
Scaling and universality of ac conductivity and dielectric response
in disordered materials under pressure

I. Sakellis,a� A. N. Papathanassiou,a� and J. Grammatikakis
Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis,
15784 Zografos, Athens, Greece

�Received 11 May 2010; accepted 29 June 2010; published online 29 July 2010�

Scaling of physical quantities describing the ac response is a common feature of disordered matter,
while in some cases, empirical functions have been proposed. The exact forms of analytic functions
that scale complex conductivity and permittivity are derived in this work by exploring the effect of
pressure at various temperatures on the ac conductivity of polypyrrole. The scaling behavior is
visualized within the frame of percolation and self-similarity. © 2010 American Institute of Physics.
�doi:10.1063/1.3466904�

Scaling and universality of ac conductivity and dielectric
response of numerous different solids with disorder as their
only common feature, are substantial concepts which indi-
cate a common underlying physical characteristics of electric
charge flow in disordered matter to materials which are in
other respects miscellaneous. Important phenomena in nature
are related with scaling behavior of quantities �e.g., see
Refs. 1 and 2�. It is commonly accepted that percolation is
what causes and regulates the occurrence of ac universality
and hence scaling.3–5

In this paper we pose the question about the effect of
pressure on a percolating system, namely, whether a change
in scale influences a percolation governed material, i.e.,
changes in size and mass of the percolating cluster or of the
isolated “islands,” of the links between them, of the correla-
tion length � and consequently of the ac response of the
system. Is it possible, ac conduction and dielectric response
to reveal a hidden characteristic which allows scaling to oc-
cur varying the pressure? It is worth noticing that although
we study conducting polypyrrole as a representative member
of disordered solids for the experiment, the emerged results
appertain and reproduce the scaling behavior of several
amorphous materials.

One of the most important properties of ac conductivity
is that frequency dependent conductivity ���� at different
temperatures T can be scaled into one master curve, the
shape of which is almost the same for all disordered solids.
This master curve can be represented by

�̃ �
����
��0�

= F�C
�

��0�� , �1�

where ��0� is the dc conductivity and C is the scaling con-
stant that depends on the temperature and the charge carrier
concentration. From this, one can derive �Barton–Nakajima–
Namikawa� �BNN� relation6–8

��0� = p���0�m, �2�

which associates the dc conductivity �0 with the dielectric
loss peak frequency �m. The intensity of the relaxation is
��=��0�−��, with �0 is the permittivity of free space and ��

is the high frequency permittivity, while p is a numerical

constant of order of unity. Later Summerfield9 assuming sub-
stantially that �� follows a Curie law proposed

����
��0�

= F� A�

���0�� , �3�

as the scaling law with, A, a parameter depending on charge
carrier concentration. A more general scaling was proposed
by Sidebottom10

����
��0�

= F���0��

��0� � , �4�

the validity of which was proved later by Schroder and
Dyre.11

A widely applied empirical function4,12,13 which approxi-
mates well the scaling behavior of ac conductivity is14,15

���� = ��0��1 + 	 f

f0

n� , �5�

where f0 is a characteristic frequency. When Almond and
West16 suggested the above formula in order to describe a
crystal with defects and an activated number of charge car-
riers, they used during the procedure for deriving Eq. �5� as a
trial17 equation the

lim
T→�

���0�
A

� = �e
n, �6�

where A is given by the frequency dependent part of the real
part of conductivity �ac=A�n and �e is an effective attempt
frequency.

As it will become obvious later on, Eq. �3� is not just a
suitable equation which serves as an intermediate mathemati-
cal manipulation necessary to lead us to a good fitting equa-
tion in order to scale ac conductivity but also an experimen-
tal fact without temperature restrictions which involves
physical causality and has further consequences.

Another physical quantity closely related to conductivity
is �relative� permittivity �. Scaling of ac permittivity was
suggested and verified for ion-conducting glasses18

�� − ���

��
= G1	�0��

�0
f
 , �7�

and conducting polymers19a�Electronic addresses: e_sakel@phys.uoa.gr and antpapa@phys.uoa.gr.
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where �0 is a characteristic frequency proportional to a hop-
ping critical rate and �d� the imaginary part of permittivity
after deducing the conductivity contribution.

Experimental. Details about the sample preparation of
semiconducting polypyrrole were reported in a previous
publication.20 Ac conductivity measurements were per-
formed from 10−2 Hz to 10 MHz by employing a Solartron
SI 1260 frequency response analyzer. Isobaric conditions to
0.35 GPa were achieved in a fluid transmitting pressure ves-
sel, which was immersed in a heat bath maintaining isother-
mal conditions. Controlled and standard measurements were
performed to exclude the possibility of any parasitic reso-
nance type signals arising from cabling. Here, we performed
isobaric measurements up to 0.35 GPa for three tempera-
tures, 303, 318, and 328 K.

Results. In Fig. 1 plots of the real part of the conductiv-
ity as a function of frequency, at different pressures are de-
picted. We will focus on a particularly interesting character-
istic that spring from the measurements regardless of the
variation in temperature. �We have detected the same char-
acteristic in plots of ion conducting compounds too�.21 The
ac conductivity has the same value, i.e., is pressure indepen-
dent, at a particular frequency �c�T� near the dielectric loss
peak frequency �m, thus we have

� ��A�n�
�P

�
�=�c

= 0, �10�

whose solution is

log A = − n log �c + log c , �11�

and setting this to

�ac = A�n, �12�

we get

�ac = 	 �

�c

n

c . �13�

As � approaches �0, �ac converges to 	�0 hence we get

log A = − n log �0 + log 	�0 or
	�0

A
= �0

n, �14�

where, from now on, we label �0 is the crossover frequency
separating the low-frequency dc region from the high-
frequency dispersive one. The constant 	 can be calculated
either from relative experiments or from best-fit curves at
different temperatures and it is expected to take values
around 2.

Applying this condition, Eq. �13� takes the form of

�ac = 	�0 � ��/�0�n, �15�

subsequently the conductivity for the entire frequency do-
main �i.e., including both the low frequency region and the
high frequency one since for f 
 f0, 1+	�f / f0�n→1�

�� = �dc + �ac = �0�1 + 		 f

f0

n� . �16�

Using BNN equation �Eq. �2��, Eqs. �15� and �16� can be
rewritten as

�ac/�0 = ����/�0�n	�p�0�m/�0�n, �17�

and

��/�0 = 1 + ����/�0�n	�p�0�m/�0�n, �18�

respectively.
It is apparent that �m has the same temperature depen-

dence as �0, which is in accordance with the experimental
results. Thus �0 is close �or identical� to the characteristic
frequency proportional to the critical hopping rate.19

A potential difference between Eqs. �15� and �16� with
Eqs. �17� and �18�, respectively, is that the latter couple of
relations require that BNN relation applies to the material
under consideration. Nevertheless this is not always the
case,21,22 deviations from BNN have been observed in some
amorphous materials. This fact explains why experimental
data fail to collapse into a single curve when plotting accord-
ing to Eq. �4� �or to Eq. �17�� and are better represented by
Eq. �5� �or to Eq. �16��.

Furthermore, if we insert Eq. �15� into

�d� =
�ac − �0

�0�
, �19�

and divide by �� we obtain an expression for the imaginary
part of permittivity in the dispersion high-frequency region

�d�

��
=

p�m

�0
�		 �

�0

n

− 1�	 �

�0

−1

. �20�

The shape of Eq. �20� is compatible with the experimentally
observed scaling19 for ac permittivity �Fig. 2�.

Moreover, applying Kramers–Kronig transformation we
get

����� = �� +
A

�0
tan�n�/2��n−1. �21�

The above relation on the one hand and combined with the
general relation ��−��=�� /�0� on the other, yields the real

FIG. 1. The real part of ac conductivity vs frequency for different pressures
at 303 K. From bottom to top: ambient pressure, 0.05, 0.10, 0.15, 0.20, 0.25,
and 0.30 GPa.
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part of permittivity and the imaginary part of conductivity,
scale according to

�� − ��

��
= 	p

�m

�0
	 �

�0

n−1

tan�n�/2� , �22�

and

�ac�

�0
= 	���

�0

n

		 p�0�m

�0

n

tan�n�/2� , �23�

respectively.
In conclusion, we derived experimentally a condition

which led us to scale ac conduction and dielectric response
according to the observed scaling relations �verifying scaling
functions reported in the literature�. At the same time we
proposed scaling functions for the other related physical
quantities. Attempting to interpret the effect of pressure to
a percolating medium, we employ the concept of
self-similarity.23 This is very likely to be so since percolation
is a critical phenomenon and criticality is always associated
with self-similarity �e.g., see Refs. 24–26�. The disordered
solid is likely to maintain its self-similarity under the effect

of pressure which acts as a renormalization process. Hence, a
system very close to the percolation threshold �in proportion
to �0� with its individual parts interacting coherently, will
remain the “same” on a smaller scale �increased pressure�
since the corresponding correlation length will become ac-
cordingly smaller �within a specific range of frequencies,
near �c�T��.
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FIG. 2. �d� /�� is plotted as a function of � /�0 according to Eq. �20�. The
curve is qualitatively compatible with the experimentally observed scaling
�Ref. 19� for ac permittivity.
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