HIGH DIMENSIONAL RANDOM SECTIONS OF ISOTROPIC CONVEX BODIES

DAVID ALONSO, JESÚS BASTERO, JULIO BERNUÉS, AND GRIGORIS PAOURIS

Abstract

Let $K \subset \mathbb{R}^{n}$ be a centrally symmetric isotropic convex body. We provide sharp estimates for the section function $\left|F^{\perp} \cap K\right|_{n-k}^{1 / k}$ for random $F \in G_{n, k}$ answering a question raised by V. Milman and A. Pajor (see $[\mathrm{MP}]$). We also show that every symmetric convex body has a high dimensional section F with isotropy constant bounded by $c(\log (\operatorname{dim} F))^{1 / 2} \log \log (\operatorname{dim} F)$.

1. Introduction and notation

Throughout the paper $K \subset \mathbb{R}^{n}$ will denote a symmetric convex body. K is called isotropic if it is of volume 1 and its inertia matrix is a multiple of the identity. Equivalently, there exists a constant $L_{K}>0$ called isotropy constant of K such that $L_{K}^{2}=\int_{K}\langle x, \theta\rangle^{2} d x, \forall \theta \in S^{n-1}$.

The relation between the isotropy constant and the size of the central sections of an isotropic convex appears $[\mathrm{H}],[\mathrm{B}]$ or $[\mathrm{MP}]$ where it is proved that for every $1 \leq k \leq n$ there exist $c_{1}(k), c_{2}(k)>0$ such that for every subspace $F \in G_{n, k}$ (the Grassmann space) and $K \subset \mathbb{R}^{n}$ isotropic

$$
\frac{c_{1}(k)}{L_{K}} \leq\left|F^{\perp} \cap K\right|_{n-k}^{1 / k} \leq \frac{c_{2}(k)}{L_{K}}
$$

where $|\cdot|_{m}$ is the Lebesgue measure in the appropiate m dimensional space.
More precisely, it is proved in [MP] that $\left|F^{\perp} \cap K\right|_{n-k}^{1 / k} \sim L_{B_{k+1}(K, F)} / L_{K}$, see Lemma 2.2 below ($a \sim b$ means $a \cdot c_{1} \leq b \leq a \cdot c_{2}$ for some numerical constans $\left.c_{1}, c_{2}>0\right)$. From now on the letters $c, C, c_{1} \ldots$ will denote absolute numerical constants, whose value may change from line to line. Well known estimates imply $c_{1}(k) \geq c_{1},[\mathrm{H}]$, and $c_{2}(k) \leq c_{2} k^{1 / 4},[\mathrm{Kl}]$. We remark that these bounds are valid for every subspace $F \in G_{n, k}$.

Our first result in the second section of the paper is an improvement of this general estimate that holds for "most" subspaces. We make use of the tools developed in [Pa1].

[^0]Theorem 2.1 There exist absolute constants $c_{1}, c_{2}, c_{3}>0$ with the following property: If K is an isotropic convex body in \mathbb{R}^{n} and $1 \leqslant k \leqslant \sqrt{n}$ then

$$
\mu\left\{F \in G_{n, k}: \frac{c_{1}}{L_{K}} \leqslant\left|K \cap F^{\perp}\right|_{n-k}^{1 / k} \leqslant \frac{c_{2}}{L_{K}}\right\} \geq 1-e^{-c_{3} \frac{n}{k}}
$$

In the third section we reach optimal bounds for $c_{1}(k)$ and $c_{2}(k)$ but for a worse dependence on k. For that matter, we need to estimate the Lipschitz constant of the central section function $\left|F^{\perp} \cap K\right|_{n-k}$. For $k=1$ this was proved in $[\mathrm{ABP}]$. Then, we exploit the concentration of measure on $G_{n, k}$ together with some results from $[\mathrm{BB}]$ and $[\mathrm{Kl} 2]$. Precisely, we show
Theorem 3.8. Let $K \subset \mathbb{R}^{n}$ isotropic. For all $\varepsilon>0,1 \leq k \leq \frac{c \varepsilon \log n}{(\log \log n)^{2}}$, the set A of subspaces $F \in G_{n, k}$ such that

$$
\begin{equation*}
\frac{1-\varepsilon}{\sqrt{2 \pi} L_{K}} \leq\left|K \cap F^{\perp}\right|_{n-k}^{1 / k} \leq \frac{1+\varepsilon}{\sqrt{2 \pi} L_{K}} \tag{1.1}
\end{equation*}
$$

holds, has probability $\mu(A) \geq 1-c_{1} e^{-c_{2} n^{0.9}}$.
Independently, in a recent paper [EK], the authors proved a multidimensional central limit theorem for convex bodies from which one can deduce (1.1) for $k \leq c(\varepsilon) n^{c_{1}}$ and $\mu(A) \geq 1-c_{2} e^{-n^{c_{3}}}$.

In the last section we give upper bounds for the isotropic constant of high dimensional central sections $L_{K \cap F}$. In particular,

Proposition 1.1. For every symmetric convex body K in \mathbb{R}^{n} and $k \leqslant$ $\left(1-\frac{1}{\log n}\right) n$, there exists an $F \in G_{n, k}$ such that

$$
L_{K \cap F} \leqslant c(\log k)^{1 / 2} \log \log k
$$

where $c>0$ is a universal constant.

We denote by $|\cdot|$ the Euclidean norm in the appropiate space, D_{n} the Euclidean ball in \mathbb{R}^{n} and by ω_{n} its Lebesgue measure. The surface area of the unit sphere is $\left|S^{n-1}\right|=n \omega_{n}$. For any k-dimensional subspace $F \subset \mathbb{R}^{n}$ we denote $S_{F}=S^{n-1} \cap F$, the Haar probability on S_{F} by $\sigma_{F}, D_{F}=D_{n} \cap F$ and by P_{F} the orthogonal projection onto F. The Haar probability on the grassmaniann $G_{n, k}$ is denoted by μ. For $T \in G L(n),\|T\|$ denotes the operator norm and $\|T\|_{H S}:=\left(\sum_{j=1}^{n}\left|T\left(e_{j}\right)\right|^{2}\right)^{1 / 2}$, for (any) orthonormal basis $\left(e_{j}\right)$ of \mathbb{R}^{n}, its Hilbert-Schmidt norm. K° denotes the polar body of K. For any convex body $L \subset \mathbb{R}^{n}$ we will write $\widetilde{L}=L /|L|_{n}^{1 / n}$. We will denote $W(K):=\int_{S^{n-1}} h_{K}(\theta) d \sigma(\theta)$, the mean width of the convex body K.

2. First improvement via random sections

Theorem 2.1. There exist absolute constants $c_{1}, c_{2}, c_{3}>0$ with the following property: If K is an isotropic convex body in \mathbb{R}^{n} and $1 \leqslant k \leqslant \sqrt{n}$
then

$$
\begin{equation*}
\mu\left\{F \in G_{n, k}: \frac{c_{1}}{L_{K}} \leqslant\left|K \cap F^{\perp}\right|_{n-k}^{1 / k} \leqslant \frac{c_{2}}{L_{K}}\right\} \geq 1-e^{-c_{3} \frac{n}{k}} \tag{2.2}
\end{equation*}
$$

Through the section K will be (a symmetric convex body) of volume 1.
Let F a k-dimensional subspace of \mathbb{R}^{n} and denote by E the orthogonal subspace of F. For every $\phi \in S_{F}$ we define $E(\phi)=\operatorname{span}\{E, \phi\}$.
K. Ball (see [B]) proved the following theorem: For every $q \geqslant 0$ and $\phi \in F$, the function

$$
\phi \mapsto|\phi|^{1+\frac{q}{q+1}}\left(\int_{K \cap E(\phi)}|\langle x, \phi\rangle|^{q} d x\right)^{-\frac{1}{q+1}}
$$

is a norm on F. We denote by $B_{q}(K, F)$ the unit ball of this norm.
Under this notation it was proved in [MP] the following
Lemma 2.2. If K is isotropic then $B_{k+1}(K, F)$ is also isotropic for every $F \in G_{n, k}$, and

$$
\begin{equation*}
\left|K \cap F^{\perp}\right|_{n-k}^{1 / k} \sim \frac{L_{B_{k+1}(K, F)}}{L_{K}} \quad \forall F \in G_{n, k} \tag{2.3}
\end{equation*}
$$

A generalization for L_{q} centroid bodies of this approach appeared in [Pa1]. For any $q \geq 1$ we define the L_{q} centroid body of K, the symmetric convex body that has support function

$$
h_{Z_{q}(K)}(z):=\left(\int_{K}|\langle x, z\rangle|^{q} d x\right)^{1 / q}, \forall z \in S^{n-1}
$$

The following equality was proved in [Pa1]: For every $1 \leqslant k \leqslant n-1$, $F \in G_{n, k}$ and $q \geq 1$,

$$
\begin{equation*}
P_{F}\left(Z_{q}(K)\right)=\left(\frac{k+q}{2}\right)^{1 / q}\left|B_{k+q-1}(K, F)\right|_{k}^{1 / k+1 / q} Z_{q}\left(\widetilde{B}_{k+q-1}(K, F)\right) \tag{2.4}
\end{equation*}
$$

Proposition 2.3. Let $K \subset \mathbb{R}^{n}, 1 \leqslant k \leqslant n-1, F \in G_{n, k}$ and $E=F^{\perp}$.
Then

$$
c_{1} \leqslant\left|P_{F} Z_{k}(K)\right|_{k}^{1 / k}|K \cap E|_{n-k}^{1 / k} \leqslant c_{2}
$$

where $c_{1}, c_{2}>0$ are universal constants.
Proof. We choose $q=k$ in (2.4). Then by taking volumes we have that

$$
\left|P_{F}\left(Z_{k}(K)\right)\right|_{k}^{1 / k}=k^{1 / k}\left|B_{2 k-1}(K, F)\right|_{k}^{2 / k}\left|Z_{k}\left(\widetilde{B}_{2 k-1}(K, F)\right)\right|_{k}^{1 / k}
$$

It is known that there exists a universal constant $c>0$ such that for any symmetric convex body K of volume 1 in \mathbb{R}^{k} and $q \geq k, c K \subseteq Z_{q}(K) \subseteq K$. (see [Pa2] for a proof). So,

$$
c \leqslant\left|Z_{k}\left(\widetilde{B}_{2 k-1}(K, F)\right)\right|_{k}^{1 / k} \leqslant 1
$$

So, it is enough to prove that there exists $c>0$ such that

$$
\begin{equation*}
\frac{1}{|K \cap E|_{n-k}^{1 / k}} \leqslant k^{1 / k}\left|B_{2 k-1}(K, F)\right|_{k}^{\frac{2}{k}} \leqslant c \frac{1}{|K \cap E|_{n-k}^{1 / k}} \tag{2.5}
\end{equation*}
$$

The right hand side inequality was proved in $[\mathrm{Pa} 1]$. The left hand side inequality follows the same line. We will need the following fact (see [MP] for a proof):

Let C be a symmetric convex body in \mathbb{R}^{m}. If $s \leqslant r$ are non-negative integers and $\theta \in S^{m-1}$, we have that

$$
\begin{equation*}
\left(\frac{r+1}{2} \frac{\int_{C}|\langle x, \theta\rangle|^{r} d x}{\left|C \cap \theta^{\perp}\right|_{m-1}}\right)^{1 /(r+1)} \geqslant\left(\frac{s+1}{2} \frac{\int_{C}|\langle x, \theta\rangle|^{s} d x}{\left|C \cap \theta^{\perp}\right|_{m-1}}\right)^{1 /(s+1)} \tag{2.6}
\end{equation*}
$$

Writing in polar coordinates we get

$$
\begin{equation*}
\left|B_{2 k-1}(K, F)\right|_{k}=\omega_{k} \int_{S_{F}}\left(\int_{K \cap E(\phi)}|\langle x, \phi\rangle|^{2 k-1} d x\right)^{\frac{1}{2}} d \sigma_{F}(\phi) \tag{2.7}
\end{equation*}
$$

Applying (2.6) with $C=K \cap E(\phi), m=n-k+1, r=2 k-1$ and $s=k-1$, we get

$$
\left(k \frac{\int_{K \cap E(\phi)}|\langle x, \phi\rangle|^{2 k-1} d x}{|K \cap E|_{n-k}}\right)^{1 /(2 k)} \geqslant\left(\frac{k}{2} \frac{\int_{K \cap E(\phi)}|\langle x, \phi\rangle|^{k-1} d x}{|K \cap E|_{n-k}}\right)^{1 / k}
$$

It follows that

$$
\left(\int_{K \cap E(\phi)}|\langle x, \phi\rangle|^{2 k-1} d x\right)^{\frac{1}{2}} \geqslant\left(k|K \cap E|_{n-k}\right)^{-1 / 2} \frac{k}{2} \int_{K \cap E(\phi)}|\langle x, \phi\rangle|^{k-1} d x
$$

Then formula (2.7) becomes

$$
\left|B_{2 k-1}(K, F)\right|_{k} \geqslant\left(k|K \cap E|_{n-k}\right)^{-1 / 2} \frac{k}{2} \omega_{k} \int_{S_{F}} \int_{K \cap E(\phi)}|\langle x, \phi\rangle|^{k-1} d x d \sigma_{F}(\phi)
$$

Observe that (see also [Pa1])

$$
|K|_{n}=\frac{k \omega_{k}}{2} \int_{S_{F}} \int_{K \cap E(\phi)}|\langle x, \phi\rangle|^{k-1} d x d \sigma_{F}(\phi) .
$$

So we get $\left|B_{2 k-1}(K, F)\right|_{k} \geqslant \frac{1}{k^{1 / 2}}|K \cap E|_{n-k}^{-1 / 2}$, that is

$$
k^{1 / k}\left|B_{2 k-1}(K, F)\right|_{k}^{2 / k} \geqslant \frac{1}{|K \cap E|_{n-k}^{1 / k}}
$$

That proves formula (2.5) and the Proposition.
We will use the isomorphic version of Dvoretzky theorem proved by V. Milman (see [M], [MS2]):
Proposition 2.4. Let C a symmetric convex body in \mathbb{R}^{n}. If $k \leqslant c_{1} n\left(\frac{W(C)}{R(C)}\right)^{2}$,

$$
\begin{equation*}
\mu\left\{F \in G_{n, k}: \frac{W(C)}{2} D_{F} \subseteq P_{F}(C) \subseteq 2 W(C) D_{F}\right\} \geq 1-\exp \left(-c_{2} n\left(\frac{W(C)}{R(C)}\right)^{2}\right) \tag{2.8}
\end{equation*}
$$

where $c_{1}, c_{2}>0$ are universal constants, $R(C)=\max \{|x| ; x \in C\}$ and $W(C)=\int_{S^{n-1}} h_{C}(\theta) d \sigma(\theta)$
We will denote $k_{*}\left(C^{\circ}\right):=n\left(\frac{W(C)}{R(C)}\right)^{2}$. Furthermore, (see [LMS]) we have that for $p \leqslant k_{*}\left(C^{\circ}\right)$,

$$
\begin{equation*}
W(C) \sim W_{p}(C):=\left(\int_{S^{n-1}} h_{C}^{p}(\theta) d \sigma(\theta)\right)^{1 / p} \tag{2.9}
\end{equation*}
$$

Definition 2.5. Let K be a symmetric convex body of volume 1 in \mathbb{R}^{n} and let $\alpha \in[1,2]$. We say that K is a ψ_{α}-body with constant b_{α} if

$$
\left(\int_{K}|\langle x, \theta\rangle|^{q} d x\right)^{1 / q} \leqslant b_{\alpha} q^{1 / \alpha}\left(\int_{K}|\langle x, \theta\rangle|^{2} d x\right)^{1 / 2}
$$

for all $q \geqslant \alpha$ and all $\theta \in S^{n-1}$. Equivalently, if

$$
Z_{q}(K) \subseteq b_{\alpha} q^{1 / \alpha} Z_{2}(K) \quad \text { for all } \quad q \geqslant \alpha
$$

The following definition appeared in [Pa3]:
Definition 2.6. Let K be a symmetric convex body of volume 1 in \mathbb{R}^{n}. We define

$$
q_{*}(K)=\max \left\{q \in \mathbb{N}: k_{*}\left(Z_{q}^{\circ}(K)\right) \geqslant q\right\}
$$

where $Z_{q}^{\circ}(K):=\left(Z_{q}(K)\right)^{\circ}$.
We will need the following lower bounds for the quantities $k_{*}\left(Z_{q}^{\circ}(K)\right)$ and $q_{*}(K)$, (see [Pa1]):
Proposition 2.7. Let K be an isotropic ψ_{α}-body with constant b_{α} and $1 \leqslant$ $q \leqslant n$ then

$$
k_{*}\left(Z_{q}^{\circ}(K)\right) \geq c_{1} \frac{n}{q^{\frac{2-\alpha}{\alpha}} b_{\alpha}^{2}} \quad \text { and } \quad q_{*}(K) \geqslant c_{2}\left(\frac{\sqrt{n}}{b_{\alpha}}\right)^{\alpha}
$$

Proposition 2.8. Let $K \subset \mathbb{R}^{n}$ isotropic. Then for $q \leqslant q_{*}(K)$ we have

$$
\begin{equation*}
W\left(Z_{q}(K)\right) \sim \sqrt{q} L_{K} \tag{2.10}
\end{equation*}
$$

Proof. A direct computation shows that for $q \leqslant n$,

$$
\left(\int_{K}|x|^{q} d x\right)^{1 / q} \sim \sqrt{\frac{n}{q}} W_{q}\left(Z_{q}(K)\right)
$$

It was proved in [Pa1] that for every $q \leqslant q_{*}(K)$ we have

$$
\left(\int_{K}|x|^{q} d x\right)^{1 / q} \sim \sqrt{n} L_{K}
$$

Also by (2.9) and the definition of $q_{*}(K)$ we have that

$$
W\left(Z_{q}(K)\right) \sim W_{q}\left(Z_{q}(K)\right) \quad \forall q \leqslant q_{*}(K)
$$

By putting these results together we conclude the proof.

A well known application of Brunn-Minkowski inequality implies that every convex body is ψ_{1} body with a constant c, where c is universal. So, Theorem 2.1 is a direct consequence of the following:

Theorem 2.9. Let K be an isotropic ψ_{α}-body with constant b_{α} and $1 \leqslant k \leqslant$ $c\left(\frac{\sqrt{n}}{b_{\alpha}}\right)^{\alpha}$. Then

$$
\mu\left\{F \in G_{n, k}: \frac{c_{1}}{L_{K}} \leqslant\left|K \cap F^{\perp}\right|_{n-k}^{1 / k} \leqslant \frac{c_{2}}{L_{K}}\right\} \geq 1-\exp \left\{-c_{3} \frac{n}{k^{\frac{2-\alpha}{\alpha}} b_{\alpha}^{2}}\right\}
$$

Proof. Let $1 \leqslant k \leqslant q_{*}(K)$. We will apply Proposition 2.4 for the symmetric convex body $Z_{k}(K)$. So, we have that there exists an $A \subseteq G_{n, k}$ of measure greater that $1-e^{c_{2} k_{*}\left(Z_{k}^{\circ}(K)\right)}$ such that for every $F \in A$

$$
\frac{W\left(Z_{k}(K)\right)}{2} D_{F} \subseteq P_{F}\left(Z_{k}(K)\right) \subseteq 2 W\left(Z_{k}(K)\right) D_{F}
$$

By taking volumes we get

$$
\left|P_{F}\left(Z_{k}(K)\right)\right|_{k}^{1 / k} \sim \frac{W\left(Z_{k}(K)\right)}{\sqrt{k}} \sim L_{K}
$$

where we used Proposition 2.8 and the fact that $\left|D_{k}\right|_{k}^{1 / k} \sim \frac{1}{\sqrt{k}}$.
By Proposition 2.3 we get that for every $F \in A$,

$$
\frac{c_{1}}{L_{K}} \leqslant|K \cap E|_{n-k}^{1 / k} \leqslant \frac{c_{2}}{L_{K}}
$$

The result follows by Proposition 2.7.

3. Second improvement via random sections

In the first part we estimate the Lipschitz constant of the function $F \rightarrow \mid F^{\perp} \cap$ $\left.K\right|_{n-k}$ and also review concentration inequalities with respect to several natural distances on $G_{n, k}$. We start with the latter.

The following lemma constructs a suitable orthonormal basis for two subspaces E and F and will be very useful for our purposes

Lemma 3.1 ([GM], Lemma 4.1). Let $E, F \in G_{n, k}$ such that $F^{\perp} \cap E=$ 0 . Then there exists $u_{1}, \ldots u_{k}$ orthonormal basis of E such that the family $v_{1}, \ldots v_{k}$ given by $v_{j}=\frac{P_{F}\left(u_{j}\right)}{\left|P_{F}\left(u_{j}\right)\right|}$ is an orthonormal basis of F. In particular, $\left\langle u_{j}, v_{i}\right\rangle=\left|P_{F}\left(u_{j}\right)\right| \delta_{i}^{j}$.
The space $G_{n, k}$ appears in the literature equipped with a number of different distances. In the following Proposition, we estimate the equivalence constants between them. It is probably folklore but we include for the reader's convenience. The fact that one can move from one distance to another will
be useful while computing the Lipschitz constant and also when considering the concentration phenomena on $G_{n, k}$.

The elements of the orthogonal group $O(n)$ will be denoted by $U=$ $\left(u_{1} \ldots u_{n}\right)$ so the columns $\left(u_{i}\right)$ form an orthonormal basis in \mathbb{R}^{n}.

Proposition 3.2. For $E, F \in G_{n, k}$ we consider the following distances
$d_{0}(E, F)=\max \left\{d\left(x, S_{F}\right) \mid x \in S_{E}\right\}$, d is the euclidean distance.
$d_{1}(E, F)=\inf \left\{\varepsilon>0 \mid S_{E} \subset S_{F}+\varepsilon D_{n}, S_{F} \subset S_{E}+\varepsilon D_{n}\right\}$
$d_{2}(E, F)=\inf \left\{\left(\sum_{j=1}^{k}\left|u_{j}-v_{j}\right|^{2}\right)^{1 / 2} E=\left\langle u_{j}\right\rangle_{1}^{k}, F=\left\langle v_{j}\right\rangle_{1}^{k}\right.$ orthon. basis $\}$
$d_{3}(E, F)=\inf \left\{\left(\sum_{j=1}^{n}\left|u_{j}-v_{j}\right|^{2}\right)^{1 / 2} E=\left\langle u_{j}\right\rangle_{1}^{k}, F=\left\langle v_{j}\right\rangle_{1}^{k}\right.$ orthon. basis $\}$
$d_{4}(E, F)=\left\|P_{E}-P_{F}\right\|_{H S}$
$d_{5}(E, F)=\inf \left\{\|U-V\|_{H S} \mid U, V \in O(n), E=\left\langle u_{1} \ldots u_{k}\right\rangle, F=\left\langle v_{1} \ldots v_{k}\right\rangle\right\}$
$d_{6}(E, F)=\left\|P_{E}-P_{F}\right\|$
Then, $d_{2}, d_{3}, d_{4}, d_{5}$ are equivalent with numerical equivalence constants, $d_{0}=d_{1}, d_{1} \leq d_{2} \leq \sqrt{2 k} d_{1}$ and $d_{6} \leq d_{4} \leq \sqrt{2 k} d_{6}$.

Proof. $d_{0}=d_{1}: d_{1}$ is the Hausdorff distance between S_{E} and S_{F} which also reads $d_{1}(E, F)=\max \left\{\max _{x \in S_{E}} d\left(x, S_{F}\right), \max _{y \in S_{F}} d\left(y, S_{E}\right)\right\}$, so $d_{0} \leq d_{1} \leq \sqrt{2}$ and it is enough to check that the two inner maxima are equal.

If $E \cap F^{\perp} \neq 0$ then $d_{0}(E, F)=\sqrt{2}$. Suppose $E \cap F^{\perp}=0$.
For any $x \in S_{E}, y \in S_{F},|x-y|^{2}=2-2\langle x, y\rangle=2-2\left\langle P_{F}(x), y\right\rangle$. So, $d^{2}\left(x, S_{F}\right)=2-2 \sup _{y \in S_{F}}\left\langle P_{F}(x), y\right\rangle=2-2\left|P_{F}(x)\right|=\left|x-\frac{P_{F}(x)}{\mid P_{F}(x)}\right|^{2}$. Let $x_{0} \in S_{E}$ that maximizes $d\left(x, S_{F}\right)$ on S_{E} or equivalently that minimizes $\left|P_{F}(x)\right|$. Denote $y_{0}=\frac{P_{F}\left(x_{0}\right)}{\left|P_{F}\left(x_{0}\right)\right|}$ (observe $P_{F}\left(x_{0}\right) \neq 0$). By the arguments in [GM] Lemma 4.1, $P_{F}\left(x_{0}\right)$ is orthogonal to $E \cap x_{0}^{\perp}$ and so $P_{E} P_{F}\left(x_{0}\right)$ is parallel to x_{0}. Write $P_{E}\left(y_{0}\right)=\lambda x_{0}$. Then $\lambda=\left\langle P_{E}\left(y_{0}\right), x_{0}\right\rangle=\left\langle y_{0}, P_{E}\left(x_{0}\right)\right\rangle=$ $\left|P_{F}\left(x_{0}\right)\right|$ and $\frac{P_{E} P_{F}\left(x_{0}\right)}{\left|P_{E} P_{F}\left(x_{0}\right)\right|}=x_{0}$. Therefore, $d\left(y_{0}, S_{E}\right)=d\left(x_{0}, S_{F}\right)$ and so $\max \left\{d\left(y, S_{E}\right) \mid y \in S_{F}\right\} \geq \max \left\{d\left(x, S_{F}\right) \mid x \in S_{E}\right\}$. Exchange E, F and equality follows.
$d_{1} \leq d_{2} \leq \sqrt{2 k} d_{1}:$ It is proved in [GM], Lemma 4.1.
$\frac{1}{\sqrt{2}} d_{2} \leq d_{4} \leq \sqrt{2} d_{2}$: Let $F^{\perp} \cap E:=E_{0}$ and write the orthogonal decomposition $E=E_{0} \oplus E_{1}$ with $E_{1} \cap F^{\perp}=0$. By Lemma 3.1, there exists an orthonormal basis in $E_{1},\left(u_{j}\right)$, such that $v_{j}=\frac{P_{F}\left(u_{j}\right)}{\left|P_{F}\left(u_{j}\right)\right|}$ is an orthonormal system in F. Now add vectors to complete an orthonormal basis in E (by adding vectors in E_{0}) and in F that we also denote as u_{j} and v_{j}. Trivially,

$$
\left\|P_{E}-P_{F}\right\|_{H S}^{2} \geq \sum_{j=1}^{k}\left|\left(P_{E}-P_{F}\right)\left(u_{j}\right)\right|^{2}
$$

If $u_{j} \in E_{1}$ then, since $\left\langle u_{j}, v_{j}\right\rangle=\left|P_{F}\left(u_{j}\right)\right|$ (Lemma 3.1),

$$
\left|\left(P_{E}-P_{F}\right)\left(u_{j}\right)\right|^{2}=1-\left|P_{F}\left(u_{j}\right)\right|^{2} \geq 1-\left|P_{F}\left(u_{j}\right)\right|=\frac{1}{2}\left|u_{j}-v_{j}\right|^{2}
$$

If $u_{j} \in E_{0}$ and $v_{j} \in F$ then $\left|\left(P_{E}-P_{F}\right)\left(u_{j}\right)\right|^{2}=1$. Also, since $\left\langle u_{j}, v_{j}\right\rangle=0$ and so $\left|u_{j}-v_{j}\right|^{2}=2$.

For the second inequality, let $\left(u_{j}\right),\left(v_{j}\right)$ be orthonormal basis of $E, F \in$ $G_{n, k}$ we write $P_{E}=\sum_{j=1}^{k} u_{j} \otimes u_{j}$ and $P_{F}=\sum_{i=1}^{k} v_{i} \otimes v_{i}$ and by definition $\left\|P_{E}-P_{F}\right\|_{H S}^{2}=2 k-2 \sum_{i, j=1}^{k}\left\langle u_{j}, v_{i}\right\rangle^{2} \leq 2 \sum_{j=1}^{k}\left(1-\left\langle u_{j}, v_{j}\right\rangle^{2}\right) \leq 2 \sum_{j=1}^{k}\left|u_{j}-v_{j}\right|^{2}$ since $1-\left\langle u_{j}, v_{j}\right\rangle^{2} \leq 2\left(1-\left\langle u_{j}, v_{j}\right\rangle\right)=\left|u_{j}-v_{j}\right|^{2}$.
$d_{2} \leq d_{3} \leq \sqrt{5} d_{2}$: By definition $d_{3}^{2}(E, F)=d_{2}^{2}(E, F)+d_{2}^{2}\left(E^{\perp}, F^{\perp}\right)$. Now, $d_{2}^{2}\left(E^{\perp}, F^{\perp}\right) \leq 2 d_{4}^{2}\left(E^{\perp}, F^{\perp}\right)=2 d_{4}^{2}(E, F) \leq 4 d_{2}^{2}(E, F)$. With similar arguments one proves $d_{2} \leq d_{5} \leq 3 d_{2}$.
$d_{6} \leq d_{4} \leq \sqrt{2 k} d_{6}$: For $T \in G L(n)\|T\| \leq\|T\|_{H S} \leq \sqrt{\operatorname{dim}\left(T\left(\mathbb{R}^{n}\right)\right)}\|T\|$.

Proposition 3.3. Let $K \subset \mathbb{R}^{n}$ isotropic. The function given by $G_{n, k} \ni$ $E \rightarrow\left|E^{\perp} \cap K\right|_{n-k}$ is Lipschitz and for all $E, F \in G_{n, k}$ we have the estimate

$$
\left|\left|E^{\perp} \cap K\right|_{n-k}-\left|F^{\perp} \cap K\right|_{n-k}\right| \leq \frac{\left(c \mathcal{L}_{k}\right)^{2 k}}{L_{K}^{k}}\left\|P_{E}-P_{F}\right\|_{H S}
$$

where $\mathcal{L}_{k}:=\sup \left\{L_{M} \mid M \subset \mathbb{R}^{k}\right.$, convex body isotropic $\}$.
In order to prove it, one more lemma will be used. An equivalent version of it for $k=1$ is due to Busemann.

Lemma 3.4 ([MP]). If K is a convex body and $E \in G_{n, k}$ then the function given by

$$
E^{\perp} \ni \theta \rightarrow\|\theta\|:=\frac{|\theta|}{|K \cap E(\theta)|}
$$

is a norm on E^{\perp}.
Proof of Proposition 3.3. Suppose $F^{\perp} \cap E=0$ and let $E=\left\langle u_{1} \ldots u_{k}\right\rangle, F=$ $\left\langle v_{1} \ldots v_{k}\right\rangle$ the orthonormal basis in Lemma 3.1. Denote $E_{0}^{\perp}=E^{\perp}, E_{j}^{\perp}=$ $v_{1}^{\perp} \cap \cdots \cap v_{j}^{\perp} \cap u_{j+1}^{\perp} \cap \cdots \cap u_{k}^{\perp}$ and $E_{k}^{\perp}=F^{\perp}$. Then

$$
\left|\left|E^{\perp} \cap K\right|_{n-k}-\left|F^{\perp} \cap K\right|_{n-k}\right| \leq\left.\sum_{j=1}^{k}| | E_{j}^{\perp} \cap K\right|_{n-k}-\left|E_{j-1}^{\perp} \cap K\right|_{n-k} \mid
$$

Let us estimate (say) the first summand. Set $\bar{E}=E^{\perp} \cap v_{1}^{\perp}=E_{1}^{\perp} \cap u_{1}^{\perp}$. Then, by Lemma 3.1, $E^{\perp}=\bar{E} \oplus P_{E^{\perp}}\left(v_{1}\right)$ and $E_{1}^{\perp}=\bar{E} \oplus P_{E_{1}^{\perp}}\left(u_{1}\right)$ so we can
apply Lemma 3.4 to \bar{E}

$$
\left|\left|E^{\perp} \cap K\right|_{n-k}-\left|E_{1}^{\perp} \cap K\right|_{n-k}\right|=\left|\frac{\left|P_{E^{\perp}}\left(v_{1}\right)\right|}{\left\|P_{E^{\perp}}\left(v_{1}\right)\right\|}-\frac{\left|P_{E_{1}^{\perp}}\left(u_{1}\right)\right|}{\left\|P_{E_{1}^{\perp}}\left(u_{1}\right)\right\|}\right|
$$

and since $\left|P_{E_{1}}\left(u_{1}\right)\right|=\left|\left\langle u_{1}, v_{1}\right\rangle\right|=\left|P_{E}\left(v_{1}\right)\right|$ and the triangle inequality,

$$
\left|\frac{\left|P_{E^{\perp}}\left(v_{1}\right)\right|}{\left\|P_{E^{\perp}}\left(v_{1}\right)\right\|}-\frac{\left|P_{E_{1}^{\perp}}\left(u_{1}\right)\right|}{\left\|P_{E_{1}^{\perp}}\left(u_{1}\right)\right\|}\right| \leq \frac{\left|P_{E_{1}^{\perp}}\left(u_{1}\right)\right|}{\left\|P_{E_{1}^{\perp}}\left(u_{1}\right)\right\|\left\|P_{E^{\perp}}\left(v_{1}\right)\right\|}\left\|P_{E_{1}^{\perp}}\left(u_{1}\right)-P_{E^{\perp}}\left(v_{1}\right)\right\|
$$

Finally, observe that $\left|P_{E_{1}^{\perp}}\left(u_{1}\right)-P_{E^{\perp}}\left(v_{1}\right)\right|=\left(1-\left\langle u_{1}, v_{1}\right\rangle\right)\left|u_{1}-v_{1}\right|$ and apply Lemma 2.2 to conclude with

$$
\left|\left|E^{\perp} \cap K\right|_{n-k}-\left|E_{1}^{\perp} \cap K\right|_{n-k}\right| \leq \frac{\left(1-\left\langle u_{1}, v_{1}\right\rangle\right)}{\left(1-\left\langle u_{1}, v_{1}\right\rangle^{2}\right)^{1 / 2}}\left|u_{1}-v_{1}\right| \frac{\left(c \mathcal{L}_{k}\right)^{2 k}}{L_{K}^{k}}
$$

Since we can also suppose $\left\langle u_{1}, v_{1}\right\rangle \geq 0$, the first quotient above is bounded by 1. So,

$$
\left|\left|E^{\perp} \cap K\right|_{n-k}-\left|F^{\perp} \cap K\right|_{n-k}\right| \leq \sqrt{k}\left(\sum_{j=1}^{k}\left|u_{j}-v_{j}\right|^{2}\right)^{1 / 2} \frac{\left(c \mathcal{L}_{k}\right)^{2 k}}{L_{K}^{k}}
$$

By the proof of Proposition 3.2, $\left(\sum_{j=1}^{k}\left|u_{j}-v_{j}\right|^{2}\right)^{1 / 2} \leq \sqrt{2}\left\|P_{E}-P_{F}\right\|_{H S}$. In the general case, if $F^{\perp} \cap E:=E_{0}$ then we can write $E=E_{0} \oplus E_{1}$ with $E_{1} \cap F^{\perp}=0$. Choose an orthonormal basis of E_{0} and proceed as in the previous case.

Theorem 3.5 (Concentration of measure, $[\mathrm{MS}]$). There exist absolute constants $c_{1}, c_{2}>0$ such that
i) For every $A \subset G_{n, k}$ and every $\delta>0$

$$
\mu\left(A_{\delta}\right) \geq 1-\frac{c_{1}}{\mu(A)} \exp \left(-c_{2} \delta^{2} n\right)
$$

where $A_{\delta}=\left\{E \in G_{n, k} ; \exists F \in A, d_{5}(E, F) \leq \delta\right\}$
ii) For $f: G_{n, k} \rightarrow \mathbb{R}$ a Lipschitz function with Lipschitz constant σ, that is $|f(E)-f(F)| \leq \sigma d_{5}(E, F)$,

$$
\mu\left\{E \in G_{n, k} ;|f(E)-\mathbb{E}(f)| \leq a\right\} \geq 1-c_{1} \exp \left(-\frac{c_{2} a^{2} n}{\sigma^{2}}\right) \quad \forall a>0
$$

Remark 3.6. If d, \tilde{d} are two distances on $G_{n, k}$ such that $d \leq M \tilde{d}$ for some $M>0$ then a concentration inequality for \tilde{d} with bound $c_{1} \exp \left(-c_{2} \delta^{2} n\right)$ implies one for d with bound $c_{1} \exp \left(\frac{-c_{2} \delta^{2} n}{M^{2}}\right)$. Similarly for Lipschitz functions. It is then possible to state concentration inequalities for the different distances (Proposition 3.2) on $G_{n, k}$.

The last main ingredient of the section is

Theorem 3.7. [Kl2]. Let $K \subset \mathbb{R}^{n}$ be an isotropic convex body. Then,

$$
\begin{equation*}
\left|\left\{x \in K:\left||x|-\sqrt{n} L_{K}\right| \mid>t \sqrt{n} L_{K}\right\}\right|_{n} \leq c \exp \left(-C n^{\alpha} t^{\beta}\right) \tag{3.11}
\end{equation*}
$$

for all $0 \leq t \leq 1$ and $\alpha=0.33, \beta=3.33$.
It was proved by [So] (with sharp exponents α and β) for normalized unit balls of $\ell_{p}^{n}, 1 \leq p$ and in full generality in [K12].

As an application of the results in this section we show the announced
Theorem 3.8. Let $K \subset \mathbb{R}^{n}$ isotropic. For all $\varepsilon>0,1 \leq k \leq \frac{\varepsilon \log n}{(\log \log n)^{2}}$, the set A of subspaces $E \in G_{n, k}$ such that

$$
\frac{1-\varepsilon}{\sqrt{2 \pi} L_{K}} \leq\left|E^{\perp} \cap K\right|_{n-k}^{1 / k} \leq \frac{1+\varepsilon}{\sqrt{2 \pi} L_{K}}
$$

holds, has probability $\mu(A) \geq 1-c_{1} \exp -c_{2} n^{0.9}$
Proof. Consider the function $f: G_{n, k} \rightarrow \mathbb{R}, f(E)=\left|E^{\perp} \cap K\right|_{n-k}$. By Proposition 3.3 and Theorem 3.5 we have

$$
\mu\left\{E \in G_{n, k} ;|f(E)-\mathbb{E}(f)| \leq \varepsilon \mathbb{E}(f)\right\} \geq 1-c_{1} \exp \left(-\frac{c_{2}^{k} L_{K}^{2 k}(\mathbb{E}(f))^{2} \varepsilon^{2} n}{\left(\mathcal{L}_{k}\right)^{2 k}}\right)
$$

On the other hand, Theorem 3.5 in $[\mathrm{BB}]$ and Theorem 3.7 readily imply

$$
\left|\frac{\int_{G_{n, k}} F_{K}(t, E) d \mu(E)}{\Gamma_{K}^{k}(t)}-1\right| \leq \frac{c_{1}}{n^{0.09}} \quad \forall t \geq 0
$$

Taking limits as $t \rightarrow 0$ (see Corollary 3.6 in [BB]) yields

$$
\left|\frac{\mathbb{E}(f)}{\frac{1}{\left(\sqrt{2 \pi} L_{K}\right)^{k}}}-1\right| \leq \frac{c_{1}}{n^{0.09}}\left(\leq \frac{\varepsilon}{3}\right)
$$

By the triangle inequality

$$
\left|\frac{f(E)}{\frac{1}{\left(\sqrt{2 \pi} L_{K}\right)^{k}}}-1\right| \leq \frac{\mathbb{E}(f)}{\frac{1}{\left(\sqrt{2 \pi} L_{K}\right)^{k}}}\left|\frac{f(E)}{\mathbb{E}(f)}-1\right|+\left|\frac{\mathbb{E}(f)}{\frac{1}{\left(\sqrt{2 \pi} L_{K}\right)^{k}}}-1\right|
$$

So, if $\left|\frac{f(E)}{\mathbb{E}(f)}-1\right| \leq \frac{\varepsilon}{3}$, then $\left|\frac{f(E)}{\left(\sqrt{2 \pi} L_{K}\right)^{k}}-1\right| \leq\left(1+\frac{\varepsilon}{3}\right) \frac{\varepsilon}{3}+\frac{\varepsilon}{3} \leq \varepsilon$ and conclude, using also $\mathcal{L}_{k} \leq c k^{1 / 4}$

$$
\begin{aligned}
& \mu\left\{E \in G_{n, k} ;\left|f(E)-\frac{1}{\left(\sqrt{2 \pi} L_{K}\right)^{k}}\right| \leq \frac{\varepsilon}{\left(\sqrt{2 \pi} L_{K}\right)^{k}}\right\} \geq \\
& \quad \geq \mu\left\{E \in G_{n, k} ;|f(E)-\mathbb{E}(f)| \leq \frac{\varepsilon}{3} \mathbb{E}(f)\right\} \geq 1-c_{1} \exp \left(-\frac{c_{2}^{k} \varepsilon^{2} n}{k^{k / 2}}\right)
\end{aligned}
$$

The hypothesis on k implies $\varepsilon \geq \frac{(\log \log n)^{2}}{\log n}$ and $k^{k / 2} \ll n^{0,1}$, so

$$
\mu\left\{E \in G_{n, k} ;\left|f(E)-\frac{1}{\left(\sqrt{2 \pi} L_{K}\right)^{k}}\right| \leq \frac{\varepsilon}{\left(\sqrt{2 \pi} L_{K}\right)^{k}}\right\} \geq 1-c_{1} \exp \left(-c_{2} n^{0.9}\right)
$$

4. The isotropy constant of high dimensional sections

The purpose of this section is to show that for any convex body K in \mathbb{R}^{n} there exists a high dimensional section that its isotropic constant is bounded(up to a logarithmic to the dimension factor). In particular:

Proposition 4.1. For every symmetric convex body K in \mathbb{R}^{n} and $k \leqslant$ $\left(1-\frac{1}{\log n}\right) n$, there exists an $F \in G_{n, k}$ such that

$$
L_{K \cap F} \leqslant c(\log k)^{1 / 2} \log \log k
$$

where $c>0$ is a universal constant.
Proof. We will make use of the following fact that is a particular version of a result by Pisier, see $[\mathrm{P}]$, Chapter 7:

Let $0<p<2$. There exists a linear map $u: \ell_{2}^{n} \rightarrow\left(\mathbb{R}^{n},\|\cdot\|_{K}\right)$ and universal constants $c, c^{\prime}>0$ such that for all $1 \leq k \leq n$,

- $c_{k}\left(u^{-1}\right) \leq \frac{c}{\sqrt{2-p}}\left(\frac{n}{k}\right)^{1 / p}$ and
- $\log N\left(u\left(B_{2}^{n}\right), t K\right) \leq\left(\frac{c^{\prime}}{\sqrt{2-p}}\right)^{p} \frac{n}{t^{p}}, \quad \forall t \geq \frac{c^{\prime}}{\sqrt{2-p}}$
where $c_{k}\left(u^{-1}\right)=\inf \left\{\left\|\left.u^{-1}\right|_{S}\right\| ; \operatorname{codim}(S)<k\right\}$ are the Gelfand numbers of u^{-1} and $N(K, L)=\inf \left\{N \in \mathbb{N} \mid \exists x_{1}, \ldots x_{N}, K \subset \cup_{i=1}^{N}\left(x_{i}+L\right)\right\}$ is the covering number of K by L.
Let K be of volume 1. Define $K_{1}:=|\operatorname{det}(u)|^{1 / n} u^{-1}(K)$, also of volume 1, that is, we take K_{1} into the so called Milman's position.
By definition of covering number and $t=\frac{c^{\prime}}{\sqrt{2-p}}$ we have $N\left(u\left(B_{2}^{n}\right), t K\right) \leq e^{n}$ and so

$$
\left|u\left(B_{2}^{n}\right)\right|_{n}=|\operatorname{det}(u)| \omega_{n} \leq\left(\frac{c^{\prime}}{\sqrt{2-p}}\right)^{n} e^{n}
$$

Thus, by the estimate $\omega_{n}^{-1 / n} \sim \sqrt{n}$,

$$
|\operatorname{det}(u)|^{1 / n} \leq \frac{c^{\prime} \sqrt{n}}{\sqrt{2-p}}
$$

On the other hand, since in particular $c_{1}\left(u^{-1}\right) \leq \frac{c}{\sqrt{2-p}} n^{1 / p}$, we have

$$
\left|u^{-1}(x)\right| \leq \frac{c}{\sqrt{2-p}} n^{1 / p} \quad \forall x \in K
$$

or equivalently, $u^{-1}(K) \subset \frac{c}{\sqrt{2-p}} n^{1 / p} B_{2}^{n}$.
Therefore the two estimates above yield

$$
\begin{equation*}
K_{1} \subset \frac{c_{1}}{\sqrt{2-p}} n^{\frac{1}{p}+\frac{1}{2}} B_{2}^{n} \quad \text { or equivalently } \quad R\left(K_{1}\right) \leq \frac{c_{1}}{\sqrt{2-p}} n^{\frac{1}{p}+\frac{1}{2}} \tag{4.12}
\end{equation*}
$$

Now, by definition of Gelfand numbers, there exists a subspace S of codimension $<k$ such that

$$
\left|u^{-1}(x)\right| \leq \frac{c}{\sqrt{2-p}}\left(\frac{n}{k}\right)^{1 / p} \quad \forall x \in K \cap S
$$

and so it follows (be the definition of K_{1}) that for every $1 \leq k \leq n$, there exists a subspace $F \in G_{n, k}$ such that

$$
\begin{equation*}
R\left(K_{1} \cap F\right) \leq \frac{c_{2} \sqrt{n}}{2-p}\left(\frac{n}{n-k}\right)^{1 / p} \tag{4.13}
\end{equation*}
$$

Also, for any $F \in G_{n, k}$ we have that (see [Pa1])

$$
\frac{1}{\left|K_{1} \cap F\right|_{k}^{\frac{1}{n-k}}} \leqslant \hat{c} \frac{L\left(K_{1}, F^{\perp}\right)}{L\left(B_{n-k+1}\left(K_{1}, F^{\perp}\right)\right)}
$$

where $L^{2}(C):=\frac{1}{n} \int_{\widetilde{C}}|x|^{2} d x$ and $L^{2}(K, F):=\frac{1}{k} \int_{\widetilde{K}}\left|P_{F}(x)\right|^{2} d x$. We have that $L(C) \geq L_{C} \geq L_{D_{n}}$ (see $\left.[\mathrm{MP}]\right)$. So,

$$
\frac{1}{\left|K_{1} \cap F\right|_{k}^{\frac{1}{n-k}}} \leqslant c_{3} \frac{R\left(P_{F^{\perp}}\left(K_{1}\right)\right)}{\sqrt{n-k}} \leqslant c_{3} \frac{R\left(K_{1}\right)}{\sqrt{n-k}}
$$

Let $k=n \frac{\log (n+2)}{1+\log (n+2)}$ or $\frac{n-k}{k}=\frac{1}{\log (n+2)}$. Then if F is as before we have

$$
\begin{gathered}
k L_{K_{1} \cap F}^{2} \leqslant k L\left(K_{1} \cap F\right)^{2}=\frac{1}{\left|K_{1} \cap F\right|_{k}^{1+\frac{2}{k}}} \int_{K_{1} \cap F}|x|^{2} d x \leqslant \\
\frac{\int_{K_{1} \cap F}|x|^{2} d x}{\left|K_{1} \cap F\right|_{k}}\left(\frac{1}{\left|K_{1} \cap F\right|_{k}^{\frac{1}{n-k}}}\right)^{2 \frac{n-k}{k}} \leqslant R^{2}\left(K_{1} \cap F\right)\left(c_{3} \frac{R\left(K_{1}\right)}{\sqrt{n-k}}\right)^{\frac{2}{\log (n+2)}}
\end{gathered}
$$

or, using the inequalities (4.12) and (4.13)

$$
L_{K_{1} \cap F}^{2} \leqslant \frac{c_{2} n}{k(2-p)^{2}}\left(\frac{n}{n-k}\right)^{2 / p}\left(\frac{c_{1} n}{n-k} \frac{n^{\frac{2}{p}}}{2-p}\right)^{\frac{1}{\log (n+2)}}
$$

By taking $p=2-\frac{1}{\log \log n}$ and the choice of k we have $\frac{n}{k} \sim 1, \frac{n}{n-k} \sim \log n$ and $\frac{2}{p}=1+O\left(\frac{1}{\log \log n}\right)$, so

$$
L_{K_{1} \cap F}^{2} \leq c_{4} \log n(\log \log n)^{2}
$$

For any $T \in G L(n)$ we have $T K \cap F=T\left(K \cap T^{-1} F\right)$. So we have proved that for every K in \mathbb{R}^{n} there exists a subspace of dimension $\left(1-\frac{1}{\log (n+2)}\right) n$ such that

$$
L_{K \cap F} \leqslant c_{5}(\log n)^{1 / 2} \log \log n
$$

Let $1 \leq k \leq\left(1-\frac{1}{\log (n+2)}\right) n$. Let $\lambda \in(0,1]$ so that $k=\left(1-\frac{1}{\log (\lambda n+2)}\right) \lambda n$ (note that $k \sim \lambda n$). If $E \in G_{n, \lambda n}$ and $K_{0}=K \cap E$ then there exists $F \in G_{n, k}$ such that

$$
L_{K \cap F}=L_{K_{0} \cap F} \leqslant c_{5}(\log \lambda n)^{1 / 2} \log \log \lambda n \sim(\log k)^{1 / 2} \log \log k
$$

References

[ABP] M. Anttila, K. Ball, I. Perissinaki, The central limit theorem for convex bodies, Trans. Amer. Math. Soc. 355 (2003), pp. 4723-4735.
[B] K. Ball, Logarithmic concave functions and sections of convex sets in \mathbb{R}^{n}, Studia Math. 88 (1988), pp. 69-84.
[BB] J. Bastero and J. Bernués, Asymptotic behaviour of averages of k-dimensional marginals of measures on \mathbb{R}^{n}, preprint.
[EK] R. Eldan and B. Klartag, Pointwise Estimates for Marginals of Convex Bodies, preprint.
[G] A. Giannopoulos, Notes on isotropic convex bodies, Warsaw University Notes (2003).
[GM] A. Giannopoulos and V. Milman, Mean width and diameter of proportional sections of a symmetric convex body, J. Reine Angew. Math. 497 (1998), pp. 113-139.
[H] D. Hensley, Slicing convex bodies, bounds of slice area in terms of the body's covariance, Proc. Amer. Math. Soc. 79 (1980), pp. 619-625.
[Kl] B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. and Funct. Anal. (GAFA) 16 (2006) 1274-1290.
[K12] B. Klartag, Power-law estimates for the central limit theorem for convex sets, Journal Functional Analysis 245 (2007), pp. 284-310.
[LMS] A. Litvak, V.D. Milman and G. Schechtman, Averages of norms and quasi-norms, Math. Ann. 312 (1998), pp. 95124.
[M] V.D. Milman , A new proof of A. Dvoretzky's theorem in cross-sections of convex bodies, (Russian), Funkcional. Anal. i Prilozen. 5 (1971), no.4, 28-37.
[MP] V. Milman and A. Pajor, Isotropic positions and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, GAFA Seminar 87-89, Springer Lecture Notes in Math. 1376 (1989), pp. 64-104.
[MS] V. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Math. 1200, Springer, (1986).
[MS2] V.D. Milman and G. Schechtman, Global versus Local asymptotic theories of finite-dimensional normed spaces, Duke Math. Journal 90 (1997), 73-93.
[Pa1] G. Paouris, Concentration of mass on convex bodies, Geometric and Functional Analysis 16 (2006), pp. 1021-1049.
[Pa2] G. Paouris, Ψ_{2} - estimates for linear functionals on zonoids, Geom. Aspects of Funct. Analysis, Lecture Notes in Math. 1807 (2003), 211-222.
[Pa3] G. Paouris, On the Ψ_{2}-behavior of linear functionals on isotropic convex bodies, Studia Math. 168 (2005), no. 3, 285-299.
[P] G. Pisier, The volume of convex bodies and Banach space geometry Cambridge Univ. Press, Cambridge 1989.
[So] S. Sodin, Tail-sensitive Gaussian asymptotics for marginals of concentrated measures in high dimension, preprint.

Dpto. de Matemáticas, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain

E-mail address, (David Alonso): 498220@celes.unizar.es
E-mail address, (Jesús Bastero): bastero@unizar.es
E-mail address, (Julio Bernués): bernues@unizar.es
E-mail address, (Grigoris Paouris): paouris@courant.nyu.edu
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, U.S.A.

[^0]: Date: December 17, 2007.
 2000 Mathematics Subject Classification. 52A40, 46B20, 52A39.
 Key words and phrases. isotropic convex bodies, section function, concentration of measure phenomenum.

 The three first named authors partially supported by MCYT Grants(Spain) MTM200403036, MTM2007-61446; Marie Curie RTN CT-2004-511953 and by DGA E-64.

