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Abstract. We revisit an ingenious argument of K. Ball to provide sharp estimates for the

volume of sections of a convex body in John’s position. Our technique combines the geometric

Brascamp-Lieb inequality with a generalised Parseval-type identity. This lets us complement

some earlier results of the first two named authors, as well as generalise the classical estimates

of Meyer-Pajor and Koldobsky regarding extremal sections of Bn
p balls to a broader family of

norms induced by a John’s decomposition of the identity in Rn.

1. Introduction

The study of hyperplane sections and projections of convex bodies is a classical and actively de-

veloping area of modern convex geometry, with deep connections to functional analysis, geometric

tomography, and high-dimensional probability. Extremal questions about k-dimensional sections

— for example, determining maximal or minimal volumes of such sections — encode subtle quan-

titative information about the geometry of a body and are related to central problems of the field,

cf. for example the Busemann–Petty problem [BP] and the slicing problem (recently settled in

[KL]). We refer the reader to the recent survey [NT] as well as the monographs [K2], [BGVV]

for a detailed account of history, related works and advances in the field as well as numerous

applications.

The present work further explores and complements some of the results of the recent paper [AB],

where the first two named authors initiated a systematic study of sections of convex bodies placed

in John’s position. John’s position is a canonical normalisation: if the maximal inscribed Eu-

clidean ball of a convex body K ⊂ Rn is the unit ball Bn
2 , then John [J] exhibited contact points

v1, . . . , vm ∈ ∂K ∩ Sn−1 and positive weights c1, . . . , cm that satisfy

(1) Idn =

m∑
j=1

cj vj ⊗ vj ,

m∑
j=1

cjvj = 0,

m∑
j=1

cj = n,

where Idn denotes the identity in Rn. These identities provide a flexible algebraic framework

that allows one to reduce multidimensional volume problems to a combination of one-dimensional

estimates and functional inequalities.
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Recall that if v1, . . . , vm ∈ Sn−1 an c1, . . . , cm ∈ (0,∞) are as in (1), then for any integrable

functions gj : R → [0,∞),

(2)

∫
Rn

m∏
j=1

g
cj
j (⟨x, vj⟩) dx ⩽

m∏
j=1

(∫
R
gj(t) dt

)cj

.

The above so-called geometric form of the classical Brascamp-Lieb inequality [BL] was suggested

by Ball (see [B2, Lemma 2]) who originally applied it to efficiently estimate the volume of k-

dimensional sections of the unit cube Bn
∞ in Rn, showing in particular that

(3) volk(B
n
∞ ∩H) ⩽

(n
k

) k
2

volk(B
k
∞),

for every k-dimensional linear subspace H of Rn. We remark that this estimate is optimal if

and only if k divides n. Using again (2) in conjunction with a Fourier-analytic argument, Ball

established in the same work the inequality

(4) volk(B
n
∞ ∩H) ⩽ 2

n−k
2 volk(B

k
∞)

which is an optimal estimate whenever k ⩾ n/2. We stress that Ball’s approach in this case

relies heavily on the product structure of the cube: the Fourier transform of the indicator of a

product body factorizes as a product of one-dimensional Fourier transforms, and this factorization

is the key to obtaining sharp bounds. In the absence of such coordinate independence — i.e. for

general bodies in John’s position — the direct product decomposition is no longer available, and

the Fourier method appears a priori inapplicable.

One of the results in [AB] was a sharp generalisation of Ball’s inequality (3) for k-dimensional

sections of the unit cube in the regime k ⩽ n/2. Our first main result complements this estimate;

we show in Section 3 below that in the case k ⩾ n/2, the section K ∩H of an arbitrary centrally

symmetric convex bodyK in John’s position in Rn with a k-dimensional subspaceH has volume at

most equal to the right hand side in (4), provided that at least one of the orthogonal projections of
√
cjvj onto H has length strictly less than 1/2, where (cj , vj) is the John decomposition associated

to K. When k ⩾ n/2 and all projections PH(
√
cjvj) are large, Ball’s 2

n+k
2 bound on the volume

of sections is not correct in general; we showcase this by constructing convex polytopes L in

John’s position with volk(L∩Rk) = 2k(n/k)k/2 (see Theorem 5 below). We also provide a general

estimate in this case that takes into account the geometry of K, resulting to even finer estimates

than (4) in certain special cases (cf. Remark 7).

The main conceptual advance of the present work is to show how the product-structure requirement

in Ball’s argument for the cube can be circumvented by combining a Parseval-type identity with

the Brascamp–Lieb inequality. In our setting, this Parseval representation (Proposition 1) plays

the role of the product decomposition in the cube case: the volume is represented as an integral of

a product of univariate factors, but now the exponents and prefactors reflect the geometric data

of John’s decomposition rather than coordinate independence. Once the Parseval representation

is in place, a Brascamp–Lieb reduction (Corollary 3) converts the multidimensional integral into

a product of one-dimensional integrals with exponents determined by the Euclidean norms of the

projections of our vectors. Therefore, whenever we need to bound the volume (or the volume of

a section) of a symmetric polytope, there are two equivalent representations. One is the integral

of the product of the indicator functions, and the other is the integral (over the complementary

subspace) of the Fourier transform. After passing to the Fourier representation we apply the
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Brascamp–Lieb inequality; the choice of exponents is governed by the sizes of the projections of

the original vectors onto the complementary subspace. This procedure is explained in Section 2.

In parallel to the study in [AB], we have been also concerned with the extent at which our methods

can provide meaningful estimates for the Wills functional of sections of convex bodies in John’s

position (see Section 4 for definitions and background). We provide an estimate that eventually

yields a second proof of our aforementioned result on sections of centrally symmetric convex bodies,

as well as a result on the mean width of sections, already witnessed in [AB].

Our second result extends the known bounds for sections of the ℓnp–balls, p ∈ [1, 2] (due to Meyer–

Pajor [MP] and Koldobsky [K1]). Notably, our proof shows that the same method used for

cube-slicing applies here as well. We first express the relevant integral via Parseval’s identity, then

apply the Brascamp–Lieb inequality, and finally invoke a one-dimensional estimate for γp, the

Fourier transform of e−|x|p . The technique allows us to consider a family of generalised ℓp norms

of the form
(∑m

j=1 αj |⟨·, vj⟩|p
)1/p

, given a John decomposition (cj , vj) in Rn and any positive

scalars (αj)
m
j=1. We show for example that, for any p ∈ [1, 2], if Kp is the closed unit ball for this

norm then

volk(Kp ∩H) ⩽
m∏
j=1

(√
cj

α
1/p
j

)1−πj

volk(B
k
p )

for every k-dimensional subspace H of Rn, where πj = ∥PH(
√
cjvj)∥22. In the classical case,

our approach yields an intermediate bound for arbitrary sections of the ℓn1–ball, that depends

only on the Euclidean norms of the projections of the standard basis vectors onto the subspace.

Consequently, the resulting bound is more sensitive than that of Meyer–Pajor and Koldobsky. Our

results in Section 5 should be compared to some of the results of [Bar] (see Section 3.3 therein,

where a sharp, in the case k | n, estimate is also obtained for volk(B
n
p ∩H) for p ⩾ 2).

Our third principal result addresses hyperplane sections of a convex body in John’s position,

without imposing any symmetry assumptions. In this framework, we establish an improvement

over the earlier result of [AB], specifically in the regime where all projections onto the given

subspace have norm greater than 1/
√
2. In this range, our method yields a sharp inequality,

thereby refining the known bounds and highlighting a new threshold phenomenon for such sections.

The details and results for the non-symmetric setting can be found in Section 6.

2. Parseval’s identity and consequences

In this section we present the aforementioned Parseval-type representation and how, when com-

bined with an application of the Brascamp-Lieb inequality, it provides an upper bound for the

integral of the product of functions evaluated at the scalar products of the variable against the

vectors that form a decomposition of the identity. We will also compare this upper bound with

the upper bound we would obtain by directly applying Brascam-Lieb inequality and show that in

some cases we obtain a tighter estimate (see Remark 4 below).

Our starting point is an appropriate general form of Parseval’s identity. For a function f : Rn → R,
we denote by f̂ the Fourier transform

f̂(y) =

∫
Rn

f(x)ei⟨x,y⟩dx, y ∈ Rn.

3



We denote by S(Rn) the Schwartz space of all C∞ functions f : Rn → R with derivatives that are

rapidly decreasing. To overcome any integrability issues and for the sake of clarity, we formulate

the results of this Section for functions in S(Rn). For our purposes however, we will need them to

be applicable for families of characteristic functions on bounded intervals. We have included the

technical details that justify how such an extension is possible in an Appendix in the end of the

manuscript.

Proposition 1 (Parseval). Let m ∈ N, n1, . . . , nm ∈ N and set N = n1+. . .+nm. For every linear

subspace H ∈ GN,k and every family of functions (fj)
m
j=1 such that fj ∈ S(Rnj ), j = 1, . . . ,m,

∫
H

m∏
j=1

fj(PRnj y) dy =
1

(2π)N−k

∫
H⊥

m∏
j=1

f̂j(PRnj z) dz.

Proof. By definition of the Fourier transform, we have that for every 1 ⩽ j ⩽ m and every zj ∈ Rnj

f̂j(zj) =

∫
Rnj

fj(xj)e
i⟨xj ,zj⟩dxj .

Therefore,∫
H⊥

m∏
j=1

f̂j(PRnj z)dz =

∫
H⊥

∫
Rn1

· · ·
∫
Rnm

f1(x1) . . . fm(xm)ei
∑m

j=1⟨xj ,PRnj z⟩dxm, . . . dx1dz

=

∫
H⊥

∫
Rn1

· · ·
∫
Rnm

f1(x1) . . . fm(xm)ei
∑m

j=1⟨xj ,z⟩dxm, . . . dx1dz

=

∫
H⊥

∫
RN

m∏
j=1

fj(PRnj (x))ei
∑m

j=1⟨PRnj (x),z⟩dxdz

=

∫
H⊥

∫
RN

m∏
j=1

fj(PRnj (x))ei⟨x,z⟩dxdz.

Now, by Fubini’s theorem,∫
H⊥

∫
RN

m∏
j=1

fj(PRnj (x))ei⟨x,z⟩dxdz =

=

∫
H⊥

∫
H

∫
H⊥

m∏
j=1

fj(PRnj (xH + xH⊥))ei⟨xH+x
H⊥ ,z⟩dxH⊥dxHdz

=

∫
H⊥

∫
H

∫
H⊥

m∏
j=1

(fj ◦ PRnj )(xH + xH⊥)ei⟨xH⊥ ,z⟩dxH⊥dxHdz

Calling, for every xH ∈ H, FxH
: H⊥ → R the function

FxH
(xH⊥) =

m∏
j=1

(fj ◦ PRnj )(xH + xH⊥),

we have that for every z ∈ H⊥∫
H⊥

m∏
j=1

(fj ◦ PRnj )(xH + xH⊥)ei⟨xH⊥ ,z⟩dxH⊥ = F̂xH
(z)

and then, by Fubini’s theorem and Fourier’s inversion formula,∫
H⊥

∫
H

∫
H⊥

m∏
j=1

(fj ◦ PRnj )(xH + xH⊥)ei⟨xH⊥ ,z⟩dxH⊥dxHdz

4



=

∫
H⊥

∫
H

F̂xH
(z)dxHdz =

∫
H

∫
H⊥

F̂xH
(z)dzdxH = (2π)N−k

∫
H

FxH
(0)dxH

= (2π)N−k

∫
H

m∏
j=1

(fj ◦ PRnj )(xH)dxH = (2π)N−k

∫
H

m∏
j=1

fj(PRnj y)dy,

which completes the proof. □

The following proposition is well known, see for example [Iv, Lemma 2.1]. Nevertheless, we include

a proof for the sake of completeness.

Proposition 2. Let 1 ⩽ k ⩽ m. Let H ∈ Gm,k and let (uj)
m
j=1 ⊆ Sm−1∩H and (cj)

m
j=1 ⊆ (0,∞)

such that

IdH =

m∑
j=1

cjuj ⊗ uj .

Then there exists (xj)
m
j=1, an orthonormal basis of Rm and (wj)

m
j=1 ⊆ Sm−1 ∩H⊥ such that

PHxj =
√
cjuj and PH⊥xj =

√
1− cjwj

for every 1 ⩽ j ⩽ m. Moreover,

IdH⊥ =

m∑
j=1

(1− cj)wj ⊗ wj .

Proof. We can assume, without loss of generality, that H = span{e1, . . . , ek} ⊆ Rm, where (ej)
m
j=1

denotes the canonical basis of Rm. Calling ũj =
√
cjuj we have that for every 1 ⩽ i ⩽ k,

1 = ∥ei∥22 =

m∑
j=1

⟨ei, ũj⟩2.

Besides, for every 1 ⩽ i1 < i2 ⩽ k we have that

0 = ⟨ei1 , ei2⟩ =
m∑
j=1

⟨ei1 , ũj⟩⟨ei2 , ũj⟩.

Therefore, calling, for 1 ⩽ j ⩽ k, vj ∈ Rm the j-th row of the k × m matrix [ũ1, . . . , ũm] we

have that {vj : 1 ⩽ j ⩽ k} is a set of k orthonormal vectors in Rm. Completing this set to an

orthormal basis of Rm, {vj : 1 ⩽ j ⩽ m} and taking, for 1 ⩽ j ⩽ m, xj ∈ Rm the j-th column of

the matrix [v1, . . . , vm]t, we have that

• (xj)
m
j=1 ⊆ Rm is an orthonormal basis of Rm,

• PHxj = ũj =
√
cjuj for every 1 ⩽ j ⩽ m.

Besides, if H⊥ = span{ek+1 . . . em} is the orthogonal complement of H in Rm, we have that for

every 1 ⩽ j ⩽ m

∥PH⊥xj∥22 = ∥xj∥22 − ∥PHxj∥22 = 1− ∥√cjuj∥22 = 1− cj

and, therefore, there exist (wj)
m
j=1 ∈ Sm−1 ∩H⊥ such that PH⊥xj =

√
1− cjwj . Moreover, since

Im =

m∑
j=1

xj ⊗ xj ,
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we have that

IdH⊥ =

m∑
j=1

PH⊥xj ⊗ PH⊥xj =

m∑
j=1

(1− cj)wj ⊗ wj . □

As a consequence of, combining the above proposition with Proposition 1, we obtain the following

corollary:

Corollary 3. Let 1 ⩽ n ⩽ m, (vj)
m
j=1 ⊆ Sn−1 and (cj)

m
j=1 ⊆ (0,∞) such that

In =

m∑
j=1

cjvj ⊗ vj .

Then, for every (fj)
m
j=1 ∈ S(Rn),∫

Rn

m∏
j=1

fj(
√
cj⟨x, vj⟩)dx ⩽

1

(2π)m−n

m∏
j=1

(∫
R
|f̂j

1
1−cj (

√
1− cjt)|dt

)1−cj

.

Proof. Let us identify Rn with H := span{ej : 1 ⩽ j ⩽ n} ⊆ Rm, where (ej)
m
j=1 denotes the

canonical basis in Rm. By Proposition 2 there exists (xj)
m
j=1, an orthonormal basis of Rm and

(wj)
m
j=1 ⊆ Sm−1 ∩H⊥ such that

PHxj =
√
cjvj and PH⊥xj =

√
1− cjwj

for every 1 ⩽ j ⩽ m. Besides,

IdH⊥ =

m∑
j=1

(1− cj)wj ⊗ wj .

Writing coordinates with respect to the orthonormal basis of Rm given by (xj)
m
j=1, we have that

for every x ∈ H

⟨x, xj⟩ = ⟨x,√cjuj⟩ ∀1 ⩽ j ⩽ m

and for every y ∈ H⊥

⟨y, xj⟩ = ⟨y,
√
1− cjwj⟩, ∀1 ⩽ j ⩽ m

By Proposition 1 we have that∫
Rn

m∏
j=1

fj(
√
cj⟨x, vj⟩)dx =

1

(2π)m−n

∫
H⊥

m∏
j=1

f̂j(
√
1− cj⟨y, wj⟩)dy.

Since

IdH⊥ =

m∑
j=1

(1− cj)wj ⊗ wj ,

by the geometric Brascamp-Lieb inequality we have that∫
H⊥

m∏
j=1

f̂j(
√
1− cj⟨y, wj⟩)dy ⩽

∫
H⊥

m∏
j=1

|f̂j(
√

1− cj⟨y, wj⟩)|dy

⩽
m∏
j=1

∫
R

(
|f̂j(
√

1− cjt)|
1

1−cj dt
)1−cj

.

Therefore, ∫
Rn

m∏
j=1

fj(
√
cj⟨x, vj⟩)dx ⩽

1

(2π)m−n

m∏
j=1

(∫
R
|f̂j

1
1−cj (

√
1− cjt)|dt

)1−cj

. □
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Let us compare the upper bound obtained in the previous corollary with the upper bound obtained

by directly applying Brascamp-Lieb inequality.

Remark 4. Notice that if for every 1 ⩽ j ⩽ m we have that 1
1−cj

⩾ 2, which happens if and

only if cj ⩾ 1
2 , then, by Beckner’s sharp Haussdorff-Young inequality [Be], we have that for every

1 ⩽ j ⩽ m,(∫
R
|f̂j

1
1−cj (

√
1− cjt)|dt

)1−cj

=

(
1√

1− cj

)1−cj (∫
R
|f̂j(s)|

1
1−cj ds

)1−cj

⩽ (2π)1−cj

(
1√

1− cj

)1−cj


(

1√
cj

)cj
(

1√
1−cj

)1−cj


(∫

R
|fj(s)|

1
cj ds

)cj

= (2π)1−cj

(
1

√
cj

)cj (∫
R
|fj(s)|

1
cj ds

)cj

Therefore,∫
Rn

m∏
j=1

fj(
√
cj⟨x, vj⟩)dx ⩽

1

(2π)m−n

m∏
j=1

(2π)1−cj

(
1

√
cj

)cj (∫
R
|fj(s)|

1
cj ds

)cj

=

m∏
j=1

(
1

√
cj

)cj (∫
R
|fj(s)|

1
cj ds

)cj

.

On the other hand, applying directly Brascamp-Lieb inequality we obtain∫
Rn

m∏
j=1

fj(
√
cj⟨x, vj⟩)dx ⩽

m∏
j=1

(∫
R
|fj(

√
cjt)|

1
cj dt

)cj

=

m∏
j=1

(
1

√
cj

)cj (∫
R
|fj(t)|

1
cj dt

)cj

.

Therefore, the estimate we obtain applying Brascamp-Lieb inequality to the Fourier transforms is

better than the one we obtain applying Brascamp-Lieb inequality to the functions itself whenever

cj ⩾ 1
2 for every 1 ⩽ j ⩽ m.

3. Centrally Symmetric Case

We start with a convex body K in John’s position with associated decomposition of the identity

(cj , vj), i.e. we assume that v1, . . . , vm ∈ Sn−1 ∩ ∂K and c1, . . . , cm > 0 are such that

Idn =

m∑
j=1

cjvj ⊗ vj .

Let H ∈ Gn,k and J = {1 ⩽ j ⩽ m : PHvj ̸= 0}. We set m0 := ♯J and, for every j ∈ J , let

• uj =
PHvj

∥PHvj∥2
,

• c̃j = cj∥PHvj∥22,
• tj = ∥PHvj∥−1

2 .
7



It follows that

IdH =
∑
j∈J

c̃juj ⊗ uj .

Let us consider the symmetric convex polytope

L = {x ∈ Rn : |⟨x, vj⟩| ⩽ 1}.

It is easy to see that K ⊆ L. We will in fact estimate the volume of K ∩H by the volume of

(5) L ∩H = {x ∈ H : |⟨x, uj⟩| ⩽ tj for every j ∈ J} .

In general, it is not true that we can obtain the analogous bound for the k-dimensional sections

of L that Ball obtained for the cube, i.e. that for every 1 ⩽ k ⩽ n with k ⩾ n/2,

volk(L ∩H) ⩽ 2
n−k

2 volk(B
k
∞).

This is showcased by the following example.

Theorem 5. There exists k ∈ N arbitrarily large such that for every n ∈ N with n/2 ⩽ k ⩽ n

there exists a convex body L in Rn which is in John’s position, while

volk(L ∩ Rk) =
(n
k

) k
2

volk(B
k
∞).

Proof. Let k ∈ N be such that there exists a k × k Hadamard matrix (for instance, let k be any

power of 2) and take any k ⩽ n ⩽ 2k. Let m = 2k ⩾ n and define unit vectors v1, . . . , vm as

follows: Start with an arbitrary k × k Hadamard matrix Hk with columns η1, . . . , ηk, that is, the

components of each ηj are ±1 and ⟨ηi, ηj⟩ = 0 for every i ̸= j. The matrix

Hm =

(
Hk Hk

Hk −Hk

)
is then a m×m Hadamard matrix. Let B be the upper n×m submatrix of Hm. If β1, . . . , βm are

the columns of B, we define vj := n−
1
2 βj for every j = 1, . . . ,m. Clearly, the vj ’s are unit vectors

in Rn and if we let cj = n/(2k) for every j = 1, . . . ,m we can check that

m∑
j=1

cjvj ⊗ vj =
1

2k

m∑
j=1

βj ⊗ βj = Idn.

This shows that (cj , vj) induce a decomposition of the identity in Rn. The symmetric convex

polytope L = {x ∈ Rn : |⟨x, vj⟩| ⩽ 1, j = 1, . . . ,m} is then in John’s position and note that

L ∩ Rk =
{
x ∈ Rk : |⟨x, PRkvj⟩| ⩽ 1, j = 1, . . . ,m

}
=
{
x ∈ Rk : |⟨x, PRkβj⟩| ⩽

√
n, j = 1, . . . ,m

}
=
{
x ∈ Rk : |⟨x, ηj⟩| ⩽

√
n, j = 1, . . . , k

}
,

since, by our construction, PRkβj = PRkβk+j = ηj for every j = 1, . . . , k. Note also that if we let

W = k−
1
2Hk, then we have that

WTW =
1

k
HT

k Hk = Idk.

8



We can ultimately write

volk(L ∩ Rk) = volk({x ∈ Rk : ∥HT
k x∥∞ ⩽

√
n})

= volk

({
Wy ∈ Rk : ∥y∥∞ ⩽

√
n

k

})
| = volk

(
W

(√
n

k
Bk

∞

))
=
(n
k

) k
2

volk(B
k
∞),

since det(WTW ) = 1, and the proof is complete. □

Note that in the construction carried out in the preceding proof, we have c̃j = cj∥PHvj∥2 = 1/2

for every j = 1, . . . ,m. The following is the main result of the present section.

Theorem 6. For every 1 ⩽ k ⩽ n with k ⩾ n/2, the following holds:

• If c̃j ⩾ 1
2 for all j, then

(6) volk(L ∩H) ⩽ 2
m0+k

2

m0∏
j=1

c

cj

2t2
j

j .

In particular,

(7) volk(L ∩H) ⩽ 2k
(
n− 2k +m0

m0 − k

)m0−k
2

.

• Otherwise, volk(L ∩H) ⩽ 2
n−k

2 volk(B
k
∞).

Proof. Let us identify Rn with span{ej : 1 ⩽ j ⩽ n} ⊆ Rm0 , where (ej)
m0
j=1 denotes the canonical

basis in Rm0 . By Proposition 2, there exits (xj)
m0
j=1, an orthonormal basis of Rm0 and (wj)

m0
j=1 ⊆

Sm−1 ∩H⊥, where H⊥ denotes the orthogonal linear subspace to H in Rm0 such that

PHxj =
√
c̃juj and PH⊥xj =

√
1− c̃jwj

for every 1 ⩽ j ⩽ m0. Writing coordinates with respect to the orthonormal basis of Rm0 given by

(xj)
m0
j=1, we have that for every x ∈ H

⟨x, xj⟩ = ⟨
√
c̃juj , x⟩ ∀1 ⩽ j ⩽ m0

and for every y ∈ H⊥

⟨y, xj⟩ = ⟨
√

1− c̃jwj , y⟩, ∀1 ⩽ j ⩽ m0

and the convex set

C1 =


m0∑
j=1

ajxj : |aj | ⩽
√
c̃jtj , ∀1 ⩽ j ⩽ m0


verifies that C1 ∩H = L ∩H. We distinguish two cases:

Case I: Assume that for every unit vector ξ ∈ H⊥,
∣∣⟨√1− c̃jwj , ξ⟩

∣∣ ⩽ 1/
√
2 for every 1 ⩽ j ⩽ m.

Note that in particular, considering ξ = wj , this hypothesis implies that
√
1− c̃j ⩽ 1/

√
2 or,

equivalently, c̃j ⩾ 1
2 for every 1 ⩽ j ⩽ m0. Applying Proposition 1 with n1 = . . . = nm0 = 1 and

fj : R → R given by fj(x) = 1
[−
√

c̃jtj ,
√

c̃jtj ]
we have that writing coordinates in Rm0 with respect

9



to (xj)
m0
j=1,

volk(L ∩H) =

∫
H

m0∏
j=1

1
[−
√

c̃jtj ,
√

c̃jtj ]

(
⟨
√
c̃juj , x⟩

)
dx

=
1

(2π)m0−k

∫
H⊥

m0∏
j=1

1̂
[−
√

c̃jtj ,
√

c̃jtj ]

(
⟨
√
1− c̃jwj , y⟩

)
dy

=
1

(2π)m0−k

∫
H⊥

m0∏
j=1

2 sin
(√

c̃jtj
√

1− c̃j⟨wj , y⟩
)√

1− c̃j⟨wj , y⟩
dy,

where we have used that for any c > 0, 1̂[−c,c](t) = 2 sin(ct)
t . By the geometric Brascamp-Lieb

inequality applied on H⊥ to the vectors (wj)
m0

J=1 and the non-negative numbers ((1 − c̃j))
m0
j=1,

followed by a change of variables, we get

volk(L ∩H) ⩽
1

(2π)m0−k

m0∏
j=1

∫
R

∣∣∣∣∣2 sin
(√

c̃jtj
√
1− c̃ju

)√
1− c̃ju

∣∣∣∣∣
1

1−c̃j

du

1−c̃j

=
2k

πm0−k

m0∏
j=1

√
c̃jtj

(
1

tj
√
c̃j(1− c̃j)

)1−c̃j (∫
R

∣∣∣∣ sin(πxj)πxj

∣∣∣∣ 1
1−c̃j

dxj

)1−c̃j

.(8)

Since
√

1− c̃j ⩽ 1/
√
2 for every 1 ⩽ j ⩽ m we can apply Ball’s integral inequality [B1], to obtain

volk(L ∩H) ⩽ 2k
m0∏
j=1

(
√
c̃jtj)

c̃j

(
1√

(1− c̃j)

)1−c̃j (√
2(1− c̃j)

)1−c̃j

= 2
m0+k

2

m0∏
j=1

c

cj

2t2
j

j .

Now, we will find an upper bound for the function

f(c̃, c) =

m0∑
j=1

c̃j log cj .

This is linear with respect to c̃ and it is defined in the set 1/2 ⩽ c̃j ⩽ 1 intersected with the set∑
c̃j = k. This has maximum when c̃j ∈ {1/2, 1} for all j ∈ J . In order to have

∑
c̃j = k, the set

I = {j ∈ J : cj = 1}

should have cardinality 2k −m0. Its complement, Ic, has cardinality 2m0 − 2k. Therefore,

f(c̃, c) ⩽
∑
j∈I

log cj +
∑
j /∈I

1

2
log cj =

=
∑
j /∈I

1

2
log cj

⩽
|Ic|
2

log

(∑
j /∈I cj

|Ic|

)
= (m0 − k) log

(∑
j∈J cj −

∑
j∈I log cj

2m0 − 2k

)
⩽ (m0 − k) log

(
n− (2k −m0)

2m0 − 2k

)
,

where we used Jensen’s inequality for the concave function log x and the fact that
∑

j∈J cj ⩽ n.

Case II: We will prove this by induction. Assume that the result is true for any subspace Q

of Rn, with dim(Q) = n − 1 and any k dimensional subspace. This means that we assume

10



that if C is any convex body in John’s position in Q and H is a k dimensional subspace, then

volk(C ∩H) ⩽ (
√
2)n−1+k.

Suppose that there is a unit vector ξ ∈ H⊥, such that
∣∣⟨√1− c̃jwj , ξ⟩

∣∣ > 1/
√
2 for some 1 ⩽ j ⩽

m. Without loss of generality we can assume that j = 1. Moreover, since ξ ∈ H⊥, the latter is

equivalent to |⟨x1, ξ⟩| > 1/
√
2. Consider the set

C2 =

λx1 +
m0∑
j=2

ajxj : |aj | ⩽
√
c̃jtj , ∀ 2 ⩽ j ⩽ m0 and λ ∈ R

 .

It is clear that C1 ⊆ C2, therefore

volk(L ∩H) = volk(C1 ∩H) ⩽ volk(C2 ∩H) = volk(PH(C2 ∩H)).

Since H ⊆ ξ⊥, we obtain that volk(PH(C2 ∩H)) ⩽ volk(Pξ⊥(C2 ∩H)). Note that if ξ is different

than x1, the subspaces ξ⊥ and x⊥1 intersect in an m − 2-dimensional subspace of Rm, therefore

we can find two orthonormal bases, for ξ⊥ and x⊥1 , respectively, such that they differ to only one

element. Then we can easily find that the linear transformation T such that TPx⊥
1

= Pξ⊥ has

determinant ⟨x1, ξ⟩. Therefore,

volk(Pξ⊥(C2 ∩H)) =
1

|⟨x1, ξ⟩|
volk(Px⊥

1
(C2 ∩H)) <

√
2 volk(Px⊥

1
(C2 ∩H)).

Finally, we write volk(Px⊥
1
(C2 ∩ H)) = volk(PRnPx⊥

1
(C2 ∩ H)) and we would like to express

PRnPx⊥
1
(C2) back in Rn. Setting W = PRnPx⊥

1
(Rm), we observe that

IW =

m∑
j=2

cjvj ⊗ vj and PRnPx⊥
1
(C2) = {x ∈W : |⟨x, vi⟩| ⩽ 1, j ⩾ 2}.

By John’s theorem PRnPx⊥
1
(C2) is in John’s position in W and W has dimension n − 1, since

v1 /∈W . Therefore, by the inductive hypothesis, we get that

volk(PRnPx⊥
1
(C2 ∩H)) ⩽ (

√
2)n−1+k.

Putting everything together, we get volk(L ∩H) ⩽ (
√
2)n+k, which is the desired result. □

Remark 7. It is noteworthy that in the case m0 ⩽ n, the upper bound (7) in Theorem 6 is better

than Ball’s general 2
n+k

2 estimate. This is because, for α = n−k
m0−k , Bernoulli’s inequality α+1 ⩽ 2α

is true for any integer α ⩾ 1, equivalently n ⩾ m0.

3.1. A comparison between estimates. Under the notation we have set above, it was proved

in [AB, Theorem 1.1] that if K ⊆ Rn is a centrally symmetric convex body in John’s position and

H ∈ Gn,k is a k-dimensional linear subspace, then

(9) volk (K ∩H) ⩽ 2k
∏
j∈J0

(
cj
c̃j

) c̃j
2

,

where

In =

m∑
j=1

cjvj ⊗ vj

11



is the decomposition of the identity associated to K. We have now obtained in (6) that if for

every j ∈ J0 we have that c̃j ⩾ 1
2 , then

(10) volk (K ∩H) ⩽ 2
m0+k

2

∏
j∈J0

c
c̃j
2
j .

Let us see that in some cases, the estimate given by (10) can be better than the estimate given

by (9): Notice that

2
m0+k

2

∏
j∈J0

c
c̃j
2
j ⩽ 2k

∏
j∈J0

(
cj
c̃j

) c̃j
2

is equivalent to

2
m0−k

2 ⩽
∏
j∈J0

(
1

c̃j

) c̃j
2

,

which is equivalent to ∏
j∈J0

(c̃j)
c̃j ⩽

(
1

2

)m0−k

and, therefore, to

(11)
∑
j∈J0

c̃j log c̃j ⩽ (m0 − k) log
1

2
.

Consider the case in which k ⩾ m0

2 let K =
{
(xj)j∈J0 : 1

2 ⩽ xj ⩽ 1 ,
∑

j∈J0
xj = k

}
, which is

convex and invariant under permutations of coordinates, and let f : K → R be the function given

by

f(x) =
∑
j∈J0

xj log xj .

Notice that f is convex function and that for every (xj)j∈J0 we have that

(xj)j∈J0
≺
(
1, . . . , 1,

1

2
, . . . ,

1

2

)
= (yj)j∈J0

,

where there are 2k −m0 1’s and 2(m0 − k) 1
2 ’s. That is,

•
∑

j∈J0
xj = k =

∑
j∈J0

yj

• For every k ∈ J0,
∑

j∈J0,j⩽k x
∗
j ⩽

∑
j∈J0,j⩽k y

∗
j , where (z∗j ) denotes the nonincreasing

rearrangement of (zj).

Then, by Karamata’s inequality we have that for every x ∈ K

f(x) ⩽ f(y) = m0 − k log
1

2
,

which implies (11).

This shows that even after applying Ball’s inequality, the bound we obtain when c̃j ⩾ 1
2 for every

j ∈ J0 if we first apply Parseval’s identity and then the Brascamp-Lieb inequality is better than

the one we obtain if we apply Brascamp-Lieb directly.
12



4. The Wills functional of sections of centrally symmetrc convex bodies in

John’s position

In this section we will use the method developed in Section 2 in order to give an upper bound

for the Wills functional of sections of centrally symmetric convex bodies in John’s position. We

will also show that from such upper bound, one can recover the upper bound for the volume of

sections provided by (8) and the upper bound for the mean width of sections provided in the proof

of [AB, Theorem 1.5].

We first carry out some preliminary work towards the results of this section, starting with the

following lemma.

Lemma 8. Let α > 0 and f : R → R be the function

f(x) = e−πd2(x,[−α,α]).

Then f̂ : R → R is given by

f̂(z) =


2 sin(αz)

z + cos(αz)e−
z2

4π − 2 sin(αz)
∫∞
0
e−πy2

sin(yz)dy if z ̸= 0

2α+ 1 if z = 0.

Proof. For every z ∈ R we have that

f̂(z) =

∫
R
e−πd2(x,[−α,α])eixzdx = 2

∫ ∞

0

e−πd2(x,[−α,α]) cos(xz)dx

= 2

∫ α

0

cos(xz)dx+ 2

∫ ∞

α

e−π(x−α)2 cos(xz)dx

= 2

∫ α

0

cos(xz)dx+ 2

∫ ∞

0

e−πy2

cos((y + α)z)dy

= 2

∫ α

0

cos(xz)dx+ 2 cos(αz)

∫ ∞

0

e−πy2

cos(yz)dy − 2 sin(αz)

∫ ∞

0

e−πy2

sin(yz)dy

= 2

∫ α

0

cos(xz)dx+ cos(αz)e−
z2

4π − 2 sin(αz)

∫ ∞

0

e−πy2

sin(yz)dy.

Since ∫ α

0

cos(xz)dx =


sin(αz)

z if z ̸= 0

α if z = 0

we obtain the result. □

We will estimate from above the Wills functional of the section of a convex body K in John’s

position applying the geometric Brascamp-Lieb inequality, in the spirit of Section 2. In the next

statement note that, in view of Lemma 8,

hλ,j(t) =
∣∣∣f̂λ√cj (

√
1− c̃jt)

∣∣∣ 1
2−c̃j

.

Proposition 9. Let K ⊆ Rn be a centrally symmetric convex body in John’s position and let

H ∈ Gn,k. Then, for any λ > 0 we have that

W(λ(K ∩H)) ⩽
1

(2π)m0−k

∏
j∈J

(∫
R
hλ,j(t)dt

)1−c̃j

,

13



where, for any t ∈ R \ {0}

hλ,j(t) =

∣∣∣∣∣2 sin(λ
√
c̃jtj

√
1− c̃jt)√

1− c̃jt
+ cos(λ

√
c̃jtj

√
1− c̃jt)e

−
(1−c̃j)t

2

4π

− 2 sin(λ
√
c̃jtj

√
1− c̃jt)

∫ ∞

0

e−πy2

sin(y
√
1− c̃jt)dy

∣∣∣∣ 1
1−c̃j

and

hλ,j(0) = (2λj
√
c̃jtj + 1)

1
1−c̃j .

Proof. Let C := L ∩H be defined as in (5). We have that for every j ∈ J

P⟨uj⟩(λC) ⊆ [−λtj , λtj ]uj .

Therefore, for every x ∈ H,

d(⟨x, uj⟩uj , P⟨uj⟩(λC)) ⩾ d(⟨x, uj⟩uj , [−λtj , λtj ]uj) = d(⟨x, uj⟩, [−λtj , λtj ]).

Since for every x0 ∈ λC, every x ∈ H and every j ∈ J we have that

d2(⟨x, uj⟩uj , P⟨uj⟩(λC)) ⩽ d2(⟨x, uj⟩uj , ⟨x0, uj⟩uj) = ⟨x− x0, uj⟩2,

we have that for every x0 ∈ λC and every x ∈ H,∑
j∈J

c̃jd
2(⟨x, uj⟩uj , P⟨uj⟩(λC)) ⩽

∑
j∈J

c̃j⟨x− x0, uj⟩2 = ∥x− x0∥22

and, taking infimum in x0 ∈ λC, we have that

d2(x, λC) ⩾
∑
j∈J

c̃jd
2(⟨x, uj⟩uj , P⟨uj⟩(λC)) ⩾

∑
j∈J

c̃jd
2(⟨x, uj⟩, [−λtj , λtj ]).

Therefore, calling fj(t) = e−πd2(t,[−λ
√

c̃jtj ,λ
√

c̃jtj ]) for every j ∈ J , we have that

W(λC) =

∫
H

e−πd2(x,λC)dx ⩽
∫
H

e−
∑

j∈J c̃jπd
2(⟨x,uj⟩,[−λtj ,λtj ])dx

=

∫
H

e−
∑

j∈J πd2(
√

c̃j⟨x,uj⟩,[−λ
√

c̃jtj ,λ
√

c̃jtj ])dx

=

∫
H

∏
j∈J

fj(
√
c̃j⟨x, uj⟩)dx.

By Corollary 3 and Lemma 8 it follows then that,

W(λC) ⩽
1

(2π)m0−k

∏
j∈J

(∫
R

∣∣∣∣f̂j 1
1−c̃j (

√
1− c̃jt)

∣∣∣∣ dt)1−c̃j

=
1

(2π)m0−k

∏
j∈J

(∫
R
hλ,j(t)dt

)1−c̃j

. □

Along this section, for a fixed index j ∈ J set, for any λ > 0, we will denote

c̃ = c̃j ∈ (0, 1), p := pj =
1

1− c̃
> 1, α := αj = λ

√
c̃ tj .

We will also define

aα(s) =


2 sin(αs)

s if s ̸= 0

2α if s = 0
, bα(s) = cos(αs)e−s2/(4π), I(s) =

∫ ∞

0

e−πy2

sin(ys) dy,
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cα(s) = −2 sin(αs)I(s), Aα(s) = a(s) + b(s) + c(s).

Making the change of variables s =
√
1− c̃ t (so dt = ds/

√
1− c̃). Then∫

R
hλ,j(t) dt =

1√
1− c̃

∫
R
|Aα(s)|p ds.

The following lemma concerns the behavior of I(s).

Lemma 10. There exists M > 0 such that for every s ∈ R,∣∣1− sI(s)
∣∣ ⩽ M

1 + s2
.

Proof. Set f(y) = e−πy2

. We first integrate by parts once in the definition of I(s). Taking

dv = sin(ys) dy and u = f(y) we get v = − cos(ys)
s and u′ = f ′(y) = −2πyf(y). Hence

I(s) =
[
− f(y) cos(ys)

s

]∞
0

+
1

s

∫ ∞

0

f ′(y) cos(ys) dy.

Using f(∞) = 0, f(0) = 1 and f ′(y) = −2πyf(y) we obtain

I(s) =
1

s
− 2π

s

∫ ∞

0

yf(y) cos(ys) dy.

Therefore, letting

J(s) :=

∫ ∞

0

yf(y) cos(ys) dy, we have 1− sI(s) = 2πJ(s).

We now show that J(s) = O(1/s2) as |s| → ∞. Integrate J(s) by parts twice. Put u(y) = yf(y)

and dv = cos(ys) dy. Then v = sin(ys)
s and

u′(y) =
d

dy

(
ye−πy2)

= (1− 2πy2)e−πy2

=: g(y).

Thus

J(s) =
[yf(y) sin(ys)

s

]∞
0

− 1

s

∫ ∞

0

g(y) sin(ys) dy = −1

s

∫ ∞

0

g(y) sin(ys) dy,

because the boundary terms vanish.

Integrate the remaining integral by parts again, with dv = sin(ys) dy and v = − cos(ys)
s . This gives∫ ∞

0

g(y) sin(ys) dy =
[
− g(y) cos(ys)

s

]∞
0

+
1

s

∫ ∞

0

g′(y) cos(ys) dy.

The boundary term at infinity vanishes because g is a polynomial times a Gaussian. Hence∫ ∞

0

g(y) sin(ys) dy =
g(0)

s
+

1

s

∫ ∞

0

g′(y) cos(ys) dy,

and therefore

J(s) = −g(0)
s2

− 1

s2

∫ ∞

0

g′(y) cos(ys) dy.

From this representation we obtain, for s ̸= 0,

|J(s)| ⩽ |g(0)|
s2

+
1

s2

∫ ∞

0

|g′(y)| dy =
C

s2
,

where

C := |g(0)|+
∫ ∞

0

|g′(y)| dy,

as it can be verified through a direct calculation that the integral on the right hand side is finite.
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Consequently, for s ̸= 0,

|1− sI(s)| = 2π|J(s)| ⩽ 2πC

s2
.

To obtain a single inequality valid for all s ∈ R, including small |s|, define

M0 := sup
|s|⩽1

|1− sI(s)| <∞

(which is finite because the integrand defining I(s) is continuous in s), and set

M := max{ 2M0, 4πC }.

If |s| ⩽ 1 then 1 + s2 ⩽ 2 and so

M

1 + s2
⩾

2M0

2
=M0 ⩾ |1− sI(s)|.

If |s| ⩾ 1 then 1/s2 ⩽ 2/(1 + s2), hence from the bound above

|1− sI(s)| ⩽ 2πC

s2
⩽

4πC

1 + s2
⩽

M

1 + s2
.

Thus for every s ∈ R we have ∣∣1− sI(s)
∣∣ ⩽ M

1 + s2
,

as desired. □

Finally, we recall that the Wills functional relates to the volume and the mean width in the

following way:

Lemma 11. Let K ⊆ Rn be a convex body and let H ∈ Gn,k. Then,

volk(K∩H) = lim
λ→∞

W(λ(K ∩H))

λk
and V1(K∩H) =

kωk

ωk−1
w(K∩H) = lim

λ→0+

W(λ(K ∩H))− 1

λ
,

where w(L) denotes the mean width of L and ωm = volm(Bm
2 ).

Proof. By the definition of the Wills functional, we have that for any λ > 0

W(λ(K ∩H)) =

k∑
i=0

Vi(λ(K ∩H)) =

k∑
i=0

λiVi(K ∩H),

where Vi(L) denotes the i-th intrinsic volume of L. Taking into account that Vk(K ∩ H) =

volk(K ∩ H) we obtain the first identity, and taking into account that V0(K ∩ H) = 1 and

V1(K ∩H) = kωk

ωk−1
w(K ∩H) we obtain the second identity. □

4.1. The volume of sections via the Wills functional. In this Section we show how, from

Proposition 9, we can recover the estimate (6).

Theorem 12. Let K ⊆ Rn be a centrally symmetric convex body in John’s position and let

In =

m∑
i=1

cjvj ⊗ vj be its associated decomposition of the identity. Let H ∈ Gn,k be a k-dimensional

subspace and let J = {1 ⩽ j ⩽ m : PHvj ̸= 0}. Then

volk(K ∩H) ⩽
2k

πm0−k

∏
j∈J

(
(1− c̃j)

−1/(2pj) I1/pj
pj

(
√
c̃jtj)

c̃j
)
,
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where, for any p > 1, Ip =

∫
R

∣∣∣∣ sinxx
∣∣∣∣p dx, and for any j ∈ J , c̃j = cj∥PHvj∥22, pj = 1

1−c̃j
, and

tj =
1

∥PHvj∥2
.

In particular, if c̃j ⩾ 2 for every j ∈ J ,

volk(K ∩H) ⩽ 2
m0+k

2

∏
j∈J

c
cj∥PHvj∥

2
2

2
j .

Proof. Let, for any fixed j ∈ J and α > 0, aα(s), bα(s), cα(s) and Aα(s) be defined as before. By

Minkowski’s inequality in Lp(R), we have that(∫
R
|Aα(s)|pds

) 1
p

⩽

(∫
R
|aα(s)|p ds

) 1
p

+

(∫
R
|bα(s)|p ds

) 1
p

+

(∫
R
|cα(s)|p ds

) 1
p

Let us estimate each term:

• By the scaling u = αs,(∫
R
|aα(s)|p ds

)1/p

= 2I1/pp |α|(p−1)/p = 2I1/pp |α|c̃.

• For the second term,(∫
R
|bα(s)|p ds

)1/p

⩽

(∫
R
|b0(s)|p ds

)1/p

=

(∫
R
e−ps2/(4π) ds

)1/p

=

(
2π
√
p

)1/p

.

• For the third term, notice that if |s| ⩽ 1 we have

|I(s)| =
∣∣∣∣∫ ∞

0

e−πy2

sin(ys) dy

∣∣∣∣ ⩽ ∫ ∞

0

e−πy2

dy =
1

2
⩽

1

1 + s
⩽

4

1 + s
,

and that, if |s| ⩾ 1,∣∣∣∣2πs
∫ ∞

0

ye−πy2

cos(ys) dy

∣∣∣∣ ⩽ 2π

|s|

∫ ∞

0

ye−πy2

dy =
1

|s|

and then

|I(s)| =
∣∣∣∣1s − 2π

s

∫ ∞

0

ye−πy2

cos(ys) dy

∣∣∣∣ ⩽ 2

|s|
⩽

4

1 + |s|
.

Therefore, (∫
R
|cα(s)|p ds

)1/p

⩽ 8

(∫
R

ds

(1 + |s|)p

)1/p

= 8
21/p

(p− 1)1/p
.

As a consequence, we have that for every fixed j ∈ J there exists Mj : [0,∞) → [0,∞) such that

Mj(α) ∼ 2I
1/pj
pj αc̃j , as α→ ∞, and(∫

R
|Aα(s)|pds

) 1
p

⩽Mj(α).

Thus, the function M(λ) :=
∏
j∈J

Mj(λ
√
c̃jtj) satisfies that

M(λ) ∼ 2m0

∏
j∈J

I1/pj
pj

c̃
c̃j
2
j t

c̃j
j λ

k, λ→ ∞

17



and then, using the estimate granted by Proposition 9,

W(λ(K ∩H)) ⩽
1

(2π)m0−k

∏
j∈J

(∫
R
hλ,j(t)dt

)1/pj

⩽
2k

πm0−k

∏
j∈J

(
(1− c̃j)

−1/(2pj) I1/pj
pj

(
√
c̃jtj)

c̃j
)
λk, λ→ ∞.

Therefore, by Lemma 11,

volk(K ∩H) = lim
λ→∞

W(K ∩H)

λk
⩽

2k

πm0−k

∏
j∈J

(
(1− c̃j)

−1/(2pj) I1/pj
pj

(
√
c̃jtj)

c̃j
)
.

If c̃j ⩽ 2 then pj ⩾ 2 and then, applying Ball’s inequality [B1]

Ipj
=

∫
R

∣∣∣ sinu
u

∣∣∣pj

du ⩽
√
2π p

−1/2
j ,

we obtain

volk(K ∩H) ⩽ 2
m0+k

2

∏
j∈J

(
√
c̃jtj)

c̃j = 2
m0+k

2

∏
j∈J

c
cj∥PHvj∥

2
2

2
j . □

4.2. The mean width of sections via the Wills functional. In this section we are going

to showcase how, from the estimate in Proposition 9, we can recover the following estimate for

V1(K ∩H) which is included in the proof of [AB, Theorem 3.3].

Proposition 13. Let K ⊆ Rn be a centrally symmetric convex body in John’s position and let

(cj , vj) be its associated decomposition of the identity. Let H ∈ Gn,k be a k-dimensional subspace

and let J = {1 ⩽ j ⩽ m : PHvj ̸= 0}. Then

V1(K ∩H) ⩽ 2
∑
j∈J

cj∥PHvj∥2.

For the proof we will rely on the following technical lemma, whose proof we postpone until the

end of the section.

Lemma 14. For each fixed j, we have that∫
R
|Aα(s)|p ds = S0 + αS1 + o(α), α→ 0+,

where

S0 =

∫
R
b(s)p ds =

2π
√
p
, S1 = 4π

√
p− 1.

Proof of Proposition 13. Let, for every j ∈ J , c̃j = cj∥PHvj∥22, pj = 1
1−c̃j

> 1, and tj = 1
∥PHvj∥2

.

By Lemma 14 we have that for every j ∈ J and every λ > 0, calling αj = λ
√
c̃jtj∫

R
hλ,j(t)dt =

1√
1− c̃j

(
2π
√
pj

+ 4π
√
pj − 1αj + o(αj)

)
= 2π + α · 4π

√
pj(pj − 1) + o(αj)

= 2π

(
1 + 2αj

√
pj(pj − 1) + o(αj)

)
, αj → 0+.

Thus, (∫
R
hλ,j(t)dt

)1/pj

= (2π)1/pj

(
1 + 2

pj
αj

√
pj(pj − 1) + o(αj)

)
,

= (2π)1/pj

(
1 + 2

√
c̃jαj + o(αj)

)
, αj → 0+.

18



Equivalently, taking into account that αj = λ
√
c̃jtj ,(∫

R
hj(t) dt

)1−c̃j

= (2π)1−c̃j (1 + 2λc̃jtj + o(λ)) , λ→ 0+.

Multiplying over j ∈ J and taking into account that
∑

j∈J(1 − c̃j) = m0 − k we obtain, by

Proposition 9,

W(λ(K ∩H)) ⩽ 1 + 2λ
∑
j∈J

c̃jtj + o(λ), λ→ 0+.

Therefore, by Lemma 11,

V1(K ∩H) = lim
λ→0+

W(λ(K ∩H))− 1

λ
⩽ 2

∑
j∈J

c̃jtj = 2
∑
j∈J

cj∥PHvj∥2. □

It remains to justify the estimate in Lemma 14.

Proof of Lemma 14. Let g : [0,∞) → R be the function

g(α) =

∫
R
|Aα(s)|p ds.

Let us prove that g is differentiable at 0 with g′(0) = S1 = 4π
√
p− 1. Therefore, since

g(0) =

∫
R
|A0(s)|pds =

∫
R
b0(s)ds =

∫
R
e−p s2

4π ds =
2π
√
p
,

we will have the result.

Since p > 1, we have that the function |x|p is differentiable on R and, by the mean value theorem,

for every s ∈ R there exists ξα(s) between Aα(s) and b0(s) such that

|Aα(s)|p − bp0(s) = p|ξα(s)|p−1sign(ξ)(Aα(s)− b0(s)).

Therefore, taking into account that for any s ∈ R lim
α→0+

Aα(s) = b0(s) > 0 and then lim
α→0+

ξα(s) =

b0(s), we have that for every s ∈ R,

lim
α→0+

|Aα(s)|p − bp0(s)

α
= lim

α→0+

p|ξα(s)|p−1sign(ξα(s))(Aα(s)− b0(s))

α

= lim
α→0+

p|ξα(s)|p−1(aα(s) + bα(s)− b0(s) + cα(s))

α
= pb0(s)

p−1(2− 2sI(s)).

Moreover, for every 0 < α < 1 and every s ∈ R,∣∣∣∣ |Aα(s)|p − bp0(s)

α

∣∣∣∣ =
p|ξα(s)|p−1|Aα(s)− b0(s)|

α

=
p|ξα(s)|p−1|aα(s) + bα(s)− b0(s) + cα(s)|

α

⩽ pmax{|Aα(s)|p−1, bp−1
0 (s)}

(
|aα(s) + cα(s)|

α
+

|bα(s)− b0(s)|
α

)
On the one hand, notice that for every 0 < α < 1 and every s ∈ R, by the mean value theorem

there exists 0 < βα(s) < αs such that

|aα(s) + cα(s)|
α

= 2| cos(βα(s))||1− sI(s)| ⩽ 2|1− sI(s)| ⩽ 2M

1 + s2
, .

where M is the constant given by Lemma 10.
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On the other hand, for every 0 < α < 1 and every s ∈ R, by the mean value theorem there exists

0 < γα(s) < αs such that

|bα(s)− b0(s)|
α

= | sin(γα(s))||s|e−
s2

4π ⩽ |s|e− s2

4π ⩽
C1

1 + s2
,

where C1 > 0 is an absolute constant. Therefore, there exists an absolute constant C2 > 0 such

that for every 0 < α < 1 and every s ∈ R∣∣∣∣ |Aα(s)|p − bp0(s)

α

∣∣∣∣ ⩽ C2p

1 + s2
max{|Aα(s)|p−1, bp−1

0 (s)}

Now, notice that for every p > 1 we have that, for every 0 < α < 1 and every s ∈ R,

|Aα(s)|p−1 ⩽ 3p−1 max{|aα(s)|p−1 + |bα(s)|p−1 + |cα(s)|p−1}
⩽ 3p−1 max{|aα(s)|p−1 + |b0(s)|p−1 + |cα(s)|p−1}

and then

max{|Aα(s)|p−1, bp−1
0 (s)} ⩽ 3p−1 max{|aα(s)|p−1 + |b0(s)|p−1 + |cα(s)|p−1}.

Since for any p > 1, 0 < α < 1, and every s ∈ R,

|aα(s)|p−1 ⩽ 2p−1 min

{
1,

1

|s|p−1

}
, |b0(s)|p−1 = e−(p−1) s2

4π ⩽
C3

|s|p−1
,

where C3 > 0 is an absolute constant, and there exists an absolute constant C4 > 0 such that

|cα(s)|p ⩽ 2p−1|I(s)|p−1 ⩽ Cp−1
4 min

{
1,

1

|s|p−1

}
.

we have that for every p > 1 there exists an absolute constant C > 0 such that for every 0 < α < 1

and every s ∈ R ∣∣∣∣ |Aα(s)|p − bp0(s)

α

∣∣∣∣ ⩽ Cmin

{
1,

1

|s|p+1

}
∈ L1(R).

Therefore, by the dominated convergence theorem,

lim
α→0+

g(α)− g(0)

α
= lim

α→0+

∫
R

|Aα(s)|p − bp0(s)

α
ds =

∫
R
pbp−1

0 (s)(2− 2sI(s))ds

= 2p

∫
R
bp−1
0 (s)ds− 2p

∫
R
sbp−1

0 (s)I(s))ds

The first integral is ∫
R
bp−1
0 (s) ds =

2π√
p− 1

.

For the second one, by Fubini’s theorem and the Gaussian–Fourier identity, one computes∫
R
sI(s)bp−1

0 (s) ds =
2π

p
√
p− 1

.

Hence,

S1 = g′(0) = 2p

(
2π√
p− 1

− 2π

p
√
p− 1

)
= 4π

√
p− 1. □
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5. Sections of Generalised ℓnp Balls

Assume that (vj)
m
j=1 ⊆ Sn−1 and (cj)

m
j=1 ⊆ (0,∞) are such that

Idn =

m∑
j=1

cjvj ⊗ vj .

Given p ∈ [1, 2] and (αj)
m
j=1 ⊆ (0,∞) we define Kp as the symmetric convex body in Rn with

norm given by

∥x∥Kp
=

 m∑
j=1

αj |⟨x, vj⟩|p
 1

p

.

Integrating in polar coordinates we can check that, for any H ∈ Gn,k,

(12) volk(Kp ∩H) = Γ

(
1 +

k

p

)−1

Ip,

where Ip :=
∫
H
e
−∥x∥p

Kp dx. As usual, in the sequel we let J = {j : PHvj ̸= 0}, m0 = ♯J and

uj = PHvj∥PHvj∥2 and c̃j = cj∥PHvj∥22, for every j ∈ J . Then

IdH =
∑
j∈J

c̃juj ⊗ uj .

Without loss of generality, assume that J = [m0] and let us identify Rn with span{ej : 1 ⩽ j ⩽

n} ⊆ Rm0 , where (ej)
m0
j=1 denotes the canonical basis in Rm0 . By Proposition 2, there exits (xj)

m0
j=1,

an orthonormal basis of Rm0 and (wj)
m0
j=1 ⊆ Sm0−1∩H⊥, where H⊥ denotes the orthogonal linear

subspace to H in Rm0 such that

PHxj =
√
c̃juj and PH⊥xj =

√
1− c̃jwj

for every 1 ⩽ j ⩽ m0. Writing coordinates with respect to the orthonormal basis of Rm0 given by

(xj)
m0
j=1, we have that for every x ∈ H

⟨x, xj⟩ = ⟨
√
c̃juj , x⟩ ∀1 ⩽ j ⩽ m0

and for every y ∈ H⊥

⟨y, xj⟩ = ⟨
√
1− c̃jwj , x⟩, ∀1 ⩽ j ⩽ m0.

For every p ∈ [1, 2], we denote by

γp(y) =

∫ +∞

−∞
e−|x|peixy dx,

the Fourier transform of e−|x|p . If fα,p(t) = e−α|t|p , we can then check that f̂α,p(y) = α−1/pγp(α
−1/py),

for any α > 0.

Using the notation introduced above, we can verify that the following identity holds.

Lemma 15. For any p ∈ [1, 2], 1 ⩽ k ⩽ n− 1 and H ∈ Gn,k,

(13) Ip =
1

(2π)m0−k

∏
j∈J

√
cj

α
1/p
j

∫
H⊥

∏
j∈J

γp

(√
cj

α
1/p
j

⟨y, xj⟩

)
dy.
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Proof. We note that∫
H

e−
∑m

j=1 αj |⟨x,vj⟩|pdx =

∫
H

e−
∑m

j=1 αj |⟨x,PHvj⟩|pdx =

∫
H

e−
∑

j∈J αj |⟨x,PHvj⟩|pdx

=

∫
H

e−
∑

j∈J αj∥PHvj∥p
2 |⟨x,uj⟩|pdx =

∫
H

e
−

∑
j∈J

αj

c
p/2
j

|⟨x,
√

c̃juj⟩|p

dx

=

∫
H

e
−

∑
j∈J

αj

c
p/2
j

|⟨x,xj⟩|p

dx.

By Proposition 1,∫
H

e
−

∑
j∈J

αj

c
p/2
j

|⟨x,xj⟩|p

dx =

∫
H

∏
j∈J

e
−

αj

c
p/2
j

|⟨x,xj⟩|p

dx =
1

(2π)m0−k

∫
H⊥

∏
j∈J

f̂βj ,p(y, xj) dy,

where βj =
αj

c
p/2
j

, so the wanted identity follows from the aforementioned calculation of f̂α,p. □

5.1. Sections of K1. Having (13) as a starting point, we will provide upper and lower bounds

for |Kp ∩H|. We treat the case p = 1 separately; the fact that γ1(y) can be computed explicitly,

allows us to provide sharper estimates for section volumes of K1, summarised in the following

theorem.

Theorem 16. Let (αj)
m
j=1 ⊆ (0,∞), 1 ⩽ k ⩽ n− 1 and H ∈ Gn,k. Then

volk(K1 ∩H) ⩾
mm0

0

π
m0−k

2

(∑
j∈J

α2
j

cj

)m0+k
2

∏
j∈J

(
αj√
cj

)
Γ
(
m0+k

2

)
Γ(m0)

· |Bk
1 |.

On the other hand,

volk(K1 ∩H) ⩽ volk(B
k
1 )

m∏
j=1

(√
cj

αj

)cj∥PHvj∥2
2

.

Remark 17. The case α =
√
ci is included in [MP, Lemma 3.7].

We start with the following straightforward computation.

Lemma 18. Let α > 0 and fα,1 : R → R the function given by fα,1(x) = e−α|x|. Then f̂α,1 : R →
R is given by

f̂α,1(y) =
2α

α2 + y2
.

Proof. For every y ∈ R we have that

f̂α,1(y) =

∫
R
fα,1(x)e

ixydx =

∫
R
e−α|x| (cos(xy) + i sin(xy)) dx =

∫
R
e−α|x| cos(xy)dx

= 2

∫ ∞

0

e−αx cos(xy)dx.

Since, integrating by parts twice,∫ ∞

0

e−αx cos(xy)dx =
1

α
− y

α

∫ ∞

0

e−αx sin(xy)dx

=
1

α
− y2

α2

∫ ∞

0

e−αx cos(xy)dx,

we have that(
1 +

y2

α2

)∫ ∞

0

e−αx cos(xy)dx =
1

α
⇔
∫ ∞

0

e−αx cos(xy)dx =
1

α

1

1 + y2

α2

=
α

α2 + y2
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and then

f̂α,1(y) = 2

∫ ∞

0

e−αx cos(xy)dx =
2α

α2 + y2
. □

Combining Lemma 15 and Lemma 18 we have that

(14) I1 =
1

(2π)m0−k

∏
j∈J

(
2αj√
cj

)∫
H⊥

∏
j∈J

1
α2

j

cj
+ ⟨y, xj⟩2

dy.

Let us now establish the lower bound in Theorem 16. This is a direct consequence of (12) and the

following.

Lemma 19. Under the notation introduced above,

I1 ⩾
mm0

0 ωm0−k

(2π)m0−k
(∑

j∈J

α2
j

cj

)m0+k
2

∏
j∈J

(
2αj√
cj

)
Γ
(
1 + m0−k

2

)
Γ
(
m0+k

2

)
Γ(m0)

,

where ωm = volm(Bm
2 ).

Proof. We lower bound the integrand in (14): By the arithmetic-geometric mean inequality, we

have that ∏
j∈J

(
α2
j

cj
+ ⟨y, xj⟩2)

1
m0 ⩽

1

m0

∑
j∈J

(
α2
j

cj
+ ⟨y, xj⟩2

)
=

1

m0

∑
j∈J

α2
j

cj
+

∥y∥22
m0

and then ∫
H⊥

∏
j∈J

1
α2

j

cj
+ ⟨y, xj⟩2

dy ⩾
∫
H⊥

mm0
0(∑

j∈J

α2
j

cj
+ ∥y∥22

)m0
dy

= mm0
0 (m0 − k)ωm0−k

∫ ∞

0

rm0−k−1(∑
j∈J

α2
j

cj
+ r2

)m0
dr

=
mm0

0 (m0 − k)ωm0−k(∑
j∈J

α2
j

cj

)m0+k
2

∫ ∞

0

s
m0−k

2 −1

2 (1 + s)
m0

ds.

The proof is complete; it only remains to check that the integral in the last expression is exactly

equal to
Γ(1+m0−k

2 )Γ(m0+k
2 )

(m0−k)Γ(m0)
. □

We proceed to the upper bound in Theorem 16. This is the essence of the next proposition.

Proposition 20. Under the notation introduced above,

I1 ⩽ 2k
m∏
j=1

(√
cj

αj

)cj∥PHvj∥2
2

.

We will make use of the following auxiliary estimate, whose proof we defer.

Lemma 21. Let J1 = {j ∈ J : c̃j ̸= 1}. Then

∏
j∈J1

 Γ
(

1
1−c̃j

− 1
2

)
√
1− c̃jΓ

(
1

1−c̃j

)
1−c̃j

⩽ π
m0−k

2 .
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Proof of Proposition 20. We first manipulate (14) as follows,

I1 =
1

(2π)m0−k

∏
j∈J

(
2αj√
cj

)∫
H⊥

∏
j∈J

1
α2

j

cj
+ ⟨y, xj⟩2

dy

=
1

(2π)m0−k

∏
j∈J

(
2
√
cj

αj

)∫
H⊥

∏
j∈J

1

1 +
cj(1−c̃j)

α2
j

⟨y, wj⟩2
dy

=
1

(2π)m0−k

∏
j∈J

(
2
√
cj

αj

)∫
H⊥

∏
j∈J1

1

1 +
cj(1−c̃j)

α2
j

⟨y, wj⟩2
dy,

where J1 = {j ∈ J : c̃j ̸= 1} = {j ∈ J : xj ̸∈ H} = {j ∈ J : PH⊥xj ̸= 0}. Next, we apply the

geometric Brascamp-Lieb inequality in H⊥ to get

∫
H⊥

∏
j∈J1

1

1 +
cj(1−c̃j)

α2
j

⟨y, wj⟩2
dy ⩽

∏
j∈J1

∫
R

1(
1 +

cj(1−c̃j)

α2
j

x2
) 1

1−c̃j

dx


1−c̃j

=
∏
j∈J1

(
αj√

cj(1− c̃j)

∫
R

1

(1 + x2)
1

1−c̃j

dx

)1−c̃j

.

Since ∫
R

1

(1 + x2)
1

1−c̃j

dx =

√
πΓ
(

1
1−c̃j

− 1
2

)
Γ
(

1
1−c̃j

) ,

we arrive at

(15) I1 ⩽
2k

π
m0−k

2

∏
j∈J

(√
cj

αj

)c̃j ∏
j∈J1

 Γ
(

1
1−c̃j

− 1
2

)
√
1− c̃jΓ

(
1

1−c̃j

)
1−c̃j

,

and then Lemma 21 concludes the proof. □

The proof of Lemma 21 is the final missing piece.

Proof of Lemma 21. Notice that the wanted inequality is equivalent to

∑
j∈J1

(1− c̃j) log

 Γ
(

1
1−c̃j

− 1
2

)
√
1− c̃jΓ

(
1

1−c̃j

)
 ⩽ (m0 − k) log Γ

(
1

2

)
.

Let f : [0, 1] → R be the function given by

f(x) = x log

(
Γ
(
1
x − 1

2

)
√
xΓ
(
1
x

) ) , x ∈ (0, 1]

and f(0) = lim
x→0+

f(x) = 0. We have that f is continuous on [0, 1]. Besides, for every x ∈ (0, 1) we

have that

f ′′(x) = −
x2 − 2ψ′ ( 1

x − 1
2

)
+ 2ψ′ ( 1

x

)
2x3

,

where ψ denotes the logarithmic derivative of the Gamma function.

Convexity of ψ′ implies that

2

(
ψ′
(
1

x
− 1

2

)
− ψ′

(
1

x

))
⩾ −ψ′′

(
1

x

)
⩾ x2 + x3,
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for any x ∈ (0, 1), where the latter inequality follows from known bounds on polygamma functions

(see for example [A]). This implies that f ′′ ⩾ 0, hence f is convex on (0, 1). Then the function

F : K → R given by

F (x) =
∑
j∈J

f(xj),

where K = {(xj)j∈J : 0 ⩽ xj ⩽ 1 ∀j ∈ J,
∑

j∈J xj = m0 − k}, is convex and invariant under

permutations of coordinates. Besides, for every (xj)j∈J ∈ K we have that

(xj)j∈J ≺ (1, . . . , 1, 0, . . . , 0) = (yj)j∈J ,

where there are m0 − k 1’s and k 0’s. Therefore, by Karamata’s inequality, for every (xj)j∈J ∈ K

we have ∑
j∈J

f(xj) ⩽
∑
j∈J

f(yj) = (m0 − k)Γ

(
1

2

)
.

In particular, since (1− c̃j)j∈J ∈ K and

∑
j∈J

f(1− c̃j) =
∑
j∈J1

f(1− c̃j) =
∑
j∈J1

(1− c̃j) log

 Γ
(

1
1−c̃j

− 1
2

)
√
1− c̃jΓ

(
1

1−c̃j

)
 ,

we get the wanted upper bound. □

We stress that the method of the proof provides an intermediate bound that improves upon the

general estimate, e.g. for sections of the cross-polytope, in view of an extra term taking into

account the lengths of the projections of the vertices ej onto the complementary subspace H⊥.

Note that the following is merely a consequence of (15) for the case K1 = Bn
1 .

Corollary 22. For any H ∈ Gn,k such that ej ̸∈ H ∪H⊥ for every 1 ⩽ j ⩽ n, we have that

volk(B
n
1 ∩H) ⩽ volk(B

k
1 )

1

π
n−k

2

n∏
j=1

 Γ
(

1
∥P

H⊥ej∥2
2
− 1

2

)
∥PH⊥ej∥2Γ

(
1

∥P
H⊥ej∥2

2

)
∥P

H⊥ej∥2
2

⩽ volk(B
k
1 ).

5.2. Sections of Kp, p ∈ [1, 2]. For the case of general p ∈ [1, 2], our result reads as follows.

Theorem 23. Let p ∈ [1, 2], (αj)
m
j=1 ⊂ (0,∞), 1 ⩽ k ⩽ n − 1 and H ∈ Gn,k.Then, one has the

following explicit lower bound

volk(Kp ∩H) ⩾

∏
j∈J

√
cj

α
1/p
j

(2π)m0−k
· πβ(m0 − k)β

1

Γ(β)

∫ ∞

0

tβ−1
∏
j∈J

γp

(√
t

cj

a
2/p
j

(1− c̃j)

)
dt,

where β = (m0 − k)/2. For the upper bound,

volk(Kp ∩H) ⩽
∏
j∈J

(√
cj

α
1/p
j

)c̃j

volk(B
k
p ),

which is sharp for Bn
p .

The upper bound in Theorem 23 is a direct consequence of the Brascamp-Lieb inequality and the

following lemma about the Fourier transform, γp, of the function e−|x|p .
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Lemma 24. Let 0 < p < 2 and f(x) = e−|x|p . Set

γp(y) :=

∫
R
eixyf(x) dx.

Then, for all s ⩾ 1 we have ∫
R
γp

( t√
s

)s
dt ⩽ 2π

(
2Γ(1 + 1

p )
)s−1

.

Proof. It is known that there is a positive measure µ on (0,∞) such that

γp(ξ) =

∫ ∞

0

e−ξ2v dµ(v), µ((0,∞)) = γp(0) =

∫
R
f(x) dx = 2Γ

(
1 + 1

p

)
:= Ap.

Set ν := µ/Ap and write γp(ξ) = Ap

∫∞
0
e−ξ2v dν(v). Application of Hölder’s inequality(∫
g dν

)s
⩽
∫
gs dν,

gives us (∫ ∞

0

e−ξ2v/s dν(v)
)s

⩽
∫ ∞

0

e−ξ2v dν(v).

Multiplying by As
p and integrating with respect to ξ ∈ R we get∫

R
γp

( t√
s

)s
dt ⩽ As−1

p

∫
R
γp(t) dt.

To this end, note

f(0) =
1

2π

∫
R
γp(t) dt,

therefore

∫
R
γp(t) dt = 2πf(0) = 2π and the lemma follows. □

We now proceed to the proof of Theorem 23.

Proof of Theorem 23, upper bound. Starting from the identity (13), we apply the geometric Brascamp–

Lieb inequality in H⊥ to get

Ip =
1

(2π)m0−k

∏
j∈J

√
cj

α
1/p
j

∫
H⊥

∏
j∈J1

γp

(√
cj(1− c̃j)

α
1/p
j

⟨y, wj⟩

)
dy

⩽
1

(2π)m0−k

∏
j∈J

√
cj

α
1/p
j

∏
j∈J1

∫
R
γp

(√
cj

α
1/p
j

√
1− c̃jt

) 1
1−c̃j

dt

1−c̃j

=
1

(2π)m0−k

∏
j∈J

√
cj

α
1/p
j

∏
j∈J1

(
α
1/p
j√
cj

)1−c̃j (∫
R
γp

(√
1− c̃jt

) 1
1−c̃j

dt

)1−c̃j

Application of Lemma 24 gives(∫
R
γp(
√
1− c̃jt)

1
1−c̃j dt

)1−c̃j
⩽ (2π)1−c̃j Ac̃j

p ,

for every j ∈ J1. Ultimately, using the fact that
∑

j∈J1
c̃j =

∑
j∈J c̃j = k, we get

Ip ⩽
∏
j∈J1

(√
cj

α
1/p
j

)c̃j

·Ak
p,

which completes the proof. □
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Finally, we justify the lower bound in Theorem 23.

Proof of Theorem 23, lower bound. Use the Gaussian–mixture representation of γp:

γp(t) =

∫ ∞

0

e−t2s dµ(s), µ((0,∞)) = Ap.

Hence the product inside the y–integral equals

∏
j∈J

γp

(√
cj

α
1/p
j

⟨y, xj⟩

)
=

∫
(0,∞)m0

exp

−
∑
j∈J

cj

a
2/p
j

sj⟨y, xj⟩2
 dµ⊗m0(s).

Using Fubini’s theorem we get

I =

∏
j∈J

√
cj/α

1/p
j

(2π)m0−k

∫
(0,∞)m0

(∫
H⊥

e−yTS(s)y dy

)
dµ⊗m0(s),

where the symmetric positive operator on H⊥ is

S(s) =
∑
j∈J

cj

a
2/p
j

sj (xj ⊗ xj)
∣∣∣
H⊥

.

The inner y–integral is Gaussian and equals π(m0−k)/2 det(S(s))−1/2. Using the determinant–trace

estimate for positive operators in dimension m0 − k,

det(S(s)) ⩽

(
trS(s)

m0 − k

)m0−k

,

we obtain ∫
H⊥

e−yTS(s)y dy ⩾ π
m0−k

2 (m0 − k)
m0−k

2

(
trS(s)

)−m0−k
2 .

Since tr(xj ⊗ xj |H⊥) = ∥PH⊥xj∥22 = 1− c̃j , we have

trS(s) =
∑
j∈J

cj

a
2/p
j

sj (1− c̃j).

Combining the above gives the stated lower bound

I ⩾

∏
j∈J

√
cj/α

1/p
j

(2π)m0−k
π

m0−k
2 (m0 − k)

m0−k
2

∫
(0,∞)m0

∑
j∈J

cj

a
2/p
j

sj(1− c̃j)

−m0−k
2

dµ⊗m0(s).

To obtain the desired bound we will use the formula:

x−β =
1

Γ(β)

∫ ∞

0

tβ−1e−tx dt, for x > 0, β > 0.

We set β = (m0 − k)/2 and use the exact expression for the trace,

x = trS(s) =
∑
j∈J

cj

a
2/p
j

(1− c̃j)sj .
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Substituting this into the integral over the variables (sj)j∈J and then applying Fubini’s theorem

to exchange the order of integration, we get:∫
(0,∞)m0

(trS(s))−β dµ⊗m0(s) =

=
1

Γ(β)

∫ ∞

0

tβ−1

∫
(0,∞)m0

exp

−t
∑
j∈J

cj

a
2/p
j

(1− c̃j)sj

 dµ⊗m0(s)

 dt

=
1

Γ(β)

∫ ∞

0

tβ−1
∏
j∈J

(∫ ∞

0

exp

(
−t
[

cj

a
2/p
j

(1− c̃j)
]
sj

)
dµ(sj)

)
dt.

From the definition γp(y) =
∫∞
0
e−y2vdµ(v), each inner integral is equal to γp evaluated at the

square root of the coefficient of sj . This gives:

1

Γ(β)

∫ ∞

0

tβ−1
∏
j∈J

γp

(√
t

cj

a
2/p
j

(1− c̃j)

)
dt.

Inserting this back into the expression for Ip yields the stated lower bound. □

Remark 25. We should remark that the proof of Theorem 23 can not provide an intermediate

bound in the likes of (15), and thus we do not have a result similar to Corollary 22 for p > 1.

This is a natural consequence of the fact that in contrast to the case p = 1, we can not explicitly

compute γp for general p > 1.

6. Non-Symmetric Case

Let K be a not necessarily origin-symmetric convex body in Rn in John’s position. We can then

find u1, . . . , um ∈ ∂K∩Sn−1 and positive scalars c1, . . . , cm such that
∑m

j=1 cjuj = 0,
∑m

j=1 cj = n

and

Idn =

m∑
j=1

cjuj ⊗ uj .

Let

C := {x ∈ Rn : ⟨x, uj⟩ ⩽ 1 for every j = 1, . . . ,m}.

It is easy to see that K ⊆ C. We also set

vj =

√
n

n+ 1

(
−uj ,

1√
n

)
and δj =

n+ 1

n
cj .

for every j = 1, . . . ,m. With this setup, we have that
∑m

j=1 δjvj = (0,
√
n+ 1),

∑m
j=1 δj = n+ 1

and

Idn+1 =

m∑
j=1

δjvj ⊗ vj

Finally, given F ∈ Gn,k we let H = span{(x,
√
n) : x ∈ F} ∈ Gn+1,k+1. Denote J = {j ∈ [m] :

PHvj ̸= 0} and set

wj =
PHvj

∥PHvj∥2
and κj = δj∥PHvj∥22

for every j ∈ J so that

IdH =
∑
j∈J

κjwj ⊗ wj and
∑
j∈J

κj = k + 1.

For any k ∈ N, we denote ∆k = conv{e1, . . . , ek} and Sk =
√
k(k + 1)∆k.
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Under the notation introduced above, in this section we establish the following estimate.

Theorem 26. Let K be a convex body in Rn in John’s position and let a ∈ Sn−1. If κj ⩾ 1/2 for

every j ∈ J , then

voln−1(K ∩ a⊥) ⩽ 1√
2

√
n+ 1

n

(
n+ 1

n− 1

)n−1
2

voln−1(Sn−1).

Note that in the case of central sections this upper bound is sharp, attained in the case that

K = Sn and a =
(

1√
2
,− 1√

2
, 0, . . . , 0

)
.

Let us first provide the following intermediate estimate.

Lemma 27. Assume that minκj ⩾ 1/2. Then for any 1 ⩽ k ⩽ n− 1,

volk(C ∩ F )
volk(Sk)

⩽ 2
k+1−|J|

2
n

k
2 (n+ 1)

k+1
2

k
k
2 (k + 1)

k+1
2

∏
j∈J

δ
−

κj
2

j .

Proof. Our starting point is the formula, established in [AB, Section 4],

k
k
2 (k + 1)

k+1
2

n
k
2 (n+ 1)

k+1
2

volk(C ∩ F )
volk(Sk)

=

∫
L∩H

e−
∑

j∈J

√
δjκj⟨y,wj⟩ dy,

where L = {y ∈ Rn+1 : ⟨y, vj⟩ ⩾ 0 for every j ∈ J}. We will upper bound the integral on the

right hand side above using Parseval’s identity and the Brascamp-Lieb inequality. Following the

notation w̃j =
P

H⊥vj
∥P

H⊥vj∥2
, we write∫

H

e−
∑

j∈J

√
δjκj⟨y,wj⟩ · 1L(y) dy =

∫
H

∏
j∈J

e−
√

δjκj⟨y,wj⟩ · 1(0,∞)(⟨y, wj⟩) dy

=

∫
H⊥

∏
j∈J

1√
δj + 2πi

√
1− κj⟨y, w̃j⟩

dy

⩽
∫
H⊥

∏
j∈J0

(
1

δj + 4π2(1− κj)⟨y, wj⟩2

) 1
2

dy

⩽
∏
j∈J

(∫
R

(
1

δj + 4π2(1− κj)t2

) 1
2(1−κj)

dt

)1−κj

,

where the last equality comes from an application of Proposition 1 and the last inequality follows

from the Brascamp-Lieb inequality. To finish the proof, we apply the inequality(
1

1 + αβ

) 1
2β

⩽
1

1 + α
2

,

valid for all α > 0 ad 0 < β ⩽ 1/2. It follows that if 1− κj ⩽ 1/2 for every j ∈ J then

∏
j∈J

(∫
R

(
1

δj + 4π2(1− κj)t2

) 1
2(1−κj)

dt

)1−κj

⩽
∏
j∈J

δ
− 1

2
j

(∫
R

1

1 + 2π2δ−2
j t2

)1−κj

=
∏
j∈J

δ
− 1

2
j

(√
δj
2

)1−κj

= 2
k+1−|J|

2

∏
j∈J

δ
−

κj
2

j ,

which is the desired upper bound. □
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Proof of Theorem 26. Recalling that K ⊆ C, a straightforward application of Lemma 27 yields

voln−1(K ∩ a⊥) ⩽ 2
n−|J|

2

√
n+ 1

n

(
n+ 1

n− 1

)n−1
2

∏
j∈J

δ
−

κj
2

j

 voln−1(Sn−1),

so our goal is to establish the bound
∏

j∈J δ
−

κj
2

j ⩽ 2
|J|−n−1

2 . Denote xj = ∥Pa⊥vj∥2, S = {(x, δ) ∈
[1/2, 1]J × [1/2, 1]J :

∑
j∈J δjxj = k + 1} and consider the function F : S → R+ defined by

F (x, δ) =
1

2

∑
j∈J

δjxj log
1

δj
.

By continuity, F attains its maximum on S. let (x̃, δ̃) = argmaxF (x, δ) and assume, without loss of

generality, that J = {1, 2, . . . ,m0} and δ̃1 ⩾ δ̃2 ⩾ . . . ⩾ δ̃m0
. Keeping δ̃ fixed, consider the function

fδ̃ :
∏

j∈J [1/(2δ̃j), 1/δ̃j ] → R+ given by fδ̃(x) = F (x, δ̃). It is easy to check that x̃ = argmaxfδ̃ and

that x̃ has to be an extreme point of the set
∏

j∈J [1/(2δ̃j), 1/δ̃j ]∩{
∑

j∈J δ̃jxj = k+1}. It follows
that δ̃j x̃j ∈ {1/2, 1} for every j ∈ J . Since log 1

δ̃1
⩽ log 1

δ̃1
⩽ . . . ⩽ log 1

δ̃m0

, by a rearrangement

argument it follows that there is some m1 ∈ [1,m0] such that

δ̃j x̃j =

 1
2 , if 1 ⩽ j ⩽ m1

1, if m1 < j ⩽ m0.

Note also that for every m1 < j ⩽ m0, since δ̃j x̃j = 1 and max δ̃j , x̃j ⩽ 1, it follows that

δ̃j = x̃j = 1. This argument shows that there is some 1 ⩽ m1 ⩽ m0 such that

F (x, δ) ⩽
1

2

m0∑
j=m1+1

1

2
log

1

δ̃j
,

and the constraint 1
2 ·m1 +m0 −m1 = k + 1 = n actually gives us m1 = 2n −m0. To find the

maximiser δ̃ we invoke the convexity of x 7→ log 1
x together with the fact that

m0∑
j=m1+1

δ̃j =

m0∑
j=1

δ̃j −
m1∑
j=1

δ̃j = n+ 1−m1.

Since δ̃m1+1 ⩾ . . . ⩾ δ̃m, it follows that (δ̃m1+1, . . . , δ̃m) is majorised by a vector of the form

(1, . . . , 1, 12 , . . . ,
1
2 ). If m2 is the cardinality of 1’s, the maximiser has to satisfy

1 ·m2 +
1

2
· (m0 −m1 −m2) = n+ 1−m1,

which is equivalent to m2 = 2. We eventually get that

F (x, δ) ⩽
1

4
(m0 −m1 − 2) log 2 =

m0 − n− 1

2
,

which yields the desired bound
∏

j∈J δ
−

κj
2

j ⩽ 2
|J|−n−1

2 . □
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Appendix A. Parseval’s identity for characteristic functions

We include here a proof of the following statement, that justifies the validity of Proposition 1 for

the case of characteristic functions on bounded intervals. In what follows, we identify Rn with

H = span{e1, . . . , en} ⊂ Rm, let H⊥ denote the orthogonal complement, and let Ij ⊂ Rnj be

bounded measurable sets.

Theorem 28. Assume that the linear map L : H⊥ −→
⊕m

j=1 Rnj given by L(z) = (PRnj z)mj=1

has image of dimension d = dimH⊥ (equivalently: L has full rank d). Then the identity

(16)

∫
H

m∏
j=1

1Ij (PRnj y) dy =
1

(2π)m−n

∫
H⊥

m∏
j=1

1̂Ij (PRnj z) dz

holds provided that

(a) The inequality

(17)
∣∣∣1̂Ij (ξ)

∣∣∣ ⩽ Cj (1 + ∥ξ∥2)−1

holds for every ξ ∈ Rnj , and
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(b) The number m0 of indices j for which the corresponding projection factor is nontrivial

(i.e. for which the multiplier on the j-th Fourier variable is nonzero) satisfies m0 > d.

Remark 29. The estimate ∣∣∣1̂Ij (ξ)
∣∣∣ ⩽ Cj(1 + ∥ξ∥2)−1, ξ ∈ Rnj ,

is very general and holds all bounded sets of finite perimeter (for example convex bodies, Lipschitz

domains, intervals etc.)

We begin with the next general integrability criterion; the polynomial decay estimate (17) is a

sufficient condition for integrability.

Lemma 30. Let L : H⊥ →
⊕m

j=1 Rnj be the linear map L(z) = (PRnj z)mj=1, and suppose rankL =

d = dimH⊥. Suppose for each j there exist constants Cj > 0 and βj > 0 such that∣∣∣1̂Ij (ξ)
∣∣∣ ⩽ Cj (1 + ∥ξ∥2)−1

for every ξ ∈ Rnj . If m > d, then the function

G(z) :=

m∏
j=1

∣∣∣1̂Ij (PRnj z)
∣∣∣

belongs to L1(H⊥).

Proof. Since L has rank d, its image S := L(H⊥) is a d-dimensional linear subspace of
⊕m

j=1 Rnj .

The map L : H⊥ → S is surjective and linear; choosing orthonormal coordinates on H⊥ and on

S we may identify L with an invertible linear map L̃ : Rd → Rd. In particular the change of

variables u = L(z) yields (up to the constant factor |det(L̃−1)|) an equivalence of integrals:∫
H⊥

G(z) dz ≃
∫
u∈S

m∏
j=1

|1̂Ij (u
(j))| du,

where u(j) denotes the Rnj -block of u corresponding to index j. Using the uniform bounds,

m∏
j=1

|1̂Ij (u
(j))| ⩽

( m∏
j=1

Cj

) m∏
j=1

(1 + ∥u(j)∥2)−1.

Now, on a d-dimensional linear subspace S the asymptotic behaviour at infinity is controlled by

the Euclidean norm ∥u∥2. There exists C ′ > 0 and R > 0 such that for ∥u∥2 > R,

m∏
j=1

(1 + ∥u(j)∥2)−1 ⩽ C ′(1 + ∥u∥2)−m.

(Indeed each ∥u(j)∥2 ⩽ ∥u∥2 and therefore (1+ ∥u(j)∥2)−1 ⩽ (1+ ∥u∥2)−1). Thus the tail integral

is bounded by a multiple of ∫
|u|>R

(1 + ∥u∥2)−m du.

The latter converges precisely when m > d. The integral over the compact ball of radius R is

finite because the integrand is bounded there. This proves G ∈ L1(H⊥). □

We now proceed to the proof of Theorem 28.
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Proof of Theorem 28. We proceed by approximating characteristic functions by functions in the

Schwarz space. Take a mollifier ϕ ∈ S(Rnj ) with
∫
ϕ = 1 and set ϕk(x) = knjϕ(kx). Let

gj,k = 1Ij ∗ ϕk. Then gj,k ∈ S(Rnj ), gj,k → 1Ij a.e. and in L1(Rnj ), and ∥gj,k∥∞ ⩽ 1. Applying

Proposition 1 to gj,k we have that for every k,∫
H

m∏
j=1

gj,k(PRnj y) dy =
1

(2π)m−n

∫
H⊥

m∏
j=1

ĝj,k(PRnj z) dz.

By dominated convergence and the L1-approximation of 1Ij by gj,k, the left-hand side converges

to the desired
∫
H

∏
j 1Ij (PRnj y) dy. It remains to justify passing to the limit on the right-hand

side.

Since ĝj,k = 1̂Ij ϕ̂k and ϕ̂k(ξ) = ϕ̂(ξ/k) → 1 for each fixed ξ, it follows that for each fixed z ∈ H⊥,

lim
k→∞

m∏
j=1

ĝj,k(PRnj z) =

m∏
j=1

1̂Ij (PRnj z).

Thus pointwise convergence of the integrand on H⊥ is established. From |ϕ̂k| ⩽ sup |ϕ̂| =: Cϕ we

get the uniform bound ∣∣∣ m∏
j=1

ĝj,k(PRnj z)
∣∣∣ ⩽ Cm

ϕ

m∏
j=1

∣∣∣1̂Ij (PRnj z)
∣∣∣ .

Hence, the problem reduces to proving that

G(z) :=

m∏
j=1

∣∣∣1̂Ij (PRnj z)
∣∣∣

belongs to L1(H⊥), which is precisely the statement of Lemma 30, the hypotheses of which are

granted by (a) and (b) in the statement of Theorem 28. It follows that G ∈ L1(H⊥), and the

dominated convergence theorem yields

lim
k→∞

1

(2π)m−n

∫
H⊥

m∏
j=1

ĝj,k(PRnj z) dz =
1

(2π)m−n

∫
H⊥

m∏
j=1

1̂Ij (PRnj z) dz. □

Finally, the following lemma shows that in the setting of our concern the conditions about m0 and

L are indeed met.

Lemma 31. Following the notation of Proposition 2 and moreover denoting by s = #{j : cj = 1}
and m0 := m − s = #{j : cj < 1} (the number of indices with nontrivial projection to H⊥), we

have that

(a) The vectors (wj)
m
j=1 span H⊥, and therefore the linear map

L : H⊥ −→ Rm, L(y) = (⟨y, wj⟩)mj=1,

has image of dimension d = dimH⊥ (i.e. L has full rank d).

(b) We have the inequality m0 ⩾ d. In particular m0 > d, except in the degenerate situation

s = n (equivalently: m = n and all cj = 1), in which case d = 0.

Proof. (a) The operator identity IdH⊥ =
∑m

j=1(1−cj)wj ⊗wj implies immediately that the linear

span of the vectors (wj)
m
j=1 equals H⊥; otherwise the right-hand side would have rank strictly
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less than d and could not equal the identity on H⊥. Hence the map L has image equal to all

coordinate functionals on H⊥ and so rankL = d.

(b) Take traces on the identity IdH⊥ =
∑m

j=1(1− cj)wj ⊗wj . The trace of the left-hand side is d.

The trace of the right-hand side equals
∑m

j=1(1− cj). Thus

d =

m∑
j=1

(1− cj).

Split the sum into indices with cj = 1 and cj < 1:

d =
∑

j:cj<1

(1− cj) +
∑

j:cj=1

(1− 1) =
∑

j:cj<1

(1− cj) ⩽
∑

j:cj<1

1 = m0.

Hence m0 ⩾ d. Equality m0 = d forces every 1−cj with cj < 1 to equal 1, hence cj = 0 for those j

— but cj > 0 by hypothesis, therefore the only way to have m0 = d in this weighted identity is the

borderline/degenerate situation where d = 0 (equivalently H⊥ = {0}, which occurs exactly when

m = n and all cj = 1). Thus, in the nondegenerate geometric configurations one gets m0 > d. □
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