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ON SECTIONS OF CONVEX BODIES IN JOHN’S POSITION AND OF
GENERALISED B BALLS

DAVID ALONSO-GUTIERREZ, SILOUANOS BRAZITIKOS, AND GIORGOS CHASAPIS

ABSTRACT. We revisit an ingenious argument of K. Ball to provide sharp estimates for the
volume of sections of a convex body in John’s position. Our technique combines the geometric
Brascamp-Lieb inequality with a generalised Parseval-type identity. This lets us complement
some earlier results of the first two named authors, as well as generalise the classical estimates
of Meyer-Pajor and Koldobsky regarding extremal sections of By balls to a broader family of

norms induced by a John’s decomposition of the identity in R™.

1. INTRODUCTION

The study of hyperplane sections and projections of convex bodies is a classical and actively de-
veloping area of modern convex geometry, with deep connections to functional analysis, geometric
tomography, and high-dimensional probability. Extremal questions about k-dimensional sections
— for example, determining maximal or minimal volumes of such sections — encode subtle quan-
titative information about the geometry of a body and are related to central problems of the field,
cf. for example the Busemann—Petty problem [BP] and the slicing problem (recently settled in
[KL]). We refer the reader to the recent survey [NT| as well as the monographs [K2], [BGVV]
for a detailed account of history, related works and advances in the field as well as numerous

applications.

The present work further explores and complements some of the results of the recent paper [AB],
where the first two named authors initiated a systematic study of sections of convex bodies placed
in John’s position. John’s position is a canonical normalisation: if the maximal inscribed Eu-
clidean ball of a convex body K C R™ is the unit ball BY, then John [J] exhibited contact points
Vi, ..., U, € 0K NS ! and positive weights c1, ..., c,, that satisfy

m m m
(1) Idn:ZCjUj®’Uj, ZC]"U]' :0, ch:n’
j=1 j=1 j=1

where Id,, denotes the identity in R™. These identities provide a flexible algebraic framework
that allows one to reduce multidimensional volume problems to a combination of one-dimensional

estimates and functional inequalities.
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Recall that if vi,...,v,, € S" ! an ¢1,...,¢,m € (0,00) are as in (1), then for any integrable

functions g; : R — [0, 00),

2) I ﬁg;f«x,vmdx <11 ([ dt)q.

j=1
The above so-called geometric form of the classical Brascamp-Lieb inequality [BL] was suggested
by Ball (see [B2, Lemma 2]) who originally applied it to efficiently estimate the volume of k-
dimensional sections of the unit cube BY in R™, showing in particular that

n n % k

(3) voly (B N H) < (E) voly(B),
for every k-dimensional linear subspace H of R™. We remark that this estimate is optimal if
and only if k£ divides n. Using again (2) in conjunction with a Fourier-analytic argument, Ball
established in the same work the inequality
(4) volp(B N H) < 2"7" volg(BE)
which is an optimal estimate whenever k > n/2. We stress that Ball’s approach in this case
relies heavily on the product structure of the cube: the Fourier transform of the indicator of a
product body factorizes as a product of one-dimensional Fourier transforms, and this factorization
is the key to obtaining sharp bounds. In the absence of such coordinate independence — i.e. for
general bodies in John’s position — the direct product decomposition is no longer available, and

the Fourier method appears a priori inapplicable.

One of the results in [AB] was a sharp generalisation of Ball’s inequality (3) for k-dimensional
sections of the unit cube in the regime k < n/2. Our first main result complements this estimate;
we show in Section 3 below that in the case k > n/2, the section K N H of an arbitrary centrally
symmetric convex body K in John’s position in R™ with a k-dimensional subspace H has volume at
most equal to the right hand side in (4), provided that at least one of the orthogonal projections of
\/Cjv; onto H has length strictly less than 1 /2, where (cj,v;) is the John decomposition associated
to K. When k > n/2 and all projections Py (,/cjv;) are large, Ball's 2"%* bound on the volume
of sections is not correct in general; we showcase this by constructing convex polytopes L in
John’s position with voly (L NR¥) = 2¥(n/k)*/? (see Theorem 5 below). We also provide a general
estimate in this case that takes into account the geometry of K, resulting to even finer estimates

than (4) in certain special cases (cf. Remark 7).

The main conceptual advance of the present work is to show how the product-structure requirement
in Ball’s argument for the cube can be circumvented by combining a Parseval-type identity with
the Brascamp—Lieb inequality. In our setting, this Parseval representation (Proposition 1) plays
the role of the product decomposition in the cube case: the volume is represented as an integral of
a product of univariate factors, but now the exponents and prefactors reflect the geometric data
of John’s decomposition rather than coordinate independence. Once the Parseval representation
is in place, a Brascamp-Lieb reduction (Corollary 3) converts the multidimensional integral into
a product of one-dimensional integrals with exponents determined by the Euclidean norms of the
projections of our vectors. Therefore, whenever we need to bound the volume (or the volume of
a section) of a symmetric polytope, there are two equivalent representations. One is the integral
of the product of the indicator functions, and the other is the integral (over the complementary
subspace) of the Fourier transform. After passing to the Fourier representation we apply the
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Brascamp—Lieb inequality; the choice of exponents is governed by the sizes of the projections of

the original vectors onto the complementary subspace. This procedure is explained in Section 2.

In parallel to the study in [AB], we have been also concerned with the extent at which our methods
can provide meaningful estimates for the Wills functional of sections of convex bodies in John’s
position (see Section 4 for definitions and background). We provide an estimate that eventually
yields a second proof of our aforementioned result on sections of centrally symmetric convex bodies,

as well as a result on the mean width of sections, already witnessed in [AB].

Our second result extends the known bounds for sections of the £;—balls, p € [1,2] (due to Meyer—
Pajor [MP] and Koldobsky [K1]). Notably, our proof shows that the same method used for
cube-slicing applies here as well. We first express the relevant integral via Parseval’s identity, then
apply the Brascamp-Lieb inequality, and finally invoke a one-dimensional estimate for +y,, the
Fourier transform of e~1#!”. The technique allows us to consider a family of generalised ¢, norms
of the form (Z;’L:l ozj|<-7vj>|1’) 1/p, given a John decomposition (¢;,v;) in R™ and any positive

scalars (a;)7.;. We show for example that, for any p € [1,2], if K}, is the closed unit ball for this

norm then .
m c] J
volg (K, N H) < H <;/1;> Volk(B;f)
=1\
for every k-dimensional subspace H of R", where m; = ||Py(,/Gv;)||3. In the classical case,

our approach yields an intermediate bound for arbitrary sections of the ¢7-ball, that depends
only on the Euclidean norms of the projections of the standard basis vectors onto the subspace.
Consequently, the resulting bound is more sensitive than that of Meyer—Pajor and Koldobsky. Our
results in Section 5 should be compared to some of the results of [Bar] (see Section 3.3 therein,

where a sharp, in the case & | n, estimate is also obtained for vol(By N H) for p > 2).

Our third principal result addresses hyperplane sections of a convex body in John’s position,
without imposing any symmetry assumptions. In this framework, we establish an improvement
over the earlier result of [AB], specifically in the regime where all projections onto the given
subspace have norm greater than 1/v/2. In this range, our method yields a sharp inequality,
thereby refining the known bounds and highlighting a new threshold phenomenon for such sections.

The details and results for the non-symmetric setting can be found in Section 6.

2. PARSEVAL’S IDENTITY AND CONSEQUENCES

In this section we present the aforementioned Parseval-type representation and how, when com-
bined with an application of the Brascamp-Lieb inequality, it provides an upper bound for the
integral of the product of functions evaluated at the scalar products of the variable against the
vectors that form a decomposition of the identity. We will also compare this upper bound with
the upper bound we would obtain by directly applying Brascam-Lieb inequality and show that in

some cases we obtain a tighter estimate (see Remark 4 below).

Our starting point is an appropriate general form of Parseval’s identity. For a function f : R™ — R,
we denote by fthe Fourier transform

f(y) = f(x)ei<"”’y>dx, y € R™.
Rﬂ,
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We denote by S(R™) the Schwartz space of all C* functions f : R™ — R with derivatives that are
rapidly decreasing. To overcome any integrability issues and for the sake of clarity, we formulate
the results of this Section for functions in S(R™). For our purposes however, we will need them to
be applicable for families of characteristic functions on bounded intervals. We have included the
technical details that justify how such an extension is possible in an Appendix in the end of the

manuscript.

Proposition 1 (Parseval). Letm € N, ny,...,n,, € Nand set N = ny1+...4+n,,. For every linear
subspace H € G and every family of functions (f;)7; such that f; € S(R™), j =1,...,m,

s 1 o
/Hjl:[lfj(PR"jy)dyZ W/}pjl:[lfj(Panz)dz

Proof. By definition of the Fourier transform, we have that for every 1 < j < m and every z; € R™

Fiz) = /Rn, filay)e' =) da

Fi(@y) .o (@) et 2= @ i 2 qe o dadz

Therefore,

/HL jl:[lfj(PR"j z)dz =

n1 Rm

fl m(z7n)6i2y;1<xj7z>dxm,. ..dx1dz

=

Fi(Prri ()€ 2i=1 s (012 4

T %\%\%\
::]3

2

1

<.
Il

TS TSRS

fi(Pers (z))e"®*) dadz.

s

z

1

<.
Il

Now, by Fubini’s theorem,

/ / I | [ (P (x))ei<x’z>dacdz =
HLJRN 55
- / / / Hfj(PR"j (wH+xHJ'))e“xH—HCHL’z>d='L'HJ_d.THdZ
HLJH JHL S
j=1

:/ / / H(f] OPR"J')(‘(EH +‘THL)ei<wHL7Z)d.THLdQ?HdZ
HL+JH JH+L j=1

Calling, for every g € H, F,,, : H- — R the function

m

Foy(zpe) = H(fj o Pgrj)(zn +xpys),
j=1

we have that for every z € H+

—

/ L H(fj o Pgnj )(zm + fHL)ei@H*’z)dxHL = Fyy,(2)
HL

and then, by Fubini’s theorem and Fourier’s inversion formula,

/ // H(fjOPR"J’)(xH+xHi)ei<wHL7z>deLd$HdZ
HYJHJHE
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_ /H ) /H ﬁ;(i)dedz: /H /H R ()dedn = (QZ)N_k /H Fy, (0)dar
= (QW)Nk/ILII:[(fj o Ppri )(zm)dry = (27r)Nk/H_l:[fj(Pany)dy,

which completes the proof. O

The following proposition is well known, see for example [Iv, Lemma 2.1]. Nevertheless, we include

a proof for the sake of completeness.

Proposition 2. Let 1 <k <m. Let H € Gy 1, and let (u;)7; € S™ ' NH and (c;)7, € (0,00)
such that

m

Idyg = ZC]‘UJ' Q uj.
j=1
Then there exists ()2, an orthonormal basis of R™ and (w;)7, € 8™ ' N H*t such that

Pyx; = /cju; and Pyix; =+/1— cjw;

for every 1 < j < m. Moreover,

IdHL = Z(l — Cj)’UJj K wy.
j=1
Proof. We can assume, without loss of generality, that H = span{es, ..., ez} € R™, where (¢;)2,

denotes the canonical basis of R™. Calling @; = ,/c;u; we have that for every 1 <1 <k,

m

L= leil3 = ) (ei@y)®.

j=1

Besides, for every 1 < i1 < i2 < k we have that
m
0= (e, €i) g iy Uj)(€iy, Uj)-
j=1

Therefore, calling, for 1 < j < k, v; € R™ the j-th row of the k x m matrix [t1,...,u,] we
have that {v; : 1 < j < k} is a set of k orthonormal vectors in R™. Completing this set to an
orthormal basis of R™, {v; : 1 < j < m} and taking, for 1 < j < m, z; € R™ the j-th column of

the matrix [v1, ..., vm,]", we have that

e (z;)72; CR™ is an orthonormal basis of R™,

o Pyxz; =1u; = /cju; for every 1 < j <m.

Besides, if H+ = span{eg,1...em,} is the orthogonal complement of H in R™, we have that for

every 1 <j<m

1Prrssl13 = s l13 = 1Pars 15 = 1= /G 13 = 1=

and, therefore, there exist (w;); € Sm=1N H' such that Pyix; = /1 — cjw;. Moreover, since

m
Im = E l’j ®£L’j,
j=1
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we have that
m m

IdHL :ZPHij(gPHixj:Z(l_cj)wj®wj' O
j=1 j=1

As a consequence of, combining the above proposition with Proposition 1, we obtain the following

corollary:

Corollary 3. Let 1 <n <m, (v;)it; €S™ ! and (¢;)j2; € (0,00) such that

Jj=1

m
1, = E cjvj @ vj.
j=1

Then, for every (f;)7L, € S(R"),

1 m ’\ﬁ l1—c;
/anJ i (z,v5))dz <(27r)"”’j1;[1</R|fj 7 ( 1—Cjt)|dt> :

Proof. Let us identify R" with H := span{e; : 1 < j < n} C R™, where (e;)72; denotes the

m

canonical basis in R™. By Proposition 2 there exists (z;)}L,, an orthonormal basns of R™ and

(wj)7ey € 8™ 1N H* such that

Pyx; = \/cjv; and Pyiz; =+/1—cjw;

for every 1 < j < m. Besides,
m

Idg. = Z(l — cj)wj Q@ wj.

Jj=1

Writing coordinates with respect to the orthonormal basis of R™ given by (z;)7~,, we have that

Jj=1
for every z € H

(z,2;) = (x,\/Gju;) VI<j<m
and for every y € H+

<y71'j>:<y7 \/I—Cj’LUj>, V1<]<m

By Proposition 1 we have that

/an] Vet o) = e | f[f & (g3}

Since
m

Idg:e = Z(l — cj)wj Q wy,
j=1
by the geometric Brascamp-Lieb inequality we have that

/}ILﬁE(m<y7wj>)dy < /HL lT_j[ ‘E(m<y7wj>)|dy
U/ (IHG/T=en™aa) "

Therefore,
m m P 1—cj
/ Hf](\/a<xvvj>)d 2 m n H (/ |fj17cj( 1—Cjt)|dt) . O
no . 7T R
j=1 Jj=1
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Let us compare the upper bound obtained in the previous corollary with the upper bound obtained

by directly applying Brascamp-Lieb inequality.

Remark 4. Notice that if for every 1 < j < m we have that {— > 2, which happens if and
only if ¢; > %, then, by Beckner’s sharp Haussdorff-Young mequahty [Be] we have that for every
1<7<m,

1 1—c¢;
([155 v=en)
R

I
VR
»—A
|
b(':
\_/
Q
b
(\
\_/
—
QO

VAN
o
A
ND
/N
=
| —
3
v
\
o
/\
I/~
\
b

Therefore,

[ B < el () ([uore)
() (fore)

On the other hand, applying directly Brascamp-Lieb inequality we obtain

/ Hfj ¢j(z,v;))dz < ﬁ</|fj(\/07t)|cljdt>0j

- () ([ora)

Therefore, the estimate we obtain applying Brascamp-Lieb inequality to the Fourier transforms is

better than the one we obtain applying Brascamp-Lieb inequality to the functions itself whenever

q}%foreverylgjgm.

3. CENTRALLY SYMMETRIC CASE

We start with a convex body K in John’s position with associated decomposition of the identity

(¢j,v;), i.e. we assume that v1,...,v, € S ' NOK and c1,...,c, > 0 are such that

Idn = ZCjUj ® ’Uj.

J=1

Let H e G and J ={1<j<m : Pyv; # 0}. We set mg := t.J and, for every j € J, let

PHUj
| Prrvjll2”
~ 2
o ¢ = ¢j||Puvjllz,

.’I,Lj:

o tj=|Puujl;"



It follows that
IdH = Zéjuj ® Uj-
jeJ
Let us consider the symmetric convex polytope

L={zeR": |(z,v;)] <1}
It is easy to see that K C L. We will in fact estimate the volume of K N H by the volume of

(5) LNH={z¢€H:|(z,u;)] <t; for every j € J}.

In general, it is not true that we can obtain the analogous bound for the k-dimensional sections
of L that Ball obtained for the cube, i.e. that for every 1 < k < n with k > n/2,

n—k

volg(LN H) < 2°% voly(BY).

This is showcased by the following example.

Theorem 5. There exists k € N arbitrarily large such that for every n € N with n/2 < k < n

there exists a convex body L in R™ which is in John’s position, while

k

volp(L NRF) = (%) * volg(BE).

Proof. Let k € N be such that there exists a k x kK Hadamard matrix (for instance, let k be any
power of 2) and take any k < n < 2k. Let m = 2k > n and define unit vectors vy, ..., v, as
follows: Start with an arbitrary k x k Hadamard matrix Hy, with columns 7y, ..., 7, that is, the

components of each n; are =1 and (1;,7;) = 0 for every ¢ # j. The matrix

H,
H = . Hi
H, —H

is then a m x m Hadamard matrix. Let B be the upper n x m submatrix of H,,. If 51,..., 8, are
the columns of B, we define v; := n_%ﬂj for every j =1,...,m. Clearly, the v;’s are unit vectors
in R™ and if we let ¢; = n/(2k) for every j =1,...,m we can check that

m 1 m

;CJUJ ® v; 2ka:;ﬁj®ﬁy—ldn

This shows that (c;j,v;) induce a decomposition of the identity in R™. The symmetric convex
polytope L = {x € R : [{z,v;)| < 1,5 =1,...,m} is then in John’s position and note that
LNRF = {x e Rk [(z, Prevj)| <1, j = 1,...,m}
= {x eR*: (z, PreB)] < v/, j = 1,...,m}
= {xERk )| < Vny j = 1,...,k},
since, by our construction, Pgr3; = PreBr4; = n; for every j = 1,..., k. Note also that if we let

W = k*%Hk, then we have that

1
wtw = EHkTHk =1d;.
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We can ultimately write

volp (L NRF) = vol,({z € R* : | H{ z||oo < V/n})

— vol, ({Wy ERF: |lyfloo < Z}) | = voly <W (WBZ;)) - (%)7 voly,(BE),

since det(WTW) = 1, and the proof is complete. O

Note that in the construction carried out in the preceding proof, we have é; = ¢;||Prvj|l2 = 1/2

for every j =1,...,m. The following is the main result of the present section.
Theorem 6. For every 1 < k < n with k > n/2, the following holds:

e If¢; > % for all j, then

)

mo
6) volo (LN H) < 2% [ ;"

=1

.

In particular,

mg—k
n — 2k +mg 2
mo — k

(7) volg (L N H) < 2F (

k

e Otherwise, voly(L N H) < 277 voly(BE).

Proof. Let us identify R™ with span{e; : 1 < j < n} CR™°, where (ej);»nzol denotes the canonical
basis in R™°. By Proposition 2, there exits (z;)}%, an orthonormal basis of R™® and (w;)j2 C
Sm=1 N H+, where H' denotes the orthogonal linear subspace to H in R™0 such that

PHJ?J':\/EJ‘U]‘ and PHijzwl—ijj
for every 1 < j < my. Writing coordinates with respect to the orthonormal basis of R™° given by

()72, we have that for every x € H

(@, 25) = (V/cuj,x) V1< j<mo
and for every y € H+
<y)xj>:<\/1_6]w]7y>7 V1<j<m0

and the convex set
mo
01: Zaja:j . |aj|<\/€jtj,V1 <]<m0
j=1
verifies that C; N H = L N H. We distinguish two cases:

Case I: Assume that for every unit vector &€ € H, ’(ﬂwj,gﬂ < 1/V/2 for every 1 < j < m.
Note that in particular, considering & = wj, this hypothesis implies that /T —¢&; < 1/v2 or,
equivalently, ¢; > % for every 1 < j < mg. Applying Proposition 1 with n; = ... =ny,, =1 and
fj R — R given by f;(z) =

=1 — =, , we have that writing coordinates in R™° with respect
[—v/Eitin/Eits]

9



to ('rj)] IR

mo
volx(LNH) = /H]IF oty JEt] ((wc}uj,x))da:
H: 777 7177
Jj=1
mo

= @n)me- k/}“l:[ —/E s, cjf](<\/1_7éjwj7y>)dy
17 28 (et /1 = & (w;, y))
= 277 mo— k/HL dy

1ic]<w]7y>

)

where we have used that for any ¢ > 0, i[,c)c] (t) = 25%(“) By the geometric Brascamp-Lieb

inequality applied on H' to the vectors (w;)7%, and the non-negative numbers ((1 — )iy,

followed by a change of variables, we get

~ 2sin (1/Gtj4/1 e
volo(LNH) < —— H / 54) du
(2m)mo— V1—¢u
1-¢; L 1-¢
P LRI 1 ’ sin(rz;) | 7%
(8) - 2 et —— / sin(mi) |9 g )
o kjll‘[l\/jj tj Cj(l—Cj) R T !

Since /1 —¢; < 1/v2 /2 for every 1 < j < m we can apply Ball’s integral inequality [B1], to obtain

1-¢; . e
mo ~ 1 J 1-¢; gtk mo 2732
k ~ Cj = — J
volp(LNH) < 2 H(\/cjtj) ((1—6»)) < 2(1 c])> =22 ]:[ch.
J=1 7 j=1
Now, we will find an upper bound for the function
mo
¢,c) = Zéj log ¢;.

j=1

This is linear with respect to ¢ and it is defined in the set 1/2 < ¢; < 1 intersected with the set
>~ ¢; = k. This has maximum when ¢é; € {1/2,1} for all j € J. In order to have ) é&; = k, the set

I:{jEJZCj:1}

should have cardinality 2k — mg. Its complement, I°, has cardinality 2mg — 2k. Therefore,

¢) < Zlogcj +Z%logcj =

JeI J¢I

= Z%logcj

J¢l

|7¢| 2igrCi
< 1 —_—r
2 B\

) JCJ'*Z' rloge;
— _ 1 J€ J€
(mo — k) og( 2mg — 2k )

n— (2k —my)
2m0 — 2k ’

< (mo — k) log (
where we used Jensen’s inequality for the concave function logx and the fact that > jes G <.

Case II: We will prove this by induction. Assume that the result is true for any subspace @

of R", with dim(Q) = n — 1 and any k dimensional subspace. This means that we assume

10



that if C is any convex body in John’s position in @ and H is a k dimensional subspace, then

volp(C' N H) < (V2)"—1+k,

Suppose that there is a unit vector £ € H+, such that ‘(,/1 — ijj,@‘ > 1/\/5 for some 1 < j <
m. Without loss of generality we can assume that j = 1. Moreover, since ¢ € H*, the latter is
equivalent to |(x1,&)| > 1/v/2. Consider the set

mo
Cy = )\x1+Zajxj:|aj| VEti, V2<j<my and AeR

It is clear that C; C (s, therefore
VOlk(L N H) = VOlk(Cl n H) VOlk(CQ n H) = VOlk-(PH(CQ n H))

Since H C &+, we obtain that voly,(Py(C2 N H)) < vol,(Pe1 (C2 N H)). Note that if ¢ is different
than z1, the subspaces ¢+ and xi intersect in an m — 2-dimensional subspace of R™, therefore
we can find two orthonormal bases, for £ and x1, respectively, such that they differ to only one
element. Then we can easily find that the linear transformation 7" such that TP, = P¢. has

determinant (xq,&). Therefore,

voly(Pe1 (Cy N H)) = Vol (P, (Ca MH)) < V2voly (P, (Co N H)).

1
(1, 6)]
Finally, we write voly(P,+(C2 N H)) = volg(Fr»P,1(C2 N H)) and we would like to express
Prn P, (Cg) back in R™. Setting W = PgrnP,1 (R ), we observe that

chvj ®uv; and ProPpi(C) ={z € W: [{z,v;)| < 1,5 > 2}
Jj=2

By John’s theorem PgnP,:(C2) is in John’s position in W and W has dimension n — 1, since
vy ¢ W. Therefore, by the inductive hypothesis, we get that
volg (Pgn P, (Cg NH)) < (V2)r 1k,

Putting everything together, we get volx(L N H) < (v/2)"**, which is the desired result. O

Remark 7. Tt is noteworthy that in the case my < n, the upper bound (7 ) in Theorem 6 is better

than Ball’s general 2 “+* estimate. This is because, for o = = < 2¢

is true for any integer o > 1, equivalently n > my.

3.1. A comparison between estimates. Under the notation we have set above, it was proved
in [AB, Theorem 1.1] that if K C R” is a centrally symmetric convex body in John’s position and

H € G, is a k-dimensional linear subspace, then

(9) vol, (K N H) < QkH( ‘)2]

Jj€Jo

where

m
In = E Cj'l}j ®Uj
j=1
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is the decomposition of the identity associated to K. We have now obtained in (6) that if for
every j € Jy we have that ¢; > %, then
mo+k 77
(10) volg (KNH)<2 7 [] ¢
J€Jo
Let us see that in some cases, the estimate given by (10) can be better than the estimate given
by (9): Notice that

m‘k‘ t

e ()

J€Jo Jj€Jo

mg—k 1 2
QOT < = ’

is equivalent to

j€Jo
which is equivalent to
. 1 mofk

H (CJ) ~ (2)

j€Jo
and, therefore, to

1
(11) Z ¢jlogé; < (mo — k)log 3
Jj€Jo

Consider the case in which k > %% let K = {(xj)jeJO P i<z <1, dje, Ti = k}, which is
convex and invariant under permutations of coordinates, and let f : K — R be the function given
by
f(z) = Z zjlog ;.
Jj€Jo
Notice that f is convex function and that for every (z;);c., we have that
1 1
(zj)jeJU = <1? ceey 13 57 ceey 2> = (yj)jEJov

’s. That is,

where there are 2k — mg 1’s and 2(mg — k) 3

® Zje.lo r;=k= Zje.lo Yj
* * * . .
e For every k € Jo, D icp i<k @5 S Djeyj<k Y. Where (z7) denotes the nonincreasing

rearrangement of (z;).

Then, by Karamata’s inequality we have that for every z € K

1
f(@) < f(y) = mo — klog 3,
which implies (11).
This shows that even after applying Ball’s inequality, the bound we obtain when ¢; > % for every

j € Jy if we first apply Parseval’s identity and then the Brascamp-Lieb inequality is better than

the one we obtain if we apply Brascamp-Lieb directly.
12



4. THE WILLS FUNCTIONAL OF SECTIONS OF CENTRALLY SYMMETRC CONVEX BODIES IN
JOHN’S POSITION

In this section we will use the method developed in Section 2 in order to give an upper bound
for the Wills functional of sections of centrally symmetric convex bodies in John’s position. We
will also show that from such upper bound, one can recover the upper bound for the volume of
sections provided by (8) and the upper bound for the mean width of sections provided in the proof
of [AB, Theorem 1.5].

We first carry out some preliminary work towards the results of this section, starting with the

following lemma.
Lemma 8. Let a > 0 and f : R — R be the function
f(z) = @),

Then f: R — R is given by

J?( ) 25%(%) + cos(az)e*£ — 2sin(az) [;° e’ sin(yz)dy if 2 #0
zZ) =
20+ 1 if z=0.
Proof. For every z € R we have that
o0
flz) = / e (@[ onal) iwz g 2/ e (@[~ eva]) cos(zz)dx
R 0

(oo}

cos(zz)dx + 2/ e (@—a)’ cos(zz)dx

[e3

cos(zz)dx + 2/ e’ cos((y + a)z)dy
0
cos(zz)dx + 2 cos(az) / e’ cos(yz)dy — 2sin(az) / e’ sin(yz)dy
0 0

22 >
cos(xzz)dx + cos(az)e” 77 — 2sin(az) / e’ sin(yz)dy.
0

Since

@ sin(az) if 2 0
/ cos(xzz)dx = i a
0

o ifz=0

we obtain the result. O

We will estimate from above the Wills functional of the section of a convex body K in John’s
position applying the geometric Brascamp-Lieb inequality, in the spirit of Section 2. In the next

statement note that, in view of Lemma 8,

1
—c

J

s (t) = |y (VI=50)|

Proposition 9. Let K C R" be a centrally symmetric conver body in John’s position and let
H € G . Then, for any A > 0 we have that

WK 0 H)) < (%)}HH ( / hx,ju)dt)l_aj ,

13



where, for any t € R\ {0}

ha() = 2 sin( )\\ft,/ ¢jt) 4 cos )\\/>t \/;t _a- w)t

1—¢;t

o0
—  2sin(A/jt;\/1 = Gt) / e’ sin(yy/1 — ¢;t)dy
0

1

1-¢;

and

hyj(0) = (20;1/Et; +1)TF

Proof. Let C := LN H be defined as in (5). We have that for every j € J
Prayy(AC) € [Nt Ml
Therefore, for every x € H,
d({z, uj)uj, P,y (AC)) 2 d((z,uj)uj, [=Atj, Mjlug) = d((z, uz), [=AE;, At]).
Since for every zg € AC, every x € H and every j € J we have that
& (@, uj)ug, Pr,y (AC)) < ({2, uj)ug, (w0, uj)uy) = (x — o, uz)?,
we have that for every xg € A\C' and every x € H,
ch (@, u; uj,PW y(AC)) ZC] SCO»UJ = ||z — xo“%
jeJ JjeJ
and, taking infimum in zg € AC, we have that
d*(2,0C) =Y &d (v, us)uy, Py (AC)) =Y &d> (), [= Mt M),
jeJ jeJ
Therefore, calling f;(t) = e~ MGG for every j € J, we have that

W()\C):/ efwdz(z,)\C)dxg/ e—Zjej6j7rd2((x,uj),[—/\tj,)\tj])dx
H H

:/ e_ngjﬂdz(ﬁ(xvuj)v[_k\/atjv)‘\/gjtj])dx
H
/ Hf] (x,u;))dz.

jeJ

By Corollary 3 and Lemma 8 it follows then that,

W(AC) < = kH(

1- c]t)‘ dt>
JjEJ

(2m)mo- kHUh“ )Hj'

jeJ

Along this section, for a fixed index j € J set, for any A > 0, we will denote

1
e=¢€(0,1), p=pj= >1,  a:=a; = et
We will also define

2 sin(as) if s 0 oo
ca) =0 TN ) =eostas)e 00, 1) = [ e sntys) dy
2« ifs=0 0

14



ca(s) = —2sin(as)I(s), Aa(s) = a(s) + b(s) + c(s).
Making the change of variables s = /1 — ¢t (so dt = ds/+/1 —¢). Then

/h,\j( —— /|A )P ds.

The following lemma concerns the behavior of I(s).

Lemma 10. There exists M > 0 such that for every s € R,

M
|1 — sl )| I
Proof. Set f(y) = e~™’ . We first integrate by parts once in the definition of I(s). Taking
dv = sin(ys) dy and u = f(y) we get v = *M and v = f'(y) = —2nyf(y). Hence

I(s) = [f f(y) o8 ys / ' (y) cos(ys) dy
Using f(o0) =0, f(0) =1 and f'(y) = —27ryf(y) we obtain
1) = == 2 [ yrt)cos(ys)dy.
0

Therefore, letting

J(s) = / yf(y)cos(ys)dy,  wehave  1—sI(s)=2mrJ(s).
0
We now show that J(s) = O(1/s?) as |s| — oo. Integrate J(s) by parts twice. Put u(y) = yf(y)
and dv = cos(ys) dy. Then v = % and
d a? e
U (y) = @(ye Yy ) = (1 - 21y ™" = g(y).

Thus ) - -
) = [ 2 T g sintus)dy =~ [ atw)sinGus)

s s S
because the boundary terms vanish.

cos(ys)

Integrate the remaining integral by parts again, with dv = sin(ys) dy and v = . This gives

/OOO g9(y) sin(ys) dy = [ - M]j . /Ooo g'(y) cos(ys) dy.

S S

The boundary term at infinity vanishes because g is a polynomial times a Gaussian. Hence

/ o(y) sin(ys) dy = 20 1 1 / o' () cos(ys) dy,
0 S s Jo
and therefore (O) ) -
Js)=-29 1 / ¢/ () cos(ys) dy.
s 52 Jo

From this representation we obtain, for s # 0,

< 24 2 [Tl = .

S
where -
Ci=lg)+ [l wldy,
0

as it can be verified through a direct calculation that the integral on the right hand side is finite.
15



Consequently, for s # 0,
2nC

[1—sI(s)| =2n|J(s)| < o

To obtain a single inequality valid for all s € R, including small |s|, define

My := sup |1 — sI(s)| < o0
js/<1

(which is finite because the integrand defining I(s) is continuous in s), and set
M := max{2My, 4=C }.

If |s] <1 then 1+ s? < 2 and so

M 2M,
>0 My > |1 —s
=272 3 0= [1—sI(s)].

If |s| > 1 then 1/s% < 2/(1 + s?), hence from the bound above
2rC 4nC M

1—sI < < < .
1= sl(s) 52 1482 = 1+s2
Thus for every s € R we have
11— s1(s)| < L
1+s2
as desired. (Il

Finally, we recall that the Wills functional relates to the volume and the mean width in the
following way:
Lemma 11. Let K CR" be a convex body and let H € G,, .. Then,

WAENH) Vi(KNH) = w(KNH) = lim WK N H)) =
—00 Ak WE—1 A—0+t A

k
voly(KNH) = lim ok

where w(L) denotes the mean width of L and w,, = vol,,(B3").

Proof. By the definition of the Wills functional, we have that for any A > 0
k k
WK NH)) =Y ViAKNH) =Y NV,(KnH),
=0 i=0
where V;(L) denotes the i-th intrinsic volume of L. Taking into account that Vi (K N H) =
voli (K N H) we obtain the first identity, and taking into account that Vo(K N H) = 1 and
ViI(KNH) = k“”“ w(K N H) we obtain the second identity. O

4.1. The volume of sections via the Wills functional. In this Section we show how, from

Proposition 9, we can recover the estimate (6).

Theorem 12. Let K C R™ be a centrally symmetric convexr body in John’s position and let
m

I, = Z c;jv; ®v; be its associated decomposition of the identity. Let H € G, i, be a k-dimensional
=1

subspace and let J={1<j<m : Pij #0}. Then

volg(K N H) < T ( - \—1/(2p;) Il/p] [et))? )
jed

16



p

sinx . -
where, for any p > 1, I, :/ dz, and for any j € J, & = ¢;|Pgv;|3, pj = 25, and
R J
|
b = o

In particular, if ¢; > 2 for every j € J,

cjllPrv 13

mo+k
volg(KNH) <272 [[e
jeJ

Proof. Let, for any fixed j € J and a > 0, an(s), b0 (), ca(s) and A,(s) be defined as before. By
Minkowski’s inequality in LP(R), we have that

</R |Aa(3)|pd8>; s </]R [aa{s)l” d8>; + (/R|ba(3)|p ds>; + (/R |ca(s)|17ds>;

Let us estimate each term:

e By the scaling u = as,

1/p }
(/R |an (s)[P ds) = 2[;/” || (P~ 1)/P = 2];/” |l

e For the second term,

(/}R|ba(s)|Pds>l/p < </R|b0(s)|z7d5)l/p _ </R — ds>1/p _ (\2/;)1@.

e For the third term, notice that if |s| < 1 we have

[I(s)| = / e v’ sin(ys) dy‘ < / e’ dy =
0 0

and that, if |s| > 1,

2 o 2 o 1
I/ yefﬂy2 COS(yS) dy’ < i/ yeffry2 dy = —
0 0

1 4
<

<
Sl4s 145

DN | =

s Is|
and then
1 27 [

e ye””v‘2 cos(ys) dy' <
s s Jo

2 4
1+ |s|”

As a consequence, we have that for every fixed j € J there exists M; : [0,00) — [0, 00) such that
M;(a) ~ 2];]/p'7a51, as a — oo, and

(/ |Aa<s>|pds); < M (a).

Thus, the function M(X) := H M;(A\\/;t;) satisfies that
jeJ

[(s)| =

5]

Therefore,

M)~ 2 [ I/ e 0%, A= oo
JjEJ
17



and then, using the estimate granted by Proposition 9,

WK NH) < gﬂmokﬂ</m] )wj

¢ 2T (e e e (o) A Ao e

JjeJ

Therefore, by Lemma 11,

KnNH)
w0 = g WD) ¢ 2] (4 e 51y
jeJ

If ¢; < 2 then p; > 2 and then, applying Ball’s inequality [B1]

sinu |P _1/9
ij :/‘ \fﬂ'p / 9
R u
<l PEv;I3

voly(K N H) < e H (\V/Eit)% MOMHC . O

JjeJ jeJ

we obtain

4.2. The mean width of sections via the Wills functional. In this section we are going
to showcase how, from the estimate in Proposition 9, we can recover the following estimate for
Vi(K N H) which is included in the proof of [AB, Theorem 3.3].

Proposition 13. Let K C R"™ be a centrally symmetric convex body in John’s position and let
(¢j,v5) be its associated decomposition of the identity. Let H € Gy 1, be a k-dimensional subspace
and let J={1 <j<m : Pyv; #0}. Then

Vi(KNH)<2) ¢l Puvjlla.
jed

For the proof we will rely on the following technical lemma, whose proof we postpone until the

end of the section.

Lemma 14. For each fized j, we have that

/ |An(5)|Pds = So+a Sy +o(a), a— 0T,
R

where 5
T
Soz/b(s)pds:—, 51:471'\/])—1.
R N/g
Proof of Proposition 13. Let, for every j € J, ¢; = ¢;||Pyv;|3, pj = == > 1, and t; = HPHvJHz'

By Lemma 14 we have that for every j € J and every A > 0, calling aj = /\\/ it

AhA,j(t)dt = \/11_7@(5; +4w\/ﬁaj+o(aj)) =21+ - 4my/p;i(pj — 1) + o(aj)

= 27 (1 + 2a; pj(pj —-1)+ 0(04]')> e B 0.

Thus,
1/p;
([rstote) ™ = @i (14 2o/l — 1+ o).

= (2m)Y/Pi (1 +2\/¢ja; + o(aj)) , a; =0,
18



Equivalently, taking into account that a; = \,/¢;t;,

(/R h;(t) dt)léj = (2m)' 7% (1 + 2)\&t; + o(N), A — 0.

Multiplying over 5 € J and taking into account that ZjeJ(l — ¢j) = mo — k we obtain, by
Proposition 9,
WK NH)) <142)> &t +o(A), A= 0"
jed
Therefore, by Lemma 11,

WK NH) -1 )
Vi(KNH) = }L%h 5 < Z;Cjtj = QjEZJCj”PH'UjHQ' 0

It remains to justify the estimate in Lemma 14.

Proof of Lemma 14. Let g : [0,00) — R be the function

o) = / Aa(s)|P ds.

Let us prove that g is differentiable at 0 with ¢’(0) = S; = 47/p — 1. Therefore, since
27

90) = [ 1aooras = [ bo(s)ds = [ = 2

we will have the result.

Since p > 1, we have that the function |z|? is differentiable on R and, by the mean value theorem,
for every s € R there exists &,(s) between A, (s) and by(s) such that

|[Aa ()" = b(s) = pléa ()P~ sign(€) (Aa(s) — bo(s))-

Therefore, taking into account that for any s € R lim+ Aq(s) =bp(s) > 0 and then lim+ €als) =
a—0 a—0

bo(s), we have that for every s € R,

AP B pla(s)P siEn(a(s)) (Aa(s) — bols)
a—0t o a—0t o
o PlE ()P aas) £ bals) — bols) + ea(s)
a—07t «

= pbo(s)P" (2 — 2sI(s)).
Moreover, for every 0 < a < 1 and every s € R,

[Aa($)P = b5(s) | _ Pléa(s)IP"!Aa(s) = bo(s)|
pl€a ()P~ aa(s) + bals) = bo(s) + ca(s)]

[aa(s) + ca(s)] | [bals) = bo(8)>

« (&%

N

pmax{|da ()P, 55 (s)} (

On the one hand, notice that for every 0 < o < 1 and every s € R, by the mean value theorem
there exists 0 < S,(s) < as such that

o » 2M
(02 Fealo)l o) con(Ba(s))I1 — sT(5)] < 201 $T(6)] < {omy.
where M is the constant given by Lemma 10.
19



On the other hand, for every 0 < a < 1 and every s € R, by the mean value theorem there exists
0 < 7a(s) < as such that
[ba(s) —bo(s)| _, . _s2 _2 G
————— = |sin s))|sle” 47 < |sle” T L ———
- |sin(7va(s))||s] s T
where C7 > 0 is an absolute constant. Therefore, there exists an absolute constant C; > 0 such
that for every 0 < o < 1 and every s € R
Aa(9)? ~bh(s)| _ Cop
a T 142

max{|Aq(s)[P~*, 557" (5)}

Now, notice that for every p > 1 we have that, for every 0 < v < 1 and every s € R,

|Aa(3)|p_1 < 3t max{|aa(s)\p_1 + ‘ba(5)|p_1 + |Ca(s)|p_1}
< 3 max{aa(s)[P7 + [bo(s)[P" + |cals) P71}

and then

max{| Aq ()P, 05 (5)} < 377  max{laa(s)[P7! + [bo(s)P 7+ Jeals)P

Since for any p > 1, 0 < a < 1, and every s € R,

1 52 C

p—1 p—1_ p=1 _ —(-1)5: 3
| (s)] < 2P~ min {1, A } , bo(s)] e i < ot
where C5 > 0 is an absolute constant, and there exists an absolute constant Cy > 0 such that

D p—1 p—1 p—1_ 1
lca(s)|P <2P7HI(s)|P™" < C)7 min 1,||? .
s

we have that for every p > 1 there exists an absolute constant C' > 0 such that for every 0 < o < 1

and every s € R
[Aa(s)|P = b5(s)

(0%

. 1
< len{l,spﬂ} (S Ll(R)

Therefore, by the dominated convergence theorem,

—g(0 Aq(s)|P —bh _
lim 9(e) =9(0) = lim / Mds = /pbé7 Y(s)(2 — 2s1(s))ds
a—0t « a—0t Jp « R
= Qp/bg_l(s)ds—Zp/ sbb™(s)I(s))ds
R R
The first integral is
2
/ W (s)ds = I
R p—1
For the second one, by Fubini’s theorem and the Gaussian—Fourier identity, one computes
2
/ sI(s)bh~"(s)ds = L
R pvp—1

Hence,

Slzg'(O):2p< 27 2m >:4m/p—1. O

V-1 pyp—1

20



5. SECTIONS OF (GENERALISED E;‘ BALLS

Assume that (v;)52; € S"~" and (¢;)2; C (0,00) are such that

j=1
m

1d,, = E C;jv; ® vj.
j=1

Given p € [1,2] and (a;)72; C (0,00) we define K), as the symmetric convex body in R" with

norm given by

- 1
Iz, = | Y ejl(z,v)P
j=1

Integrating in polar coordinates we can check that, for any H € G, 1,
e\

(12) volp(K, NH) =T (1 + > Ip,
p

where I, := [} e 1ol g, As usual, in the sequel we let J = {j : Pyv; # 0}, mo = §J and
u; = Pyo;||Prvjllz and &; = ¢;|| Pyv;|3, for every j € J. Then
IdH = Z'c'juj ® Uy .
jeJ
Without loss of generality, assume that J = [mg] and let us identify R™ with span{e; : 1 < j <

n} C R™0, where (e;)72°; denotes the canonical basis in R™°. By Proposition 2, there exits (z;)j2,

an orthonormal basis of R™ and (w;)7X; C 5™~ !N H"L, where H' denotes the orthogonal linear

subspace to H in R™° such that

Pij:\/éj’U,j and PHL.’IJ]': \/l—éj’w]'

for every 1 < j < mg. Writing coordinates with respect to the orthonormal basis of R™° given by

()72, we have that for every x € H

(z ‘TJ \/ jug, ) V1< g < mo
and for every y € H+

<yvxj>:<\/1_5jwj,x>v V1<J<m0

For every p € [1, 2], we denote by

+oo b
= [ e

— 00

the Fourier transform of e~1*I" . If f, ,(t) = e=®"” | we can then check that fa_,(y) = a~ /Py, (a"1/Py),
for any o > 0.

Using the notation introduced above, we can verify that the following identity holds.

Lemma 15. For anyp € [1,2], 1<k<n—1and H € G,

(13) I = Gy 1Y% /HLH%< p y,x3>> dy.

jed a




Proof. We note that

/efz;“:lanu,vjwdx _ /efzglajuw,Pvapdx:/ o Sses ail(@ P g
H H H

~Sies @ /Eug)l?
_ ) NIV jeJ p/2 iU
_ /e zjyaJHPHvJHm,uJMde:/ . cj .
H H
- S jes It P
= e g dz.
H

By Proposition 1,

ZJgJ P/2|(x931>‘ / p/z‘(xxjﬂ 1 / ~
e dx = e de = —— fa, p(y,z;)dy,
/H H (2m)ymo—k f . 11 Bj:p J

JjeJ

where §; = = 4>, so the wanted identity follows from the aforementioned calculation of fa p 4
J

5.1. Sections of K;. Having (13) as a starting point, we will provide upper and lower bounds

for |K, N H|. We treat the case p = 1 separately; the fact that v1(y) can be computed explicitly,

allows us to provide sharper estimates for section volumes of K7, summarised in the following

theorem.

Theorem 16. Let (o)7L, € (0,00), 1<k <n—1and H € Gpy. Then

mmo s F(m0+k)
(K1 NH) > 9 —L | —=—=2_1.|BF.
VO k( 1 ) mo+k H (\/@) F(mo) | 1‘

mo—k

) a? 2 ’
J jeJ
™oz (ZjEJ c; )

On the other hand,
m -\ il Prv;l3
\/C
volg (K1 N H) < voly(Bf) ] (J) .

a
j=1 J

Remark 17. The case o = /¢; is included in [MP, Lemma 3.7].

We start with the following straightforward computation.

Lemma 18. Let a > 0 and fu 1 : R — R the function given by fo1(z) = e~ Then fa,l R —

R is given by
2a

fa,l(y) == m

Proof. For every y € R we have that

fal(y) / fa 1(z)e™Vdy = / —olel (cos(zy) + isin(zy)) do = / e~ cos(xy)da

R

e~ %" cos(xy)dz.
0

Since, integrating by parts twice,

/ e~ cos(xy)dx =
0

1

a

1y / R

- - = e~ *" cos(xy)dz,
a a2 J,

we have that

2 o] o]
Y - 1 _ 1 1 o
( + Oﬂ)/o e~ cos(zy)dx 5 @/0 e~ cos(zy)dx fj




and then
2

o0
faa(y) = 2/0 e~ cos(zy)dx = m-

Combining Lemma 15 and Lemma 18 we have that
1 2au; 1
(14) L =F—— (]> / ——dy.
e ) i 1 o )

Let us now establish the lower bound in Theorem 16. This is a direct consequence of (12) and the

following.

Lemma 19. Under the notation introduced abouve,

I > mglowmo_k H (204]) r (1 + mo;k) T <m02+k)
(27)mo—Fk (Z af) o jeJ VG I'(mo) 7
jed ¢;

where wy, = vol,, (BY").

Proof. We lower bound the integrand in (14): By the arithmetic-geometric mean inequality, we
have that

2 2 2 2
o L _ 1 o 1 oyl
2 N me < — - AV-20 N N A 1241}
T+ s < 5 (Do) = L3
jeJ jeJ jeJ

and then

WV

1 mg'°
/LHazidy /L e i Y
e Sy, )2 1 (s 2+ yl3)

00 7,,mofkfl
= m{"°(mo — k)wmo_k/ = 7 dr
0 (ZjeJ s )
_ mg(mo — k)wmy—k /OO s ds
motk  fo o 2(1+s8)™

af 2
(Zies )

The proof is complete; it only remains to check that the integral in the last expression is exactly
r(1+ mg—k )F( m0+k)
equal to (mOQ_k)F(mO)Q . O

We proceed to the upper bound in Theorem 16. This is the essence of the next proposition.

Proposition 20. Under the notation introduced above,
m e\ il Prvsll3
nL<2]] <J> :
. a;
Jj=1

We will make use of the following auxiliary estimate, whose proof we defer.

Lemma 21. Let Jy ={j € J: & # 1}. Then

1-¢;

(-2 -1
1—6j 2 mg—k
< 2.

ST

jgl V1-¢l (1jej)

23




Proof of Proposition 20. We first manipulate (14) as follows,

I = Gy kH(%‘J)/HLH]W@
“ar () ), 1

ja1+%“%<%wv

e L) [, T

c;j(1—¢;
jen 1+ J( J)<y7wj>

dy

dy,

where 1 ={jeJ ¢ #1}={jeJ z;¢H={jeJ: PHu:j # 0}. Next, we apply the
geometric Brascamp-Lieb inequality in H' to get

H / ! dx
1
jen |\ 7% (1 + %ﬁ) =%

J

N

dy
/];L H 1+ (1= (/J)<y7wj>2

jeJ1

Since

we arrive at

1-c¢
4§ N\ I —3 '
(15) h<——1] (\/07> II (= 21> ,

o
™ 2 jeJ J

and then Lemma 21 concludes the proof. O
The proof of Lemma 21 is the final missing piece.

Proof of Lemma 21. Notice that the wanted inequality is equivalent to

S (1) log s - 4)

1
j < (mo — k)logT (2> .
jE€JL 1-— CJF ( 6])
Let f:[0,1] — R be the function given by
rG-3)
f(z) =zlog 2 z € (0,1]
Vel (3)
and f(0) = lirgl+ f(z) = 0. We have that f is continuous on [0, 1]. Besides, for every = € (0,1) we
r—
have that

2_211_1 2/1
f”(df):—x ’(/} (m2x32)+ w (av)7

where v denotes the logarithmic derivative of the Gamma function.

Convexity of @' implies that

(o (D)o (1) ()



for any x € (0, 1), where the latter inequality follows from known bounds on polygamma functions

(see for example [A]). This implies that f” > 0, hence f is convex on (0,1). Then the function
F: K — R given by
z) = Z f(x5),

jeJ
where K = {(2;)jes : 0 < z; < 1Vj € J, 32, ;25 = mo — k}, is convex and invariant under

permutations of coordinates. Besides, for every (z;)jes € K we have that

(xj)jeJ *((1,...,1,0,...,0) ::(yj)jej,

where there are mg — k 1’s and k 0’s. Therefore, by Karamata’s inequality, for every (z;),es € K

S @) < 3 Fy;) = (mo — KT (;) .

jeJ jeJ

we have

In particular, since (1 —¢&;);cs € K and

r 1—15 *%
dDr=g)=>Y f-&)=> (1-¢)log ( - )

b
= 1
jes jen jen 1—-¢T (1_5j)

we get the wanted upper bound. O

We stress that the method of the proof provides an intermediate bound that improves upon the
general estimate, e.g. for sections of the cross-polytope, in view of an extra term taking into
account the lengths of the projections of the vertices e; onto the complementary subspace H +.

Note that the following is merely a consequence of (15) for the case Ky = BY.

Corollary 22. For any H € G, i, such that e; ¢ H U H* for every 1 < j < n, we have that

( 1 1) 1Py 1ell3

1 TPoie 3 2

volg (B} N H) < vol,(BY) o -1 [Pyieil3 2 < vol, (BF).
=1 \[[PrrejloT (Tgl\z)

5.2. Sections of K, p € [1,2]. For the case of general p € [1, 2], our result reads as follows.

Theorem 23. Let p € [1,2], (a;)72; C (0,00), 1 <k <n—1and H € Gy .Then, one has the

following explicit lower bound

II Up
j€J 1 ~
volp (K, N H) > 7(3%)% =P (mo — k)ﬁr B / 7 ] w ( 2= cj)> dt,

jeJ

where 8 = (mg — k)/2. For the upper bound,

¢\’
volg (K, N H) < H <\/1Z> VOlk(B;f),

which is sharp for B,

The upper bound in Theorem 23 is a direct consequence of the Brascamp-Lieb inequality and the

following lemma about the Fourier transform, +,, of the function e~ 1o’

25



Lemma 24. Let 0 < p < 2 and f(x) = e~ 1*I". Set

Yo(y) = /R Y f(x) da

Then, for all s > 1 we have
t s 1 s—1
/Ryp(%) dt < 2m(20(1 + 1)),
Proof. It is known that there is a positive measure p on (0, 00) such that

WO = [, (0.50) =20 = [ fo)de =201+ 1) = A,

Set v := u/A, and write v,(§) = 4, fooo =€ dv(v). Application of Hélder’s inequality

(Joa) < [
( /0 e/ dy(v))s < /0 e ).

Multiplying by A; and integrating with respect to £ € R we get

/HQW”(%)S dt < Azsfl/R”yp(t) dt.

£0) = - [ 0yat

therefore / ~p(t) dt = 2m f(0) = 2m and the lemma follows. O
R

gives us

To this end, note

We now proceed to the proof of Theorem 23.

Proof of Theorem 23, upper bound. Starting from the identity (13), we apply the geometric Brascamp—
Lieb inequality in H* to get

1—g¢;
= (2m)mo—F H 1/p / IIw <\/7<y,wj>> dy

]EJ je
L 1-&;
\/67‘ _ T—¢;

27T mo— kH 1/p H /’7}7( lf/p\/l—Cjt dt

jeJ @ jes, \"R Q;

QPN T . 1-¢,
j =\ 7%
~ ( 1= c»t) dt)

27Tm0 kg l/pjle_:L(\/C»j) </RP J

Application of Lemma 24 gives
1 —&
(/yp( 1=t dt) < (2m) % AY,
R
for every j € J;. Ultimately, using the fact that ZjeJl ¢ = deJ ¢ =k, we get

ngH( 1/p 'Ap’

@

which completes the proof. O
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Finally, we justify the lower bound in Theorem 23.

Proof of Theorem 23, lower bound. Use the Gaussian—mixture representation of v,:
o0 _ 28
WO = [ e, a((0.00) = 4y
0
Hence the product inside the y—integral equals

£\/Ci )
H Tp ( 1/; <y7Ij>> :/( ) €xXp _Z agj/p Sj<y,$j>2 du®m0 (S)
X 0,00)™0 :

jeJ % jed ’

Using Fubini’s theorem we get

-, 1/p
7= M o S(s)y dy | du®m(s),
(2m)mo—k (0,00)m0 \JHL

where the symmetric positive operator on H is

S(s) = Z agﬁs] (x; ® x)

jeJ ’

HL

~1/2

The inner y-integral is Gaussian and equals 7(™0~*)/2 det(S(s)) . Using the determinant—trace

estimate for positive operators in dimension mg — k,

ww@>m°ﬁ

der(s(s)) < (

mo — k
we obtain )
mg—k mg—k _mo—
/ e S dy>m 7 (mog—k) > (trS(s)) 2
HL
Since tr(z; @ xj|g) = ||Pgrx;||3 =1 — ¢;, we have
trS(s)=>_ s (1-).
jeJ ’
Combining the above gives the stated lower bound
_mo—Fk
2
1L C‘/al»/p mo—k mo—k o -
1> % w4 o — 1) 3 s(1—¢) 4™ (s).
(0,00)™0 jeJ "’
To obtain the desired bound we will use the formula:
1 /°°
-8B _ pB—1_—tx
TP = — tPT e dt, for x > 0,8 > 0.
I'(8) Jo

We set 8 = (mg — k)/2 and use the exact expression for the trace,

z=trS(s) = Zagﬁ(l —¢j)s;.
jeJ ’
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Substituting this into the integral over the variables (s;);cs and then applying Fubini’s theorem

to exchange the order of integration, we get:
[ aso)aums) -
(0,00)™0

sl o |
= — t exp | =t Y (1 —2¢)s; | dp®™(s) | dt
L(B) Jo (0,00)™0 Z ay/ I

jeJg ?

_ ﬁ /OOO tﬁ’ljl}] (/Oooexp <t[/(1 - &) 5j> du(sj)) dt.

From the definition v,(y) = fooc e*yzvdu(v), each inner integral is equal to v, evaluated at the
square root of the coefficient of s;. This gives:

L o0 B—1 i o
w5, ! H%(uwujgﬁ

Inserting this back into the expression for I, yields the stated lower bound. [

Remark 25. We should remark that the proof of Theorem 23 can not provide an intermediate
bound in the likes of (15), and thus we do not have a result similar to Corollary 22 for p > 1.
This is a natural consequence of the fact that in contrast to the case p = 1, we can not explicitly

compute 7, for general p > 1.

6. NON-SYMMETRIC CASE

Let K be a not necessarily origin-symmetric convex body in R™ in John’s position. We can then
find uq,...,um, € 0KNS™ ! and positive scalars c1, ..., ¢, such that Z;":l cju; =0, Z;":l ¢ =n

and .
Idn = ZC]‘UJ' ® Uj.
j=1

Let
C:={zeR": (z,u;) <lforevery j=1,...,m}.
It is easy to see that K C C'. We also set

e L d 5__n+1_
v; = I uﬂ’\/ﬁ an i=— cj.

for every j = 1,...,m. With this setup, we have that Z;nzl d;v; = (0,v/n+1), Z;nzl dj=n+1

and

Idn+1 = Z(Sﬂ)j R v
j=1

Finally, given F € Gy, we let H = span{(z,v/n) : © € F} € Gpt1,4+1. Denote J = {j € [m] :

Prv; # 0} and set
PHUj

—I_ d i = 6 || Pgvjl|3
||Pij||2 an Kj JH HUJ”Q

'LUj =
for every j € J so that

IdH:Z,‘fjwj®wj and an:k‘—i—l.
= =

For any k € N, we denote Ay = conv{ey,...,ex} and Sy = /k(k + 1)Ay.
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Under the notation introduced above, in this section we establish the following estimate.

Theorem 26. Let K be a convez body in R™ in John’s position and let a € S"~'. If k; = 1/2 for
every j € J, then

vol,_1 (K Nat) <

1 n—|—1<n+1

. )<>

n—1

Note that in the case of central sections this upper bound is sharp, attained in the case that

K =25, and a = (%,—%,O,...,O).

Let us first provide the following intermediate estimate.

Lemma 27. Assume that mink; > 1/2. Then for any 1 <k <n—1

)

k41

Volk(CﬂF) < k+12 1 n

RS < 6%
voly (Sk)

JjeJ

w\a- m\r

)=
i

(

Proof. Our starting point is the formula, established in [AB, Section 4],

k2(k+1) :1 voly(C N F) = / e~ i M(yﬂﬂj)dy
ns (n+ 1)% voly(Sk) LNH

where L = {y € R"™! : (y,v;) > 0 for every j € J}. We will upper bound the integral on the

right hand side above using Parseval’s identity and the Brascamp-Lieb inequality. Following the
P L’U
Py MJJH ’

/He Sies Vit . (y dy—/ [[e Vorsm s 10 (yw))) dy

JjeJ

notation w; = we write

1

/I“ H 5 V0 +2miy/T— i (y, ;)
<, I (G mmar) @

Jj€Jo

dy

1—Kj

< dt :
H <~/]R ((5]‘ +4772(1—l€j)t2) >

jeJ

where the last equality comes from an application of Proposition 1 and the last inequality follows

from the Brascamp-Lieb inequality. To finish the proof, we apply the inequality

1

1 28 1
T < —
(1+ozﬂ> 1+5

valid for all & > 0 ad 0 < 8 < 1/2. It follows that if 1 — x; < 1/2 for every j € J then

1 1—k; 1—kj
1 20-x5) —1 1
dt < 0.2 _
H (/R (5j +472(1 — Hj)t2> ) H J (/R 1+ 27r25;2t2>

jeJ JjeJ
17H]‘ )
_H5 %( [0; ) NCSESE] H(S;TJ,
JjeJ jeJ
which is the desired upper bound. O
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Proof of Theorem 26. Recalling that K C C, a straightforward application of Lemma 27 yields

n—li| n+1/n+1 = 5
vol,_1(KNat) <22 - (n_1> gla 7 | voly_1(Sn_1),
J

_ri |J|— n 1

so our goal is to establish the bound [],.;d; * <2 . Denote z; = ||P,1vj|2, S = {(z,0) €
[1/2,1]7 x [1/2,1)7 : 2 ey 0525 =k + 1} and consider the function F': S — R, defined by

Zé zj log

JEJ

By continuity, F attains its maximum on S. let (Z, ) = argmaxF(x, §) and assume, without loss of
generality, that J = {1,2,...,mp} and b1 =6>...> Smo. Keeping 6 fixed, consider the function
f5: HjeJ[l/(ng), 1/5]-] — R+ given by f5(z) = (sc, 6). Tt is easy to check that & = argmax f5 and
that  has to be an extreme point of the set []; ;[1/(2d;),1/5;]N {ZJEJ 5‘1’j = k+1}. It follows
that 6;7; € {1/2,1} for every j € J. Since log i < log i < ... <log <1 5, by a rearrangement

mq

argument it follows that there is some my € [1,m] such that

1
~ 5 if 1< <my
07 =14
1 if m; <7 < my.
Note also that for every m; < j < my, since gﬂcj = 1 and maxgj,ij < 1, it follows that

Sj = T; = 1. This argument shows that there is some 1 < m; < myg such that

1 & 1 1
F <= ~log —
(w,0) <5 D, Flogs

j=mi1+1

(@]
o
?

and the constraint % -mi1 +mg—mq = k+ 1 =n actually gives us m; = 2n — mg. To find the

maximiser & we invoke the convexity of z — log = L together with the fact that

mo mo my
I S
j=mi+1 j=1 j=1
Since 5m1+1 > ... > Sm, it follows that ((5m1+1, .. .,Sm) is majorised by a vector of the form
(1,...,1, ;, cee %) If mo is the cardinality of 1’s, the maximiser has to satisfy

1
1-m2—|—§~(m0—m1—m2):n—|—1—m1,

which is equivalent to my = 2. We eventually get that

1 —n—1
F(x,0) < Z(mo —my —2)log2 = %,
which yields the desired bound [[,.,d; * < 2%, 0
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APPENDIX A. PARSEVAL’S IDENTITY FOR CHARACTERISTIC FUNCTIONS

We include here a proof of the following statement, that justifies the validity of Proposition 1 for
the case of characteristic functions on bounded intervals. In what follows, we identify R™ with
H = span{ey,...,e,} C R™ let H+ denote the orthogonal complement, and let I; C R™ be
bounded measurable sets.

Theorem 28. Assume that the linear map L : H- — @;":1 R™ given by L(z) = (Pgrs2)Tty
has image of dimension d = dim H* (equivalently: L has full rank d). Then the identity

m 1 m .
(16) /H H 17, (Prriy) dy = @mymn /HL H 17, (Pgrj2)dz
j=1

j=1
holds provided that

(a) The inequality
(17) 1,0 < L+ i)™

holds for every & € R™, and
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(b) The number mqg of indices j for which the corresponding projection factor is nontrivial

(i.e. for which the multiplier on the j-th Fourier variable is nonzero) satisfies mg > d.

Remark 29. The estimate
@ <oa+i)™  cery,

is very general and holds all bounded sets of finite perimeter (for example convex bodies, Lipschitz

domains, intervals etc.)

We begin with the next general integrability criterion; the polynomial decay estimate (17) is a

sufficient condition for integrability.

Lemma 30. Let L : H- — @ 1 R be the linear map L(z) = (Prrs )7L,
d = dim H*. Suppose for each j there exist constants C; > 0 and 3; > 0 such that

and suppose rank [ =

1,0 < 1+ Jel2) ™

for every € € R™ . If m > d, then the function

= H ‘]TI\J(P]R'"]Z)‘
j=1

belongs to L*(H™').

Proof. Since L has rank d, its image S := L(H") is a d-dimensional linear subspace of EB;"ZI R™i.
The map L : H- — S is surjective and linear; choosing orthonormal coordinates on H» and on
S we may identify L with an invertible linear map L : R¢ — R% In particular the change of
variables u = L(z) yields (up to the constant factor |det(L~')|) an equivalence of integrals:

m

G(z dzN/ H|11, (u9)| du,
HL

where u) denotes the R™ -block of u corresponding to index j. Using the uniform bounds,

m m

H u)| < (HC ) H (14 JJul9)||) !

Now, on a d-dimensional linear subspace S the asymptotic behaviour at infinity is controlled by
the Euclidean norm ||ul|2. There exists C’ > 0 and R > 0 such that for |Jul|2 > R,

[T+ 1) < O+ [lullz) ™™
j=1
(Indeed each ||u¥) ||y < ||lull2 and therefore (1 + [|u]|5)~! < (1+||ull2)~"). Thus the tail integral
is bounded by a multiple of
/ (1+ [lulla) ™™ du.
|lu|>R

The latter converges precisely when m > d. The integral over the compact ball of radius R is
finite because the integrand is bounded there. This proves G € L'(H™). O

We now proceed to the proof of Theorem 28.
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Proof of Theorem 28. We proceed by approximating characteristic functions by functions in the
Schwarz space. Take a mollifier ¢ € S(R™) with [¢ = 1 and set ¢x(x) = k™ p(kz). Let
gk = 17, * ¢ Then g;r € S(R™), gjx — 1y, a.e. and in L'(R™), and ||g; r|loc < 1. Applying

Proposition 1 to g; we have that for every £,

m 1 m
Gk (Prrsy) dy = —5—r— / Gk (Prnj2) dz
/I{]_Hl J R"™J (27T.)m n HJ-jlle J R™J

By dominated convergence and the L!-approximation of 1 1; by gj.k, the left-hand side converges
to the desired [, [1; 11, (Persy) dy. It remains to justify passing to the limit on the right-hand

side.

Since g, = ]1/1\] b1, and 6 (€) = G(£/k) — 1 for each fixed &, it follows that for each fixed z € HL,
klingo l:llg/j,\k(PRnr z 1:[ 1. (Prrj 2)

Thus pointwise convergence of the integrand on H* is established. From |¢k| sup \¢| : Cy we

get the uniform bound
[T amtre )| < o TT [ (P 2]
j=1 j=1

Hence, the problem reduces to proving that
m
z) = H ‘]l]j (Pgns z)‘
j=1

belongs to L'(H'), which is precisely the statement of Lemma 30, the hypotheses of which are
granted by (a) and (b) in the statement of Theorem 28. It follows that G € L'(H'), and the

dominated convergence theorem yields

m

kh_{ﬂlc / ngk Prrjz)dz = ——— @) /]{J_H]ll Pgnjz)d O

Finally, the following lemma shows that in the setting of our concern the conditions about mg and

L are indeed met.

Lemma 31. Following the notation of Proposition 2 and moreover denoting by s = #{j : ¢; = 1}
and mg :=m — s = #{j : ¢; < 1} (the number of indices with nontrivial projection to H*), we
have that

(a) The vectors (w;)7T2; span H*, and therefore the linear map
L:H"—R"™ Ly = ({y.w;)js,

has image of dimension d = dim H+ (i.e. L has full rank d).
(b) We have the inequality mo > d. In particular mg > d, except in the degenerate situation

s =n (equivalently: m =n and all ¢; = 1), in which case d = 0.

Proof. (a) The operator identity Id;. = Z;n 1 (1 —¢j)w; ®w; implies immediately that the linear

span of the vectors (wj) ", equals H'; otherwise the right-hand side would have rank strictly
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less than d and could not equal the identity on H'. Hence the map L has image equal to all

coordinate functionals on H+ and so rank L = d.

(b) Take traces on the identity Idg. = E;n 1 (I —¢j)wj ®w;j. The trace of the left-hand side is d.
(

Jj=

The trace of the right-hand side equals >_"" (1 — ¢;). Thus
d=> (1-¢)).
j=1

Split the sum into indices with ¢; =1 and ¢; < 1:
d= Y (1—=¢)+ > (1-1)= > (1-¢)< Y 1=my
Jiej<l1 Jiej=1 Jiej<1 Jiej<1
Hence mg > d. Equality mo = d forces every 1 —c; with ¢; < 1 to equal 1, hence ¢; = 0 for those j
— but ¢; > 0 by hypothesis, therefore the only way to have mg = d in this weighted identity is the
borderline/degenerate situation where d = 0 (equivalently H+ = {0}, which occurs exactly when

m =n and all ¢; = 1). Thus, in the nondegenerate geometric configurations one gets mg > d. 0O
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