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The self-diffusion coefficient of crystalline solids as a function of density and temperature may
derive from thermodynamics concepts and an earlier elastic thermodynamic point defect model
[Varotsos and Alexopoulos, Phys. Rev. B 15, 4111 (1977); Phys. Rev. B 18, 2683 (1978)].
Compensation laws ruling self-diffusion parameters in carbon-subgroup crystals obtained from
theoretical calculations are predicted, as well. © 2010 American Institute of Physics.

[doi:10.1063/1.3467203]

Analytic functions that scale diffusivity in ultraviscous
liquids (which constitute an exceptional state of matter, char-
acterizing ““solids that flow”") with respect to density were
derived 1recently.2’3 The scope was to understand why dy-
namic quantities scale with density and temperature in ul-
traviscous liquids, which are characterized by a strong tem-
perature dependence of the activation enthalpy (fragile
liquids). These efforts were based on thermodynamical con-
cepts and an earlier thermodynamic elastic model (the so-
called cBQ) model4) that correlates the Gibbs energy for ac-
tivation with the isothermal bulk modulus, combined with
specific characteristics of the ultraviscous state. Inspired by
the above-mentioned approach, diffusivity vs density and
temperature function for crystalline solids are derived in the
present work. A pressure dependent diffusivity equation is
modified through an equation of state, the ¢cB{) model and
proper temperature dependence for the Gibbs activation en-
ergy to a density and temperature function.

The mechanism of self-diffusion in crystals of the car-
bon subgroup C (diamond), Si, Ge a-Sn, and Pb remains a
matter of ongoing investigation.5 These crystals have very
large Debye temperature (i.e., for diamond, ®p=2246 K),
making quantum effects appreciably important even at room
temperature. Self-diffusion calculations were recently re-
ported in carbon-subgroup crystals by Magomedov.6 An ex-
pression for the self-diffusion coefficient as a function of
density p and temperature was proposed; i.e., D(p,T)
=Dy(p)x(p,T), where Dy(p) is a function of the correlation
factor, the inter-atomic spacing, the pack-density of atoms
and the Debye temperature and y(p,T) is the fraction of
atoms having kinetic energy above a threshold value required
to diffuse. In this paper, we shall show that diffusivity func-
tions versus density and temperature mentioned in Ref. 6
result independently from fundamental thermodynamic con-
cepts and the so-called cB() elastic point defect model.* The
parameters of the diffusivity versus density and temperature
equations are correlated with physical quantities of the crys-
tal, which vary slightly with pressure. Compensation laws
relating self-diffusion entropy and enthalpy as well as self-
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diffusion entropy and volume observed in Ref. 6 are direct
consequences of the cB{) model.

Starting from the definition of the isothermal bulk modu-
lus, as follows:

B=-(dP/dIn V), (1)

and recalling that the density is p=m/V, we get the follow-
ing:

B =(dP/d In p)r. ()
To a first approximation, we assume that:
B(P) =By + (JB/dP).P, (3)

where B, denotes the zero (ambient) pressure value of the
bulk modulus and (dB/dP)y is assumed to be (to a first ap-
proximation) roughly constant. Equations (2) and (3) merge
to give the following:

Jp
dlnp/r

By integrating over pressure and density, we get the follow-

ing the so-known Murnaghan equation of state (EOS):

dB/dP
, GBIP)

(9B dP)p _ |
p B,

; (5)

where p* denotes furthermore the reduced density with re-
spect with its value at ambient (zero) pressure.

The activation volume controls the pressure evolution of
the diffusivity 1/'=(dg*"/ dP)1, where g** denotes the Gibbs
free energy for diffusion the compressibility of the activation
volume is generally defined as x*'=—(dIn '/ gP)3,* and
can be positive, negative, or zero.

A general equation for self-diffusion describing monova-
cancy mechanism for the three cubic Bravais lattices is as
follows:

D(P,T) = Na’v exp(— g*YKT), (6)

where D is the diffusion coefficient, \ is a geometrical factor,
« is the interatomic spacing, v is the vibrational frequency of
the diffusing species (and related with the phonon frequency
involved in the diffusion process), and k is the Boltzmann’s
constant. For a single mechanism of diffusion g®t=g™+gf,
where g™ and g' denote the free energy for migration and
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formation of vacancies, respectively; i.e., g% describes both
the motion of carriers and the changes of their concentration
induced by temperature and pressure variation. Differentiat-
ing Eq. (6) with respect to pressure and considering that
pressure does not modify the geometrical factor A, we get the
following:

(alnD> _U(P) L( g) ;
P ). kT BE\3) M

where 7 is the Griineisen parameter. In the present work,
we assume that B(P) is linear. If /' is constant (i.e., x*
=0), Eq. (7) yields a reduced diffusivity D* [which is the
diffusivity D(P) reduced to the ambient (zero) pressure dif-
fusivity value], as follows:

In D*(P) JCtP ( 2) ! Inf 1
n =——P+ ——)]———In
kT \7 3)(9B/aP);
JB/dP
. gp] . (a)
By
If ¥*(P) has a constant (positive) compressibility x*' we
have ¥**(P)=1j" exp(—«*'P). For the case kK*'P<1, the lat-
ter reduces to: ¥*'(P) = (1 - «*'P). Thus, from Eq. (7), we
get the following:

act act act
In D*(P) = — %TP + (%)PZ
2\ 1 (9B/dP)y
=S| ———n| 14+ -2 Tp |
3/ (4B/dP); B,
(8b)

Alternatively, we may assume that x** depends on pressure
and consider that 1/x*'(P)=B(P), i.e., the bulk modulus of
the activation volume B*(P)=1/*'(P) has the same pres-
sure dependence as that of the “total” bulk modulus B(P):
1/ k*Y(P)=B*(P)=B,+(dB/JP){P. Within this condition,
Eq. (7) reduces to the following:

IB/OP 1-[(9B/dP)7]™!
In D*(P) = - ( )TP]

|
KT[(@B/aP) - 11|+ B,

| ( g) 1 1[1 (&B/&P)TP]
P\ T3 ) weery, L T B,
(8c)

We note that D*(P) is dimensionless and denotes the diffu-
sivity reduced to its zero pressure value D,. Pressure trans-
forms to reduced density p* (i.e., the density reduced to its
ambient pressure value) through Eq. (4). Equations (8a)—(8c¢)
can be rewritten, respectively:

B
In D*(p",T) == —————(p* (") _ 1)
KT(JB/dP);
2 1
+ ) —n *(6B/HP)T’ 9a
(7(" 3)(aB/ap)T P (%)

Appl. Phys. Lett. 97, 041913 (2010)

Cct
In D*(p*’T) - _ ﬂ( #(9B/dP)y _ 1)
KT(9B/dP)r
t
+ (ﬂ%p*(mam_ 1)
2KT(JB/3P)}
2 1 .
+ - —1 *(BB/HP)T, 9b
(76 3) (9B/oP)y ¥ (9b)
and
ct
In D*(p*,T) = - % By [p (@)= _ 1]

KT((9B/dP); — 1)

_ z 1 #(9B/JP)
+ (yG 3) (c?B/&P)Tln p T, (9¢)
While Eq. (9a) is based on the assertion that k*'=0, Eq. (9b)
derives from Eq. (8b) under the condition that «* is of the
order of the inverse of material’s isothermal bulk modulus
and was set roughly equal to 1/B,. Equation (9¢) stems from
Eq. (8c) assuming that 1/«*(P)=B*(P)=B+(JB/JP)P.

Varotsos and Alexopoulos suggested that the bulk modu-
lus is the elastic quantity that controls activation and estab-
lished proportionality between activation Gibbs free energy
and bulk modulus (cBQ) model).7_10 Experimental results on
many different types of materials indicate that the bulk

modulus manifests a migration process rather than shear
11,12

modulus. According to the following so-called cB()
model:""°
g*'=cBQ, (10)

where c is practically constant’ and Q) denotes the mean
atomic volume. Note that the validity of Eq. (10) has been
checked at ambient pressure in a wide range of solids extend-
ing from silver halides"? to rare gas solids,'* in ionic crystals
under gradually increasing uniaxial stress'> in which electric
signals are emitted before fracture (in a similar fashion as the
electric signals detected before earthquakesm*lg), as well
as in disordered polycrystalline materials.”’ Recently,
diffusivity-density equations describing scaling of the dy-
namic properties of ultraviscous liquids based on thermody-
namic concepts and the cB{) model were reported.z’3 Differ-
entiating Eq. (10) with respect to pressure we get the
following:

' =B~[(dB/dP)y — 1]g™". (11)

The Gibbs activation energy is a decreasing function of tem-
perature, in general. Recall that g*'=h*"'-Ts*', where h*"
and s** denote the activation enthalpy and entropy respec-
tively. g*(T)=f(T)T, where f(T) is an adjustable function.
Thermodynamics demand a significant increase in h*' and
s* with temperature. The excessive fall of g*' is due to an
increasing difference between h*" and s*.*' The latter aspect
underlies the temperature variation in self—diffusivitﬁy param-
eters calculated for carbon sub-group crystals.” Subse-
quently, at zero pressure, Eq. (11) is rewritten as the follow-
ing:
ct

"B
(i(_TO ~ f(T)[(4B/dP)r — 1]. (12

Introducing the latter relation into Egs. (9a)—(9¢c) we get the
following:
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f(T)[(4B/dP)y — 1
In D*(p", T) =~ (DL )r ]( *OBIP)T _ 1)
(9B/P)y
2 1 _
+|lyg—=|———In p* PP (13a
(70 3)((3B/(7P)T P (13a)
f(T)[(dB/IP)y — 1
In D*(p",T) = - S )r ]( *BIP)T _ 1)
(9B/dP)y
(f(T)[(aB/aP)T 1] ) (o7 P _ 12
2(dB/P)3
2 1 .
+|yg—=|———In p* PP (13b
(70 3)(&13/&1))T P (13b)
and
In D*(p*, T) = - f(T)[ p*"B/PPr=1 — 1]
2 1
+|yg—=|———In p" PP (13¢
<7G 3)(aB/aP)T P (13¢)

The above three equations correlate the (reduced) self-
diffusion coefficient with (reduced) density and temperature
(the dependence upon temperature is expressed through the
function f(T), which is material dependent). The parameters
determining Egs. (13a)-(13c) are negligibly dependent on
pressure. Thus, diffusivity isobars obtained at various pres-
sure values collapse on a common (master) curve when ex-
pressed as a function of density and temperature. It seems
that the aforementioned representation reveals a scaling be-
havior of the diffusivity versus density and temperature,
which is a novel idea in the field of transport in crystalline
solids.

An alternative straightforward route toward diffusivity
versus density and temperature function in crystalline solids
through the c¢B{) model is presented in the next: Eq. (7)
[again, B(P) is roughly linear and the resulting EOS is that
given by Eq. (5)] combined with a couple of the cB() for-
mulas Egs. (10) and (11), yields the following:

P
ey < [ LB,
0 kT

However, Q=F APFpa_tl, where Fpp is the atomic packing fac-
tor (which is assumed to be constant) and p,, denotes here the
atomic density. Thus, Eq. (14) yields the following:

cFappB
In D*(p:l,T) —_ T(I?I‘F 0(pzt((7B/r7P)T—l _ 1)

2\ 1
+ =z In p7B/PP)r. 15
(YG 3)(0’?B/(?P)T 1 Pa (13)

where p;, denotes the atomic density reduced to its ambient
(zero) pressure value. It is worth noticing that the latter deri-
vation is based on the c¢B{) model and the concept of the
atomic packing fraction; neither the pressure dependence of
v*" nor the temperature dependence of g*' [expressed

through the f(T) function] are required.
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The calculations of Magomedov6 reveal two compensa-
tion laws, as follows:

(i)  The self diffusion entropy s*' is proportional to the
activation enthalpy h*®, and,

(ii))  The self-diffusion entropy s*”
vation volume /%,

is linear with the acti-

Within the frame of the ¢cB{) model s*' and h*! are
interconnected through:22

gt B + (dB/JT

S BBy 6

h*t " B —TBB + (JB/dT)p

where 8 denotes the volume thermal expansion coefficient.
The compensation rule (i) is actually that predicted by the
¢BQ model (i.e., s*'=PRh*"). Furthermore, by dividing a
couple of equations derived from the cB() model"’ by differ-
entiation of Eq. (10) in respect to temperature and pressure,
as follows:

s =— cQ[SB + (9B/JT)p],

V= c[(dB/dP) - 1]Q,
we get the following:

act B + (dB/JT
S_ w = 9%/. (17)

7 (9B/IP)p— 1

The compensation law (ii) observed by Magomedov is that
predicted by the cBQ model through Eq. (17) (i.e., s**
=R'V"). These laws, stemming from the ¢cB{) model, have
been experimentally tested for diamond,12 lead (see Ref. 4,
pp. 99-194 and 275), white tin (see Ref. 4, pp. 232-238 and
280) and may probably apply to the carbon subgroup.
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