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ABSTRACT

We present a simple, efficient method, which combines uniaxial compression and subsequent poling, to produce piezoelectric polyvinylidene
fluoride-based epoxy composites. The values of the piezoelectric factors obtained are slightly higher than those of neat piezoelectric polyviny-
lidene fluoride. The composites respond rapidly and reach a saturation voltage output, to the application of mechanical stimulus quickly.
The composites are promising for the creation of “bulk” piezoelectric devices, different from the usual stretched films, exploiting the physico-
chemical a of the epoxy matrix. The piezoelectric factor d31 vs the mechanical stimulus for the specimens studied scale according to a double
logarithmic representation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5122985

Polymer-based composites are being investigated widely due to
their ceaseless expansion of application potentials. PolyVinylidene
DiFluoride (PVDF), in particular, relishes an overgrowing heed ascrib-
able to its remarkable pyroelectric and piezoelectric attributes.1–10

Consequently, it serves as a candidate for numerous sensory and actu-
ator devices, mostly in the form of thin stretched b-PVDF films.1–6,11

Manufacturing and optimization of such specimens often exhibit vari-
ous levels of complication and scalability issues,6,8,9 which in this
work, concurrently with providing longevity and adaptability features,
we are attempting to surpass. More specifically, issues in the field of
piezoelectric sensors and energy harvesters to be addressed are (i) the
development of a simple and inexpensive experimental scheme for
achieving the piezoelectric phase, (ii) the efficiency and response of the
composite be comparable or better than those of PVDF and compo-
sites, and (iii) the optimization of the fraction of PVDF, while the com-
posite shares the advantageous physico-chemical features of its matrix
(epoxy). The resulting instances will be easily prepared, moldable,
durable, efficiently adhesive to different substrates, noncorrosive, and
remarkably sensitive to mechanical stimuli devices. The protocol fol-
lowed is uncomplicated compared with that commonly reported
for receiving the piezoelectric d-phase for PVDF microstructure;9

moreover, it yields bulk specimens of any shape. Furthermore, our
experimental configuration permits the determination of an inaccu-
racy of about 9%, which is better than that reported in published
works.

We prepared a test sample of neat PVDF (sample A), an epoxy-
based PVDF composite (sample B) and another one, loaded with
nanographene platelets (NGPs) (sample C), the mass ratios of which
are given in Table I. Mixtures of nonpiezoelectric PVDF powder con-
sist of average molecular weight of �534 000 powder particles with
typical size of about 1 lm (Sigma-Aldrich-182702-100G) and com-
mercial two component epoxy (UHU-37376) cured at ambient condi-
tions. Moreover, samples with additional nanographene platelets
(NGPs) (Angstrom-N008-P-40) were prepared as well. The distribu-
tion of inclusions is dispersed randomly within the epoxy matrix. The
diameter of the resulting disk-shaped specimens is typically a few cen-
timeters, and the thickness is typically 1–3mm. For the transition of
the as-received PVDF to one of its piezoelectric phases, we followed a
two-stage procedure: The specimens were uniaxially compressed
under 1010 N=m2 by using an Enerpack RC 504 hyraulic press for
about 5 s. The force was applied along axis-1 perpendicular to the par-
allel surfaces of the composite, while the side free surface area of the
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sample was unconfined during deformation; thus, directions perpen-
dicular to axis-1 are indistinguishable and isotropic (axis-3 is labeled
any of these axes). The compressed pellets were subsequently polarized
within a coronalike schedule; i.e., placed between a couple of parallel
spring-loaded platinum electrodes and polarized by an electric field of
about 2MV=m for a time duration of about 5 h. The advantages of
the method applied in the present work are the following: (i) while, in
the literature, PVDF is available in films that are stretched to become
piezoelectric, in the present work, bulk specimens of any size and
shape can be formed and (ii) the equipment required to attain the pie-
zoelectric phase is simple and inexpensive.

To ensure that the abovementioned procedure drives PVDF
from the nonpiezoelectric a-phase to its piezoelectric one (based on
the literature, it is identical to the d-phase, induced by axial compres-
sion8), a solid freestanding PVDF pellet (sample A) was formed from
its melt and, subsequently, underwent the mechanoelectrical scheme
described above.

The typical dimensions of the disk-shaped specimens studied are a
few centimeters in diameter and about 0.5mm in thickness. A couple of
electrodes permanently silver pasted on the specimen’s surface (Fig. 1)
was connected to a digital Keithley 617 electrometer. Each device was
placed inside a Faraday cage for electromagnetic shielding. Real-time
voltage or current was recorded as a function of time, while axial force-
stimulus covering three orders of magnitude (i.e., 0:02N; 0:14N; 2N ,
respectively) could be applied. The sample capacitance was measured
directly using a Solartron 1260A impedance analyzer controlled by the
NovocontrolV

R

WinDETA software.

Voltage and current responses to externally applied force for sam-
ple B are depicted in Figs. 2 and 3, respectively. The force F1 was applied
perpendicular to the parallel surfaces of the disk-shaped composite (see
Fig. 1). Voltage V3 measured between the electrode is given by:

V3 ¼
d31 � F1

C
; (1)

TABLE I. Mass fraction of epoxy/PVDF composites and NGP.

Specimen
(Epoxy:PVDF)

(w/w)
NGP loading (wt. % of the total

mass of the composite)

A (100:0) 0
B (95:5) 0
C (95:5) 1.25

FIG. 1. Experimental configuration for measuring the piezoelectric response.
Arrows indicate the mechanical stimuli applied along axis-1 and perpendicular to
the parallel surfaces of the composite. Electrodes are silver pasted at both ends
along axis-3. Leads from the electrodes are connected to a Keithley 617 electrome-
ter (not depicted).

FIG. 2. Voltage output measured between the ends of a diameter for a composite
with �5 wt. % PVDF (specimen B). Dashed line denotes a typical mechanical stim-
ulus (in arbitrary units) as a function of time.

FIG. 3. Current density emitted from a composite loaded with 5 wt. % PVDF (speci-
men B). The sign reversals are signatures of the application and subsequent switch
off of the external mechanical stimuli (schematically depicted by the dashed line),
respectively. Current evolution is proportional to the rate of the piezoelectric
voltage.
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where C denotes the sample’s capacitance and d31 is the piezoelectric
coefficient. We measured both the response and relaxation for 10 s
intervals, for rectangular pulses of mechanical stimuli depicted by the
dashed line in Figs. 2 and 3.

The piezoelectric coefficient d31 is obtained from Eq. (1), whereas
V3 holds its saturation value dictated by the application of F1. d31ðF1Þ
data points are plotted in Fig. 4, for the three specimens studied in the
present work. The determination of the saturation voltage was
obtained from single-pulse stress. However, after thorough experimen-
tation, we led to the conclusion that a time interval between two suc-
cessive force pulses, such as that depicted by the dashed line in Figs. 2
and 3, was optimally adequate for the specimen relax compared with
the timescale of the piezoelectric response; the latter is actually imme-
diate to the external force triggering. We observe that, for all samples,
d31 is a decreasing function of F1, in accordance with the experimental
observations and theoretical modeling for heterogeneous piezoelectric
composites. The phenomenon was attributed to the distribution of
internal stresses to the piezoelectric inclusions, the local change of the
topology, and the variable degrees of physical contacting of the piezo-
electric domains. The piezoelectric coefficient of neat PVDF is compa-
rable or slightly larger than those reported for its piezoelectric phases
developed with experimental schemes different from ours (i.e., uniaxial
compression and poling). Moreover, epoxy-based composites exhibit
d31 values comparable with those of neat PVDF (specimen A), sugges-
ting that, despite their low content in PVDF (5 wt. %), they have equal
or slightly better efficiency than neat PVDF. The piezoelectric coeffi-
cients were determined with an error of 8% for samples A and B and
6–12% for sample C. A remarkable feat is the high reproducibility of
the results, indicative of a stable structure and predictable behavior of
the samples.

The d31(F1) data points collapse on a single master curve when
plotted in a double logarithmic diagram (Fig. 5). Regarding the range

of mechanical modulus investigated in the present work, a universal
empirical fitting function is:

d31 F1ð Þ ¼ �5þ 6:136� F�0:1781 (2)

with correlation factor R2 > 0.99. The description of the experimental
results through a common function evidences for a common underly-
ing process for electromechanical coupling and a unified scaled behav-
ior of the three different composites.

A functional piezoelectric device is characterized by its ability to
require both strong and rapidly produced voltage output signals. A
piezoelectric coefficient is a measure of the ratio of the “saturation”
voltage over stress and is a measure of the energy conversion. The
increase of voltage to saturation upon applying a mechanical stimulus
is described by:

V tð Þ / 1� e�
t
s; F 6¼ 0

e�
t
s; F ¼ 0;

(3)

where s is a time constant, which tells how fast a saturation voltage
value is attained. The values of s obtained by fitting Eq. (3) to the V(t)
data points subsequent to the application of the external force is pre-
sented in Fig. 6. At low stress applied, the three specimens share a rela-
tively common short relaxation time (around 2 s) to reach a saturation
output. At high stress values, epoxy results in an increase of the relaxa-
tion time, while the small amount of NGPs intensifies the latter phe-
nomenon. Among the three specimens, the one with NGPs
(sample C) exhibit a retarded response and differences on exerting or
removing the force stimulus. The advantages of the methodology used
in relation to the current status in the field of piezoelectric sensors and
energy harvesting can be summarized as follows: (i) the experimental
scheme for achieving the piezoelectric phase is simple and inexpensive,
(ii) the efficiency and response of the composite are improved, com-
pared to those reported, (iii) the composite has an optimally low
amount of PVDF and shares the advantages of its matrix (epoxy).

FIG. 4. Piezoelectric coefficients for samples A (circles), B (triangles), and C
(squares). Fitting is in the form of y¼ axbþ c with factor R2> 0.99. The samples
provide a remarkable performance when 0.02 N is applied and converge while the
stimulus strengthens.

FIG. 5. A master curve (dashed line) given by Eq. (2) matches the entire set of
data points with correlation factor R2¼ 0:975.
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In the present work, we developed a simple, reliable, and low cost
procedure to obtain piezoelectric PVDF and epoxy composites. The
piezoelectric d31 parameter was determined with high accuracy com-
pared to that usually reported in the literature. Epoxy composites

exhibit equal or slightly stronger piezoelectric factors than neat PVDF,
probably stemming from their heterogeneous structure. A universal
scaling law has been found for d31(F1), evidencing for a common elec-
tromechanical coupling mechanism underlying the piezoelectric prop-
erties of different samples studied in the present work. Rapid response
to applied stimulus is observed.
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FIG. 6. Time constants for the response to the application and removal of external
mechanical stimulus: samples A (circles), B (triangles), and C (squares). Solid and
dashed lines connect data points regarding relaxation after force application and
removal, respectively.
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