|
)pi(

d
|σ|
)p−1

r∏
i=1

|PEσi
(K)|pi .

We also need the following useful formula for mixed volumes.

Lemma 3.2. Let E ∈ Gd,k and let L1, . . . , Ld−k be compact convex subsets of E⊥. If K1, . . . ,Kk

are convex bodies in Rd, then

(10)

(
d

k

)
V (K1, . . . ,Kk, L1, . . . , Ld−k) = VE(PE(K1), . . . , PE(Kk))VE⊥(L1, . . . , Ld−k).

Using the two results above, we prove the following inequality for mixed volumes.

Theorem 3.3. Let r > s ≥ 1, let σ ⊂ [d], and let (σ1, . . . , σr) be an s-uniform cover of σ. For
every convex body K and zonoids Zj (j ∈ σ) in Rd we have

(11) |K|r−sV
(
K[d− |σ|], (Zj)j∈σ

)s ≤ ∏r
i=1

(
d−di

d−|σ|
)(

d
di

)(
d
|σ|
)r r∏

i=1

V
(
K[d− |σi|], (Zj)j∈σi

)
,

where di := |σi| for each i.

Proof. Let {wi}di=1 be a (not necessarily orthonormal) basis of Rd. With the notation of Theo-
rem 3.1, apply Lemma 3.2 with k = d− |σ|, K1 = · · · = Kd−|σ| = K, and Lj = [0, wj ] for j ∈ σ.
This yields

(12) |PEσ
(K)| = 1

| ∧j∈σ wj |

(
d

|σ|

)
V
(
K[d− |σ|], ([0, wj ])j∈σ

)
.

Similarly, for each i,

(13) |PEσi
(K)| = 1

| ∧j∈σi
wj |

(
d

di

)
V
(
K[d− |σi|], ([0, wj ])j∈σi

)
.

Applying Theorem 3.1 with pi = 1/s for all i (so that p = r/s) gives

(14) |K| rs−1|PEσ (K)| ≤
∏r

i=1 | ∧j∈σi
wj |

1
s

| ∧j∈σ wj |

∏r
i=1

(
d−di

d−|σ|
) 1

s(
d
|σ|
) r

s−1

r∏
i=1

|PEσi
(K)| 1s .
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Substitute (12) and (13) into (14), then raise both sides to the power s. After simplification
one obtains

(15) |K|r−sV
(
K[d− |σ|], ([0, wj ])j∈σ

)s ≤ ∏r
i=1

(
d−di

d−|σ|
)(

d
di

)(
d
|σ|
)r r∏

i=1

V
(
K[d− |σi|], ([0, wj ])j∈σi

)
.

Mixed volumes are invariant under translations thus, if Lj = [xj , yj ] are arbitrary line segments
and we set zj = yj − xj , then

V
(
K[d− |σ|], (Lj)j∈σ

)
= V

(
K[d− |σ|], ([0, zj ])j∈σ

)
.

Hence (15) holds for any family of line segments whose directions are pairwise linearly indepen-
dent, so we have

(16) |K|r−sV
(
K[d− |σ|], (Lj)j∈σ

)s ≤ ∏r
i=1

(
d−di

d−|σ|
)(

d
di

)(
d
|σ|
)r r∏

i=1

V
(
K[d− |σi|], (Lj)j∈σi

)
Let Zj1 =

∑m
ℓ=1 Sℓ be a zonotope expressed as a Minkowski sum of line segments S1, . . . , Sm,

and fix j1 ∈ σ. Since j1 belongs exactly to s of the sets σi, applying (16) we have

|K|
r−s
s V

(
K[d− |σ|], Zj1 , (Lj)j∈σ\{j1}

)
=

m∑
l=1

|K|
r−s
s V

(
K[d− |σ|], Sl, (Lj)j∈σ\{j1}

)
≤

m∑
l=1

c
1
s

∏
i

j1 /∈σi

V
(
K[d− |σi|], (Lj)j∈σi

) 1
s
∏
i

j1∈σi

V
(
K[d− |σi|], Sl, (Lj)j∈σ\{j1}

) 1
s

= c
1
s

∏
i

j1 /∈σi

V
(
K[d− |σi|], (Lj)j∈σi

) 1
s

[
m∑
l=1

∏
i

j1∈σi

V
(
K[d− |σi|], Sl, (Lj)j∈σ\{j1}

) 1
s

]

≤ c
1
s

∏
i

j1 /∈σi

V
(
K[d− |σi|], (Lj)j∈σi

) 1
s
∏
i

j1∈σi

[ m∑
l=1

V
(
K[d− |σi|], Sl, (Lj)j∈σ\{j1}

)] 1
s

= c
1
s

∏
i

j1 /∈σi

V
(
K[d− |σi|], (Lj)j∈σi

) 1
s
∏
i

j1∈σi

V
(
K[d− |σi|], Zji , (Lj)j∈σ\{j1}

) 1
s ,

where we also used Hölder’s inequality. Repeating this argument for the other coordinates will
give us (11) for arbitrary zonotopes Zj . Using the continuity of mixed volumes, together with
the fact that every zonoid is a limit of zonotopes, the result follows. □

Corollary 3.4. Let S1, . . . ,Sj be generalised d-hypersurfaces with 1 ≤ j ≤ d − 1. Suppose
(σ1, . . . , σr) a s-uniform cover of σ = {1, . . . , j} and that |σi| = di.Then

Q1
j (S1, . . . ,Sj) ≤ q

r∏
i=1

Q1
di

(
(Sj)j∈σi

) di
sj ,

where

q =
1

ω
r/sj
d

(
d!ωd

(d− j)!ωd−j

)1/j
(

r∏
i=1

(
j
di

)
ωd−dj(
d
di

)
di!

)1/sj

.

Proof. We apply Theorem 3.2 for σ = {1, . . . , j}, K = Bd
2 and Zi = Π(Si) and we have the

result. □
7



4. Bounds In The Diagonal Case

In the diagonal case—that is, when all hypersurfaces coincide—the problem is to establish a
sharp comparison between Qp

j+1(S) and Qp
j (S). For p = 1, 2,∞, this was completely resolved in

[6], where it was shown that the ratio is maximized by the uniform measure on the sphere.
In this section, we prove that for 0 < p < 2 the uniform measure on the sphere also maximizes

the ratio
Qp

2(S)
Qp

1(S)
among all probability measures on the sphere.

Moreover, we prove that the maximizer changes when p > 2 and we prove that, in fact, it is
a discrete measure.
Let µ be a probability measure on the sphere Sd−1. Then, since Qp

1(S) = 1, it suffices to give a
sharp upper bound for

(17)

∫
Sd−1

∫
Sd−1

|x ∧ y|pdµ(x)dµ(y) =
∫
Sd−1

∫
Sd−1

(1− ⟨x, y⟩2)
p
2 dµ(x)dµ(y).

The following theorem asserts that this functional is indeed maximized for the uniform measure
on the sphere for 0 < p < 2, while for p > 2 the uniform measure is not a maximizer.

Theorem 4.1. Let Sd−1 ⊂ Rd be the unit sphere and let µ be a probability measure on Sd−1.
For p > 0 define

Ip(µ) :=

∫∫
Sd−1×Sd−1

(1− ⟨x, y⟩2)p/2 dµ(x) dµ(y).

Then:

(1) For 0 < p < 2 the uniform surface measure σ on Sd−1 maximizes Ip(µ) among probability
measures µ.

(2) For every p > 2 the uniform measure is not a maximizer; in fact a discrete measure
supported on the four points {±e1,±e2} ⊂ S1 gives a strictly larger value.

Proof. For the case 0 < p < 2 write α = p
2 ∈ (0, 1) and set F (t) = (1 − t2)α for t ∈ [−1, 1]. By

the generalised binomial theorem,

(1− u)α =

∞∑
k=0

(
α

k

)
(−1)kuk, |u| < 1,

so with u = t2,

F (t) = 1 +
∞∑
k=1

ckt
2k, ck =

(
α

k

)
(−1)k.

For α ∈ (0, 1) the sign of
(
α
k

)
is (−1)k−1 for k ≥ 1, hence ck < 0 for all k ≥ 1.

Let µ be any probability measure on Sd−1 and let X,X ′ be independent with law µ. Then,

Ip(µ) = E
[
F (⟨X,X ′⟩)

]
= 1 +

∞∑
k=1

ck E
[
⟨X,X ′⟩2k

]
.

Thus it suffices to prove that for each k ≥ 1,

Eµ

[
⟨X,X ′⟩2k

]
≥ Eσ

[
⟨U,U ′⟩2k

]
,

where U,U ′ are independent uniform on Sd−1.
Define the k-th moment symmetric tensor

M (k)(µ) :=

∫
Sd−1

x⊗k dµ(x) ∈ Symk(Rd).

8



With the natural inner product on symmetric tensors one checks

∥M (k)(µ)∥2 = E
[
⟨X,X ′⟩2k

]
.

The orthogonal group O(d) acts on Symk(Rd) by R · T = R⊗kT , and averaging over O(d) is
the orthogonal projection Pinv onto the subspace of O(d)-invariant tensors. Consequently for any
tensor T ,

∥T∥2 = ∥PinvT∥2 + ∥(I − Pinv)T∥2 ≥ ∥PinvT∥2.

For T = M (k)(µ) the projection PinvM
(k)(µ) equals the k-th moment tensor of the averaged

measure
∫
O(d)

R∗µdR, which is the uniform measure σ. Hence

∥M (k)(µ)∥2 ≥ ∥M (k)(σ)∥2,

as required.
Now, since each ck < 0 and ∥M (k)(µ)∥2 ≥ ∥M (k)(σ)∥2, we get

Ip(µ) = 1 +
∑
k≥1

ck∥M (k)(µ)∥2 ≤ 1 +
∑
k≥1

ck∥M (k)(σ)∥2 = Ip(σ).

Therefore σ maximizes Ip when 0 < p < 2.
For p > 2, let d = 2 and consider

µ = 1
4 (δe1 + δ−e1 + δe2 + δ−e2).

For X,X ′ ∼ µ independent there are 16 ordered pairs; exactly 8 of these are orthogonal pairs
giving |X ∧X ′|p = 1, and the rest give 0. Hence

Ip(µ) =
8

16
· 1 = 1

2 .

For the uniform σ on S1,

Ip(σ) =
1

π

∫ π

0

sinp θ dθ.

But for p > 2 one has sinp θ < sin2 θ on a set of positive measure, so

Ip(σ) <
1

π

∫ π

0

sin2 θ dθ = 1
2 .

Thus Ip(µ) > Ip(σ) for every p > 2. The same construction embedded in higher dimensions (take
the four points ±e1,±e2 ∈ Sd−1) yields a counterexample for every d ≥ 2. □

Theorem 4.2. Let S be a (d− 1)-dimensional smooth hypersurface in Rd, and let σ be a prob-
ability measure on S. Let v : S → Sd−1 be a measurable vector field taking values on the unit
sphere. For any p ≥ 2, define

Jp(v, σ) :=

∫∫
S×S

∣∣v(x) ∧ v(y)
∣∣p dσ(x) dσ(y).

Then

Jp(v, σ) ≤ 1− 1

d
.

Moreover, equality holds if the push-forward measure µ := v#σ (i.e. µ(A) = σ(v−1(A))) is
supported on the set {±e1, . . . ,±ed} for some orthonormal basis {ei}di=1 and satisfies µ({ei}) +
µ({−ei}) = 1/d for all i = 1, . . . , d.

9



Proof. Let µ = v#σ be the push-forward measure on Sd−1, so that for any measurable set
A ⊂ Sd−1, µ(A) = σ(v−1(A)). Then, by change of variables,

Jp(v, σ) =

∫∫
Sd−1×Sd−1

∣∣u ∧ w
∣∣p dµ(u) dµ(w) =: Ip(µ).

For u,w ∈ Sd−1, we have

|u ∧ w|2 = 1− ⟨u,w⟩2 ∈ [0, 1].

Let t = ⟨u,w⟩2 ∈ [0, 1] and α = p/2 ≥ 1. Since (1− t)α ≤ 1− t for t ∈ [0, 1], it follows that

|u ∧ w|p = (1− ⟨u,w⟩2)α ≤ 1− ⟨u,w⟩2.

Integrating this inequality with respect to µ⊗ µ gives

Ip(µ) ≤
∫∫

Sd−1×Sd−1

(1− ⟨u,w⟩2) dµ(u) dµ(w) =: I2(µ).

Define the moment matrix

M =

∫
Sd−1

u⊗ u dµ(u).

Then trM = 1, and ∫∫
Sd−1×Sd−1

⟨u,w⟩2 dµ(u) dµ(w) = ∥M∥2F =

d∑
i=1

λ2
i ,

where λ1, . . . , λd are the eigenvalues of M . By the Cauchy–Schwarz inequality,

d∑
i=1

λ2
i ≥ 1

d

(
d∑

i=1

λi

)2

=
1

d
.

Hence,

I2(µ) = 1−
d∑

i=1

λ2
i ≤ 1− 1

d
.

Combining inequalities,

Jp(v, σ) = Ip(µ) ≤ I2(µ) ≤ 1− 1

d
.

Equality conditions. Equality holds if and only if:

(i) (1 − ⟨u,w⟩2)α = 1 − ⟨u,w⟩2 for µ ⊗ µ-almost every (u,w). For α > 1, this occurs only
when ⟨u,w⟩2 ∈ {0, 1} almost everywhere. (For p = 2, this inequality is an equality for
all u,w.)

(ii)
∑

i λ
2
i = 1/d, i.e. all eigenvalues of M are equal to 1/d. This is equivalent to M = 1

dId,
which happens precisely when µ is distributed uniformly over an orthonormal basis and
its negatives, with µ({ei}) + µ({−ei}) = 1/d for each i.

This completes the proof. □

Remark. For p = 2, the inequality step (1− t)p/2 ≤ 1− t is an equality for all t, so all probability
measures µ with M = 1

dId achieve the bound. For p > 2, equality additionally requires that

⟨u,w⟩2 ∈ {0, 1} µ⊗ µ-almost everywhere, which forces µ to be discrete as above.
10



5. Sharp Estimates for Visibility

We start by recalling the principal definitions and objects that will be used throughout this
section. The projection body of a generalised d-hypersurface S = (S, σ, v) is the convex body
Π(S) with support function

hΠ(S)(y) =

∫
S

|⟨y, v(x)⟩|dσ(x).

We will denote its polar as

K(S) = Π(S)◦

and the visibility of S by

(18) vis(S) = |K(S)|−1/d.

More generally, for 1 ≤ p < ∞ we can define the covex body Kp(S) as the body with norm

(19) ∥y∥Kp(S) =

(∫
S

|⟨y, v(x)⟩|pdσ(x)
)1/p

and through this the p-visibility of S as

(20) visp(S) = |Kp(S)|−1/d.

One of the central ideas in the works of Guth [11] and Zhang [15] was to factorize vis(S)—that
is, to express it, up to absolute constants, as a product whose factors are the quantities

σ(E,S) =
∫
S
· · ·
∫
S
|E⊥ ∧ υ(x1) ∧ · · · ∧ υ(xd)|dσ(x1) . . . dσ(xd).

In what follows, we provide a sharp comparison between the visibility and the product.

5.1. Case p = 1. We start with a crucial identity that was proved in [6, Theorem 3.7].

(21)

∫
S
· · ·
∫
S
|υ(x1) ∧ . . . · · · ∧ υ(xd)|dσ(x1) . . . dσ(xd) =

d!

2d
|Π(S)|

The first main step in [15, Theorem 3.1] asserts that under the assumption hΠ(S)(y) ≥ 1, we have∫
S
· · ·
∫
S
|υ(x1) ∧ . . . · · · ∧ υ(xd)|dσ(x1) . . . dσ(xd) ≳ vis(S)d.

Using the above crucial identity and the definition of visibility, we observe that the above Theorem
is equivalent to

|Π(S)||Π(S)◦| ≳ 1.

Note that the last one is the so-called reverse Santaló inequality. For general convex bodies it
was conjectured by Mahler that for all symmetric convex bodies K ⊆ Rn,

|K||K◦| ≥ 4n

n!
.

Note that we obtain the lower bound for all images of the cube. Bourgain and Milman first
proved in [5] that the above inequality holds for an absolute constant c instead of 4. However,
Gordon, Meyer and Reisner proved in [10] that Mahler’s conjecture is true for all convex bodies
that are zonoids.

Note that Π(S) is a convex and compact set. Moreover, the assumption hΠ(S)(y) ≥ 1 implies
that Π(S) contains the unit Euclidean Ball. Therefore, it has non-empty interior which means
that it is a convex body. From the above discussion we end up with the following theorem.
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Theorem 5.1. Let S be a hypersurface. If Π(S) has non-empty interior, then∫
S
· · ·
∫
S
|υ(x1) ∧ . . . · · · ∧ υ(xd)|dσ(x1) . . . dσ(xd) ≥ (2vis(S))d.

Moreover, we have equality if and only if Π(S) = T (Bd
∞) and T ∈ GL(d,R).

A similar identity to (21) was proved in [6], regarding “the factors of visibility”.

σ(E, S) =
∫
S
· · ·
∫
S
|E⊥ ∧ υ(x1) ∧ · · · ∧ υ(xd)|dσ(x1) . . . dσ(xd)(22)

=

∫
S
· · ·
∫
S
|PE(υ(x1)) ∧ · · · ∧ PE(υ(xd))|dσ(x1) . . . dσ(xd)

=
ki!

2ki
|PE(Π(S))|.

On the one hand, to give an upper bound for visibility, we will use the following affine Loomis–
Whitney inequality from [2].

Theorem 5.2 (Affine Loomis–Whitney inequality). Let {wi}di=1 be a basis of Rd and let (σ1, . . . , σm)
be a uniform cover of [d] with weights (p1, . . . , pm). Let Hi = span{wj : j ∈ σi}, and p =

∑m
i=1 pi.

Then, for every compact K ⊆ Rd we have

|K| ≤ BL2

m∏
i=1

|PHi
(K)|pi ,

where BL2 :=

∏m
i=1 | ∧k∈σi

wk|pi

| ∧d
i=1 wi|

.

On the other hand, to give a lower bound we will use the reverse dual Loomis–Whitney
inequality from [1].

Theorem 5.3 (Reverse dual Loomis Whitney). There exists an absolute constant C > 0, such
that for every centered convex body K ∈ Rd, there exists an orthonormal basis {wi}di=1 of Rd

such that for any uniform cover (σ1, . . . , σm) of [d] with weights (p1, . . . , pm), p =
∑m

i=1 pi and
Hi = span{wj : j ∈ σi} we have

C(p−1)d|K| ≤
m∏
i=1

|K ∩Hi|pi .

We are now in position to formulate and prove the following theorem.

Theorem 5.4. Let d1 + · · ·+ dm = d. Then,

ad inf
Ej∈Gd,dj

(
σ(E1, S) . . . σ(Em, S)

|E1 ∧ · · · ∧ Em|

)1/d

≤ vis(S) ≤ bd inf
Ej∈Gd,dj

(
σ(E1, S) . . . σ(Em, S)

|E1 ∧ · · · ∧ Em|

)1/d

with ad =
( 2dC(m−1)d∏m

i=1 ω
2
i

∏m
i=1 di!

)1/d
and bd =

( d!

2d
∏m

i=1 di!

)1/d
.

Proof. Let {wi}di=1 be a basis of Rn, let (σ1, . . . , σm) be a 1-uniform cover of [d] with |σi| = ki,
and for i = 1, . . . ,m, set Ei = span{wj : j ∈ σi}. Then, k1 + · · · + km = d and | ∧n

i=1 wi| =
|E1 ∧ · · · ∧ Em|. For the upper bound, we successively apply the reverse Santaló inequality and
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the affine Loomis–Whitney inequality, taking Hi = Ei and pi = 1 for i = 1, . . . ,m so that

vis(S)d =
1

|K(S)|
≤ d!

4d
|Π(S)|

≤ d!

4d
BL2

m∏
i=1

|PEi
(Π(S))|

=
d!

4d

∏m
i=1 | ∧j∈σi

wi|
| ∧n

i=1 wi|

m∏
i=1

2di

di!
σ(Ei, S)

=
d!

2d
∏m

i=1 di!

m∏
i=1

| ∧j∈σi
wi|

σ(E1, S) . . . σ(Em, S)
|E1 ∧ · · · ∧ Em|

.

Since | ∧j∈σi
wi| ≤ 1, we arrive at the desired upper bound

(23) vis(S) ≤

(
d!

2d
∏m

i=1 di!

)1/d(
σ(E1, S) . . . σ(Em, S)

|E1 ∧ · · · ∧ Em|

)1/d

.

For the lower bound, we select an orthonormal basis {ui}di=1, as prescribed by the reverse dual
Loomis–Whitney inequality applied to the body K(S). Setting Ei = span{uj : j ∈ σi}, where
(σ1, . . . , σm) is the 1-uniform cover of [d] as above, we obtain

vis(S)d =
1

|K(S)|

≥ C(m−1)d∏m
i=1 |K(S) ∩ Ei|

≥ C(m−1)d∏m
i=1 ω

2
i

m∏
i=1

|PEi(Π(S))|

=
C(m−1)d

∏m
i=1 2

di∏m
i=1 ω

2
i

∏m
i=1 di!

m∏
i=1

σ(Ei, S)

=
2dC(m−1)d∏m

i=1 ω
2
i

∏m
i=1 di!

σ(E1, S) . . . σ(Em, S)
|E1 ∧ · · · ∧ Em|

and we have (
2dC(m−1)d∏m

i=1 ω
2
i

∏m
i=1 di!

)1/d(
σ(E1, S) . . . σ(Em, S)

|E1 ∧ · · · ∧ Em|

)1/d

≤ vis(S),

as promised. □

A closer examination of the proof of Theorem 5.3 reveals that the subspaces which reverse the
dual Loomis–Whitney inequality were derived from an orthonormal basis that renders the linear
map placing the body in the isotropic position a diagonal matrix. For a sharp lower bound we
can take a different route by choosing the orthonormal basis from the Lewis position.

Proposition 5.5 (Lewis position). Let (S, σ) be a finite measure space and v : S → Rd measur-
able with ∫

S

∥v(x)∥p2 dσ(x) < ∞ (1 < p < ∞).

Define for A ∈ L(Rd) the functional

a(A) :=
(∫

S

∥Av(x)∥p2 dσ(x)
)1/p

13



Then there exists an invertible matrix u ∈ GL(d) such that

a(u) = 1 and a∗(u−1) = d,

where a∗ is the dual norm on L(Rd) defined by a∗(B) = supa(A)≤1 | tr(BTA)|. Moreover, for such
u the following isotropic identity holds

(24)

∫
S

∥uv(x)∥p−2
2 (uv(x)) ⊗ (uv(x)) dσ(x) =

1

d
Id.

Additionally, the above also holds for p = 1, provided that the vector field v satisfies some extra
assumptions, namely

v ∈ L1(S;Rd), σ({x : v(x) = 0}) = 0, ess. span{v(x) : x ∈ S} = Rd.

The proof of the above can be found in the Appendix. The isotropic identity proves useful in
conjunction with the continuous Brascamp–Lieb inequality. In our case, we require the following
refinement of the one proved in [4] (see also [7] for its approximate form).

Theorem 5.6 (Continuous Brascamp–Lieb on S). Let S be a hypersurface equipped with a
positive measure µ. Let v : S → Rn be measurable with v(x) ̸= 0 for µ-almost every x ∈ S, and
assume the normalization

(25) Id =

∫
S

v(x)⊗ v(x)

∥v(x)∥22
dµ(x).

Define the unit directions u(x) := v(x)/∥v(x)∥2 ∈ Sn−1 and suppose we are given a measurable
family of non-negative functions fx : R → [0,∞), x ∈ S that meets the usual technical integrability
conditions.

Then the following inequality holds:

(26)

∫
Rn

exp
(∫

S

log
(
fx(⟨y, u(x)⟩)

)
dµ(x)

)
dy ≤ exp

(∫
S

log
(∫

R
fx(t) dt

)
dµ(x)

)
.

Starting with an arbitrary S = (S, v, µ), we find u according to Proposition 6.2 and let
w1, . . . , wd be an orthonormal basis that renders u a diagonal map. In other words, for all
i = 1, . . . , d we have

u(wi) = λiwi,

for some λi. Moreover, we obtain a new vector field z = uv. The relation to the original field v
arises from the linear equivariance of K(Sv); one has K(Sz) = u−TK(Sv), hence

vis(S) = | detu|−1/d vis(Sz).

We can express the volume of K(Sz) using the formula

d!|K(Sz)| =
∫
Rd

e−∥y∥K(Sz)dx.
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Set dµ(x) := d∥uv(x)∥2 dσ(x). The last integral can now be bounded using the continuous
Brascamp–Lieb inequality on S as Theorem 5.6 for the function fx(t) = e−|t|/d as follows:∫

Rd

e−∥y∥K(Sz)dy =

∫
Rd

exp

{
−
∫
S

|⟨y, uv(x)⟩|dσ(x)
}
dy

=

∫
Rd

exp

{
−
∫
S

∣∣∣∣〈y, uv(x)

∥uv(x)∥2

〉∣∣∣∣ ∥uv(x)∥2dσ(x)}dy
=

∫
Rd

exp

{∫
S

log fx(⟨y, uv(x)⟩)dµ(x)
}
dy

≤ exp

{∫
S

log
(∫

R
fx(t)dt

)
dµ(x)

}
= exp

{∫
S

log(2d) dµ(x)

}
= (2d)d,

since

d = tr (Id) =

∫
S

tr
(
s(x)⊗ s(x)

)
dµ(x) =

∫
S

∥s(x)∥22 dµ(x) =
∫
S

1 dµ(x) = d

∫
S

∥uv(x)∥2 dσ(x).

Combining the above yields

(27) vis(Sz) ≥
(d!)1/d

2d
.

Now, we need an upper bound for the product of σ(Ei, S). First, we pass to the vector field z.∫
S

· · ·
∫
S

|PEi(v(x1)) ∧ · · · ∧ PEi(v(xki))|dσ(x1) . . . dσ(xki) =

1∏
j∈σi

λj

∫
S

· · ·
∫
S

|PEi
(uv(x1)) ∧ · · · ∧ PEi

(uv(xki
))|dσ(x1) . . . dσ(xki

).

Using the Cauchy-Schwarz inequality, we obtain

1∏
j∈σi

λj

∫
S

· · ·
∫
S

∣∣∣∣∣PEi

(
z(x1)

∥z(x1)∥2

)
∧ · · · ∧ PEi

(
z(xki)

∥z(xki
)∥2

)∣∣∣∣∣
ki∏
j=1

∥z(xj)∥2dσ(x1) . . . dσ(xki
)

≤ 1∏
j∈σi

λj

[∫
S

· · ·
∫
S

∣∣∣∣∣PEi

(
z(x1)

∥z(x1)∥2

)
∧ · · · ∧ PEi

(
z(xki)

∥z(xki
)∥2

)∣∣∣∣∣
2 ki∏
j=1

∥z(xj)∥2dσ(x1) . . . dσ(xki)

]1/2

×

[∫
S

· · ·
∫
S

ki∏
j=1

∥z(xj)∥2dσ(x1) . . . dσ(xki)

]1/2

=
1∏

j∈σi
λj

(
ki!

dki

)1/2

.

Therefore, using that σ is an 1-uniform cover and (27) multiplication gives
(28)

σ(E1, S) . . . σ(Em, S)
|E1 ∧ · · · ∧ Em|

≤

m∏
i=1

(
ki!

dki

)1/2

|w1 ∧ · · · ∧ wd|
∏

j∈[d] λj
=

m∏
i=1

(
ki!

dki

)1/2

| detu|
≤

2d dd/2 vis(S)d
m∏
i=1

√
ki!

d!
.

We therefore obtain the following theorem.
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Theorem 5.7. Let d1 + · · ·+ dm = d. Then,

cd inf
Ej∈Gd,dj

(
σ(E1, S) . . . σ(Em, S)

|E1 ∧ · · · ∧ Em|

)1/d

≤ vis(S) ≤ bd inf
Ej∈Gd,dj

(
σ(E1, S) . . . σ(Em, S)

|E1 ∧ · · · ∧ Em|

)1/d

with cd =
1

2
√
d

( d!∏m
i=1

√
di!

)1/d
and bd =

1

2

( d!∏m
i=1 di!

)1/d
.

We close this section with a reverse Loomis–Whitney inequality for Π(S) and, in general, for
all zonoids. This was first obtained for all convex bodies K (but when the dimension of subspaces
is n− 1) in [9] and later the authors [12] obtained an optimal dependence on the dimension.

We will work as before with the linear map u and the induced orthonormal basis wi. Having
already an upper bound for the volume of projections, we only need a lower bound for the volume.

| detu| |Π(S)| = 2d

d!

∫
S

· · ·
∫
S

|uv(x1) ∧ · · · ∧ uv(xd)|dσ(x1) . . . dσ(xd)

=
2d

d!

∫
S

· · ·
∫
S

∣∣∣∣∣ uv(x1)

∥uv(x1)∥2
∧ · · · ∧ uv(xd)

∥uv(xd)∥2

∣∣∣∣∣
d∏

j=1

∥uv(xj)∥2dσ(x1) . . . dσ(xd)

≥ 2d

d!

∫
S

· · ·
∫
S

∣∣∣∣∣ uv(x1)

∥uv(x1)∥2
∧ · · · ∧ uv(xd)

∥uv(xd)∥2

∣∣∣∣∣
2 d∏
j=1

∥uv(xj)∥2dσ(x1) . . . dσ(xd)

=

(
2

d

)d

.

Using (22) and (28), we obtain the following reverse Loomis–Whitney inequality.

Theorem 5.8. Let S = (S, σ, v) a generalised d-hypersurface. There exists an orthonormal basis
{wi}di=1 of Rd such that for any 1-uniform cover (σ1, . . . , σm) of [d] and Ei = span{wj : j ∈ σi}
we have

(29)

m∏
j=1

|PEj
(Π(S))| ≤ (

√
d)d∏m

j=1

√
dj !

|Π(S)|.

If we take S = Sd−1, v(x) = x, and µ an isotropic measure on the sphere and if Z is the
zonoid generated from that measure, the above yields a reverse Loomis–Whitney inequality for
all zonoids.

Corollary 5.9. For every zonoid Z ⊆ Rd there exists an orthonormal basis {wi}di=1 of Rd such
that for any 1-uniform cover (σ1, . . . , σm) of [d] and Ei = span{wj : j ∈ σi} we have

m∏
i=1

|PEi
(Z)| ≤ (

√
d)d∏m

i=1

√
di!

|Z|.

Remark 5.10. Let K be a convex body in Rd and consider the projection body Π(K) with
support function hΠ(K)(u) = |Pu⊥(K)| = 1

2

∫
Sd−1 |⟨θ, u⟩|σK(θ) where σK is the area measure of

K. Then, Corollary 5.9 provides an orthonormal basis {u1, . . . , ud} of Rd, such that

(30)

d∏
i=1

|P⟨ui⟩(K)| ≤ (
√
d)d |Π(K)|.
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Noticing that |P⟨ui⟩(Π(K))| = 2hΠ(K)(ui) = 2|Pu⊥
i
(K)| and using successively the Santaló in-

equality |Π(K)||Π∗(K)| ≤ ωd
2 and Zhang’s inequality

(
2d
d

)
/dd ≤ |K|d−1|Π∗(K)| we conclude

that

(31)

d∏
i=1

|Pu⊥
i
(K)| ≤ ddω2

d

2d
(
2d
d

) (√d)d|K|d−1 ≤ (c
√
d)d|K|d−1,

recovering the reverse Loomis–Whitney inequality from [12].

5.2. Case p=2. In this subsection we will prove analogous results with the case p = 1. Recall
that the convex body K2(S) has the norm

∥y∥K2(S) =

(∫
S

|⟨y, v(x)⟩|2dσ(x)
)1/2

,

which means it is an ellipsoid. In order to provide bounds for vis2(S)with respect to σ(E, ·), where
E ∈ Gd,k, we first establish a sharp Loomis–Whitney inequality and its reverse counterpart for
ellipsoids. The subsequent theorem of [2] is essential for this endeavor.

Theorem 5.11. Let {w1, . . . , wd} be a basis of Rd, let m ≥ 1 and let (σ1, . . . , σm) be a uniform
cover of [d] with weights (p1, . . . , pm). Let Ej = span{wk : k ∈ σj} and dim(Ej) = |σj | = dj then
for all non-negative integrable functions fj : Ej −→ R we have

(32)

∫
Rd

m∏
j=1

fj
(
PEj

(x)
)
dx ≤

∏m
j=1 | ∧k∈σj

wk|
pj

2

| ∧d
j=1 wj |

m∏
j=1

(∫
Ej

fj(x)dx

)pj

.

Moreover, if f is a log-concave function

(33)

∫
Rd

fd(x)dx ≥ 1

BL2

∏m
j=1 d

pjdj

j

dd

m∏
j=1

(∫
Ej

fdj (x)dx

)pj

.

Theorem 5.12 (Ellipsoids and Brascamp–Lieb). Let E ⊂ Rd be an ellipsoid and {w1, . . . , wd}
a basis of Rd. Let m ≥ 1 and let (σ1, . . . , σm) a uniform cover of [d] with weights (p1, . . . , pm).
Let Fj = span{wk : k ∈ σj} and dim(Fj) = |σj | = dj let {PFj

} be orthogonal projections onto
subspaces Fj with dimFj = dj. Then

(34)
cell
BL2

∏
j

|PFjE|pj ≤ |E| ≤ CellBL2

∏
j

|PFjE|pj ,

where

(35) Cell =
ωd∏
j ω

pj

dj

and cell =
ωd

dd/2

m∏
j=1

(
d
dj/2
j

ωdj

)pj

and ωm = |Bm
2 | = πm/2/Γ(m2 +1) is the volume of the unit Euclidean ball in Rm. Moreover, the

constant Cell is optimal (it cannot be decreased uniformly for all ellipsoids).

Proof. Write the ellipsoid in the quadratic form representation

E = {x ∈ Rd : xTM−1x ≤ 1},
with M a symmetric positive definite d × d matrix. Choose A such that M = AAT . Then
E = A(Bd

2 ) where Bd
2 is the unit Euclidean ball in Rd. Consequently

(36) |E| = ωd det(A) = ωd

√
detM.
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For each projection PFj the image PFjE equals (PFjA)(Bd
2 ) (up to identification with Fj), hence

(37) |PFj
E| = ωdj

det(PFj
A) = ωdj

√
det
(
PFj

MPT
Fj

)
.

Combine (36) and (37) to write the ratio appearing in (34):

|E|∏
j |PFjE|pj

=
ωd∏
j ω

pj

dj

· (detM)1/2∏
j

(
det(PFjMPT

Fj
)
)pj/2

.

Thus to prove (34) with the constant (35) it suffices to show

(38) detM1/2 ≤ BL2

∏
j

det
(
PFj

MPT
Fj

)pj/2
for every M > 0.

The determinant inequality (38) is precisely the Gaussian (matrix) formulation of the Brascamp–
Lieb inequality in this orthogonal-projection setting. Equivalently, one may deduce (38) by eval-
uating the functional Brascamp–Lieb inequality on centered Gaussian functions. Concretely, for
any symmetric positive definite covariance matrix M consider the Gaussian density on Rd with
covariance matrix M ; evaluating the Brascamp–Lieb functional at the marginal Gaussians, using

the matrix identity
∑

j pjPFj
= Id and the formula

∫
Rd e

−π⟨M−1x,x⟩dx = det(M)1/2 yields the
inequality ∫

Rd

e−π⟨M−1x,x⟩ dx ≤ BL2

∏
j

(∫
Fj

e
−π⟨(PFj

MPT
Fj

)−1y,y⟩
dy

)pj

.

Computing these Gaussian integrals explicitly gives

detM1/2 ≤ BL2

∏
j

det
(
PFj

MPT
Fj

)pj/2
.

Inserting (38) into the ratio we obtain

|E|∏
j |PFjE|pj

≤ ωd∏
j ω

pj

dj

BL2,

which is exactly (34). The constant Cell is optimal because equality holds for Gaussian (and
hence ellipsoidal) examples for which M is a suitably aligned scalar multiple of the identity. In
particular, if A is a diagonal matrix with the coordinate axes aligned with the Fj ’s in the natural
way, then equality is achieved up to the normalization constants ωm.

For the left hand inequality, we notice that

⟨M−1x, x⟩ = ⟨(AAT )−1x, x⟩ = ⟨A−TA−1x, x⟩ = ⟨A−1x,A−1x⟩ = ∥A−1x∥22

therefore the function e−π⟨M−1x,x⟩ is log-concave. Then, applying (33) yields∫
Rd

e−πd⟨M−1x,x⟩dx ≥ 1

BL2

∏m
j=1 d

pjdj

j

dd

m∏
j=1

(∫
Fj

e−πdj⟨M−1xj ,xj⟩dxj

)pj

We make the change of variables y =
√
dx and yj =

√
djxj to the left-hand integral and the

right-hand integrals respectively∫
Rd

e−π⟨M−1y,y⟩dy ≥ 1

BL2

∏m
j=1 d

pjdj/2
j

dd/2

m∏
j=1

(∫
Fj

e−π⟨M−1xj ,xj⟩dxj

)pj

,

18



which translates into

(39) (detM)1/2 ≥ 1

BL2

∏m
j=1 d

pjdj/2
j

dd/2

m∏
j=1

det(PFjMPT
Fj
)pj/2.

Finally (37) implies

|E| ≥ 1

BL2

ωd

dd/2

m∏
j=1

(
d
dj/2
j

ωdj

)pj m∏
j=1

|PFj
(E)|pj .

□

To express the aforementioned inequality in terms of the σ parameters, we begin by repre-
senting the ellipsoid as a projection body. Consider an ellipsoid E = A(Bd

2 ). Apply the following
properties of the projection body Π:

ΠR(L) = | det(R)|R−TΠL, for any R ∈ GLd, and Π(rL) = rd−1ΠL, for any r > 0,

to obtain

(40) E = Π
(
R(Sd−1)

)
,

where R is the linear transformation given by

(41) R =

(
| det(A)|
2ωd−1

) 1
d−1

A−T .

A combination of the above yiels the following Theorem.

Theorem 5.13. Let S = (S, v, σ) a d-hypersurface and {w1, . . . , wd} a basis of Rd. Let m ≥ 1
and let (σ1, . . . , σm) a uniform cover of [d] with weights (p1, . . . , pm). Let Fj = span{wk : k ∈ σj}
and dim(Fj) = |σj | = dj. We can find a d-hypersurface G related to S such that,

(42)
c1

BL
1/d
2

m∏
j=1

σ(Fj ,G)pj/d ≤ vis2(S) ≤ c2BL
1/d
2

m∏
j=1

σ(Fj ,G)pj/d,

where

(43) c1 =
1

ω
1/d
d

√
d

m∏
j=1

(
2djd

dj/2
j

ωdj
dj !

)pj/d

and c2 =
1

ω
1/d
d

m∏
j=1

(
2dj

ωdj
dj !

)pj/d

.

Proof. Since K2(S) is an ellipsoid

(44) vis2(S)d =
1

|K2(S)|
=

1

ω2
d

|K2(S)◦|.

Moreover, there is T ∈ GLd such that K2(S) = T (Bd
2 ). Define R ∈ GLd as in (41) to write

K2(S)◦ = Π
(
R(Sd−1)

)
. Consider the vector field v(x) = x and the measure ν by

dν =
d|K2(S)|
2ωd−1

h
−(d+1)
K2(S) dσSd−1 .

It is classical that this is the generating measure of K2(S)◦ as a zonoid where σSd−1 is the
normalized cone measure on Sd−1. Define the d-hypersurface G = (Sd−1, id, ν). From this point
of view it is immediate that

(45) K2(S)◦ = Π(G) and |PE(Π(G))| = 2k

k!
σ(E,G), E ∈ Gd,k

and (42) follows from (34) for Π(G). □
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Remark 5.14. For the sake of completeness we compute the measure ν. Let E be an ellipsoid.
We wish to find the generating measure of E , as a zonoid. We calculate the integral∫

E
|⟨x, y⟩|dy

in two ways. First, we make a change to polar coordinates∫
E
|⟨x, y⟩|dy = dωd

∫
Sd−1

∫ 1/∥θ∥E

0

rd−1|⟨x, rθ⟩|drdσSd−1(θ)

= dωd

∫
Sd−1

|⟨x, θ⟩|
(∫ 1/∥θ∥E

0

rddr

)
dσSd−1(θ) =

dωd

d+ 1

∫
Sd−1

|⟨x, θ⟩|∥θ∥−(d+1)
E σSd−1(θ).

Next, if E = A(Bd
2 ) with A ∈ GLd, then | detA| = |E|

ωd
and hE(x) = ∥ATx∥2. Using the rotational

invariance ∫
E
|⟨x, y⟩|dy = |detA|

∫
Bd

2

|⟨x,Ay⟩|dy = | detA|
∫
Bd

2

|⟨ATx, y⟩|dy

=
2ωd−1

d+ 1
| detA|∥ATx∥2

=
2ωd−1

d+ 1

|E|
ωd

hE(x).

Combining the two calculations, we conclude that

hE(x) =

∫
Sd−1

|⟨x, θ⟩|dν(θ)

with

dν(θ) =
dω2

d

2ωd−1|E|
dσSd−1(θ).

In what follows, we derive lower and upper bounds for vis2(S) by employing the corresponding
σ quantities.

For E ∈ Gd,k and the d−hypersurface S = (S, σ, v) define

σ2(E,S) : =
(∫

S

|E⊥ ∧ v(x1) ∧ · · · ∧ vk|2dσ(x1) . . . dσ(xk)

)1/2

=

(∫
S

|PE(v(x1)) ∧ · · · ∧ PE(vk)|2dσ(x1) . . . dσ(xk)

)1/2

.

For the covariance matrix TS of S we have

TS =

∫
S

v(x)⊗ v(x)dσ(x)

and we know that

(46) d! det(TS) =

∫
S

· · ·
∫
S

|v(x1) ∧ · · · ∧ v(xd)|2dσ(x1) . . . dσ(xd) = Q2
d(S)

2d

Since

PETSPE =

∫
S

PE(v(x))⊗ PE(v(x))dσ(x)

using (46) implies

(47) σ2(E,S) =
√

k! det(PETSPE).
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Proposition 5.15. Let S = (S, σ, v) a generalised d-hypersurface and{w1, . . . , wd} a basis of
Rd, let m ≥ 1 and let (σ1, . . . , σm) a uniform cover of [d] with weights (p1, . . . , pm). Let Ej =
span{wk : k ∈ σj} and dim(Ej) = |σj | = dj

√
d!

dd

m∏
i=1

(
ddi
i

di!

)pi/2 1

BL2

m∏
i=1

σ2(Ei, S)pi ≤ Q2
d(S)d ≤

√
d!

m∏
i=1

(
1

di!

)pi/2

BL2

m∏
i=1

σ2(Ei, S)pi

Proof. Using the above representation for σ2, Proposition follows from (38) and (39). □

Theorem 5.16. Let S = (S, σ, v) be a generalised d-hypersurface. Then,

(48) vis2(S) =
(

1

ωd

d∏
i=1

σ2(ei, S)
)1/d

where {e1, . . . , ed} is the usual orthonormal basis of Rd. Moreover,

(49)
1

(
√
d!ωd)1/d

Q2
d(S) ≤ vis2(S) ≤

√
d

(
√
d!ωd)1/d

Q2
d(S)

Proof. Since K2(S) is an ellipsoid

(50) vis2(S)d =
1

|K2(S)|
=

1

ω2
d

|K2(S)◦|.

Moreover, the length of each axis is

hK2(S)o(ei) = ∥ei∥K2(S) =

(∫
S

|⟨ei, v(x)⟩|2dσ(x)
)1/2

=

(∫
S

|e⊥i ∧ v(x)|2dσ(x)
)1/2

= σ2(ei, S).

Therefore,

|K2(S)◦| = ωd

d∏
i=1

σ2(ei, S).

Substituting into (50), we obtain the first assertion. For the inequality, apply Proposition 5.15
for Ei = span(ei) and pi = 1. Since BL2 = 1, this yields√

d!

dd

d∏
i=1

σ2(ei, S) ≤ Q2
d(S) ≤

√
d!

d∏
i=1

σ2(ei, S)

Substituting into the above double inequality, we obtain the second assertion. □

5.3. Bounds for all p ≥ 1. To start with we offer an upper bound for visp(S).

Proposition 5.17. Let S = (S, σ, v) be a hypersurface. For every p ≥ 1 we have

visp(S) =
1

|Kp(S)|1/d
≤

c
1/p
d,p

ω
1/d
d

Qp
1(S),

where cd,p = d+p
p

ωd−1

ωd

Γ
(

p+1
2

)
Γ
(

d+1
2

)
Γ
(

d+p+1
2

) .
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Proof. Our starting point will be the following inequality (see for example in [13, p.76]) that
holds for every convex body K and every symmetric convex body C and p > 0.

(51)

(
|K|
|C|

)1/d

≤

(
d+ p

d

1

|K|

∫
K

∥x∥pCdx

)1/p

For K = Bd
2 and C = Kp(S) the above inequality becomes(

ωd

|Kp(S)|

)1/d

≤

(
d+ p

dωd

∫
Bd

2

∥x∥pKp(S)dx

)1/p

Using polar coordinates to evaluate we get∫
Bd

2

∥x∥pKp(S)dx = dωd

∫
Sd−1

∫ 1

0

∥rθ∥pKp(S)r
d−1drdσSd−1(θ)

= dωd

(∫ 1

0

rd+p−1dr

)(∫
Sd−1

∥θ∥pKp(S)dσSd−1(θ)

)

=
dωd

d+ p

∫
Sd−1

∥θ∥pKp(S)dσSd−1(θ).

Using the definition of the norm of the convex bodyKp(S) we obtain ∥θ∥pKp(S) =
∫
S
|⟨θ, v(x)⟩|pdσ(x)

and the formula
∫
Sd−1 |⟨θ, y⟩|pdσSd−1(θ) = cd,p∥y∥p2 for y = v(x) implies∫
Sd−1

∥θ∥pKp(S)dσSd−1(θ) =

∫
Sd−1

∫
S

|⟨θ, v(x)⟩|pdσ(x)dσSd−1(θ)

=

∫
S

∫
Sd−1

|⟨θ, v(x)⟩|pdσSd−1(x)dσS(θ)

= cd,p

∫
S

∥v(x)∥p2dσ(x)

= cd,pQ
p
1(S)

p.

Combining all the above, we obtain the upper bound. □

The transition from Qp
1 to Qp

d is achieved by making use of Lewis’ position.

Proposition 5.18. With the notation above we have

Qp
d(S) ≤ inf

A∈GL(d)
| detA|=1

a(A) ≤
(dd
d!

)1/(2d)
Qp

d(S),

where

a(A) :=
(∫

S

∥Av(x)∥p2 dσ(x)
)1/p

.

Proof. First we prove the lower bound. Fix A ∈ GL(d) with | detA| = 1. For every (x1, . . . , xd) ∈
Sd Hadamard’s inequality gives∣∣Av(x1) ∧ · · · ∧Av(xd)

∣∣ ≤ d∏
i=1

∥Av(xi)∥2.

Therefore, since |det(A)| = 1,∫
Sd

∣∣v(x1) ∧ · · · ∧ v(xd)
∣∣p dσ⊗d ≤

∫
Sd

d∏
i=1

∥Av(xi)∥p2 =
(∫

S

∥Av(x)∥p2 dσ(x)
)d

.
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This is true for every A with | detA| = 1, therefore we obtain the left-hand side inequality.

We turn to the upper bound. Let u be the matrix that satisfies the equalities from Lemma 6.2,
z(x) := uv(x), w(x) := ∥uv(x)∥p−2

2 and the matrix

M :=

∫
S

w(x) z(x)⊗ z(x) dσ(x)

equals 1
dId, so detM = (1/d)d. Thus, from the properties of mixed discriminants we obtain(1

d

)d
=

| detu|2

d!

∫
Sd

∣∣v(x1) ∧ · · · ∧ v(xd)
∣∣2 d∏

i=1

∥uv(xi)∥p−2
2 dσ⊗d.

Applying Hölder’s inequality on Sd with exponents α = p
2 and β = p

p−2 we get∫
Sd

∣∣v(x1) ∧ · · · ∧ v(xd)
∣∣2 d∏

i=1

∥uv(xi)∥p−2
2 dσ⊗d ≤ Qp

j (S)
2d
(∫

Sd

d∏
i=1

∥uv(xi)∥p2 dσ⊗d
)(p−2)/p

.

The second factor factorizes:∫
Sd

d∏
i=1

∥uv(xi)∥p2 dσ⊗d =
(∫

S

∥uv(x)∥p2 dσ(x)
)d

= a(u)pd = 1pd = 1,

because a(u) = 1 by Lewis’ normalization. Hence∫
Sd

∣∣v(x1) ∧ · · · ∧ v(xd)
∣∣2 d∏

i=1

∥uv(xi)∥p−2
2 dσ⊗d ≤ Qp

j (S)
2d.

Plugging this bound into the previous identity yields(1
d

)d
≤ | detu|2

d!
Qp

j (S)
2d,

hence

(52) | detu| ≥
( d!
dd

)1/2
Qp

j (S)
−d.

Set

A := (detu)−1/d u.

Then | detA| = 1 and using homogeneity of a(·) we have a(A) = (detu)−1/d a(u) = (detu)−1/d.
From the lower bound on | detu| we obtain

a(A) ≤
(dd
d!

)1/(2d)
Qp

j (S),

which completes the proof. □

The above proposition allows us to prove our main Theorem for this section, completing the
comparison of visp and Qp

j .

Theorem 5.19. With the notation above there exist positive constants C1(d, p), C2(d, p) depend-
ing only on d, p such that

C1(d, p) Q
p
d(S) ≤ visp(S) ≤ C2(d, p) Q

p
d(S).

Combining with Proposition 5.18, one has

visp(S) ≍d,p inf
A∈GL(d)
| detA|=1

a(A) ≍d,p Qp
d(S).
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Proof. We first derive the upper bound for visp. Using the Proposition 5.18 there exists A0 ∈
GL(d) with | detA0| = 1 such that(∫

S

∥A0v(x)∥p2 dσ(x)
)1/p

≤ Cd Q
p
d(S).

Observe that if we replace the field v by v(A0) := A0v, then the associated body Kp transforms
by the linear map (AT

0 )
−1 on the ambient space and hence

|Kp(S(A0))| = | det(AT
0 )

−1| |Kp(S)| = | detA0|−1 |Kp(S)|.
Since | detA0| = 1, the visibility is invariant:

visp(S(A0)) = visp(S).

Using the bound from Proposition 5.17 to the vector field v(A0) = A0v we obtain

visp(S) = visp(S(A0)) ≤ cd,p

(∫
S

∥A0v(x)∥p2 dσ(x)
)1/p

≤ cd,p Cd Q
p
d(S).

For the other bound, by Lewis’ lemma as previously, there exists u ∈ GL(d) with a(u) = 1,
the dual normalization a∗(u−1) = d and the the isotropic identity

(53)

∫
S

∥uv(x)∥p−2
2 (uv(x))(uv(x))T dσ(x) =

1

d
Id.

Set z(x) := uv(x) and define the measure µ on S by dµ(x) := ∥z(x)∥p2dσ(x). Taking trace in (53)
gives

µ(S) = d

∫
S

∥z∥p2dσ = d.

We first use the well-known formula for the volume of the polar body

Γ
(d
p
+ 1
)
|Kp(z)| =

∫
Rd

exp
(
− 1

d

∫
S

|⟨y, z(x)
∥z(x)∥2

⟩|p dµ(x)
)
dy.

Since
∫
S

(
z

∥z∥2

)
⊗
(

z
∥z∥2

)
dµ = Id, we are in position to apply the continuous Brascamp–Lieb

inequality, Lemma 5.6 for the isotropic measure µ and the one–dimensional functions Gx(t) =
exp
(
− 1

d |t|
p
)
, which yields

Γ
(d
p
+ 1
)
|Kp(z)| ≤ exp

(∫
S

log
(∫

R
e−

1
d |t|

p

dt
)
dµ(x)

)
=
(∫

R
e−

1
d |t|

p

dt
)d

.

The one–dimensional integral rescales as∫
R
e−

1
d |t|

p

dt = d1/p
∫
R
e−|s|p ds = d1/p 2Γ

(1
p
+ 1
)
.

Thus

|Kp(z)| ≤
dd/p (2Γ( 1p + 1))d

Γ(dp + 1)
.

Therefore

(54) visp(Sz) = |Kp(z)|−1/d ≥
Γ(dp + 1)1/d

d1/p 2Γ( 1p + 1)
=: c0(d, p).

To transfer this bound from z = uv back to the original field v we use the linear equivariance
of Kp: one has Kp(z) = u−TKp(v), hence |Kp(z)| = | detu|−1|Kp(v)|. Consequently

visp(S) = |Kp(v)|−1/d = |detu|−1/d visp(Sz).
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Combining this with (54) yields

visp(S) ≥ c0(d, p) | detu|−1/d.

It remains to lower bound |detu|−1/d in terms of Qp
j (S). Observe that∫

Sd

∣∣v(x1) ∧ · · · ∧ v(xd)
∣∣p = |detu|−p

∫
Sd

∣∣z(x1) ∧ · · · ∧ z(xd)
∣∣p.

By Hadamard’s inequality, for each (x1, . . . , xd) ∈ Sd,∣∣z(x1) ∧ · · · ∧ z(xd)
∣∣ ≤ d∏

i=1

∥z(xi)∥2.

Raising to the power p and integrating over Sd gives∫
Sd

∣∣ det[z(x)]∣∣p ≤
∫
Sd

d∏
i=1

∥z(xi)∥p2 =
(∫

S

∥z(x)∥p2dσ(x)
)d

= a(u)pd = 1.

Therefore,

Qp
d(S)

d ≤ |detu|−1.

Combining with the previous displayed inequality yields

visp(S) ≥ c0(d, p) Q
p
d(S).

□
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6. Appendix

Lemma 6.1 (Continuous Brascamp–Lieb inequality on S). Let S be a hypersurface equipped
with a positive measure µ. Let v : S → Rn be measurable with v(x) ̸= 0 for µ-almost every x ∈ S,
and assume the normalization

(55) Id =

∫
S

v(x)⊗ v(x)

∥v(x)∥22
dµ(x).

Define the unit directions u(x) := v(x)/∥v(x)∥2 ∈ Sn−1 and suppose we are given a measurable
family of non-negative functions fx : R → [0,∞), x ∈ S that meets the usual technical integrability
conditions.

Then the following inequality holds:

(56)

∫
Rn

exp
(∫

S

log
(
fx(⟨y, u(x)⟩)

)
dµ(x)

)
dy ≤ exp

(∫
S

log
(∫

R
fx(t) dt

)
, dµ(x)

)
.

Proof. The proof uses the push-forward of µ under the map u : S → Sn−1 and the disintegration
of µ with respect to that map.

Define the push-forward measure ν := u#µ on Sn−1 by the rule that for every measurable
Φ : Sn−1 → R, ∫

S

Φ(u(x)) dµ(x) =

∫
Sn−1

Φ(ω) dν(ω).

By assumption (55) we obtain

(57)

∫
Sn−1

ω ⊗ ω dν(ω) =

∫
S

u(x)⊗ u(x) dµ(x) = I.

Next apply the measure disintegration theorem to decompose µ along the fibres of u: there
exists a family of probability (or finite) measures µωω∈Sn−1 supported on the fibres u−1(ω) such
that for every nonnegative measurable g : S → R∫

S

g(x) dµ(x) =

∫
Sn−1

(∫
u−1({ω})

g(x) dµω(x)
)
dν(ω).

(We may take the measures µω finite; one can normalize if desired — the argument below is
unaffected.)

Define for ν-almost every ω ∈ Sn−1 the function

(58) Fω(t) := exp
(∫

u−1(ω)

log fx(t), dµω(x)
)
, t ∈ R.

By the integrability assumptions, Fω is well defined (possibly taking the value 0) for ν-a.e. ω and
every t.
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For each fixed y ∈ Rn apply the disintegration identity to the function x 7→ log fx(⟨y, u(x)⟩):∫
S

log
(
fx(⟨y, u(x)⟩)

)
, dµ(x) =

∫
Sn−1

(∫
u−1(ω)

log fx(⟨y, ω⟩), dµω(x)
)
, dν(ω)

=

∫
Sn−1

log
(
Fω(⟨y, ω⟩)

)
, dν(ω).

Hence the left-hand side of (56) can be written as

∫
Rn

exp
(∫

S

log fx(⟨y, u(x)⟩) dµ(x)
)
dy =

∫
Rn

exp
(∫

Sn−1

logFω(⟨y, ω⟩) dν(ω)
)
dy.

Now apply the standard continuous Brascamp–Lieb inequality on the sphere for the measure
ν (which satisfies the normalization (57)) and the family Fω:

(59)

∫
Rn

exp
(∫

Sn−1

logFω(⟨y, ω⟩), dν(ω)
)
, dy ≤ exp

(∫
Sn−1

log
(∫

R
Fω(t), dt

)
, dν(ω)

)
.

It remains to relate
∫
R Fω to the integrals of the original fx. By definition of Fω and Jensen’s

inequality applied to the probability measure proportional to µω on the fibre we have for ν-a.e.
ω:

∫
R
Fω(t) dt =

∫
R
exp

(∫
u−1({ω})

log fx(t) dµω(x)
)
dt ≤ exp

(∫
u−1({ω})

log
(∫

R
fx(t) dt

)
dµω(x)

)
.

Substituting this bound into (59) yields

∫
Rn

exp
(∫

Sn−1

logFω(⟨y, ω⟩) dν(ω)
)
dy ≤ exp

(∫
Sn−1

∫
u−1({ω})

log
(∫

R
fx(t) dt

)
dµω(x) dν(ω)

)
.

Using the disintegration identity once again to recombine the fibre integrals into an integral
over S gives∫

Rn

exp
(∫

S

log fx(⟨y, u(x)⟩) dµ(x)
)
dy ≤ exp

(∫
S

log
(∫

R
fx(t) dt

)
dµ(x)

)
,

which is precisely (56) and completes the proof. □

Lemma 6.2 (Lewis position). Let (S, σ) be a finite measure space and v : S → Rd measurable
with ∫

S

∥v(x)∥p2 dσ(x) < ∞ (1 < p < ∞).

Define for A ∈ L(Rd) the functional

a(A) :=
(∫

S

∥Av(x)∥p2 dσ(x)
)1/p

Then there exists an invertible matrix u ∈ GL(d) such that

a(u) = 1 and a∗(u−1) = d,

where a∗ is the dual norm on L(Rd) defined by a∗(B) = supa(A)≤1 | tr(BTA)|. Moreover, for such
u the following isotropic identity holds

(60)

∫
S

∥uv(x)∥p−2
2 (uv(x)) (uv(x))T dσ(x) =

1

d
Id.
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Proof. Since a is a norm, the existence of u with a(u) = 1 and dual normalization is exactly
Lewis’s theorem.

For the other part, define the linear functional

L(B) := tr(u−TB).

By the choice a∗(u−1) = d we have

sup
a(A)≤1

L(A) = a∗(u−1) = d, and L(u) = tr(u−Tu) = tr(I) = d.

Hence the linear functional L attains its supremum on the unit ball {A : a(A) ≤ 1} at A = u.
This implies that the matrix 1

du
−T belongs to the subdifferential of a at u:

1

d
u−T ∈ ∂a(u).

If Φ := ap, for p > 1 the map a is Fréchet differentiable at u and the subdifferential relation
yields

1

d
u−T ∈ ∂a(u) =⇒ p

d
u−T ∈ ∂Φ(u).

For p > 1 the subdifferential of Φ is a singleton equal to the gradient, so the above becomes an
equality of matrices:

(61) ∇Φ(u) =
p

d
u−T .

The derivative of Φ at A in direction H is

DΦ(A)[H] = p

∫
S

∥Av(x)∥p−2
2 ⟨Av(x), Hv(x)⟩ dσ(x).

Writing the inner product as a trace one gets the matrix representation of the gradient

∇Φ(A) = p

∫
S

∥Av(x)∥p−2
2 (Av(x)) v(x)T dσ(x).

Plugging A = u into the gradient formula and equating with (61) gives

p

∫
S

∥uv(x)∥p−2
2 (uv(x)) v(x)T dσ(x) =

p

d
u−T .

Cancel the factor p and transpose both sides:∫
S

∥uv(x)∥p−2
2 v(x) (uv(x))T dσ(x) =

1

d
u−1.

Multiply on the left by u and on the right by uT to obtain the symmetric matrix identity∫
S

∥uv(x)∥p−2
2 (uv(x))(uv(x))T dσ(x) =

1

d
Id,

which is precisely the claimed isotropic identity. □

Even for the case where p = 1, the preceding lemma remains valid. However, the requirement
of an additional non-vanishing constraint, coupled with the resultant divergence in the method
of proof, necessitates its independent enunciation and demonstration.

Proposition 6.3. Let (S, σ) be a finite measure space and let v : S → Rd satisfy

v ∈ L1(S;Rd), σ({x : v(x) = 0}) = 0, ess. span{v(x) : x ∈ S} = Rd.

Define

a(A) :=

∫
S

∥Av(x)∥2 dσ(x) (A ∈ L(Rd)).
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Then there exists an invertible matrix u ∈ GL(d) such that

a(u) = 1 and a∗(u−1) = d.

Moreover, if

ζ(x) :=
uv(x)

∥uv(x)∥2
(defined a.e.)

is the canonical measurable selection, then it satisfies the matrix identity

1

d
u−T =

∫
S

ζ(x) v(x)T dσ(x),

and consequently ∫
S

(uv(x))⊗ (uv(x))

∥uv(x)∥2
dσ(x) =

1

d
Id.

Proof. As in the above proof, from Lewis theorem we obtain an invertible matrix u ∈ GL(d)
with a(u) = 1 and

1

d
u−T ∈ ∂a(u).

Set ρ : Rd → R, ρ(t) = ∥t∥2. The subdifferential ∂ρ(t) is defined by

∂ρ(t) = {s ∈ Rd : ρ(t+ h)− ρ(t) ≥ ⟨s, h⟩ for all h ∈ Rd}.
We verify the two standard facts:

(i) If t ̸= 0 then ρ is differentiable at t and

∂ρ(t) =
{ t

∥t∥2

}
.

Indeed, the directional derivative at t in direction h equals ⟨t/∥t∥2, h⟩, so the only possible
subgradient is t/∥t∥2, and it satisfies the defining inequality.

(ii) If t = 0 then
∂ρ(0) = {s ∈ Rd : ∥s∥2 ≤ 1}.

Indeed, if s ∈ ∂ρ(0) then ∥h∥2 ≥ ⟨s, h⟩ for all h. Taking h on the unit sphere gives ⟨s, u⟩ ≤ 1
for all ∥u∥2 = 1, hence ∥s∥2 ≤ 1. Conversely, if ∥s∥2 ≤ 1 then ⟨s, h⟩ ≤ ∥s∥2 ∥h∥2 ≤ ∥h∥2 by
Cauchy–Schwarz, so s ∈ ∂ρ(0).

Since u is invertible and σ({v = 0}) = 0, we have uv(x) ̸= 0 for a.e. x. Hence for a.e. x the set
∂ρ(uv(x)) is the singleton {uv(x)/∥uv(x)∥2}. Define

ζ(x) :=
uv(x)

∥uv(x)∥2
for a.e. x.

This ζ is measurable because x 7→ uv(x) is measurable and t 7→ t/∥t∥2 is continuous on Rd \ {0}
and ∥ζ(x)∥2 = 1 a.e.

The hypothesis 1
du

−T ∈ ∂a(u) means that for every matrix H ∈ L(Rd)

(62) a(u+H)− a(u) ≥
〈1
d
u−T , H

〉
HS

.

Fix an arbitrary matrix H ∈ L(Rd) and set

ϕ(t) := a(u+ tH) =

∫
S

∥uv(x) + tHv(x)∥2 dσ(x), t ∈ R.

By convexity the one–sided derivative ϕ′
+(0) = lim

t→0+

ϕ(t)− ϕ(0)

t
exists (possibly +∞). For a.e. x

the scalar function gx(t) := ∥uv(x) + tHv(x)∥2 is convex in t and its right derivative at 0 equals

g′x+(0) =
〈
ζ(x), Hv(x)

〉
,
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because ζ(x) is the unique element of ∂∥ · ∥(uv(x)) for a.e. x. Moreover, since |⟨ζ,Hv⟩| ≤
∥H∥op∥v∥2 ∈ L1 dominated convergence allows passing the derivative inside the integral, hence

(63) ϕ′
+(0) =

∫
S

〈
ζ(x), Hv(x)

〉
dσ(x).

On the other hand, the subgradient inclusion 1
du

−T ∈ ∂a(u) implies that for every t > 0

ϕ(t)− ϕ(0)

t
≥
〈1
d
u−T , H

〉
HS

.

Passing to the limit t → 0+ we obtain

(64) ϕ′
+(0) ≥

〈1
d
u−T , H

〉
HS

.

Applying the same reasoning to −H gives

(65) ϕ′
+(0) ≤

〈1
d
u−T , H

〉
HS

.

Combining (64) and (65) yields equality

(66) ϕ′
+(0) =

〈1
d
u−T , H

〉
HS

.

Comparing (63) and (66) we obtain, for every H,〈1
d
u−T , H

〉
HS

=

∫
S

〈
ζ(x), Hv(x)

〉
dσ(x).

Since both sides are continuous linear functionals of H, the above identity implies the matrix
equality

1

d
u−T =

∫
S

ζ(x) v(x)T dσ(x).

If we take the transpose of the matrix identity and conjugate by u:

1

d
u−1 =

∫
S

v(x) ζ(x)T dσ(x).

Multiplying on the left by u and on the right by uT gives

1

d
Id = u

(∫
S

v(x) ζ(x)T dσ(x)
)
uT =

∫
S

(uv(x)) ζ(x)T uT .

Substituting ζ(x) =
uv(x)

∥uv(x)∥2
yields

1

d
Id =

∫
S

(uv(x))
(uv(x))T

∥uv(x)∥2
dσ(x) =

∫
S

(uv(x))(uv(x))T

∥uv(x)∥2
dσ(x),

which is the desired isotropic identity. This completes the proof. □

Remark.

• Passing the pointwise inequality to the integral is justified because |⟨ζ(x),Hv(x)⟩| ≤
∥H∥op∥v(x)∥2 and v ∈ L1.

• The uniqueness and measurability of ζ(x) follow from uv(x) ̸= 0 a.e.; if uv = 0 on a posi-
tive–measure set one must interpret the result as an assertion about some measurable se-
lection from the unit ball there (the same proof works but requires a measurable–selection
remark).
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