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The dielectric relaxation of water-filled granular dielectrics under hydrostatic compression is investigated in
the frequency domain. The activation volume and activation enthalpy governing a dominant relaxation
mechanism of sandstone partially saturated with water are determined experimentally for the first time.
The present results combined with recently published results for various wetted porous dielectrics indicate
that, despite the complexity of this class of matter, such as heterogeneity of composition and micro-
structural landscape and their disordered environment, a compensation rule between the absolute value of
the activation volume and enthalpy is likely to be valid. The proportionality constant is determined by the
isothermal bulk modulus and its pressure derivative, according to an earlier thermodynamic elastic model.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The dielectric properties of porous matter (fully or partially) filled
with fluids (such as water or solutions) has been the subject of
fundamental and applied research during the last decades. Intense
polarization phenomena inducing huge values of the dielectric
constant were detected through broadband complex impedance
spectroscopy [1–4] and high-resolution thermally stimulated current
(TSC) spectroscopy [5,6]. The dielectric constant of these systems is
very different from the values of the individual phases, respectively.
Theoretical approaches emphasize the electrochemical interaction
between the solid and liquid phase, and on the double-layer polariza-
tion [7]. While pure research efforts focus on understanding the cor-
relations in complex heterogeneous systems, there is considerable
interest in diverging fields of applied science: For example, large di-
electric constant materials are highly desirable in materials science
for microelectronic applications, wetting and hydration determine
the efficiency of industrial sensors or catalysts for chemical reactions.
Moreover, in the field of geophysics, the knowledge of the dielectric
properties of rocks saturated with water can provide valuable infor-
mation toward understanding electric signals emitted in the earth's
crust, in oil exploration [8].

Recently, experimental research was carried out investigating the
effect of hydrostatic pressure on the dielectric relaxation of water-
saturated granular dielectrics. By varying the pressure, novel information
is gained on the dynamics of complex systems [9]. It was found that some
anassiou),

rights reserved.
water-filled rocks exhibit dielectric relaxation mechanisms that are
characterized by negative values of the activation volume. At the same
time there is no physical restriction on the sign of the activation volume
[10,11]. As it will be clarified in the next section the activation volume is
actually a dynamic volume (or fluctuation volume) and may either have
positive or negative sign. Negative activation volumes are very rarely
found in the solid state. To the best of our knowledge, negative activation
volume for dielectric relaxation has been found in β-PbF2 crystals doped
with impurities [12], in semi-conductingpolypyrrole [13,14] and for ionic
conductivity in β-AgI (B4-phase) under pressure [15,16] In the present
work we report novel results on the dielectric relaxation of sandstone
saturated with water at various temperatures and pressures, which is a
prototype granular silicate granular dielectric. Natural or artificially
synthesized sandstone is a typical porous material used very often for
experimental work [1,2,5,6,17–20]. The present results, together with
some results of our laboratory that were recently published probably
suggest a universal compensation rule interconnecting the activation
volume with the activation enthalpy in water filled granular materials.
The proportionality constant is established by the thermodynamic elastic
model proposed by Varotsos and Alexopoulos [10].

2. Theoretical concepts

Dielectric relaxation is characterized by the dielectric relaxation
time τ, which is a phenomenological quantity. Adopting the rate theory,
the relaxation time is linked to microscopic quantities according to the
next equation:

τ P; Tð Þ ¼ λνð Þ�1 exp gact=kBT
� �

ð1Þ
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Fig. 1. Isotherms (T=277 K) of tan δ vs frequency of water-filled sandstone at various
pressures: 0.1 MPa (stars), 100 MPa (triangles), 200 MPa (circles) and 300 MPa
(squares). Inset: Variation of fmax, tan δ upon P. The straight line is the best fit to the
datum points.
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where ν is the vibration frequency of the relaxing charge carrier, λ is a
geometrical constant, gact is the Gibbs activation energy for relaxation,
T denotes the absolute temperature and kB is the Boltzmann's constant.
Note that all thermodynamic quantities appearing in this paper are
related to relaxation or, alternatively, to the localized motion of the
electric charge entities that form the relaxing ‘dipoles’. Taking the
thermodynamic definition gact=hact−Tsact, where hact and sact are
the activation enthalpy and entropy, respectively, and differentiating
Eq. (1) with respect to (kBT)−1, at constant pressure, we get:

∂ lnτ=∂ 1=kBTð Þð ÞP ¼ hact ð2Þ

provided that the term ln(λν)+(sact/kB) is practically constant; the
later constrain indicates that the empirical Arrhenius law describes
the temperature dependence of the relaxation time. Alternatively, by
differentiating the above equation with respect to pressure at constant
temperature, we get:

∂ lnτ=∂Pð ÞT ¼ −γ
B
þ υact

kBT
ð3Þ

where γ≡−(∂ ln ν/∂ ln V)T is the Grüneisen constant (V denotes the
volume), B≡−(∂P/∂ ln V)T is the isothermal bulk modulus and
υact≡(∂gact/∂P)T is the activation volume.

Relaxation processes can be studied in the frequency domain
through a proper dielectric function such as the tangent loss angle
function tan δ≡ Im(ε)/Re(ε), where Im(ε) and Re(ε) are the imaginary
and the real part of the (relative) complex permittivity ε (reduced to
its value of free space). For a Debye relaxation, the latter dielectric
function exhibits a maximum at frequency f max; tanδ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
εs=ε∞

p
= 2πτð Þ,

where τ the relaxation time (Eq. (1)), εs and ε∞ denote the static and
high-frequency (relative) permittivity, respectively. The partial
derivatives of the natural logarithm of the last relation with respect
to reciprocal temperature and pressure, respectively, gives:

∂ lnτ=∂ 1=kBTð Þð ÞP
¼ 1

2
∂ ln ε∞=εsð Þ=∂ 1=kBTð Þð ÞÞP− ∂ lnf max; tanδ=∂ 1=kBTð Þ

� �
P

ð4aÞ

∂ lnτ=∂Pð ÞT ¼ 1
2

∂ ln ε∞=εsð Þ=∂Pð ÞÞT− ∂ lnf max; tanδ=∂P
� �

T
ð4bÞ

Eqs. (2) and (4a), as well as Eqs. (3) and (4b) direct to:

hact ¼ 1
2

∂ ln ε∞=εsð Þ=∂ 1=kBTð Þð ÞÞP− ∂ lnf max; tanδ=∂ 1=kBTð Þ
� �

P
ð5aÞ

υact ¼ kBT
γ
B
þ 1
2

∂ ln ε∞=εsð Þ=∂Pð ÞÞ
T
− ∂ lnf max; tanδ=∂P
� �

T

� �
ð5bÞ

Westress that Eqs. (4b) and (5b) presumeanArrhenius temperature
dependence of τ [21].

Dispersions broader than the Debye one can be described by
various empirical functions. The connection of fmax, tan δ with the

dielectric relaxation time τ is given by f max; tanδ ¼
εs=ε∞ð Þ 1

2x

2πτ
, where x

coincides with 1, α, β or γ for the Debye, Cole–Cole (CC),
Kohlrausch–Williams–Watts (KWW) and Cole–Davidson (CD) cases,
respectively [22,23]. hactand υact are obtained through Eqs. (5a) and
(5b), provided that 1

2= is replaced with 1
2x= .

3. Experimental details

Sandstone of known composition and porosity, which was earlier
studied in a previous work through TSC spectroscopy [5], was
employed in the present study. The composition of the sandstone is:
40 wt.% quartz, 10 wt.% amphibolite and pyroxene, 6 wt.% glimmer
mica, 16 wt.% feldspars, and 26 wt.% calcite. The porosity, obtained
by optical microscopy on thin sections, was about 0.11. Samples of
thickness ranging from 1 to 2 mm and parallel surfaces of about
1–2 cm2 were placed inside the pressure vessel, which uses silicone
oil as the pressure transmitting fluid, of a Novocontrol (Germany)
high pressure apparatus operating from ambient pressure to 0.3 GPa
and thermostated at the desired temperature, from room tempera-
ture to 373 K. Silver paste (Granville) was placed on the parallel
opposite surfaces of the specimen to achieve good contact between
the metallic electrodes and the sample. A very thin insulating layer
of epoxy covered the specimen to prevent contamination from the
pressure transmitting fluid [13,24–27]. Note that the manufacturer
of the pressure vessel suggested independently the use of epoxy
layer in order to jacket the sample. The pressure system was
connected with an HP impedance analyzer operating from 10−2 to
106 Hz. Measurements in the frequency domain were monitored by
a computer. The samples were immersed and kept in distilled water
at 363 K for one week. Continuous weighting during the water-
saturation process shows that saturation was achieved in two days.
The advantage of water-saturation at elevated temperature is the
expansion of the specimen and the subsequent dilation of the pore
cavities which assists diffusion of water molecules. By weighting the
sample before and after the wetting process we found that the
hydrated rock accommodates about 0.24 wt.% water.

4. Results and discussion

Typical isothermal plots tan δ as a function of frequency f at various
pressure values are depicted in Fig. 1. A well-defined relaxation peak
shifts toward lower frequency on compression, indicating that
pressure reduces the relaxation time. The variation of ln fmax, tan δ

upon P (inset of Fig. 1) seems to obey a linear law. The low and high
frequency limits of Re(ε) at various pressures (having typical values
of εs≈2×105 and εs≈38 at T=313 K and P=300 MPa) give
(∂ ln(ε∞/εs)/∂P))T≈0.86GPa−1. A linear fit to the datum points



Fig. 2. Temperature dependence of tan δ vs frequency plots: 313 K (stars), 328 K
(triangles), 353 K (circles) and 363 K (squares). Inset: variation of fmax, tan δ upon 1/kBT.
The straight line is the best fit to the datum points.
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shown in the inset of Fig. 1 gives (∂ ln fmax, tan δ/∂P)T=(2.3±0.6)
GPa−1. Eq. (5b) yields υact=(7±1)cm3/mol. As mentioned in
Section 2, the extraction of the activation volumepresumes anArrhenius
temperature dependence of the relaxation time,which is true because in
Fig. 2, where tan δ(f) isobars collected at various temperatures are
presented. We see that the relaxation peak shifts to higher frequency
on increasing the temperature. The variation of ln fmax, tan δ vs reciprocal
temperature (inset of Fig. 2) is approximately linear and actually
provides a constant value for (∂ ln fmax, tan δ/∂(1/kBT)))P=−(0.37±
0.04)eV and an intercept ln fmax, tan δ(T→∞)=(22±1). On the other
hand, the low and high frequency limits of Re(ε) vs frequency at various
temperatures gives (∂ ln(ε∞/εs)/∂(1/kBT)))P≈0.004eV. Hence, Eq. (5a)
yields the thermodynamic quantity of the activation enthalpy hact=
(0.37±0.04)eV. Defining fmax, tan δ(T→∞)≡(2πτ0, tan δ)−1 and using
the intercept value given above, we get τ0, tan δ=0.3−0.2

+0.5ns, which
provides an estimate for the pre-exponential factor of an Arrhenius-
dependent dielectric relaxation time τ0≈10−12s.

We note that the values of υact and hact were estimated by
Eqs. (5a) and (5b) respectively, which refer to a Debye relaxation.
Actually, the recorded beaks are somewhat broader than the Debye
ones: for instance, the Kohlrausch–Williams–Watts (KWW) gives
Table 1
Activation volumes and activation enthalpies obtained from dielectric relaxation experimen
to estimate (in the last column) the predicted value of the activation volume according to

Material υact (cm3/mol) hact (eV) B (GPa) (∂

Sandstone 7±1a 0.37±0.04a 23–26e 4–
Limestone (CaCO3) 3.0±0.4b ≈0.6c 55±2f ≈
Granodiorite −9±2d 0.48±0.08d 49±1g ≈

All materials were saturated with water. The elastic data correspond to ambient pressure:
(ambient pressure). The same high-pressure region yields (∂B/∂P)T (see the discussion in t

a Present work.
b Low frequency mechanism Ref. [9].
c Ref. [40].
d Ref. [41].
e Data from Ref. [42] for sandstones with porosity around 0.1.
f Data from Ref. [43] for water-saturated limestone.
g Data from Ref. [44] for granodiorite filled with tap water.
β≈0.8. If someone reasonably assumes that both the dielectric
relaxation time and the effective tan δ relaxation time are described
by a common KWW function and a corresponding common value β,
and uses the modified equations suggested at the last paragraph of
Section 2, the correction to υact and hact is within the experimental
errors and it is therefore practically negligible.

The complexity of the system makes it difficult to identify the
relaxationmechanism in water-saturated sandstone. It is meaningless
to attribute it solely to dipole relaxation, interfacial or grain boundary
relaxation etc. The dynamics are collectively taking place in a highly
disordered heterogeneous environment; different co-operative
relaxing components constitute an effective dynamic system.

A question that arises is whether thermodynamic quantities (i.e., the
activation volume and activation enthalpy for relaxation) controlling
the dynamic properties (such as the dielectric relaxation time) of the
granular heterogeneous (concerning their microstructure or their com-
position or both) materials are correlated in a unified manner. For ex-
ample, do υact and hact values for different porous dielectrics saturated
with water obey a compensation rule of the form υact=Fhact, where
the proportionality constant F is a function of the materials' physical
quantities.We adopt a thermodynamic elasticmodel introduced byVar-
otsos and Alexopoulos (cBΩ model) [10,28–31], which states that:

gact ¼ cBΩ ð6Þ

where B is the isothermal bulk modulus,Ω is a mean atomic (or molar)
volume and c is a parameter that does not change with temperature or
pressure. Moving entities drug enthalpy from the heat bath of phonons,
which is used for elastic work associated with diffusion and it is
assumed that the elastic work is associated with bulk modulus of the
elastic host matrix. In other words, the elasticity of the solid controls
the dynamic processes taking place. Eq. (6) has successfully described
formation, migration and activation processes. The latter usually has a
static component referring to formation of defects and a term for
migration. While activation enthalpy is positive, formation, migration
and activation volumes induced can be positive, negative or null. The
elasticwork required to expand an elastic sphere by increasing its radius
by Δr equals that required to suppress the sphere by reducing its radius
byΔr. In both cases, the elastic energy is proportional to the same elastic
constant and the same ‘energy’ |gact|=|cBΩ|, if B is a dominant elastic
parameter for this process. The partial pressure derivative of this
formula tells us the size of the activation volume |υact|≡ |(∂gact/∂P)T|,
but its sign is determined by the correlation between the dynamic
process with the relaxation of the environment and the dynamic
re-arrangement of the structural (atomic or molecular) units when the
relaxing atom is in its ‘excited’ state in relation to the configuration of
the structural units in the ‘ground’ state. In practice, the experiment
establishes the sign of the activation volume. Alternatively, the elastic
work accompanying any process to deform an elastic medium either
outwards (positive activation volume) or inwards (negative activation
ts in wetted rocks. The isothermal bulk modulus and its pressure derivative are enlisted
Eq. (7).

B/∂P)T B−1((∂B/∂P)T−1) (GPa−1) B−1((∂B/∂P)T−1)hact (cm3/mol)

5e 0.16–0.22 6.8±0.9
4f 0.055 3.2±0.8
10g 0.17 8±3

B was estimated from linear extrapolation of the high pressure B(P) data to 0.1 MPa
he text).

image of Fig.�2


Fig. 3. The quantity B−1((∂B/∂P)T−1)hact vs the absolute value of υact for dielectric
relaxation in water-saturated specimens of: (a): limestone, (b): sandstone (b), and
(c): granodiorite. The solid line is the prediction of the cBΩ model.
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volume) is proportional to BΩ. Differentiating Eq. (6) with respect to
pressure at constant temperature, Varotsos and Alexopoulos obtained
υact=B−1((∂B/∂P)T−1)gact. The entropic term Tsact is usually much
smaller than hact, thus, it is not far-stretched to consider gact≅hact,
hence, Eq. (8) is rewritten [10]:

υact ≅ B−1 ∂B
∂P

� �
T
−1

	 

hact ð7Þ

We stress that Eq. (7) actually provides the net (absolute) value of
υact. We note that Eq. (7) reveals a compensating rule between υact

and hact. Eq. (2) was checked at ambient pressure in a wide range of
solids extending from silver halides [32] to rare gas solids [33], in
ionic crystals under gradually increasing uni-axial stress [34] in
which electric signals are emitted before fracture (such as the signals
detected before earthquakes [35–37]), as well as in disordered
polycrystalline materials [38]. Using experimental values for B (at
ambient pressure) and (∂B/∂P)T and υact and hact data obtained
from dielectric relaxation experiments under pressure and temperature,
respectively, for different granular hydrated dielectrics, one can examine
if datum points in a υact vs B−1((∂B/∂P)T−1)hact diagram collapse on a
master straight line with slope 1.

The isothermal compressibility (i.e., the inverse of B) of granular
matter has – to a first approximation – two components: the
compressibility of the empty pore space and the compressibility of
the bulk grains [38,39]. In a partially saturated porous media, one
component is the compressibility of the empty pore space and the
other is an effective compressibility of the solid grains and the
confined fluid (in this case, bulk refers to solid grains plus the confined
water. It was clarified earlier that the measured B values at low
pressure are governed by the closing of the porosity (more precisely,
the portion of the porosity that is not filled with water); therefore,
information for the true (bulk) B and (∂B/∂P)T is obtained by working
in the high pressure region of a B(P) diagram, where datum points are
described by a straight line. The extrapolation of this straight line to
ambient pressure provides the true values of B and (∂B/∂P)T of the
bulk matrix. In Table 1 we provide dielectric relaxation results from
our laboratory, elastic data from the literature and estimates of the
quantity B−1((∂B/∂P)T−1)hact for three different granular dielectrics
partially saturated with water. In Fig. 3, B−1((∂B/∂P)T−1)hact vs the
absolute value of the activation volume υact is depicted. We observe
that the datum points lie, within the experimental uncertainty, on a
straight line with slope one, which is the prediction of the cBΩ
model (Eq. (7)).
5. Conclusion

Novel experimental work on the dielectric relaxation of granular
dielectrics partially filled with water, which constitute a class of
materials of importance in engineering and geophysics, under hydro-
static compression at various temperatures provides experimental
values of the activation enthalpy and volume. Despite the diversity
and complexity of the systems, the thermodynamic parameters
combined with the materials' elastic quantities can lead to a compen-
sation rule. This result is explained within the frame of the elastic
thermodynamic model suggested previously by Varotsos and
Alexopoulos.
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