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Fundamental thermodynamic concepts and an earlier elastic solid-state point defect model are employed to
formulate an analytical second-order polynomial function describing the density scaling of the diffusion
coefficient in viscous liquids. The scaling exponent is correlated, within the approximations made in the
present approach, with the pressure derivative of the isothermal bulk modulus. Our findings are compared
with computer simulation results.
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1. Introduction

Viscous liquids exhibit extraordinary values of viscosity compared
with those of ordinary liquids. In the extreme viscosity limit (i.e., close
to the calorimetric glass-transition) molecular transport is retarded
and most molecular motion is vibrational [1] and the viscous liquid
resembles a disordered solid [2] that flows [1,3]. A series of review
articles on the properties of glass forming liquids were published
recently [1–4]. Ultra-viscous matter has exceptional features [5,6] and
universalities which are not well understood yet [2], such as the
strongly non-Arrhenius temperature dependence [7] of the structural
relaxation time and the strong temperature dependence of the
activation energy of the so-called fragile glass formers [1]. A dynamic
quantityχ, such as structural relaxation time τ, viscosity η or diffusion
coefficient D in viscous liquids seems to scale with some fundamental
quantities like density and temperature. A common scaling expres-
sion found in the literature [4,8–11] is:

χ = F ργ = T
� � ð1Þ

where ρ denotes the density, γ is a scaling exponent, T is the
temperature and F is a (scaling) function, which is a priori unknown.
Most of the experimental evidence for thermodynamic scaling is for
the structural relaxation time and viscosity. Deviations from inverse
proportionality between D and τ occur on approaching the glass
transition, whereas enhanced translation relative to reorientation
occurs, so scaling of τ doesn't guarantee scaling of D. However, these
deviations from Stokes–Einstein may be small enough to not be
apparent in a plot of super positioned data. Or maybe they are
subsumed in a small change in γ [12]. The correlation of the scaling
exponent γ, which is a material constant, with the physical properties
of the viscous state is a matter of ongoing exploration. Computer
simulations of Lennard–Jones liquids, with the exponent of the
repulsive term taking the values 8, 12, 24 and 37, revealed that density
scaling is valid and the exponent γ is roughly one third of the
exponent of the effective inverse power repulsive term [13].
Molecular dynamics also indicated that strong virial/potential-energy
correlations also reflect the effective inverse power law and scaling
occurs in strongly correlating viscous liquids [14]. Recent progress on
the role of thermodynamic elastic models to the density scaling of the
diffusivity appeared recently [15]. On the other hand, following the
Avramov entropy model [16] for the structural relaxation time, γwas
correlated with the thermodynamic Grüneisen parameter γG

[4,11,17,18].
Solid-state elastic models seem to play a prominent role in

describing these phenomena. The distinctive role of thermodynamic
point defectmodels for understanding the viscous state wasmentioned
recently [15,19]. In the present work, we start from thermodynamic
concepts and, by using elastic point defect models and provide an
analytical equation governing the density scaling of the diffusion
coefficient in viscous liquids [15]. The morphology of the scaling
function agrees with up to date experimental results and computer
simulations. The present formulation predicts that the scaling function
is practically pressure insensitive, in agreement with recent computer
simulations of binary Lennard–Jones systems, for various exponent
values of the repulsive term of the potential results [13].

2. Theoretical formulation

Isothermsof the logarithmof the relaxation timeof viscous liquids as
a function of pressure have a clear non-linear behavior [20–23]. The
pressure dependence of logarithm of the diffusion coefficient obtained
from molecular dynamics simulations [24] deviates from linearity, as
well. ln D vs pressure shows a downward curvature. The increase of the
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(absolute) value of slope of the latter curve with pressure was
speculatively interpreted, as a change in the transport mechanism in
viscous liquids, occurring at pressure where hopping of particles
become noticeable [24]. Alternatively, it was attributed [24], according
to the free-volume theory, to random close packing occurring at
elevatedpressure.However, the curvature indiffusivity—pressure plots
was interpreted earlier: Varotsos and Alexopoulos suggested that such
curvature results from a pressure dependent activation volume [25]; if
gact denotes the Gibbs free energy for diffusion, the corresponding
activation volume is defined as υact≡ ∂gact =∂Pð ÞT . Since there is no
physical argument to regard υact as constant, the compressibility of the
activation volume is defined as κactT ≡− ∂ lnυact =∂Pð ÞT [25]. The latter can
be positive, negative or zero. The data reported in Ref. [24] indicate that
κTactb0 for viscous liquids and, to a first approximation, we regard κTact

constant. The isothermal pressure evolution of the reduced diffusion
coefficient D⁎(P) (i.e., the diffusion coefficient normalized by the zero-
pressure diffusion coefficient) can be approximated by the following
analytical equation [25]:

lnD� Pð Þ = � υact
0

kT
� γG

B0

" #
P +

υact
0 κactT

2kT

" #
P2 ð2Þ

where υ0actand B0 denote the zero (ambient) pressure activation
volume and isothermal bulk modulus, respectively. It is evident that,
whenever κTact is zero (i.e., υact is constant), Eq. (2) reduces to a simple
well-known linear relation. From another viewpoint, the curvature
may be interpreted if υact is not single-valued, but obeys a normal
distribution [26,27].

Solid-state thermodynamic elastic point defect models suggest
that the activation volume is proportional to the activation Gibbs free
energy gact: According to the so-called cBΩ model [28–31]:

gact = cBΩ ð3Þ

where c is a roughly constant andΩ is a volume relatedwith themean
atomic volume. Differentiating Eq. (3) with respect to pressure we
get:

υact = B�1 ∂B=∂Pð ÞT � 1
� �

gact ð4Þ

In the viscous state, the activation enthalpy is usually a few tenths
of kT (or, more) [2,10]. We can write hact≈ΛkT, where Λ is a material's
constant that is a function of temperature, in general and usually takes
values of the order of 10 [10]' The activation entropy sact is usually
only about a few k, thus,gact=hact−Tsact is of the same order of
magnitude as hact. Subsequently, at zero pressure, Eq. (4) is rewritten
as:

υact
0 ≈ Λ

B0
∂B=∂Pð ÞT � 1

� �
kT ð5Þ

Assuming that jκactT j≈ 1
B0

[32], Eq. (2), when combinedwith Eq. (5),
yields:

lnD� Pð Þ = � Λ
B0

∂B=∂Pð ÞT � 1
� �� γG

B0

� �
P � Λ

2B0
∂B=∂PTð Þ � 1½ �P2 ð6Þ

The latter equation can explicitly be expressed as a function of
(reduced) density: By definition, the isothermal bulk modulus is
B≡− ∂P=∂ lnVð ÞT . Recalling that ρ≡m/V, we get B = ∂P=∂ lnρð ÞT . To a
first approximation,weemploy thewell-knownMurnaghanequationof
state, which implies that the isothermal bulkmodulus increases linearly
with pressure: i.e., B Pð Þ = B0 + ∂B=∂Pð ÞTP, where ∂B=∂Pð ÞT is
assumed to be roughly constant. Volumetric data of various viscous
liquids confirm that the latter B(P) function is a fairly good approxima-
tion [33]. Under the constrain of a linearB(P) relation, the solution of the
differential equation B = ∂P=∂ lnρð ÞT , is [34]:

ρ ∂B=∂Pð ÞT = 1 +
∂B=∂Pð ÞT

B0
P ð7Þ

Eq. (7) permits the alteration of the variable P to ρ appearing in the
reduced diffusivity (Eq. (6)):

lnD� ργ
� �

= � ΛγG

∂B=∂Pð Þ2T
ργ
� �2

� γG

∂B=∂Pð ÞT
2Λ 1� 1

∂B=∂Pð ÞT

� 	
� 1

� �
ργ

+
γG

∂B=∂Pð ÞT
Λ 2� 1

∂B=∂Pð ÞT

� 	
� 1

� �
ð8Þ

where γ≡ ∂B=∂Pð ÞT . We stress that the later identification is
constrained by the approximations, assumptions and restrictions
asserted in the present work. Further progress provided a more
refined approach [35].

3. Results and discussion

We mention that Eq. (8) captures the interconnection of diffusion
parameters with elastic properties of the material (within the frame
of the cBΩ elastic solid state point defect model) and the universal
feature of glass-formers that the activation enthalpy is usually roughly
tenths of kT (i.e., hact≈ΛkT, where Λ is a function of temperature
taking values of the order of ten). Moreover, Eq. (8) provides a direct
connection between the scaling exponent γ and ∂B=∂Pð ÞT , under the
assumptions and approximations made in the present work (a couple of
potential assumptions are that the diffusivity Eq. (2) is applicable in
the ultra-viscous state and gact is proportional to the bulk modulus B).
Further work can improve the validity of Eq. (8) by including the
temperature dependence of the activation enthalpy, which does it
differently in different materials [10]. The diffusivity scaling equation
predicts that:

(i) The (natural) logarithm of the reduced diffusion coefficient D⁎

is a decreasing function of ργ.
(ii) The function ln D*(ργ) is a second order polynomial with

downward curvature. The latter form, which is based on
physical arguments, is suitable to fit isothermal density scaling
diffusion data, instead of using arbitrary equations [36].

(iii) The slope of theln D*(ργ)curve depends on Λ, γG, and
∂B=∂Pð ÞTwhich are characteristic physical quantities of the
viscous liquid.

(iv) Different ln D*(ργ) isotherms obtained at different pressures for
the same viscous liquid, collapse on a uniquemaster curve. This
is due to the fact that Λ and γ are constant for the viscous liquid
under study. The present formalism gives the theoretical
interpretation of computer simulation results of Lennard–
Jones liquids m−6 (8≤m≤36) in normal and moderately
super-cooled states [13], which indicated that the diffusion
coefficient plotted against ργ/T at different pressures, accumu-
late on a single curve [37].

The density and temperature scaling of dynamic properties of
viscous liquids are relatively a recent speculation [8]. At present, apart
from numerical simulations, experimental work on density and
temperature scaling is available for the structural relaxation time
and the viscosity, but missing for the diffusivity. Only numerical
results are available from important groups, which make predictions
on the scaling of diffusivity; the diffusivity scaling exponents
predicted are spanning over a broad range, from 3.5 to 13.7
[13,36,38]. Phenylphyhalein-dimethylether (PDE), which is a typical
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viscous liquid, has a pressure derivative of the bulk modulus
∂B=∂Pð ÞT = 9:76 at 372.6 K [33], which yields (according to the
present work) γ=9.76. This value lies within the range of the above-
mentioned predictions from computer simulations. Concerning the
diffusivity, it seems that we are at a stage that simulations and theory
are temporarily advancing in relation with the experimental work.
The currently published simulations and the present theoretical work
(initiated by our earlier publication [15]) exhibit the emerging
necessity of investigating experimentally the density and temperature
scaling of diffusion coefficient in viscous liquids.

4. Conclusion

The derivation of Eq. (8), which was based on thermodynamic
concepts and the cBΩ elastic solid-state point defect model, confirms
the statement of Dyre [6] that viscous flow events can be correlated
with defect motion in crystals: free energies from activation for self-
diffusion are proportional to the isothermal bulk modulus (cBΩ
model) and, if shear and bulk moduli are proportional to their
temperature and pressure variation, then the cBΩ model becomes
equivalent to the shoving model [6], which is based on the fact that
activation energy is dominated by the work done to shove aside the
surroundings [2,39].
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