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The self-diffusion coefficient of crystalline solids as a function of density and temperature may
derive from thermodynamics concepts and an earlier elastic thermodynamic point defect model
�Varotsos and Alexopoulos, Phys. Rev. B 15, 4111 �1977�; Phys. Rev. B 18, 2683 �1978��.
Compensation laws ruling self-diffusion parameters in carbon-subgroup crystals obtained from
theoretical calculations are predicted, as well. © 2010 American Institute of Physics.
�doi:10.1063/1.3467203�

Analytic functions that scale diffusivity in ultraviscous
liquids �which constitute an exceptional state of matter, char-
acterizing “solids that flow”1� with respect to density were
derived recently.2,3 The scope was to understand why dy-
namic quantities scale with density and temperature in ul-
traviscous liquids, which are characterized by a strong tem-
perature dependence of the activation enthalpy �fragile
liquids�. These efforts were based on thermodynamical con-
cepts and an earlier thermodynamic elastic model �the so-
called cB� model4� that correlates the Gibbs energy for ac-
tivation with the isothermal bulk modulus, combined with
specific characteristics of the ultraviscous state. Inspired by
the above-mentioned approach, diffusivity vs density and
temperature function for crystalline solids are derived in the
present work. A pressure dependent diffusivity equation is
modified through an equation of state, the cB� model and
proper temperature dependence for the Gibbs activation en-
ergy to a density and temperature function.

The mechanism of self-diffusion in crystals of the car-
bon subgroup C �diamond�, Si, Ge �-Sn, and Pb remains a
matter of ongoing investigation.5 These crystals have very
large Debye temperature �i.e., for diamond, �D=2246 K�,
making quantum effects appreciably important even at room
temperature. Self-diffusion calculations were recently re-
ported in carbon-subgroup crystals by Magomedov.6 An ex-
pression for the self-diffusion coefficient as a function of
density � and temperature was proposed; i.e., D�� ,T�
=Dd������ ,T�, where Dd��� is a function of the correlation
factor, the inter-atomic spacing, the pack-density of atoms
and the Debye temperature and ��� ,T� is the fraction of
atoms having kinetic energy above a threshold value required
to diffuse. In this paper, we shall show that diffusivity func-
tions versus density and temperature mentioned in Ref. 6
result independently from fundamental thermodynamic con-
cepts and the so-called cB� elastic point defect model.4 The
parameters of the diffusivity versus density and temperature
equations are correlated with physical quantities of the crys-
tal, which vary slightly with pressure. Compensation laws
relating self-diffusion entropy and enthalpy as well as self-

diffusion entropy and volume observed in Ref. 6 are direct
consequences of the cB� model.

Starting from the definition of the isothermal bulk modu-
lus, as follows:

B � − ��P/� ln V�T, �1�

and recalling that the density is ��m /V, we get the follow-
ing:

B = ��P/� ln ��T. �2�

To a first approximation, we assume that:

B�P� = B0 + ��B/�P�TP, �3�

where B0 denotes the zero �ambient� pressure value of the
bulk modulus and ��B /�P�T is assumed to be �to a first ap-
proximation� roughly constant. Equations �2� and �3� merge
to give the following:

� �P

� ln �
�

T
= B0 + ��B/�P�TP. �4�

By integrating over pressure and density, we get the follow-
ing the so-known Murnaghan equation of state �EOS�:

����B/ � P�T = 1 +
��B/�P�T

B0
P, �5�

where �� denotes furthermore the reduced density with re-
spect with its value at ambient �zero� pressure.

The activation volume controls the pressure evolution of
the diffusivity �act���gact /�P�T, where gact denotes the Gibbs
free energy for diffusion the compressibility of the activation
volume is generally defined as �act�−�� ln �act /�P�T,4 and
can be positive, negative, or zero.

A general equation for self-diffusion describing monova-
cancy mechanism for the three cubic Bravais lattices is as
follows:

D�P,T� = 	�2
 exp�− gact/kT� , �6�

where D is the diffusion coefficient, 	 is a geometrical factor,
� is the interatomic spacing, 
 is the vibrational frequency of
the diffusing species �and related with the phonon frequency
involved in the diffusion process�, and k is the Boltzmann’s
constant. For a single mechanism of diffusion gact=gm+gf,
where gm and gf denote the free energy for migration and
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formation of vacancies, respectively; i.e., gact describes both
the motion of carriers and the changes of their concentration
induced by temperature and pressure variation. Differentiat-
ing Eq. �6� with respect to pressure and considering that
pressure does not modify the geometrical factor 	, we get the
following:

� � ln D

�P
�

T
= −

�act�P�
kT

+
1

B�P���G −
2

3
� , �7�

where �G is the Grüneisen parameter. In the present work,
we assume that B�P� is linear. If �act is constant �i.e., �act

=0�, Eq. �7� yields a reduced diffusivity D� �which is the
diffusivity D�P� reduced to the ambient �zero� pressure dif-
fusivity value�, as follows:

ln D��P� = −
�act

kT
P + ��G −

2

3
� 1

��B/�P�T
ln	1

+
��B/�P�T

B0
P
 . �8a�

If �act�P� has a constant �positive� compressibility �act we
have �act�P�=�0

act exp�−�actP�. For the case �actP�1, the lat-
ter reduces to: �act�P���0

act�1−�actP�. Thus, from Eq. �7�, we
get the following:

ln D��P� = −
�0

act

kT
P + � �0

act�act

2kT
�P2

+ ��G −
2

3
� 1

��B/�P�T
ln	1 +

��B/�P�T

B0
P
 .

�8b�

Alternatively, we may assume that �act depends on pressure
and consider that 1 /�act�P�=B�P�, i.e., the bulk modulus of
the activation volume Bact�P��1 /�act�P� has the same pres-
sure dependence as that of the “total” bulk modulus B�P�:
1 /�act�P��Bact�P�=B0+ ��B /�P�TP. Within this condition,
Eq. �7� reduces to the following:

ln D��P� = −
�0

actB0

kT���B/�P�T − 1�
�	1 +

��B/�P�T

B0
P
1−���B/�P�T�−1

− 1
 + ��G −
2

3
� 1

��B/�P�T
ln	1 +

��B/�P�T

B0
P
 .

�8c�

We note that D��P� is dimensionless and denotes the diffu-
sivity reduced to its zero pressure value D0. Pressure trans-
forms to reduced density �� �i.e., the density reduced to its
ambient pressure value� through Eq. �4�. Equations �8a�–�8c�
can be rewritten, respectively:

ln D����,T� = −
�0

actB0

kT��B/�P�T
�����B/�P�T − 1�

+ ��G −
2

3
� 1

��B/�P�T
ln ����B/�P�T, �9a�

ln D����,T� = −
�0

actB0

kT��B/�P�T
�����B/�P�T − 1�

+ � �0
actB0

2kT��B/�P�T
2 ������B/�P�T − 1�2

+ ��G −
2

3
� 1

��B/�P�T
ln ����B/�P�T, �9b�

and

ln D����,T� = −
�0

actB0

kT���B/�P�T − 1�
������B/�P�T−1� − 1�

+ ��G −
2

3
� 1

��B/�P�T
ln ����B/�P�T. �9c�

While Eq. �9a� is based on the assertion that �act=0, Eq. �9b�
derives from Eq. �8b� under the condition that �act is of the
order of the inverse of material’s isothermal bulk modulus
and was set roughly equal to 1 /B0. Equation �9c� stems from
Eq. �8c� assuming that 1 /�act�P��Bact�P�=B0+ ��B /�P�TP.

Varotsos and Alexopoulos suggested that the bulk modu-
lus is the elastic quantity that controls activation and estab-
lished proportionality between activation Gibbs free energy
and bulk modulus �cB� model�.7–10 Experimental results on
many different types of materials indicate that the bulk
modulus manifests a migration process rather than shear
modulus.11,12 According to the following so-called cB�
model:7–10

gact = cB� , �10�

where c is practically constant9 and � denotes the mean
atomic volume. Note that the validity of Eq. �10� has been
checked at ambient pressure in a wide range of solids extend-
ing from silver halides13 to rare gas solids,14 in ionic crystals
under gradually increasing uniaxial stress15 in which electric
signals are emitted before fracture �in a similar fashion as the
electric signals detected before earthquakes16–19�, as well
as in disordered polycrystalline materials.20 Recently,
diffusivity-density equations describing scaling of the dy-
namic properties of ultraviscous liquids based on thermody-
namic concepts and the cB� model were reported.2,3 Differ-
entiating Eq. �10� with respect to pressure we get the
following:

�act = B−1���B/�P�T − 1�gact. �11�

The Gibbs activation energy is a decreasing function of tem-
perature, in general. Recall that gact�hact−Tsact, where hact

and sact denote the activation enthalpy and entropy respec-
tively. gact�T�=f�T�T, where f�T� is an adjustable function.
Thermodynamics demand a significant increase in hact and
sact with temperature. The excessive fall of gact is due to an
increasing difference between hact and sact.21 The latter aspect
underlies the temperature variation in self-diffusivity param-
eters calculated for carbon sub-group crystals.6 Subse-
quently, at zero pressure, Eq. �11� is rewritten as the follow-
ing:

�0
actB0

kT
� f�T����B/�P�T − 1� . �12�

Introducing the latter relation into Eqs. �9a�–�9c� we get the
following:
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ln D����,T� = −
f�T����B/�P�T − 1�

��B/�P�T
�����B/�P�T − 1�

+ ��G −
2

3
� 1

��B/�P�T
ln ����B/�P�T, �13a�

ln D����,T� = −
f�T����B/�P�T − 1�

��B/�P�T
�����B/�P�T − 1�

+ � f�T����B/�P�T − 1�
2��B/�P�T

2 ������B/�P�T − 1�2

+ ��G −
2

3
� 1

��B/�P�T
ln ����B/�P�T, �13b�

and

ln D����,T� = − f�T������B/�P�T−1 − 1�

+ ��G −
2

3
� 1

��B/�P�T
ln ����B/�P�T. �13c�

The above three equations correlate the �reduced� self-
diffusion coefficient with �reduced� density and temperature
�the dependence upon temperature is expressed through the
function f�T�, which is material dependent�. The parameters
determining Eqs. �13a�–�13c� are negligibly dependent on
pressure. Thus, diffusivity isobars obtained at various pres-
sure values collapse on a common �master� curve when ex-
pressed as a function of density and temperature. It seems
that the aforementioned representation reveals a scaling be-
havior of the diffusivity versus density and temperature,
which is a novel idea in the field of transport in crystalline
solids.

An alternative straightforward route toward diffusivity
versus density and temperature function in crystalline solids
through the cB� model is presented in the next: Eq. �7�
�again, B�P� is roughly linear and the resulting EOS is that
given by Eq. �5�� combined with a couple of the cB� for-
mulas Eqs. �10� and �11�, yields the following:

ln D��P� = − c�
0

P ���B/�P�T − 1���P�
kT

dP

+ ��G −
2

3
� 1

��B/�P�T
ln	1 +

��B/�P�T

B0
P
 .

�14�

However, �=FAPF�at
−1, where FAPF is the atomic packing fac-

tor �which is assumed to be constant� and �at denotes here the
atomic density. Thus, Eq. �14� yields the following:

ln D���at
� ,T� = −

cFAPFB0

kT
��at

���B/�P�T−1 − 1�

+ ��G −
2

3
� 1

��B/�P�T
ln �at

���B/�P�T, �15�

where �at
� denotes the atomic density reduced to its ambient

�zero� pressure value. It is worth noticing that the latter deri-
vation is based on the cB� model and the concept of the
atomic packing fraction; neither the pressure dependence of
vact nor the temperature dependence of gact �expressed
through the f�T� function� are required.

The calculations of Magomedov6 reveal two compensa-
tion laws, as follows:

�i� The self diffusion entropy sact is proportional to the
activation enthalpy hact, and,

�ii� 
he self-diffusion entropy sac� is linear with the acti-
vation volume �act.

Within the frame of the cB� model sact and hact are
interconnected through:22

sact

hact = −
�B + ��B/�T�P

B − T�B + ��B/�T�P
� R , �16�

where � denotes the volume thermal expansion coefficient.
The compensation rule �i� is actually that predicted by the
cB� model �i.e., sact=Rhact�. Furthermore, by dividing a
couple of equations derived from the cB� model11 by differ-
entiation of Eq. �10� in respect to temperature and pressure,
as follows:

sact = − c���B + ��B/�T�P� ,

�act = c���B/�P�T − 1�� ,

we get the following:

sact

�act = −
�B + ��B/�T�P

��B/�P�T − 1
� R�. �17�

The compensation law �ii� observed by Magomedov is that
predicted by the cB� model through Eq. �17� �i.e., sact

=R��act�. These laws, stemming from the cB� model, have
been experimentally tested for diamond,12 lead �see Ref. 4,
pp. 99–194 and 275�, white tin �see Ref. 4, pp. 232–238 and
280� and may probably apply to the carbon subgroup.
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